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Four-dimensional flow magnetic resonance imaging (MRI) has evolved as a

non-invasive imaging technique to visualize and quantify blood flow in the

heart and vessels. Hemodynamic parameters derived from 4D flow MRI, such

as net flow and peak velocities, but also kinetic energy, turbulent kinetic

energy, viscous energy loss, and wall shear stress have shown to be of

diagnostic relevance for cardiovascular diseases. 4D flow MRI, however, has

several limitations. Its long acquisition times and its limited spatio-temporal

resolutions lead to inaccuracies in velocity measurements in small and low-

flow vessels and near the vessel wall. Additionally, 4D flow MRI requires

long post-processing times, since inaccuracies due to the measurement

process need to be corrected for and parameter quantification requires 2D

and 3D contour drawing. Several machine learning (ML) techniques have

been proposed to overcome these limitations. Existing scan acceleration

methods have been extended using ML for image reconstruction and ML

based super-resolution methods have been used to assimilate high-resolution

computational fluid dynamic simulations and 4D flow MRI, which leads to

more realistic velocity results. ML efforts have also focused on the automation

of other post-processing steps, by learning phase corrections and anti-

aliasing. To automate contour drawing and 3D segmentation, networks such

as the U-Net have been widely applied. This review summarizes the latest ML

advances in 4D flow MRI with a focus on technical aspects and applications.

It is divided into the current status of fast and accurate 4D flow MRI data

generation, ML based post-processing tools for phase correction and vessel

delineation and the statistical evaluation of blood flow.
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Introduction

Since its emergence in 1993 (1–3), four-dimensional (4D)
flow magnetic resonance imaging (MRI) has evolved as a non-
invasive imaging technique to visualize and quantify blood flow
and has been used for clinical imaging since the early 2000s (4,
5). 4D flow MRI is based on a time-resolved 3D phase contrast
MRI sequence and is widely applied to the heart and vessels.

The quantification of net flow and peak velocities from
4D flow MRI has shown to be of diagnostic relevance for
cardiovascular diseases such as the grading of stenoses, aortic
coarctation, or aortic- and mitral valve regurgitation (6–9).
Also, the visualization of the direction of the blood flow is
important, for example in aortic aneurysms, aortic dissections
and coarctations, in hypertrophy cardiomyopathy (6, 10), as
well as in congenital heart disease, such as univentricular
hearts or transposition of the great arteries (11, 12). Moreover,
4D flow MRI allows the direct quantification of regurgitant
flow compared to traditional indirect methods (i.e., subtracting
stroke volume calculated from aortic 2D flow MRI from stroke
volume measured by left ventricular segmentation) in mitral
valve insufficiency (13). Furthermore, 3D visualization of the
blood flow using pathlines can help interpreting complex flow
patterns pre- and post-surgery, such as the Fontan procedure
(14). Also, other biomarkers such as kinetic energy (KE) (15,
16), turbulent kinetic energy (TKE) (17, 18), viscous energy (VE)
loss (16), wall shear stress (WSS) (19, 20) or pulse wave velocity
(PWV) (21) have shown significant differences in patients with
cardiovascular disease compared to normal subjects.

Four-dimensional flow MRI, however, has several
limitations. Due to its velocity encoding scheme, 4D flow
MRI takes at least four times as long as cine MRI scans (i.e.,
around 10 min). This poses limits on the clinical application
due to additional costs, patient discomfort and motion artifacts.
Additionally, limited spatio-temporal resolutions, constrained
by the signal-to-noise-ratio (SNR) and scan time, lead to
inaccuracies in velocity measurements in small vessels, low-
flow venous vessels and near the vessel wall due to partial
volume effects (14). This in turn creates inaccurate grading
of stenoses and inaccuracies in WSS estimation (22, 23).
Additionally, 4D flow MRI is subject to inherent inaccuracies
of the MRI measurement process such as residual phase
errors, induced by eddy currents, concomitant fields, or even
mechanical vibrations (24), which can lead to errors in velocity
estimations. Although tuning of the scanners’ pre-emphasis
can help to correct for non-linearities in the gradient field,
these inaccuracies, as well as phase aliasing effects, must be
corrected for retrospectively, creating long post-processing
times using dedicated software. The post-processing times are
prolonged as net flow and peak velocities are typically evaluated
by (manually) placed 2D planes and contours at the location
of the corresponding vessel or valve within the 3D acquisition.

Parameters such as KE, VE, TKE and WSS require even a careful
delineation of the 3D vessel lumen.

Various machine learning (ML) techniques have been
proposed to overcome these limitations. Existing scan
acceleration methods, such as compressed sensing (CS)
(25–27) have been extended using ML reconstructions which
are able to speed up the image reconstruction time up to a
couple of seconds (28). Also, ML super-resolution methods can
assimilate high-resolution computational fluid dynamic (CFD)
simulations and 4D flow MRI, which leads to more realistic
velocity results. ML based techniques, such as U-Nets, used
to localize vessels and segment vessel boundaries, have been
applied to 4D flow MRI to automate contour drawing and 3D
segmentation. ML efforts have also focused on the automation
and acceleration of other post-processing steps, by learning
phase corrections and anti-aliasing.

This review summarizes the latest ML advances in 4D
flow MRI with a focus on technical aspects and applications,
including all original research articles published on the topics
of (4D) flow MRI and ML published until November 2022.
It is divided into the current status of (1) scan acceleration
and image reconstruction, (2) super resolution and data
assimilation for fast and accurate 4D flow MRI data generation,
as well as ML based post-processing methods for (3) phase
corrections, (4) vessel segmentation and (5) the statistical
evaluation of blood flow.

Scan acceleration and image
reconstruction

4D flow MRI uses additional magnetic field gradients to
encode the velocity of moving blood. These gradients are
applied to each spatial direction separately, which results in
four different images, the reference image and three flow
encoded images, also called 4-point encoding (Figure 1A). As
the scan time is therefore four times as long, various acceleration
techniques have been proposed (25, 29–32). These acceleration
methods skip datapoints in k-space (undersampling), which
creates aliasing artifacts in the image when using a conventional
reconstruction. Most image reconstruction algorithms of these
techniques take advantage of information redundancies –
similar to those used for image compression – such that the full
information content can be derived (27). However, the runtimes
for those (iterative) reconstruction algorithms range between
10 and 60 mins, a drawback that can be tackled with machine
learning (ML) approaches.

Most approaches for ML image reconstruction are based on
artifact-removal of undersampled data in image space, rather
than training a network to retrieve the full image content
directly from the undersampled k-space. In 2019, Vishnevsky
et al. (28) implemented a variational neural network (FlowVN)
for fast, automatic image reconstruction of undersampled 4D
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FIGURE 1

(A) 4D flow MRI image acquisition scheme using a spoiled gradient echo sequence with additional bipolar gradients for motion encoding (red).
The velocity maps of this exemplary 4D flow MRI dataset of the aortic arch are obtained by subtracting the phase φ of the reference and the
three flow encoded images. Magnitude images for the four acquired images are averaged, or in other applications, used for turbulence
encoding. All images are time-resolved, representing one cardiac cycle. The velocity encoding strength (VENC) in [cm/s] is set by the user and is
inversely proportional to the area of the bipolar gradient. The VENC is usually chosen in the range of the maximum expected velocity to prevent
velocity aliasing. (B) Fully sampled and randomly undersampled k-space and their corresponding images. The undersampled data displays
incoherent artefacts in image space (P(0)). In data recovery training with the FlowVN (28). P(0) is the Fourier transform of the undersampled
k-space and the starting point of the training. The training loss is defined by the difference of the reconstructed image with the fully sampled
data (P*). The data consistency is calculated in k-space as the difference between the sampled datapoints. After k iterations image P(k) is
achieved. Abbreviations: TR = repetition time, TE = echo time, x,y,z = spatial dimension, v = velocity, γ = gyromagnetic ratio, FFT = fast Fourier
transform, P = image, k = iteration steps.

flow MRI data. During training, fully sampled data served as
a ground truth and was retrospectively undersampled using
a random undersampling pattern as used in CS (33–37)
applications (see Figure 1B). The starting point of the FlowVN
training was an image with random, noise-like undersampling
artifacts (the Fourier transform of a randomly undersampled
k-space) as shown in Figure 1B. The network used this image,
the undersampled k-space data (real and imaginary parts), and
the coil sensitivity maps as inputs for training. It consisted of
3D convolutional layers and data consistency steps. This design
[similar to Hammerik et al. (38)] enabled that (1) the network

learns differences between the ground truth and the artifact
image and (2) that the data points in k-space for sampled and
undersampled data match. The output were artifact-free images
close to the fully sampled data. The network could demonstrate
its similar performance to a regular CS image reconstruction;
however, the runtime was 21 s for the FlowVN vs. 10 min
for the CS reconstruction. Also, when applied to 13 times
undersampled patient data, the FlowVN was 30 times faster
and systolic peak velocity errors were only marginally lower (–
1.59% for FlowVN and –1.18% for CS). In a different study,
Haji-Valiyadeh et al. (39) used a 3D U-Net to remove aliasing
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artifacts from undersampled radial 2D flow MRI data for the
purpose of fast, real-time data acquisition. They developed a
network trained on 510 radial, real-time 2D flow datasets, which
were artificially created from the images of Cartesian 2D flow
dataset. The undersampling artifact removal of the network
was then tested in an actual free-breathing real-time 2D flow
sequence for acceleration factors up to 28. In a comparison
to a CS reconstruction of the real-time data the 3D U-net
filtering was almost 5 times faster and could recover higher peak
velocity values than the CS reconstruction. Peak velocity values
were also closer to the ground truth of non-real-time image
acquisition, represented by an average heartbeat composed of
by all the heartbeats throughout the acquisition, when compared
with the CS reconstruction. Another way of 4D flow MRI scan
acceleration was recently suggested by Kim et al. (40). The
proposed network learns to recover velocity maps as obtained
by regular 4-point encoding (referring to 4 acquisitions, as
illustrated in Figure 1A) by replacing it with a sampling scheme
that requires only three acquisitions and learning the phase
reconstruction subsequently. Velocity results demonstrated a
good agreement between both encoding schemes (regression
slope = 0.96 and R2 = 0.992).

Super resolution and data
assimilation

To increase the spatio-temporal resolution of 4D flow MRI,
which is limited by SNR and scan time, ML super-resolution
techniques can be applied. These techniques learn on paired
high- and low-resolution datasets to resolve an image resolution
higher than the input resolution. As there is typically a lack of
high-resolution in vivo data, most super-resolution approaches
for 4D flow MRI rely on synthetic images created by CFD
simulations. These simulations solve the Navier Stokes equation
in a given vessel geometry and under given inflow conditions
and can be computed at resolutions much higher than the
maximum achievable resolutions with 4D flow MRI, while
maintaining correct physics.

In 2020, Ferdian et al. (41) developed a framework to
derive synthetic high-resolution 4D flow MRI images from CFD
simulations in the aorta for training a super-resolution network.
They used three aortic geometries to generate simulations with
high spatial resolution and a temporal resolution of 71 cardiac
frames, using inlet and outlet conditions at the ascending
and descending aorta. From the simulations synthetic 4D flow
MRI images were generated by deriving the velocity fields and
dividing them into their spatial vx, vy, and vz components,
similar to a 4D flow MRI acquisition (Figure 2). Then, a
complex signal was created with the velocity maps as the signals
phase and a simulated magnitude, followed by a fast Fourier
transform (FFT) to generate a synthetic k-space (Figure 2). To
mimic MRI characteristics the CFD data was down-sampled

in k-space i.e., high frequency components were cut off, and
Gaussian noise was added to the complex signal to achieve a
pre-defined SNR. After inverse fast Fourier transform (IFFT) the
image represented a complex, MRI-like low-resolution signal.
A super-resolution residual network (4DFlowNet), based on the
generator of the SRResNet network (42), was then trained to
recover the high-resolution data. Training was performed on the
paired synthetic high- and low-resolution 4D flow MRI data.
The input layers consisted of two parts, the anatomical one
(with channels: phase-contrast magnetic resonance angiogram
and magnitude image), and the velocity one (with channels: vx,
vy, and vz velocity maps). In this setup, the anatomical channels
selected the vessel regions and supported de-noising. As only
three aortic geometries were available, the network training
was patch-based, that means 16 × 16 × 16 randomly selected
voxel patches, with a flow region of at least 20%, were used
for training. The super-resolution network could successfully
recover simulated data with a resolution down-sampled by a
factor of 2 and at varying SNR levels. The network was then
applied to high-resolution phantom and high- (2 mm) and low-
resolution (4 mm) volunteer 4D flow MRI datasets. The study
showed that the super-resolution network had smaller flow rate
errors averaged in an ROI at in- (–0.6%) and outlet (5.8%) than
interpolated data at in- (7%) and outlet (5.8%) in the phantom
and (1.1%) and (3.8%) in vivo. In a similar study, Rutkowski et al.
(43) used high-resolution, CFD-derived vector fields to create
synthetic, MRI like, high- and low-resolution data pairs. CFD
simulations were calculated on cerebrovascular flow models of
five patient-specific aneurysms on which data augmentation
(changes in diameter size, aneurysm geometry, synthetic vessel
creation) was applied. The vessels had rigid walls and a time-
resolved inflow profile as an inlet condition. Simulations were
repeated 6 times with different inflow profiles, which led to
180 unique time-varying velocity fields. For training, a CNN
similar to standard super-resolution networks (44) was used.
32 × 32 × 32 velocity field blocks were extracted from the
simulated MRI acquisition. The loss function was based on
magnitude weighted least squares and the network was tested
in retrospectively down-sampled phantom data, allowing for a
comparison against the original high-resolution dataset. Also,
the network was applied to 20 time-averaged 4D flow MRI
patient datasets (0.4–0.6 mm isotropic spatial resolution, 20
frames). As a result, the network could remove background
noise up to 64%. Overall, the 4D flow MRI derived velocities
had lower noise and a higher spatial resolution when enhanced
with the CNN. Vessel boundaries could be delineated better, and
the velocities close to the walls were estimated more accurately,
including smoother velocity gradients near the wall. In the
future, these simulations and ML frameworks might be extended
to more advanced 4D flow MRI acquisition schemes, including
turbulence induced signal dephasing in the magnitude images.
Dirix et al. (45) developed a similar framework for synthesized
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FIGURE 2

Overview of frameworks for 4D flow MRI super-resolution training and data assimilation for 4D flow MRI and CFD data: Ferdian et al. (aortic
simulation) (41), Rutkowski et al. (cerebrovascular simulations) (43), Kissas et al. (49), Fathi et al. (50), Dirix et al. (45), Ferdian et al. (54). Exemplary
data in this figure was created with GTFlow (Gyrotools, Zürich, Switzerland).

4D flow MRI images using multipoint encoding to achieve
turbulence assessment (45).

For ML it can be advantageous (faster, more accurate, less
training data) to restrict the space of solutions. Generally, data
fidelity terms in the loss function of neural networks minimize
the distance between the predicted output and the measured
data. Physics-informed networks include a regularization part
that enforces the underlying physical principles of a given
dataset. For 4D flow MRI this can for example be the
conservation of mass and momentum in the flow domain, which
leads to a correct solution even with limited training data (46).
In contrast, other non-machine learning-, but physics-based
methods use divergence free velocity fields as a constraint to 4D
flow MRI data (47) and CFD based velocity field optimizations
to inform the 4D flow MRI data about CFD physics (48). The
physics informed neural network introduced by Raissi et al. (46)
was picked up by Kissas et al. (49) and Fathi et al. (50) in 2020 for
4D flow MRI implementations. The network from Kissas et al.
(49) solves partial differential equations using a neural network
to predict flow and pressure from 4D flow MRI measurements
of the carotid bifurcation. It was trained on simulations with
1D Navier Stokes equations. Fathi et al. (50) trained a deep
neural network with the aim to remove noise and to increase
the resolution of 4D flow MRI data. They restricted the space
of solutions of the applied network by a regularization term on
the Navier Stokes equations within a pre-defined region inside
the blood flow. The data fidelity term (the same as in (46))
was applied to the entire data. The network then output vx, vy,
and vz velocity components, pressure, and the magnitude image.
The network was trained using synthetic 4D flow MRI data and
tested on 4D flow MRI scans of a silicon phantom. For their

workflow only a rough segmentation of the blood flow region
was necessary (in which Navier Stokes was valid), and in contrast
to other techniques, no strict boundaries or inflow conditions
had to be defined, which made it less error prone. They could
demonstrate a significant reduction in velocity errors during
simulation, however, phantom measurements showed marginal
improvements of velocity estimation. Very recently, a super
resolution 4D flow network (SRflow) has been published by
Shit et al. (51) in which they achieved a higher velocity-to-noise
ratio in images with a 4-times increased resolution using their
super-resolution approach than using a regular cubic B-spline
interpolation.

4D flow derived biomarkers, such as WSS, have been
associated with endothelial cell remodeling, for regions of low
WSS (or high oscillatory WSS) in particular. Also, high WSS has
been associated with disease patterns such as in aortic stenosis
and aortic dissection. However, limited spatial resolution, partial
volume effects and segmentation inaccuracy do not allow for
accurate WSS, which is typically solved with curve-fitting and
interpolation (52, 53). 4D flow MRI derived WSS therefore
typically results in an underestimation when compared to CFD
(22). Ferdian et al. (54) developed a U-Net based ML network
(WSSNet) to directly estimate WSS from 4D flow MRI, trained
on patient-specific CFD simulations and synthetic 4D flow MRI.
The datasets consisted of 37 aortic geometries and simulated
velocities. The input of the WSSNet were 2D maps of simulated
velocities close to the vessel border and their coordinates with
respect to the border. The network learned the connection
between geometry, velocity and WSS, and the output were
estimated WSS values (which were compared to WSS values
calculated from the CFD data). To generalize better to 4D flow
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MRI, synthetic low-resolution 4D flow MRI was created from
the CFD data and the training repeated. Then the network
was applied to 43 real, in vivo 4D flow MRI datasets and
compared against the fitting algorithms for WSS estimation.
The mean absolute error of the estimated WSS using the
network was 0.55 ± 0.60 Pa (relative error 4.34 ± 4.14%). The
values correlated well with the WSS from the CFD simulations,
reporting a correlation coefficient of r = 0.92 ± 0.05. The
estimated WSS showed 2–3 times higher WSS values when
compared to regular fitting methods and more robustness to
artificially introduced noise.

Phase corrections

Since velocity maps are derived from the phase of the 4D
flow MRI signal, sources that introduce phase offsets, such as
eddy currents, can impair the data quality. Phase corrections and
anti-aliasing can be performed retrospectively to the acquisition
but are user-dependent and time-consuming. ML techniques,
however, can learn and apply these corrections.

Eddy current induced background phase can be corrected
for by linear or polynomial fits of the phase in static tissue
regions. The calculated phase error fields can then be applied the
flow regions to correct the estimated velocities. You et al. (55)
used 139 (85 training, 14 validation, 40 testing) abdominopelvic
4D flow MRI datasets to train a multichannel 3D U-Net that
automatically generates phase error fields for correction. Flow
analysis was performed on the testing datasets and compared
against a regular background phase correction as a reference,
which included a manual detection of static tissue regions
using dedicated software. Assuming in- and outflow values to
be the same, non-corrected images showed an offset due to
background fields and a low correlation between in- and outflow
values. The Pearson’s correlation coefficient r was reported to be
r = 0.5, with a p-value of p < 0.001. After manual correction
this increased to r = 0.98, p < 0.001 and after automatic ML
correction to r = 0.91, p < 0.001. Flow differences reduced from
uncorrected –0.14 L/min to corrected 0.05 L/min for regular
and ML correction. This technique demonstrated the use of a
fast, automated correction and the feasibility of ML training for
this task, demonstrating similar results as manual correction.
However, also (semi-) automatic algorithms for the selection of
static tissue regions and fitting exists (and usually perform well),
which were not included as a reference in the study.

Aliasing effects, or phase-wraps, can occur if the velocity
encoding, defined by the VENC, was chosen too low. High
velocities, higher than the VENC value, will appear as wrapped
phases (transitioning from + π to –π) in the velocity map
(Figure 3A), which must be corrected for retrospectively. The
correction, however, requires the identification of the aliased
voxel in 3D and for all time frames. There are several semi-
automatic solutions that support 2D voxel wise un-wrapping

by region-merging and graph cut optimization (56, 57), which,
however, require a start point for unwrapping or rely on spatio-
temporal smoothness (58, 59). These methods were also adapted
to be applicable to 4D flow MRI by using a Laplacian algorithm
(60). Robust, automatic detection of all aliased voxel in all
time frames, however, remains challenging and large, aliased
regions or regions with multiple wraps remain a problem. In
Berhane et al. (61) a U-Net CNN was used to automatically
detect and correct aliasing in 667 4D flow dataset (VENCs
ranging between 60 and 500 cm/s, 534 with contrast agent,
321 bicuspid aortic valve (BAV), 247 tricuspid aortic valve, 99
controls). Aliasing was either introduced during acquisition or
retrospectively added. An additional 10 subjects were acquired
with three different VENC settings (60, 100, 175 cm/s) to show
the accuracy of the unwrapping method. From all datasets
static segmentations of the thoracic aorta were created. Datasets
without aliasing (N = 305) were used to introduce aliasing in
predefined regions, serving as labeled pairs of ground truth and
aliased voxels. The data was split up in training (and validation)
and testing, with a binary mask for the aliased voxels as a
network output. Test results provided much better correction
when compared to an automated method (from Salfity (58,
59)). The difference of the performance of the techniques was
significant with a Dice score (DS) between 0.89 and 0.99 (for
the different VENCs) for the CNN and between 0.84 and
0.90 for the conventional algorithm. Ten datasets scanned with
different VENCs showed similar peak velocity, net and peak
flow rates for the conventional anti-aliasing algorithm and the
CNN corrected datasets. However, no comparison against a 4D
Laplacian algorithm was done and also multiple phase wrapping
was not taken into account. Also, phase-unwrapping at the
vessel wall was limited, which leaves the phase-unwrapping
problem open to find a fully automatic solution.

Vessel segmentation

4D flow MRI requires accurate delineation of the vessel
lumen for calculation of mean velocities, flow and WSS. The
blood-tissue contrast of the sequence is low, especially without
the use of contrast-agents, which is why for segmentation
angiogram-like images are generated from the absolute velocity.
These PC-MRAs can be calculated in a time-resolved way, but
do not have sufficient signal in regions and time frames with low
velocities, which is why they cannot be used for accurate, fully
automated segmentations (see Figure 3B). 3D segmentation is
therefore done in a semi-automatic way for static images and
there is a strong need for fast, robust and automatic delineations.

Classifying machine learning tasks like the U-Net (62) have
been used broadly to define labels and their location in 2D or
3D images. They are built up by an encoder part, so the down-
sampling of spatial information, and a decoder part, restoring
the spatial information. The networks are trained on paired
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FIGURE 3

(A) Simulated parabolic flow with a central peak velocity of 220 cm/s and the aliasing effect create in the phase-difference image and the
velocity map when a lower VENC e.g., of 200 cm/s is chosen. (B) Temporal evolution of the magnitude and PC-MRA signal in an aortic 4D flow
MRI dataset. Magnitude images do not allow for fast segmentations based on thresholding as blood and tissue have a similar contrast. PC-MRA
images lose their signal when there is no apparent blood flow e.g., during diastole.

datasets of the original image and the matching voxel-based
segmentation. To compare the geometric segmentation results
the DS and the Hausdorff distance (HD) are used. The DS ranges
from zero to one and calculates the voxel-based match between
learned and ground truth geometry. The HD is the maximum
value of all (Euclidian) distances calculated between each point
of a geometry and the closest point of another geometry.

Bratt et al. (63) trained a U-Net to segment the aortic
valve from 2D flow MRI magnitude images, based on manual,
time-resolved segmentations. They achieved a DS of 0.94 using
150 aortic datasets for training. In 190 additional testing
datasets (patients with coronary artery disease) the ML based
segmentation demonstrated high correlations in the analysis of
net forward flow through the aortic valve when compared to
a manual delineation (r = 0.99, p < 0.001) and it performed
better than a commercial automatic segmentation [significant
differences in flow 1.85 ± 1.8 ml (U-Net) vs. 3.33 ± 3.18 ml
(automatic)]. Also, in a different patient cohort with BAV and
stenotic aortic valves acquired at a different scanner and vendor
the network performed equally well in comparison to manual
segmentations (correlation r = 0.99, p < 0.001). In a similar
study, Garcia et al. (64) trained a network to detect and track
the movement of the aortic and the mitral valve in 3-chamber
cine (bSSFP) images. The resulting position of a 2D plane
through the valve was interpolated onto 4D flow MRI data
acquired in the same scan session in 106 subjects resulting in
significant differences in flow and peak velocity between aortic-
and mitral valve disease patients and controls (no comparison
between manual and ML segmentation was conducted). Tsou
et al. (65) trained two networks, a MultiResUNet (66) and
a U-Net to perform 2D contour delineations of the cerebral
aqueduct on 333 (266 training, 67 validation) cerebral 2D flow
MRI datasets. Cerebrospinal fluid flow through the aqueduct
was similar for both segmentation approaches when compared
to segmentations of a radiologist. The DS was slightly higher

for the MulitResUNet than for the U-Net (DS = 0.933 vs.
DS = 0.928, respectively) and the MulitResUNet was less prone
to segmentation errors than the U-Net.

In 2020, Berhane et al. (67) used 4D flow MRI scans
of a wide range of age, body mass index and aortic valve
types of 1,018 subjects (528 BAV and 376 tricuspid aortic
valves, 114 healthy controls) to train a CNN based 3D U-Net
(62) segmentation network for labeling the aorta in a systolic
timeframe. Training datasets were constituted from manually
labeled images, done by >20 operators. The segmentations
resulted in a DS of 0.951 and HD of 2.8 mm for the testing
dataset (499 training, 101 validation, 418 testing). Additionally,
a centerline was automatically detected, and perpendicular slices
were chosen with the vessel boundary being the segmentation.
These values were then compared against each other in peak
velocity (< 0.001 m/s, LOA 0.01% for the CNN at all regions)
and net flow (–0.2 to 0.1 mL/cycle, LOAs 6.4–9.2%) to quantify
differences. Interestingly, most deviations in the testing cohort
with a DS below 0.9 were around the aortic outflow tract
or at the superior extend of the aortic branches, indicating a
difference in the segmentations extend. Also, the CNN achieved
DS similar to the interobserver values (DS = 0.95). This ML
workflow can certainly be used on a wide range of 4D flow
MRI images, eventually it requires retraining if different PC-
MRA calculation methods are used. Similarly, Garrido-Oliver
et al. (68) trained a 3D nnU-Net (69) for static segmentations
of the aorta and a Deep Q-Network (DQN) (70), based on
reinforcement learning, for landmark detection on 323 patients
(BAV, genetic syndrome, aneurisms) who received 4D flow
MRI scans. For the aortic segmentations they achieved a DS
of 0.949. The landmark detection algorithm performed well in
the identification of the supra-aortic vessels, and it performed
less good in the detection of the sinotubular junction and
the pulmonary artery bifurcation. The sinotubular junction,
however, was also challenging to be identified by human
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observers. Both studies, (67) and (68), did not take the motion of
the aorta into account but included only time-averaged images.

So far, only limited studies exist on training time-resolved
segmentations from 4D flow MRI. However, time-resolved
segmentations are of interest when investigating stiffness by
PWV (71–74), and to avoid inaccuracies in flow estimation, as
the aortic root can move up to 8 mm within one heartbeat (75).
Segmentation of time-resolved images is very time-consuming
as it requires a 3D segmentation for each of 10–40 timeframes.
In 2022, Bustamante et al. (76) created a framework to segment
all 4 cardiac chambers, the aorta, and pulmonary arteries for all
time frames from contrast-enhanced 4D flow MRI data. A 3D
U-net was developed on 205 4D flow dataset (144 training,
20 validation, 41 testing), which contained a variety of cardiac
disorders (N = 165). Forty cardiac frames were acquired and
treated as independent segmentations. The segmentations were
compared against ground truth, manually corrected, atlas-based
segmentations also developed by Bustamante et al. (77). This
method registers a general segmentation mask onto the image,
which is, however, computationally expensive. The results
showed good overall scores, the best scores achieved in the
aorta. Time-averaged DS were >0.9 for all anatomies, similar to
Berhane et al. (67).

To avoid the problem of poor myocardium-to-blood
contrast in 4D flow MRI and time intensive pre-registration
on atlases, Corrado et al. (78) used a stack of 2D time-resolved
short-axis cine (bSSFP) images acquired at the same scan session
to segment 4D flow MRI of mainly healthy subjects (N = 105).
They used a pretrained fully convolutional network (FCN) from
Bai et al. (79) trained on 4,875 short axis bSSFP images of the UK
biobank study to create a 3D segmentation of the left and right
ventricle. Then a 3D-to-3D registration of the time-averaged
bSSFP and 4D flow data was done to map the segmentation
results onto the 4D flow dataset. The automated segmentation
(LV: DS = 0.92, RV: DS = 0.86) showed good agreement with
manual segmentations (LV: DS = 0.91, RV: DS = 0.87).

Corrado et al. (80) also developed a ML based plane
selection (80), which automatically defines measurement planes
perpendicular to the 8 great vessels: ascending aorta, main
pulmonary artery, superior and inferior vena cava, and the
4 pulmonary veins. The training was done on 323 subjects
(241 training, 42 validation, 40 testing; in total 186 healthy
controls, 123 patients and 14 with unknown health status).
A 3D CNN predicted the probability of a predefined patch
(32 × 32 × 32 voxels) containing a vessel and also location,
size and a double oblique plane on that vessel. The CNN was
based on residual learning [ResNet (81)] with residual blocks for
feature extraction and convolutional blocks for downsampling.
At each plane either done by ML or manual selection, a
segmentation of the vessel was performed automatically based
on the PC-MRA and net flow was calculated and compared.
As a result, the correlation between the ML algorithm and two
manual observers was slightly lower (observer 1 vs. algorithm:
r = 0.68 and observer 2 vs. algorithm: r = 0.72) that the

difference between the two observers (r = 0.81). Also, the
algorithm was more accurate on straighter vessels such as the
SVC and worse in the ascending aorta. The performance was
stable for all flow estimations (as this was probably insensitive
to small variation in measurement plane). Also, the patient
datasets were an additional challenge for the network suggesting
more diverse datasets. Overall, the ML method was faster than
atlas-based approaches. Processing times when applying the
ML were 18s vs. 300–400 s for a manual observer. The study
suggested a reinforcement learning approach for measurement
plane planning in the future.

Contrast enhanced 4D flow MRI is used for many clinical
examinations and creates a better blood-tissue contrast than
conventional 4D flow MRI. In medical imaging, realistic but
fictitious images can be produced by generative adversarial
networks (GANs), and CycleGANs (82, 83) in particular.
Bustamante et al. (84) used a cyclic GAN, to artificially
transform non-contrast cardiac enhanced scans into contrast
enhanced data. The cyclic GAN can be considered as
unsupervised learning which needs two images sets as input,
which do not have to be exact pairs. It consists of two
generators or data transformation functions that transform
(1) non-contrast data into contrast data and (2) contrast data
into non-contrast data. It also consists of two discriminators
that distinguishes (1) artificial from real contrast data and
(2) artificial from real non-contrast data. They used 69 with
and 72 datasets without contrast agents for training a 2D
GAN. In total additional 81 non-contrast aortic datasets were
used for testing and were converted into artificially enhanced
datasets using the GAN. For training, the data was cropped and
rearranged as 120 2D slices in a coronal view, using only the
magnitude image as an input. The quantitative evaluation of the
artificially enhanced test data showed an increase in contrast-
to-noise ratio (CNR) by 88%, and an increase in SNR by 48%.
This was achieved while maintaining a structural similarity
index, describing structural information, of 0.82 ± 0.01 and
a mean relative error of 0.09 ± 0.01 between enhanced and
original images. Also, segmentation on artificially enhanced data
performed better than on regular data.

Statistical evaluation of blood flow

ML has the potential to support the statistical classification
of healthy controls and patients with cardiovascular disease
based on 4D flow MRI data using supervised or unsupervised
learning. For classification, typically a set of hemodynamic
features is derived from the data (such as velocity, vorticity, etc.),
then the number of features is reduced by a feature-selection
step e.g., using a sequential forward search. A set of different
classifiers is then tested during (supervised/unsupervised)
training and the best performing features, feature-selection steps
and classifiers might be used for future predictions.
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Niemann et al. (85) developed a method for feature-based
classification of patients with BAV and healthy controls, based
on aortic 4D flow MRI. They trained a network to classify
between (1) BAV (N = 22) and healthy controls (N = 90),
(2) BAV and “older” healthy controls (N = 30) and (3) male
and female subjects. Their framework included hemodynamic
feature selection, model training and hyperparameter tuning.
Selected features were parameters such as minimum, maximum
and mean velocities derived from planes perpendicular to the
aortic centerline. Classifiers used for training were methods
such as random forest (RF) and support vector machine

TABLE 1 Available code for all original research papers screened for
this review.

References Topic Code

Vishnevsky et al.
(28)

Reconstruction of
undersampled
Cartesian 4D flow
MRI data (aorta)

https://codeocean.com/capsule/
0115983/tree

Haji-Valizadeh
et al. (39)

Reconstruction of
radial 2D flow MRI
data (aorta)

https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:
10.7910/DVN/N97M6H

Kim et al. (40) Fast 4D flow MRI by
estimating velocity
maps from 3-point
encoding

https://github.com/uwmri/
ThreePoint4DFlow

Ferdian et al.
(41)

4D flow MRI
super-resolution
framework

https://github.com/
EdwardFerdian/4DFlowNet

Kissas et al. (49) 1D flow physics
informed DNN

https://github.com/
PredictiveIntelligenceLab/
1DBloodFlowPINNs

Ferdian et al.
(54)

WSS estimation
from 4D flow MRI

https://github.com/
EdwardFerdian/WSSNet

Berhane et al.
(61)

Anti-aliasing
correction of 4D
flow MRI data

https://github.com/hberhane/4D-
flow-Velocity-Aliasing-CNN

Bratt et al. (63) Segmentation on 2D
flow MRI data

https://github.com/akbratt/PC_
AutoFlow

Tsou et al. (65) Segmentation on 4D
flow MRI data

Uses MultiResUNet from (66):
https://github.com/nibtehaz/
MultiResUNet

Corrado et al.
(80)

Automatic
measurement plane
selection on 4D flow
MRI data

https://github.com/pcorrado/DL-
Vessel-Localization

Corrado et al.
(78)

Ventricular
segmentation on 4D
flow MRI data

Using the FCN from (79):
https://github.com/baiwenjia/
ukbb_cardiac

Garrido-Oliver
et al. (68)

3D segmentation
and landmark
detection 4D flow
MRI data (aorta)

Uses the nnU-Net (69):
https://github.com/MIC-DKFZ/
nnUNet
Reinforcement learning and
landmark detection:
https://github.com/Cardio
vascularImagingVallHebron
/4D_flow_landmark_detection

(SVM). The results for classifying the task were for (1) an
accuracy of 93% with features time-to-peak vorticity, time-to-
peak in-plane velocity and peak-systolic in-plane mean velocity
using sequential forward search (SFS) as a feature-selection
method and RF as a classifier, for (2) an accuracy of 100%
with features peak-systolic mean velocity, time-to-peak-systolic-
through-plane mean velocity and diastolic median right rotation
volume using SFS as a feature selection method and SVM
a classifier, and for (3) an accuracy of 69% with features
peak velocity, peak systolic velocity and time-to-peak-systolic-
through-plane velocity using SFS as a feature selection method
and RF as a classifier. The results of the classification model
demonstrated a good distinction between BAV and controls and
only moderate distinction between male and female subjects.
Also, in Franco et al. (86) the hemodynamics of the thoracic
aorta in 4D flow MRI data of patients with BAV was analyzed
searching for new biomarkers. The aim was to find a ML model
that distinguishes three classes: BAV patients with (N = 49) and
without (N = 18) dilated ascending aorta and healthy controls
(N = 48). A total of 17 hemodynamic features such as e.g.,
forward velocity, velocity angle, vorticity, KE, TKE and WSS
were extracted from 4D flow MRI data in two parts of the aorta.
Then a set of classifiers (linear discriminant analysis, k-nearest
neighbors, quadratic discriminant, Mahalanobis distant, SVM,
neural network, RF) were tested and used to train a neural
network with multiple layers. The performance was evaluated
with repeated cross-validation and Pearson correlation between
the hemodynamic features. Overall, the model classifying the
data showed, that linear discriminant analysis (96.3% accuracy)
and random forest (96.0% accuracy) were the best performing
classifiers using the features: velocity angle, forward velocity,
vorticity, and backward velocity in the ascending aorta.

Conclusion

Current 4D flow MRI acquisitions are constrained by
their scan time, spatio-temporal resolution, and SNR, limiting
their accuracy and clinical application. Semi-automatic post-
processing steps, including phase corrections and segmentation
for vessel delineation are time-consuming and in need for
automation. This review shows various ways of accelerating
image reconstruction times and post-processing tasks using
ML, when compared to the current state-of-the-art approaches.
Code and data have been made publicly available for many
ML applications reviewed for this article (as summarized in
Table 1), which supports their reproducibility, applicability and
development. A table summarizing all papers reviewed and their
technical details can be found in the Supplementary Table 1.

In the future, it will be essential that accurate cardiovascular
4D flow MRI can be performed in a single, fast scan. That
includes an easy choice of VENCs (by retrospective correction of
anti-aliasing and phase offsets) and spatio-temporal resolutions
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that might be increased by super-resolution approaches
retrospectively to the scan and for vessels with slow flow and
small geometries. It is important, that the analysis of the data is
performed in an automated, operator independent and robust
way, to allow accurate assessment of biomarkers such as peak
velocities and WSS for diagnosis and clinical decision making.
Classification of disease by 4D flow MRI-derived biomarkers has
the potential to be reinforced by ML technologies.
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