118 research outputs found

    Autoencoding with a classifier system

    Get PDF
    Autoencoders are data-specific compression algorithms learned automatically from examples. The predominant approach has been to construct single large global models that cover the domain. However, training and evaluating models of increasing size comes at the price of additional time and computational cost. Conditional computation, sparsity, and model pruning techniques can reduce these costs while maintaining performance. Learning classifier systems (LCS) are a framework for adaptively subdividing input spaces into an ensemble of simpler local approximations that together cover the domain. LCS perform conditional computation through the use of a population of individual gating/guarding components, each associated with a local approximation. This article explores the use of an LCS to adaptively decompose the input domain into a collection of small autoencoders where local solutions of different complexity may emerge. In addition to benefits in convergence time and computational cost, it is shown possible to reduce code size as well as the resulting decoder computational cost when compared with the global model equivalent

    Multiform Evolution for High-Dimensional Problems with Low Effective Dimensionality

    Full text link
    In this paper, we scale evolutionary algorithms to high-dimensional optimization problems that deceptively possess a low effective dimensionality (certain dimensions do not significantly affect the objective function). To this end, an instantiation of the multiform optimization paradigm is presented, where multiple low-dimensional counterparts of a target high-dimensional task are generated via random embeddings. Since the exact relationship between the auxiliary (low-dimensional) tasks and the target is a priori unknown, a multiform evolutionary algorithm is developed for unifying all formulations into a single multi-task setting. The resultant joint optimization enables the target task to efficiently reuse solutions evolved across various low-dimensional searches via cross-form genetic transfers, hence speeding up overall convergence characteristics. To validate the overall efficacy of our proposed algorithmic framework, comprehensive experimental studies are carried out on well-known continuous benchmark functions as well as a set of practical problems in the hyper-parameter tuning of machine learning models and deep learning models in classification tasks and Predator-Prey games, respectively.Comment: 12 pages,6 figure

    A Multi-Transformation Evolutionary Framework for Influence Maximization in Social Networks

    Full text link
    Influence maximization is a crucial issue for mining the deep information of social networks, which aims to select a seed set from the network to maximize the number of influenced nodes. To evaluate the influence spread of a seed set efficiently, existing studies have proposed transformations with lower computational costs to replace the expensive Monte Carlo simulation process. These alternate transformations, based on network prior knowledge, induce different search behaviors with similar characteristics to various perspectives. Specifically, it is difficult for users to determine a suitable transformation a priori. This article proposes a multi-transformation evolutionary framework for influence maximization (MTEFIM) with convergence guarantees to exploit the potential similarities and unique advantages of alternate transformations and to avoid users manually determining the most suitable one. In MTEFIM, multiple transformations are optimized simultaneously as multiple tasks. Each transformation is assigned an evolutionary solver. Three major components of MTEFIM are conducted via: 1) estimating the potential relationship across transformations based on the degree of overlap across individuals of different populations, 2) transferring individuals across populations adaptively according to the inter-transformation relationship, and 3) selecting the final output seed set containing all the transformation's knowledge. The effectiveness of MTEFIM is validated on both benchmarks and real-world social networks. The experimental results show that MTEFIM can efficiently utilize the potentially transferable knowledge across multiple transformations to achieve highly competitive performance compared to several popular IM-specific methods. The implementation of MTEFIM can be accessed at https://github.com/xiaofangxd/MTEFIM.Comment: This work has been submitted to the IEEE Computational Intelligence Magazine for publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A Scalable Test Problem Generator for Sequential Transfer Optimization

    Full text link
    Sequential transfer optimization (STO), which aims to improve optimization performance by exploiting knowledge captured from previously-solved optimization tasks stored in a database, has been gaining increasing research attention in recent years. However, despite significant advancements in algorithm design, the test problems in STO are not well designed. Oftentimes, they are either randomly assembled by other benchmark functions that have identical optima or are generated from practical problems that exhibit limited variations. The relationships between the optimal solutions of source and target tasks in these problems are manually configured and thus monotonous, limiting their ability to represent the diverse relationships of real-world problems. Consequently, the promising results achieved by many algorithms on these problems are highly biased and difficult to be generalized to other problems. In light of this, we first introduce a few rudimentary concepts for characterizing STO problems (STOPs) and present an important problem feature overlooked in previous studies, namely similarity distribution, which quantitatively delineates the relationship between the optima of source and target tasks. Then, we propose general design guidelines and a problem generator with superior extendibility. Specifically, the similarity distribution of a problem can be systematically customized by modifying a parameterized density function, enabling a broad spectrum of representation for the diverse similarity relationships of real-world problems. Lastly, a benchmark suite with 12 individual STOPs is developed using the proposed generator, which can serve as an arena for comparing different STO algorithms. The source code of the benchmark suite is available at https://github.com/XmingHsueh/STOP

    Convergence acceleration for multiobjective sparse reconstruction via knowledge transfer

    Full text link
    © Springer Nature Switzerland AG 2019. Multiobjective sparse reconstruction (MOSR) methods can potentially obtain superior reconstruction performance. However, they suffer from high computational cost, especially in high-dimensional reconstruction. Furthermore, they are generally implemented independently without reusing prior knowledge from past experiences, leading to unnecessary computational consumption due to the re-exploration of similar search spaces. To address these problems, we propose a sparse-constraint knowledge transfer operator to accelerate the convergence of MOSR solvers by reusing the knowledge from past problem-solving experiences. Firstly, we introduce the deep nonlinear feature coding method to extract the feature mapping between the search of the current problem and a previously solved MOSR problem. Through this mapping, we learn a set of knowledge-induced solutions which contain the search experience of the past problem. Thereafter, we develop and apply a sparse-constraint strategy to refine these learned solutions to guarantee their sparse characteristics. Finally, we inject the refined solutions into the iteration of the current problem to facilitate the convergence. To validate the efficiency of the proposed operator, comprehensive studies on extensive simulated signal reconstruction are conducted

    Scalable Transfer Evolutionary Optimization: Coping with Big Task Instances

    Full text link
    In today's digital world, we are confronted with an explosion of data and models produced and manipulated by numerous large-scale IoT/cloud-based applications. Under such settings, existing transfer evolutionary optimization frameworks grapple with satisfying two important quality attributes, namely scalability against a growing number of source tasks and online learning agility against sparsity of relevant sources to the target task of interest. Satisfying these attributes shall facilitate practical deployment of transfer optimization to big source instances as well as simultaneously curbing the threat of negative transfer. While applications of existing algorithms are limited to tens of source tasks, in this paper, we take a quantum leap forward in enabling two orders of magnitude scale-up in the number of tasks; i.e., we efficiently handle scenarios with up to thousands of source problem instances. We devise a novel transfer evolutionary optimization framework comprising two co-evolving species for joint evolutions in the space of source knowledge and in the search space of solutions to the target problem. In particular, co-evolution enables the learned knowledge to be orchestrated on the fly, expediting convergence in the target optimization task. We have conducted an extensive series of experiments across a set of practically motivated discrete and continuous optimization examples comprising a large number of source problem instances, of which only a small fraction show source-target relatedness. The experimental results strongly validate the efficacy of our proposed framework with two salient features of scalability and online learning agility.Comment: 12 pages, 5 figures, 2 tables, 2 algorithm pseudocode

    Combining Lyapunov Optimization With Evolutionary Transfer Optimization for Long-Term Energy Minimization in IRS-Aided Communications

    Get PDF
    This article studies an intelligent reflecting surface (IRS)-aided communication system under the time-varying channels and stochastic data arrivals. In this system, we jointly optimize the phase-shift coefficient and the transmit power in sequential time slots to maximize the long-term energy consumption for all mobile devices while ensuring queue stability. Due to the dynamic environment, it is challenging to ensure queue stability. In addition, making real-time decisions in each short time slot also needs to be considered. To this end, we propose a method (called LETO) that combines Lyapunov optimization with evolutionary transfer optimization (ETO) to solve the above optimization problem. LETO first adopts Lyapunov optimization to decouple the long-term stochastic optimization problem into deterministic optimization problems in sequential time slots. As a result, it can ensure queue stability since the deterministic optimization problem in each time slot does not involve future information. After that, LETO develops an evolutionary transfer method to solve the optimization problem in each time slot. Specifically, we first define a metric to identify the optimization problems in past time slots similar to that in the current time slot, and then transfer their optimal solutions to construct a high-quality initial population in the current time slot. Since ETO effectively accelerates the search, we can make real-time decisions in each short time slot. Experimental studies verify the effectiveness of LETO by comparison with other algorithms

    An overview of LCS research from 2021 to 2022

    Get PDF

    Multi-Objective Sparse Reconstruction With Transfer Learning and Localized Regularization

    Full text link
    corecore