246 research outputs found

    Analysing and Modelling Particle Distributions in Near-Earth Space: Machine Learning

    Get PDF
    This thesis contains the analysis of 10 years of ESA Cluster observations using machine learning techniques. In the first study, we investigate solar wind electron populations at 1 au. In the second study, we apply a novel machine learning technique to magnetotail data in order to better characterise particle distribution function. In the third study, we make the first in-situ observations of the tearing instability leading to magnetic reconnection in the magnetotail. Solar wind electron velocity distributions at 1 au consist of three main populations: the thermal `core' population and two suprathermal populations called halo and strahl. We apply unsupervised algorithms to phase space density distributions, to perform a statistical study of how the core/halo and core/strahl breakpoint energies vary. The results of our statistical study show a significant decrease in both breakpoint energies against solar wind speed. By fitting Maxwellians to the core, based on our study, we can discuss the relative importance of the core temperature on halo and strahl electrons. Collisionless space plasma environments are characterised by distinct particle populations that typically do not mix. Although moments of their velocity distributions help in distinguishing different plasma regimes, the distribution functions themselves provide more comprehensive information about the plasma state. By applying dimensionality reduction and clustering methods to electron distributions in pitch angle and energy space, we distinguish between the different plasma regions. We identify several new distinct groups of distributions, that are dependent upon significantly more complex plasma and field dynamics. Magnetic reconnection is a fundamental mechanism responsible for explosive energy release in space and laboratory plasmas. The onset of reconnection is via the tearing instability. Due to its elusive nature, there is an absence of in-situ observations of the tearing instability. We present the first direct observations of the tearing instability and the subsequent evolution of plasma electrons and reconnection, using neural network outlier detection methods. Our analysis of the tearing instability and subsequent reconnection provides new insights into the fundamental understanding of the mechanism responsible for reconnection

    Designing the next generation intelligent transportation sensor system using big data driven machine learning techniques

    Get PDF
    Accurate traffic data collection is essential for supporting advanced traffic management system operations. This study investigated a large-scale data-driven sequential traffic sensor health monitoring (TSHM) module that can be used to monitor sensor health conditions over large traffic networks. Our proposed module consists of three sequential steps for detecting different types of abnormal sensor issues. The first step detects sensors with abnormally high missing data rates, while the second step uses clustering anomaly detection to detect sensors reporting abnormal records. The final step introduces a novel Bayesian changepoint modeling technique to detect sensors reporting abnormal traffic data fluctuations by assuming a constant vehicle length distribution based on average effective vehicle length (AEVL). Our proposed method is then compared with two benchmark algorithms to show its efficacy. Results obtained by applying our method to the statewide traffic sensor data of Iowa show it can successfully detect different classes of sensor issues. This demonstrates that sequential TSHM modules can help transportation agencies determine traffic sensors’ exact problems, thereby enabling them to take the required corrective steps. The second research objective will focus on the traffic data imputation after we discard the anomaly/missing data collected from failure traffic sensors. Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and other traffic operation tasks. Nonetheless, missing traffic data are a common issue in sensor data which is inevitable due to several reasons, such as malfunctioning, poor maintenance or calibration, and intermittent communications. Such missing data issues often make data analysis and decision-making complicated and challenging. In this study, we have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TSDIGAN) to efficiently reconstruct the missing data by generating realistic synthetic data. In recent years, GANs have shown impressive success in image data generation. However, generating traffic data by taking advantage of GAN based modeling is a challenging task, since traffic data have strong time dependency. To address this problem, we propose a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF) that converts the problem of traffic time-series data generation into that of image generation. We have evaluated and tested our proposed model using the benchmark dataset provided by Caltrans Performance Management Systems (PeMS). This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset. Further, the model achieves reasonably high accuracy in imputation tasks even under a very high missing data rate (\u3e50%), which shows the robustness and efficiency of the proposed model. Besides the loop and radar sensors, traffic cameras have shown great ability to provide insightful traffic information using the image and video processing techniques. Therefore, the third and final part of this work aimed to introduce an end to end real-time cloud-enabled traffic video analysis (IVA) framework to support the development of the future smart city. As Artificial intelligence (AI) growing rapidly, Computer vision (CV) techniques are expected to significantly improve the development of intelligent transportation systems (ITS), which are anticipated to be a key component of future Smart City (SC) frameworks. Powered by computer vision techniques, the converting of existing traffic cameras into connected ``smart sensors called intelligent video analysis (IVA) systems has shown the great capability of producing insightful data to support ITS applications. However, developing such IVA systems for large-scale, real-time application deserves further study, as the current research efforts are focused more on model effectiveness instead of model efficiency. Therefore, we have introduced a real-time, large-scale, cloud-enabled traffic video analysis framework using NVIDIA DeepStream, which is a streaming analysis toolkit for AI-based video and image analysis. In this study, we have evaluated the technical and economic feasibility of our proposed framework to help traffic agency to build IVA systems more efficiently. Our study shows that the daily operating cost for our proposed framework on Google Cloud Platform (GCP) is less than $0.14 per camera, and that, compared with manual inspections, our framework achieves an average vehicle-counting accuracy of 83.7% on sunny days

    Data Analysis Methods for Software Systems

    Get PDF
    Using statistics, econometrics, machine learning, and functional data analysis methods, we evaluate the consequences of the lockdown during the COVID-19 pandemics for wage inequality and unemployment. We deduce that these two indicators mostly reacted to the first lockdown from March till June 2020. Also, analysing wage inequality, we conduct analysis separately for males and females and different age groups.We noticed that young females were affected mostly by the lockdown.Nevertheless, all the groups reacted to the lockdown at some level

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Game-Theoretic and Machine-Learning Techniques for Cyber-Physical Security and Resilience in Smart Grid

    Get PDF
    The smart grid is the next-generation electrical infrastructure utilizing Information and Communication Technologies (ICTs), whose architecture is evolving from a utility-centric structure to a distributed Cyber-Physical System (CPS) integrated with a large-scale of renewable energy resources. However, meeting reliability objectives in the smart grid becomes increasingly challenging owing to the high penetration of renewable resources and changing weather conditions. Moreover, the cyber-physical attack targeted at the smart grid has become a major threat because millions of electronic devices interconnected via communication networks expose unprecedented vulnerabilities, thereby increasing the potential attack surface. This dissertation is aimed at developing novel game-theoretic and machine-learning techniques for addressing the reliability and security issues residing at multiple layers of the smart grid, including power distribution system reliability forecasting, risk assessment of cyber-physical attacks targeted at the grid, and cyber attack detection in the Advanced Metering Infrastructure (AMI) and renewable resources. This dissertation first comprehensively investigates the combined effect of various weather parameters on the reliability performance of the smart grid, and proposes a multilayer perceptron (MLP)-based framework to forecast the daily number of power interruptions in the distribution system using time series of common weather data. Regarding evaluating the risk of cyber-physical attacks faced by the smart grid, a stochastic budget allocation game is proposed to analyze the strategic interactions between a malicious attacker and the grid defender. A reinforcement learning algorithm is developed to enable the two players to reach a game equilibrium, where the optimal budget allocation strategies of the two players, in terms of attacking/protecting the critical elements of the grid, can be obtained. In addition, the risk of the cyber-physical attack can be derived based on the successful attack probability to various grid elements. Furthermore, this dissertation develops a multimodal data-driven framework for the cyber attack detection in the power distribution system integrated with renewable resources. This approach introduces the spare feature learning into an ensemble classifier for improving the detection efficiency, and implements the spatiotemporal correlation analysis for differentiating the attacked renewable energy measurements from fault scenarios. Numerical results based on the IEEE 34-bus system show that the proposed framework achieves the most accurate detection of cyber attacks reported in the literature. To address the electricity theft in the AMI, a Distributed Intelligent Framework for Electricity Theft Detection (DIFETD) is proposed, which is equipped with Benford’s analysis for initial diagnostics on large smart meter data. A Stackelberg game between utility and multiple electricity thieves is then formulated to model the electricity theft actions. Finally, a Likelihood Ratio Test (LRT) is utilized to detect potentially fraudulent meters

    Spatiotemporal anomaly detection: streaming architecture and algorithms

    Get PDF
    Includes bibliographical references.2020 Summer.Anomaly detection is the science of identifying one or more rare or unexplainable samples or events in a dataset or data stream. The field of anomaly detection has been extensively studied by mathematicians, statisticians, economists, engineers, and computer scientists. One open research question remains the design of distributed cloud-based architectures and algorithms that can accurately identify anomalies in previously unseen, unlabeled streaming, multivariate spatiotemporal data. With streaming data, time is of the essence, and insights are perishable. Real-world streaming spatiotemporal data originate from many sources, including mobile phones, supervisory control and data acquisition enabled (SCADA) devices, the internet-of-things (IoT), distributed sensor networks, and social media. Baseline experiments are performed on four (4) non-streaming, static anomaly detection multivariate datasets using unsupervised offline traditional machine learning (TML), and unsupervised neural network techniques. Multiple architectures, including autoencoders, generative adversarial networks, convolutional networks, and recurrent networks, are adapted for experimentation. Extensive experimentation demonstrates that neural networks produce superior detection accuracy over TML techniques. These same neural network architectures can be extended to process unlabeled spatiotemporal streaming using online learning. Space and time relationships are further exploited to provide additional insights and increased anomaly detection accuracy. A novel domain-independent architecture and set of algorithms called the Spatiotemporal Anomaly Detection Environment (STADE) is formulated. STADE is based on federated learning architecture. STADE streaming algorithms are based on a geographically unique, persistently executing neural networks using online stochastic gradient descent (SGD). STADE is designed to be pluggable, meaning that alternative algorithms may be substituted or combined to form an ensemble. STADE incorporates a Stream Anomaly Detector (SAD) and a Federated Anomaly Detector (FAD). The SAD executes at multiple locations on streaming data, while the FAD executes at a single server and identifies global patterns and relationships among the site anomalies. Each STADE site streams anomaly scores to the centralized FAD server for further spatiotemporal dependency analysis and logging. The FAD is based on recent advances in DNN-based federated learning. A STADE testbed is implemented to facilitate globally distributed experimentation using low-cost, commercial cloud infrastructure provided by Microsoftâ„¢. STADE testbed sites are situated in the cloud within each continent: Africa, Asia, Australia, Europe, North America, and South America. Communication occurs over the commercial internet. Three STADE case studies are investigated. The first case study processes commercial air traffic flows, the second case study processes global earthquake measurements, and the third case study processes social media (i.e., Twitterâ„¢) feeds. These case studies confirm that STADE is a viable architecture for the near real-time identification of anomalies in streaming data originating from (possibly) computationally disadvantaged, geographically dispersed sites. Moreover, the addition of the FAD provides enhanced anomaly detection capability. Since STADE is domain-independent, these findings can be easily extended to additional application domains and use cases
    • …
    corecore