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Abstract

This thesis contains the analysis of 10 years of ESA Cluster observations using machine

learning techniques. In the first study, we investigate solar wind electron populations at 1

au. In the second study, we apply a novel machine learning technique to magnetotail data

in order to better characterise particle distribution function. In the third study, we make

the first in-situ observations of the tearing instability leading to magnetic reconnection in

the magnetotail.

Solar wind electron velocity distributions at 1 au consist of three main populations: the

thermal ‘core’ population and two suprathermal populations called halo and strahl. We

apply unsupervised algorithms to phase space density distributions, to perform a statistical

study of how the core/halo and core/strahl breakpoint energies vary. The results of our

statistical study show a significant decrease in both breakpoint energies against solar wind

speed. By fitting Maxwellians to the core, based on our study, we can discuss the relative

importance of the core temperature on halo and strahl electrons.

Collisionless space plasma environments are characterised by distinct particle popula-

tions that typically do not mix. Although moments of their velocity distributions help in dis-

tinguishing different plasma regimes, the distribution functions themselves provide more

comprehensive information about the plasma state. By applying dimensionality reduction

and clustering methods to electron distributions in pitch angle and energy space, we dis-

tinguish between the different plasma regions. We identify several new distinct groups of

distributions, that are dependent upon significantly more complex plasma and field dynam-

ics.

Magnetic reconnection is a fundamental mechanism responsible for explosive energy
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release in space and laboratory plasmas. The onset of reconnection is via the tearing in-

stability. Due to its elusive nature, there is an absence of in-situ observations of the tear-

ing instability. We present the first direct observations of the tearing instability and the

subsequent evolution of plasma electrons and reconnection, using neural network outlier

detection methods. Our analysis of the tearing instability and subsequent reconnection pro-

vides new insights into the fundamental understanding of the mechanism responsible for

reconnection.
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Impact Statement

We set out to understand the breakpoint energy between the thermal and non-thermal

parts of a solar wind electron distribution. Characterising the breakpoint energy is impor-

tant as this property of a distribution function provides a diagnostic of the relative impor-

tance of scattering mechanisms such as Coulomb collisions and wave-particle interactions.

These mechanisms determine the shape of electron distribution functions in both solar wind

and astrophysical plasmas. In addition to these benefits, understanding the location of this

cut-off , using only a statistical analysis of the data, provides useful limiting parameters for

future studies which require multi-component fits to the total electron velocity distribution.

Machine learning provides us with a robust method of classification from which fine

variations of electron populations in relation to energy and pitch angle can be derived, with

the advantage of not requiring prior assumptions of the distributions of these populations.

Applying machine learning techniques to a large dataset builds upon previous empirical

studies of the suprathermal breakpoint energy. By classifying individual electron distribu-

tions, we characterise solar wind electron populations on a higher energy resolution than

previous studies. As a result, our method enables breakpoint energy to be explored further

with respect to other solar wind parameters, and by doing so we draw physical conclusions

based on the relationship between this fundamental property and each parameter, for both

the halo and the strahl. Machine learning techniques will become increasingly important

with the anticipated volume of high cadence electron data from, for example, the Solar Or-

biter mission.

We use a novel neural network technique to locate instances of the tearing instability.

With these in-situ observations, we investigate the process by which magnetic reconnection
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is instigated via the electron tearing mode. These findings will help build a more consistent

picture of the reconnection process in magnetospheric substorms, solar flares, and solar

wind formation. Moreover, our findings also apply to astrophysical plasma processes, in-

situ observations of which are not possible. These include the evolution of accretion disks

around black holes, the formation of jets in active galactic nuclei, and gamma ray flares.

The electron tearing mode is also an important process in nuclear fusion plasmas, where

the instability forms plasmoids and degrades stability of the tokamak, making this area an

important field of study.

7



Acknowledgements

I would firstly like to thank my primary supervisor, Jonny Rae. Since my first summer

placement in the MSSL plasma group back in 2016, you have been a great supervisor and

friend, and have always been happy to help with whatever issues I faced. It’s been a priv-

ilege to have you as a supervisor. I know I didn’t make your work easy with all the travel

escapades I got up to in the last few years. I am also very thankful to my other three super-

visors, who have all made my PhD an enjoyably challenging experience. Andrew Walsh - it’s

been great working with you, especially in Madrid. Your Cluster insight throughout my time

has been invaluable. Daniel Verscharen - thank you for always pushing me in the plasma

theory side. Your difficult questions during all the panel meetings has definitely showed me

to not be complacent. Andy Smith - you’ve been a constant throughout my PhD and I always

enjoy chatting with you. Best of luck for the future in both work and parenthood.

I’m also grateful to have met so many amazing people (PhD students, Post Docs and

more) throughout the years working in plasma physics. Georgie Graham - I really enjoyed

working with you over those two summers, and you played a big part in me wanting to

undertake a PhD in plasma physics at MSSL. Caoimhe Doherty - I doubt I’ll meet as good a

party host who made sure I always have a Halloween outfit sorted. Thanks for all the great

memories. Sam Walton - I’m going to miss having an office mate who I so easily get along

with. Catherine Regan - I still forget that you’re not in the plasma group. All the best with

your future Mars adventures. Christian Lao and Abid Razavi - I hope this message finds you

well. I haven’t known you guys for long but it’s been great having you in our plasma office.

It’s also been a pleasure to know/work with Colin Forsyth, Chris Owen, Andrew Fazakerley,

and Rob Wicks. Clare Watt and Téo Bloch - thanks a lot for all of your input. And lastly

8



George Nicolaou, Lloyd Woodham, Allan Macneil, Frankie Staples, Jasmine Sandhu, Joel

Abraham, Michaela Mooney, Seong-Yeop Jeong, Jeffersson Agudelo, Diego De Pablos, Will

Dunn, Richard Haythornthwaite, Choong Ling Liew-Cain, and Angharad Weeks - best of

luck for all of your future endeavours.

Many thanks to all of my friends outside of MSSL, as well as Meera Desai, who always

takes the utmost interest in whatever I am working on. Thanks finally to my parents and

brother, for your ever-lasting support.

I would also like to acknowledge the PEACE Operations Team at MSSL, without which

my PhD would not be possible, and the UCL IMPACT and ESA NPI Studentships for all of

the financial support.

9



Contents

1 Introduction 14

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Single Particle Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Adiabatic Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Plasma Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Magnetic Reconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8 Plasma Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.8.1 Unmagnetised plasma waves . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.8.2 Magnetohydrodynamic waves . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.8.3 Cold electron plasma waves . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.9 Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.9.1 Linear Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.9.2 Growth Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Background 35

2.1 The Solar Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Solar Wind Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 The Earth’s Magnetosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.1 The Dayside Magnetosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.2 The Magnetotail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10



2.2.3 The Dungey Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.4 Substorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Instrumentation and Data 54

3.1 The Cluster Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 The PEACE Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.2 The FGM Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.3 The CIS Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Techniques 61

4.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Model Testing and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Statistics of solar wind electron breakpoint energies using machine learn-

ing techniques 65

5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Distinguishing Between Suprathermal and Core Electron Populations . . . . 69

5.4 Separating Halo and Strahl Electrons . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Calculating Relative Number Densities . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Statistical Study of Breakpoint Energy versus Solar Wind Speed . . . . . . . . 76

5.6.1 Confirming Cluster is in Pristine Solar Wind . . . . . . . . . . . . . . . . 76

5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

11



5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Using dimensionality reduction and clustering techniques to classify space

plasma regimes 93

6.1 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.3 Mean Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.4 Agglomerative Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Method and Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.2 Reducing Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Direct evidence of magnetic reconnection onset via the tearing instability 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.2 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 Tearing mode stability criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 Hall quadrupole field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12



7.6.1 Tearing mode stability check . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6.2 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6.3 Statistical survey of tearing events . . . . . . . . . . . . . . . . . . . . . . 136

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 Conclusions and Future Work 151

13



1 Introduction

1.1 Motivation

In this project, we apply machine learning techniques to identify and analyse electron par-

ticle distributions in the solar wind at 1 au, across all energies that have unique character-

istics, such as distributions that show examples of multiple particle populations. Machine

learning algorithms will then enable us to search through the Cluster Science Archive to de-

termine when and why these distributions occur. Linking these occurrences to the ambient

solar wind conditions will aid the development of statistical models of particle populations

in near-Earth space. This new methodology can the be applied to any appropriate in-situ

dataset, for example in different solar wind environments, to gain insight into new plasma

regimes.

Machine Learning is still a relatively new concept in the field of space plasma research.

However, with the introduction of recently launched Parker Solar Probe and Solar Orbiter,

as well as the already existing large datasets from missions such as Cluster, Cassini, MMS

(Magnetospheric Multiscale Mission) and Wind, machine learning techniques are becoming

the logical tool to use to mine through this data.

1.2 Plasmas

A plasma is coined as the ‘fourth state of matter’. It is an ionised gas consisting of electrons

and ions which exhibit collective behaviour and can interact with electromagnetic fields. A

plasma has an overall net charge of zero.

Plasmas are good examples of quasi-neutral fluids. Even though the ensemble of parti-
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cles have a zero net charge, individual charged particles can create and encounter electric

potentials. Interactions between the particles in the plasma results in shielding of these

local charge densities, so that the ensemble of particles will appear to be neutral. This

phenomenon is quasi-neutrality.

Coulomb potential is defined as the electric potential encountered by a test charge due

to a single point charge in a vacuum, and is given by

φC = q
4πε0r

(1.1)

where q is the charge, ε0 is the permittivity of free space and r is the distance to the potential

source. In the case of a plasma, a sufficient number of charged particles are present. These

will move to shield this Coulomb potential, resulting in the test charge experiencing a Debye

potential:

φC = q
4πε0r

e−
r
λD (1.2)

where λD is the Debye length, i.e. the distance at which a Coulomb potential is reduced

by a factor of e due to the presence of shielding charged particles. This Debye length is

dependent on the number density, n, and temperature of the shielding charged particles.

Therefore, assuming a proton-electron plasma (n = ni = ne), it is given by

λD =
(
ε0kBTe

nq2
e

) 1
2

(1.3)

where qe is the electron charge, Te the electron temperature and kB is Boltzmann’s constant.

Electron temperature and charge is used as opposed to the ion’s because electron exhibit

greater mobility. Plasmas can only be described as quasi-neutral when their characteristic

length scale is much greater than this Debye length (L >>λD).

When the quasi-neutrality of a plasma is disturbed, such as when a perturbation is
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applied, the electrons will move to correct the imbalance in the charge density. This in-

volves accelerating towards the relatively static ions and oscillating around them due to the

electrons’ inertia. The frequency of electron oscillation is known as the electron plasma fre-

quency and it characterises the plasma’s fundamental mode of oscillation. This frequency is

given by

ωpe =
(

neq2
e

meε0

) 1
2

(1.4)

where me is the electron mass.

1.3 Single Particle Motion

Single particle dynamics is the most simple method for describing a plasma. This involves

considering each particle individually and solving its equation of motion. This method only

takes into account the effects on a particle’s motion from magnetic and electric field, disre-

garding interactions between particles. The equation of motion of such particle is

m
dυ
dt

= q(E+υ×B) (1.5)

where υ is the particle’s velocity while B and E are the magnetic and electric fields it is

exposed to. The right hand side of equation (1.5) represents the Lorentz force.

By assuming that the electric field is zero and the magnetic field is constant, then taking

the dot product of equation (1.5) with υ leads to

m
dυ
dt

·υ= d
dt

(
mυ2

2

)
= 0, (1.6)

which shows that the particle kinetic energy remains constant under a static magnetic field.
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In a uniform magnetic field along the z axis, we obtain the components:

mυ̇x = qBυy

mυ̇y =−qBυx

mυ̇z = 0.

(1.7)

Taking the second derivative, we obtain

ϋx =−ω2
gυx

ϋy =−ω2
gυy

(1.8)

where ωg is the gyrofrequency (also known as cyclotron frequency or Larmor frequency) and

is defined as

ωg = qB
m

(1.9)

The gyroradius (or Larmor radius) of a charged particle around a magnetic field is given by

rg = υ⊥
ωg

(1.10)

where υ⊥ is the velocity of the particle perpendicular to the magnetic field direction.

The parallel component of a particle’s velocity to the magnetic field, υ∥, remains at its

initial value throughout its orbital motion. The angle between a particle’s total velocity

vector, υ∥+υ⊥, and the magnetic field direction is referred to as the pitch angle, α, and is

given by

α= arctan
(
υ⊥
υ∥

)
(1.11)

A particle with pitch angle 0° or 180° will travel entirely along the magnetic field, whereas

a particle with pitch angle 90° only travels perpendicular to the magnetic field. Particles

with pitch angles between 0° and 90° travel in a helical motion about its guiding centre (see

Figure 1.1).
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Figure 1.1: The gyromotion of a charged particle, with pitch angle 0° < α < 90°, in a magnetic field

[Graham, 2018].

In geophysical plasmas under the presence of an electrostatic field, most parallel elec-

tric fields (to the magnetic field) are not sustained as they are cancelled out by electrons.

By considering a constant, uniform, electric field perpendicular to the magnetic field (and

therefore parallel to the x axis), we obtain the following components from equation (1.5):

υ̇x =ωgυy + q
m

Ex

υ̇y =−ωgυx.

(1.12)

We then take the second derivative to obtain

ϋx =−ω2
gυx

ϋy =−ω2
g

(
υy + Ex

B

) (1.13)

The electric field’s perpendicular component to the magnetic field direction accelerates the

charged particle in the plane of its gyromotion. This increases its velocity (and gyroradius)
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on one side of the gyration, and decreases its velocity on the other side. The is equivalent to

superposing a further velocity component onto the particle’s gyromotion in the −y direction.

This drift has the form

υd = E×B
B2 , (1.14)

where υd is the drift velocity of a particle’s guiding centre. This is also referred to as E×B

drift and, since it is independent of the particle’s mass and charge, both electrons and ions

have the same drift velocity. Figure 1.2 illustrates this E×B drift.

Figure 1.2: The drift motion of an ion, which is exposed to a constant, uniform magnetic and electric

field [Graham, 2018].

1.4 Adiabatic Invariants

The characteristic constants of a particle in a field, which in fact change very slowly in

comparison to the length and time-scales of the particle’s motion, are known as the adiabatic

invariants. Each type of particle motion (gyromotion, longitudinal motion and perpendicular

drift) has a representative adiabatic invariant. In comparison to a typical particle’s time or

length scales, such as the gyrofrequency or Larmor radius, adiabatic invariants change over

very long periods or distances.

19



The magnetic moment, µ, is the first invariant and it is associated with particle gyration

about a magnetic field.

µ= mυ2
⊥

2B
= W⊥

B
(1.15)

Equation (1.15) shows that the magnetic moment is the ratio of the perpendicular energy of

a particle to the magnetic field strength. Using equation (1.11), the magnetic moment can

also be written in terms of pitch angle:

µ= mυ2 sin2α

2B
(1.16)

This leads us on to the phenomenon known as magnetic mirroring. Since the magnetic

moment is invariant and the total energy remains constant, only the sin2α term changes if

the magnetic field strength varies along a gyration trajectory. Therefore, a particle would

experience an increase in sinα as it moves into a converging field and vice versa. When the

pitch angle of a particle in a converging field reaches 90°, it loses all parallel velocity and

reverses its trajectory (mirroring) due to the gradient force:

F∇ =−µ∇B (1.17)

If a magnetic field is symmetric, in that the field converges on opposite sides (a dipole field),

then a particle would bounce between these two mirror points along the magnetic field.

The longitudinal invariant, J, describes the motion of such a particle and is given by

J =
∮

mυ∥ds (1.18)

where ds is a line element of the guiding centre’s path. The second adiabatic invariant

states that particles bouncing between mirror points are fixed to a magnetic field line, as-

suming the time period of the bounce frequency is greater than the rate at which external
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changes occur. This can relate to particles bouncing between the Earth’s North and South

poles. Not all particles, however, will remained trapped, even when the longitudinal in-

variant is conserved. For particles whose mirror points lie deep enough inside the Earth’s

atmosphere, they are more likely to collide with neutral particles and will therefore be lost

to the atmosphere. This would occur when a particle’s equatorial pitch angle is smaller than

the width of the loss cone, αl , at that particular altitude.

In a dipole field, particles also experience drift orbits around the dipole axis. The third

adiabatic invariant, Φ, describes the conservation of magnetic flux enclosed within perpen-

dicular drift orbits of particles in a dipole configuration. It is given by

Φ=
∮
υdrdΨ (1.19)

where υd is the net perpendicular drift velocity and r and dΨ are the radius and azimuthal

element of a circular drift path. The third invariant states that particles remain trapped in

drift shells, assuming the changes in geometry are slower than the period of particle motion

around a drift shell.

1.5 Plasma Kinetic Theory

The principles of single particle motion are sufficient in describing the dynamics of a small

number of particles exposed to an electromagnetic field, however they are not appropriate

when characterising a large number of particles. Plasmas, for example, are often considered

statistically by defining the distribution function of the particles. This involves describing

six quantities: three positions (X ,Y , Z) and three velocities (υX ,υY ,υZ). Each of these quan-

tities represents a coordinate in six-dimensional phase space and they enable the evolution

of a system with time to be studied. Due to the large number of particles in a plasma, the

21



volume element of phase space (dX ,dY ,dZ,dυX ,dυY ,dυZ), also referred to as the particle

distribution function, is considered. Taking the first few moments of a distribution function,

by integrating over its velocity components, enables relevant macroscopic properties of a

plasma to be calculated. The i-th moment of a distribution function, f (υ, x, t) is defined as

Mi(x, t)=
∫

f (υ, x, t)υid3υ (1.20)

where υi denotes the i-fold dyadic product, a tensor of rank i. The zeroth order moment

indicates the number density:

n =
∫

f (υ)d3υ (1.21)

and the bulk flow velocity is given by the first order moment:

υb =
1
n

∫
υ f (υ)d3υ (1.22)

This is the average flow velocity of the particle species or component of interest. The contri-

bution of the ensemble particles’ velocity fluctuations from the bulk velocity is used to define

the pressure tensor, P. This calculation is based on the second order moment:

P = m
∫

(υ−υb)(υ−υb) f (υ)d3υ (1.23)

The third order moment, called the heat tensor, also describes deviations from the equilib-

rium:

Q = m
∫

(υ−υb)(υ−υb)(υ−υb) f (υ)d3υ (1.24)

Its trace vector, q, is a more useful quantity, and is defined as

q = m
2

∫
(υ−υb) · (υ−υb)(υ−υb) f (υ)d3υ (1.25)

This is known as the heat flux vector and it describes the direction of transport of heat in

the plasma, which is not necessarily in the same direction as the mean flow.
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1.6 Magnetohydrodynamics

Large systems which have scale sizes much greater than the Larmor radius, rg, and much

longer than the inverse of the Larmor frequency, ω−1
g , can be described by the theory of

magnetohydrodynamics (MHD) [Alfvén, 1942]. MHD considers a plasma to be an electri-

cally conducting fluid and only depends on the macroscopic, bulk properties, such as the

moments of a particle distribution function. MHD is derived from the combination of both

fluid dynamics and Maxwell’s equations, and it can be used to describe either one fluid

(single-fluid MHD) or one fluid per particle species (multi-fluid MHD). Quasi-neutrality is

assumed in all cases.

Assuming no gain or loss interaction processes occur, then a fluid will follow the conti-

nuity equation, which states that the particle number density, mass, and charge density are

conserved during a fluid’s motion:

∂ns

∂t
+∇· (nsυs)= 0, (1.26)

where s represents either an ion or electron population. The momentum equation for a fluid

is given by

n
[
∂υ

∂t
+ (υ ·∇)υ

]
+ 1

m
∇·P − q

m
n(E+υ×B)= 0 (1.27)

where P is the pressure tensor. The equation of state relates the pressure (assumed as

isotropic) and density of a given fluid:

p ∝ nγ (1.28)

where γ is the polytropic index and, based on the assumption that a plasma behaves adia-

batically and equates to 5
3 .

Defining a plasma with electrons and ions involves subtracting the equation of motion of
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electrons from the ions’ equations of motion to obtain the generalised Ohm’s law:

E+υ×B = η j+ 1
nqe

( j×B−∇·Pe)+ me

nq2
e

∂ j
∂t

(1.29)

where η is the plasma’s resistivity and j is the current density. For an ideal MHD, η = 0,

so the first term on the right hand side of equation (1.29) can be neglected. The third and

fourth terms are also small enough to be neglected, due to restrictions on large length and

timescale for an ideal MHD. Assuming that currents perpendicular to the magnetic field are

weak in an ideal MHD, resulting in the second term being neglected, leads to

E =−υ×B (1.30)

which describes an ideal MHD, often referred to as the frozen-in flow approximation, where

particles remain frozen to the same magnetic field line.

Retaining the η j term from the right hand side of equation (1.29), by considering a

plasma with finite conductivity, and replacing η with 1/σ, the inverse of the conductivity,

then equation (1.29) can be rewritten as

j =σ(E+υ×B) (1.31)

By using Ampère’s Law to substitute for j, followed by applying vector identities and sub-

stituting for E using Faraday’s Law, equation (1.31) can then be written as

∂B
∂t

=∇× (υ×B)+ 1
µ0σ

∇2B (1.32)

where µ0 is the permeability of free space. Equation (1.32) outlines how a magnetic field

changes due to its convection with the plasma (first term on the right) and diffusion through

the plasma (second term on the right). The ratio between the convection and diffusion term
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is referred to as the magnetic Reynolds number, Rm:

Rm = |∇× (υ×B)|∣∣µ−1
0 σ−1∇2B

∣∣ (1.33)

Using simple dimensional terms, where ∇→ 1/L, equation (1.33) can be written as

Rm =µ0σLV (1.34)

where L is the length scale over which the magnetic field varies and V is the convection

velocity of the plasma. Since σ is a measure of the frequency of collisions in a plasma,

then for a collisionless plasma (η→ 0) in which the magnetic field varies over large length

scales, the magnetic Reynolds number is large (Rm À 1) and convection dominates over

diffusion. A large magnetic Reynolds number describes an ideal MHD where the magnetic

field is frozen-in to the plasma. For the opposite case in which diffusion dominates over

convection (Rm ¿ 1), the magnetic field will diffuse through the plasma. This implies that

field variations over a length scale, L, are destroyed on a diffusion timescale:

tdi f f =
L2µ0

η
(1.35)

Ampère’s law in the low frequency limit tells us that

j×B = 1
µ0

(∇×B)×B (1.36)

which is equivalent to

j×B =−∇
(

B2

2µ0

)
+ 1
µ0

(B ·∇)B (1.37)

The first term on the right represents the force resulting from the gradient in magnetic flux

density, defined as the magnetic pressure:

pB = B2

2µ0
. (1.38)
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The second term on the right side of equation (1.37) represents the magnetic tension force,

which opposes the bending of the field lines in order for them to reach their minimum energy

state.

The ratio of plasma pressure (or thermal pressure) to the magnetic pressure is called the

plasma beta:

β= 2pµ0

B2 (1.39)

In a high beta plasma (β > 1), the thermal pressure dominates and the plasma drags the

magnetic field. Whereas in a low beta plasma (β < 1), magnetic forces dominate and the

magnetic field drags the plasma with it.

Restoring forces, a result of magnetic tension, can lead to Alfvén waves propagating

through the plasma due to the transverse motion of field lines. In the case of frozen-in

magnetic fields, these waves can act to displace the frozen-in particles. The wave’s speed is

therefore equivalent to the velocity plasma ions can be accelerated to by the magnetic field.

This is known as the Alfvén speed:

υA = B
(µ0ρ)1/2 (1.40)

where ρ represents the plasma’s mass density.

1.7 Magnetic Reconnection

The magnetic Reynolds number provides an indicator of how accurate the ideal MHD ap-

proximation is for a given plasma. When Rm is high and ideal MHD does hold, magnetic

field lines from different sources and the particle populations frozen-in to them cannot mix.

When the magnetic Reynolds number is around or lower than unity, thin current sheets for

example, the frozen-in approximation no longer holds. This is the case in magnetic recon-
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nection, which Figure 1.3 illustrates.

Consider two regions of anti-parallel magnetic field lines, separated by a thin current

sheet, which are pushed together due to the flow of plasma frozen-in to the fields (Figure

1.3a). The dominant diffusion term means pairs of field lines diffuse through the plasma

and reconnect to form highly bent field lines (Figure 1.3b). Magnetic tension will then act

to straighten these newly formed lines which results in them being expelled from the recon-

nection site.

This whole process transfers magnetic energy to particle kinetic energy, as the particles

frozen-in to the newly formed bent field lines will accelerate as these field lines straighten.

(a) (b)

Figure 1.3: Illustration of a basic reconnection geometry. The blue and red lines are magnetic field

lines, the grey circles represents a thin current sheet and the black arrows show the direction of the

bending of the field lines [Walsh, 2009].
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1.8 Plasma Waves

Every plasma in equilibrium experiences a certain amount of fluctuation, according to the

plasma temperature, due to the thermal motion of its particles. External factors may also

cause distortions of the plasma state. These distortions, or disturbances, can be described

as a superposition of linear waves propagating across the plasma in order to transfer the

energy of the distortion. The frequencies of these waves generally range from ∼10000 Hz

to ∼0.01 Hz: very-low frequency (VLF) waves to ultra-low frequency (ULF) waves. The

number of wave modes propagating in the plasma are discreet, rather than continuous, and

the amplitude of the wave is always higher than the thermal noise level.

A plasma wave disturbance, A(x, t), can be represented by plane waves (Fourier compo-

nents). If the distortion is a plane wave, it comprises of a single Fourier component:

A(x, t)=A(k,ω)exp(ik ·x− iωt) (1.41)

where A is the amplitude, k is the wave vector, and ω is the frequency. The phase and the

group velocity of the wave are:

vph =ωk/k2 (1.42)

vgr = ∂ω/∂k. (1.43)

The phase velocity is parallel to the wave vector and is the direction of the wave propa-

gation. The group velocity describes the speed and direction of the wave’s energy flow.

1.8.1 Unmagnetised plasma waves

There exist two types of waves in an unmagnetised plasma: internal plasma oscillations,

and electromagnetic waves. Langmuir oscillations are an example of the first type unmag-
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netised plasma waves. These oscillations occur under the condition that the ions are station-

ary relative to the electrons’ movement. This is akin to high-frequency electron oscillations.

The wave’s linear oscillator equation, which describes the variation of the density, is

∂2δn
∂t2 + nee2

meε0
δn = 0. (1.44)

The angular frequency of the electrons about the ions is

ω2
pe =

nee2

meε0
. (1.45)

As the electrons have different initial velocities, they will react differently under an external

attempt to displace them. We therefore introduce the adiabatic variation of the electron

thermal pressure, δpe = γekBTeδne, into the electron momentum equation. Assuming that

the electron temperature is constant, the displaced electron fluid’s linearised equation of

motion takes the form

∂δυe,x

∂t
=− e

me
δE− γekBTe

mene

∂δn
∂x

. (1.46)

We then arrive at a more accurate equation for the variation in density

∂2δn
∂t2 − γekBTe

me

∂2δn
∂x2 +ω2

peδn = 0. (1.47)

Solving this equation yields the relation between the angular frequency and wavenumber

of the Langmuir wave, also known as the Langmuir dispersion relation:

ω2
l =ω2

pe +k2γeυ
2
th, (1.48)

where υth = (kBTe/me)1/2, i.e. the electron thermal velocity.

Moving charges, which are a result of electrostatic disturbances, can lead to oscillating

plasma currents that become sources of electromagnetic waves. In an unmagnetised plasma,
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the most common of such is the free-space electromagnetic wave. The dispersion relation of

this wave in a plasma is

ω2
om =ω2

pe + c2k2, (1.49)

where ω2
om is the frequency of the ordinary mode wave, with its nomenclature deriving

from having the same dispersion as a free-space wave in the absence of a plasma. The

difference between an ordinary mode and a free-space wave is there is no real solution for

the wavenumber for frequencies below the electron plasma frequency, with the wave ceasing

to exist. The plasma frequency is therefore the cut-off of the ordinary mode. At this point,

the direction of the propagation of the wave reverses.

1.8.2 Magnetohydrodynamic waves

At large scales, ideal MHD conditions can be used to describe waves. One particular wave

supported by magnetised plasmas are Alfvén waves, a type of transverse wave. These waves

propagate through a plasma via the transverse motion of field lines, which is caused by

magnetic tension. The solution of the MHD wave equation, for a right-handed system where

the wave vector’s perpendicular component is parallel to the x axis, and the magnetic field

is aligned to the z axis, can be written in the general form


ω2 −υ2

Ak2
∥− c2

msk2
⊥ 0 −c2

s k∥k⊥

0 ω2 −υ2
Ak2

∥ 0

−c2
s k∥k⊥ 0 ω2 − c2

s k2
∥




δυ0x

δυ0y

δυ0z

= 0 (1.50)

where υA is the Alfvén velocity and cms is the magnetosonic speed:

c2
ms = c2

s +υ2
A, (1.51)

where cs = γkBT/mi is the sound velocity.
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Equation (1.50) shows that the velocity fluctuation in the y-direction decouples from the

other fields, resulting in a wave with a linear dispersion relation:

ωA =±k∥υA. (1.52)

This purely transverse electromagnetic wave is called the shear Alfvén wave, and propa-

gates parallel to the ambient field.

The remaining four matrix elements in equation (1.50) couple the parallel velocity com-

ponent to the transverse fluctuation in the x direction. The two roots are

ω2
ms =

k2

2

c2
ms ±

[
(υ2

A − c2
s)2 +4υ2

A c2
s

k2
⊥

k2

]1/2
 . (1.53)

The expression in the curly brackets represent the phase velocities of two magnetosonic

wave modes. The root with the positive sign represents the fast magnetosonic wave, and the

root with the negative sign represents the slow magnetosonic wave. The fast mode propa-

gates into the perpendicular direction, while the slow mode does not propagate. Therefore

the only perpendicular MHD wave is the fast magnetosonic wave, as the shear Alfvén wave

does not propagate into the perpendicular direction.

1.8.3 Cold electron plasma waves

Near to the ion-cyclotron and plasma frequencies, the differences between electron and ion

dynamics become more important and a one-fluid MHD theory is no longer valid. As the

electron and ion inertia are now to be taken into account, we consider a cold magnetised

electron plasma where the ions are represented as a neutralising background. These waves

therefore have much higher frequencies than all ion frequencies.

Cold electron dynamics is dominated by the motion of single-particle electrons in a strong

magnetic field. The magnetic field of any wave in this environment is not affected by the mo-
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tion of electrons. Electron whistler waves are a type of such wave which occur at sufficiently

low frequencies. Their dispersion relation is

ωW = k2c2ωgeω
−2
pe , (1.54)

where ωge is derived from the electron gyrofrequency vector:

ωge = eB0/me. (1.55)

These waves are frequently observed in the Earth’s magnetosphere and on the ground. They

can often be excited by lightning. They propagate along magnetic field lines from one hemi-

sphere to the other, and their phase and group velocities are proportional to k, and to ω1/2
W .

The high-frequency part of a whistler wave originating from the southern hemisphere will

thereby reach the northern hemisphere before the low-frequency part.

1.9 Instabilities

Energy accumulated in a non-equilibrium system can be redistributed via the generation

of an instability. There are three different non-equilibrium states that lead to instabilities:

linearly unstable, metastable, and non-linearly unstable. For linearly unstable states, a

linear instability occurs with the slightest linear distortion of the system. In a metastable

state, the system remains stable under a linear distortion only for a certain period of time.

In a non-linearly unstable state, a system is stable against small amplitude disturbances,

whereas larger disturbances causes it to become unstable.

1.9.1 Linear Instability

In linear wave theory, waves are considered small disturbances if their amplitude is much

smaller than the stationary state vector. For a disturbance δn of the density n, then
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δn(x, t)¿ n(x, t). However variations in n are much slower than variations in δn. The wave

function as a result of the disturbance is represented by a superposition of plane waves

which oscillate at a frequency ω, where ω is the solution of the linear dispersion relation.

The Fourier decomposition of a wave field vector is

δA =∑
k

Akeik·x−iωt. (1.56)

For real values of ω, the disturbances are oscillating waves. For complex solutions, the

wave amplitude depends on the sign of the imaginary part of the frequency γ(ωr,k). For

negative γ values, the real part of the amplitude exponentially decreases with time and the

wave is damped. For positive values, the wave amplitude grows exponentially and a linear

instability is reached. In this case, γ is referred to as the growth rate. A linear instability

relies on free energy sources in the plasma to energise the growing wave.

1.9.2 Growth Rate

The amplitude of an unstable wave is

Ak(t)= Akeγ(ωr ,k)t. (1.57)

This approximation breaks down when the amplitude is similar to the background ampli-

tude of the field A0, at the time:

tnl = γ−1 ln
(

A0

Ak

)
. (1.58)

When the approximation is violated, non-linear processes occur which also involve the in-

teraction of waves with each other. The larger the growth rate, the earlier tnl is reached.

For growth rates larger than the wave frequency, the wave amplitude will explode and not

a single oscillation is performed during one period. Therefore the condition for instabilities
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which remain linear over many wave periods is

γ/ω¿ 1. (1.59)

This condition is the case for weak instabilities. Strong instabilities are referred to as non-

oscillating instabilities and will only occur in the lowest frequency range of a MHD plasma

model.
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2 Background

2.1 The Solar Wind

The solar wind is a highly-conducting plasma, constantly flowing out from the Sun as a

result of supersonic expansion of the solar corona. Due to its high conductivity, the solar

magnetic field is frozen-in to the plasma and is therefore carried out by the solar wind. The

start points of this interplanetary magnetic field (IMF) are considered to be fixed to the

Sun’s photosphere and therefore rotate as the Sun’s surface rotates. This rotation leads

to the IMF forming a large Archimedean spiral (Figure 2.3), known as the Parker spiral

[Parker, 1963].

It is generally assumed that there are two categories of solar wind: fast wind and slow

wind [Feldman et al., 2005]. Fast winds have velocities greater than 600 km/s and slow

winds exhibit velocities generally less than 500 km/s. Studies show that fast winds are

created in the interior of coronal holes [Zirker, 1977], which are regions of open magnetic

field lines, and flows outwards to fill the heliosphere (a magnetic field and plasma bubble

which originates from the Sun and encompasses the solar system). Slow wind has been

found to emanate from the streamer belt, or closed-field region of the Sun [McComas et al.,

1998], however its precise origin is still up for discussion [Feldman et al., 2005].

Three models have been proposed to describe the formation of slow solar wind. The

‘expansion factor model’ [Wang et al., 1997] postulates that slow plasma is generated at the

edge of a coronal hole near a streamer belt (bright loop-like structures over active regions

on the Sun). At this edge, near the boundary of a streamer belt, slow winds are heated and

accelerated on open flux tubes. This is because flux tubes near streamer belt boundaries are
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assumed to expand a lot quicker than flux tubes in the inner regions of coronal holes [Kepko

et al., 2016].

The second model is known as the ‘interchange model’ [Edmondson, 2012], which credits

the formation of slow wind to the interchange reconnection of open magnetic fields with

closed streamer belt fields. Continuous interchange reconnection between these two regions

theoretically results in open flux diffusing throughout streamer belt fields, releasing closed

field plasma to the open field lines of the heliosphere [Kepko et al., 2016]. The third model,

referred to as the ‘S-Web model’, postulates that closed streamer belt field plasma is released

due to a similar process as the interchange model. However this only occurs on the edge of

coronal holes, at the boundary between open and closed magnetic flux [Antiochos et al.,

2011].

2.1.1 Solar Wind Electrons

Solar wind electron velocity distributions at 1 au consist of three main populations: the

thermal (<50 eV) population called the core and two suprathermal (∼60–1000 eV) popula-

tions called halo and strahl [Maksimovic et al., 2005; Feldman et al., 1975]. The core has

a temperature at 1 au of ∼105 K [Balogh and Smith, 2001] and exhibits a characteristic

bi-Maxwellian velocity distribution. At 1 au, it makes up ∼95%-96% of the total solar wind

electron density in slow wind [McComas et al., 1992; Maksimovic et al., 2005; Štverák et al.,

2009] and ∼90% in fast wind [Štverák et al., 2009]. The halo, on the other hand, exhibits a

kappa distribution and forms the tails of the total electron velocity distribution (see Figure

2.1). Halo electrons exist at a higher temperature (∼1005 K) than core electrons [Feldman

et al., 1975]. The core and halo are quasi-isotropic populations, whereas the strahl travels

along the interplanetary magnetic field (IMF) and can be observed in either the parallel or
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anti-parallel magnetic field direction [Feldman et al., 1978], or in both directions [Gosling

et al., 1987]. There are also cases where a strahl population does not exist [Anderson et al.,

2012], particularly in slow solar wind [Gurgiolo and Goldstein, 2017].

Figure 2.1: Two-dimensional velocity distribution function separated into its thermal (core) and

non-thermal (strahl and halo) parts, obtained from Helios 1 and 2, Cluster II and Ulysses observa-

tions [Štverák et al., 2009].

The thermal core originates from the corona, as a result of Coulomb collisions and wave-

particle interactions [Pierrard et al., 2001; Vocks et al., 2008]. Suprathermal solar wind

electrons are also generally considered to form in the solar corona [Vinas et al., 2000; Che

and Goldstein, 2014] due to Coulomb collisions and/or wave-particle interactions, and then

evolve into the characteristic strahl and halo populations via various mechanisms as they

travel anti-sunward. The strong field-aligned nature of strahl occurs due to adiabatic focus-

ing effects [Owens and Forsyth, 2013], which are particularly prevalent closer to the Sun

due to more radial field lines experiencing larger changes in magnetic field strength per
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radial distance. As the strahl travels outwards, it undergoes scattering via wave-particle in-

teractions in the solar wind, which forms the halo population [Saito and Gary, 2007; Pagel

et al., 2007].

Part of the halo population can also originate from the solar corona before the suprather-

mal electrons experience adiabatic focusing. Work by Che and Goldstein [2014] suggests

this is due to solar nanoflares, from the inner corona, which energises electrons and sub-

sequently triggers instabilities. These instabilities would then create kinetic Alfvén and

whistler mode wave turbulence, which combined with scattering produces a halo.

The velocity filtration model can be used to explain the evolution of suprathermal elec-

trons into their characteristic velocity distribution functions. This model describes how a

suprathermal electron population, originating in the low corona, experiences velocity filtra-

tion via gravitational and electrostatic fields [Scudder, 1992]. As a result, the suprathermal

electrons exhibit higher temperatures as they move into higher altitudes, and form the halo

and strahl, as measured in the solar wind.

At 1 au, it is expected that solar wind electron should not undergo any significant

Coulomb collisions [Vocks et al., 2005]. This implies that adiabatic focusing should be the

dominant mechanism experienced by these electrons. Adiabatic focusing describes how an

electron moving into a region of weaker magnetic field strength will experience a decrease

in pitch angle, and vice versa. When no scattering effects are taking place, an electron’s

pitch angle evolution with heliocentric distance is dependent on the conservation of mag-

netic moment [Owens et al., 2008]:

sin2α(R)= BTOT(R)sin2α(R0)
BTOT(R0)

(2.1)

where BTOT(R) is the magnetic field strength at heliocentric distance R and R0 is a ref-
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erence heliocentric distance. Due to magnetic flux conservation, the heliospheric magnetic

field’s radial component is proportional to 1/R2 [Owens et al., 2008], which combined with

equation (2.1) culminates in sin2α decreasing when R increases.

This process of adiabatic focusing leads to the assumption that the strahl narrows with

heliocentric distance into a collimated beam of width < 1° [Anderson et al., 2012]. However,

strahl beams have been found to have pitch angles of greater than 20° at 1 au [Anderson

et al., 2012], implying there exists other wave-particle scattering processes further out from

the Sun. Using Ulysses data, Hammond et al. [1996] showed that the average strahl pitch

angle width continued increasing with heliocentric distance past 1 au (Figure 2.2), further

supporting this implication. Graham et al. [2017], using data from Cassini, also found

evidence of this strahl broadening, at various energies, up to 5.5 au (Figure 2.5).
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Figure 2.2: Strahl width medians plotted against heliocentric distance. The red circles represent

data obtained from Ulysses observations. The error bars depict the upper and lower quartiles of the

distribution within each 0.2 au radial distance bin. The gray region shows the range of radial dis-

tances at which the observed strahl width increases linearly. The solid black lines plot the results of

numerical simulations of electron evolution with radial distance [Owens et al., 2008]. The scattering

rate at each energy has been set to a factor which matches 77 eV Ulysses observations. The black

dashed lines represent model results for higher and lower scattering rates.

One model [Owens et al., 2008], which assumes a constant pitch angle scattering rate

with time, distance and electron kinetic energy, can be used to explain the strahl width

[Hammond et al., 1996] increase up to 2.5 au (see Figure 2.2). At greater heliocentric dis-

tances, the Parker spiral interplanetary magnetic field becomes more unwound (less radial)

so electrons at this radial distance will experience a diminished adiabatic focusing effect,
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due to a smaller gradient in the decrease of magnetic field strength (Figure 2.3). This re-

sults in the constant scattering rate having a greater influence. Adiabatic focusing should

also decrease with helio-latitude due to the same Parker spiral effect [Owens et al., 2008].

Figure 2.3: The Parker spiral superimposed with red regions, which represent the radial distance

an electron moves for a fixed period of time as it moves out from the Sun [Owens et al., 2008].

Characterising the dependence of strahl width on electron energy would help determine

the role different scattering mechanisms play as the strahl travels along interplanetary

magnetic field lines. Studies of the strahl energy relation at 1 au have produced differ-

ing results, indicating that various wave-particle scattering mechanisms are in operation.

Multiple studies show that strahl pitch angle widths have decreased with larger electron

energies [Feldman et al., 1978; Fitzenreiter et al., 1998]. However, when there are enhanced

magnetic field fluctuations in the solar wind, observations have found that strahl width can

increase with electron energy [Pagel et al., 2007]. Other extensive studies conclude that

strahl widths can increase or decrease with increasing electron energies, with equal proba-

bilities [Anderson et al., 2012]. One study, which observed that strahl pitch angles decrease

with larger electron energies, found that the type of solar wind (fast or slow) has no effect

on the strahl width energy relation [Fitzenreiter et al., 1998].
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Using both Ulysses and Cassini data, investigations into the relationship between the

rate of strahl width increase (with distance) and electron energy have also been carried out.

Hammond et al. [1996] showed that low energy strahl electrons exhibit greater broaden-

ing per au than higher energy electrons. Measurements from Cassini, on the other hand,

showed that there is a slight increase in the strahl pitch angle scattering rate with increas-

ing energy [Graham et al., 2017]. Using a modelled scattering rate, which was constant

with time, distance and electron energy, Owens et al. [2008] realised a negative correlation

between strahl broadening per au and energy. However, the calculated gradient of decrease

was much smaller than the Ulysses results [Hammond et al., 1996]. Figure 2.4 illustrates

these three trends.
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Figure 2.4: The relationship between strahl broadening per au and electron energy. The solid black

line shows the results from the Cassini study, plotted using linear fits to the strahl pitch angle

against heliocentric distance distributions [Graham et al., 2017]. The shaded blue area represents

a one standard deviation error on either side. The black dashed line depicts the linear fit to the

Cassini with 1σ error on either side (black dotted lines). The red dashed line and orange dashed line

were obtained by the extrapolating Ulysses results [Hammond et al., 1996] and the empirical model

results [Owens et al., 2008] respectively [Graham et al., 2017].

Time-of-flight effects can be used to explain the empirical model’s simulations of a grad-

ual decrease in strahl broadening per au with energy. Electrons with larger kinetic energies,

and therefore larger velocities, travel further along the field lines per second, and so would

experience a larger decrease in magnetic field strength per second. This leads to higher

energy electrons undergoing greater adiabatic focusing. The difference between the model’s

results and in-situ observations further suggests that other scattering mechanisms are at

play.
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Figure 2.5: Median strahl width as a function of radial distance for CAPS-ELS energy bins. The

coloured regions represent the median absolute standard deviation [Graham et al., 2017].

Strahl scattering has also lead to a decrease in the relative density of strahl (compared to

the total non-thermal electron density) as the heliocentric distance increases. Concurrently,

the relative halo density increases with heliocentric distance, indicating that these wave-

particle scattering mechanisms cause the strahl to broaden and eventually scatter into the

isotropic halo. This trend is shown in Figure 2.6 for both fast and slow wind [Štverák et al.,
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2009]. Extrapolating the relative halo density from the lowest radial distance bin, 0.3 au,

towards the Sun shows that the contribution of halo electrons to the total electron density

is minimal before strahl scattering takes place.

Figure 2.6: Radial evolution of the relative densities of each component of the electron velocity

distribution function for both slow (left) and fast (right) wind [Štverák et al., 2009].

Assuming the solar wind undergoes an isotropic steady state expansion, the core’s den-

sity should be proportional to r-2. This theoretical profile is indicated by the dots (labelled

as radial expansion) in Figure 2.7. There is a clear agreement between the core’s measured

density evolution and this profile, with the core’s density varying as r-2.03±0.08 for slow wind

and r-2.11±0.17 for fast wind.
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Figure 2.7: Radial evolution of the absolute density of both slow (left) and fast (right) solar wind

[Štverák et al., 2009].

As discussed previously, the evolution of non-thermal electron densities is more complex,

due to a combination of adiabatic focusing effects and wave-particle interactions. Unlike the

core, the strahl expands along the magnetic field, which is approximately radial at short

distances but then follows a spiral configuration. Therefore, a property (such as density or

heat flux) of a non-thermal population expanding along such a magnetic field in a spiral

configuration is proportional to equation (2.2) [Scime et al., 1994].

∝ 1
r2

√
1+ (

rω
νsw

)2 (2.2)

Where r is the radial distance from the sun, ω is the sun’s angular speed of rotation and νsw

is the solar wind speed. This theoretical profile is represented by the triangles (labelled as

spiral expansion) in Figure 2.7, and have been plotted using a slow solar wind speed, vsw

of 400 m/s and fast solar wind speed of 650 m/s. Previously stated interaction mechanisms

are responsible for the divergence, at greater radial distances, between the measured strahl

density evolution and this profile.

The temperature of electrons within the solar wind also evolves with radial distance.
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For core electrons only undergoing adiabatic expansion, the temperature should decrease

with r-4/3. While electrons undergoing Coulomb collisions should have their temperature

decrease proportional to r-1/3 [Scudder and Olbert, 1979]. In practice, observations using

in-situ measurements of bulk electron temperatures at various radial distances shows this

decrease varies between a profile of r-0.24 and r-1.26 [Balogh and Smith, 2001]. Ulysses data

also show that the energy of halo distributions decreases with heliocentric distance.

Multiple studies have been undertaken in order to identify the breakpoint energy i.e.

the energy at which non-thermal tails start to deviate from the Maxwellian core. Coulomb

collisions are thought to be the main driving force behind the breakpoint energy. Particles

above a certain energy experience minimal interactions/collisions, creating the non-thermal

tails in the electron velocity distribution function [Scudder and Olbert, 1979] and forming

halo and strahl. Based on the properties of Coulomb collisions and the inhomogeneity of

the solar wind, and assuming minimal wave-particle interactions in the heliosphere, this

breakpoint energy relates to heliocentric radial distance as [Scudder and Olbert, 1979]:

Ebp(r)= 7kBTcore(r) (2.3)

At 1 au, the average breakpoint energy is considered to be 60 eV [Feldman et al., 1975],

however this varies with the local core temperature and solar wind speed [Štverák et al.,

2009]. The breakpoint energy also differs depending on whether it is between the core and

halo or the core and strahl, as Figure 2.8 shows.
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Figure 2.8: Electron velocity distribution function analysis, using Ulysses data, of breakpoint energy

against radial distance for both halo and strahl [Štverák et al., 2009].

Empirical studies, using core and halo parameters derived from 3D electron distribu-

tion data collected by Ulysses’ electron spectrometer, have also characterised the relation

between breakpoint energy and radial distance [McComas et al., 1992]. This research has

found that the breakpoint energy decrease with distance is proportional to r−0.4, and ranges

between 47 eV and 60 eV at 1 au.

Studies show that heat flux is aligned with magnetic field direction [Feldman et al., 1975;

Scime et al., 1994]. The strahl is predominantly responsible for transporting the majority

of solar wind heat flux (equation 1.25). However if the strahl is not present, the drift of

halo electrons relative to the core carries the majority of the heat flux [Bale et al., 2013].

Observations, using Helios spacecraft, at a range of radial distances (0.3-1 au) show that

current kinetic models overestimate the magnitude of solar wind heat flux, meaning it can-

not be accurately described by Coulomb collisions alone [Pilipp et al., 1990]. Characterising

the radial evolution of solar wind heat flux up to ∼5 au with Ulysses showed the heat flux

is proportional to r-2.9 [Pilipp et al., 1990]. The measured magnitudes at these distances
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are also lower than predicted by models. The mechanism known as the heat flux instability

[Gary et al., 1994], which predicts a similar heat flux proportion of r-3, can potentially limit

the heat flux, therefore explaining this discrepancy.

2.2 The Earth’s Magnetosphere

The Earth’s magnetosphere is the environment around Earth that is dominated by Earth’s

own magnetic field. The magnetosphere acts to exclude any external magnetic fields and

particles. The collision of the solar wind against the magnetosphere causes a compression of

its dayside, and an elongation of its nightside, which is also known as the magnetotail. This

is shown in Fig. 2.9, which also highlights the different regions of the dayside and nightside

magnetosphere.

Figure 2.9: A 2D schematic of the Earth’s magnetosphere, taken perpendicular to the Earth-Sun

line [Russel, 2011].
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2.2.1 The Dayside Magnetosphere

Due to the frozen-in approximation, particles associated with magnetic fields of different

sources do not mix. This therefore means that the magnetosphere acts as an obstacle for

solar wind particles, causing them to rapidly slow down and be heated by shock waves

caused by the collision. This occurs at the edge of the magnetosphere, which is known

as the bow shock. The bow shock is approximately 14 RE away from the Earth [Hughes,

1995]. The magnetosheath is the next region of the magnetosphere that is downstream of

the bow shock. It comprises of a subsonic flow of plasma, that is denser and hotter than

the pre-collision solar wind, due to the conservation of mass-flux around the bow shock,

and the conversion of kinetic energy to thermal energy due to the collision. The boundary

between the IMF and the Earth’s magnetic field creates a gradient in magnetic field. Ac-

cording to Ampere’s Law, this gradient induces a current, which in the case of the Earth’s

magnetosphere results in a thin current sheet the magnetopause. The magnetopause is

approximately 10 RE away from the Earth, with this distance depending on the balance

between magnetospheric and solar wind pressures.

The cusps, located above each of the Earth’s poles, are the point of entry for solar wind

plasma into the inner magnetosphere. The plasmasphere is a region of the inner magneto-

sphere, and has a density of ∼103 cm-3, making it the densest region in the magnetosphere.

It is located roughly 4 RE away from the Earth, and consists of cold ionospheric plasma

that co-rotates with Earth in a toroidal shape. Closer to the Earth are the inner and outer

Van Allen radiation belts. These belts contain highly energetic particles, and are located

between ∼0.1 RE and ∼6 RE.
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2.2.2 The Magnetotail

The interaction between the Earth’s magnetosphere and the solar wind causes the stretch-

ing of the magnetotail up to a distance of ∼600 RE from the Earth. The magnetotail is

traditionally divided into three different regions: the plasma sheet (PS), the plasma sheet

boundary layer (PSBL), and the lobes [Hughes, 1995]. These regions are defined by their

plasma and magnetic field characteristics. The low temperature (∼85 eV) outermost north-

ern and southern lobes are on open magnetic field lines which results in a much lower

plasma density of ∼0.01 cm−3 [Lui, 1987]. The plasma sheet boundary layer exists on the

reconnected magnetic field lines. This region forms the transition region in between the

plasma sheet and the lobes, and is characterised by a population of field-aligned particles

and a plasma β, which is the ratio of the plasma pressure to the magnetic pressure, of ∼0.1

[Lui, 1987].

The innermost plasma sheet typically contains a comparatively hot (∼4250 eV) and

isotropic plasma with a relatively high particle density of ∼0.01 cm−3. At the centre of the

plasma sheet is the thin neutral current sheet, which is characterised by a relatively high

plasma β of ∼10, and a magnetic field strength of near zero [Lui, 1987]. Although isotropic

electron pitch angle distributions (PADs) are the most dominant in the plasma sheet, many

cases of pitch angle anisotropy have also been found [e.g. Walsh et al., 2013; Artemyev et al.,

2014; Liu et al., 2020]. These intervals correspond to a colder and denser electron population

and are linked to: cold anisotropic ionospheric outflows [Walsh et al., 2013], and a penetra-

tion of cold electrons from the magnetosheath near the flanks [Artemyev et al., 2014].
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2.2.3 The Dungey Cycle

So far we have been describing the magnetosphere using the closed magnetosphere model.

However, when considering magnetic reconnection, whereby ideal MHD breaks down, the

frozen-in approximation is no longer valid, allowing plasmas of different sources to mix.

In our case, this process connects the magnetosphere to the IMF via reconnection in the

magnetopause and magnetotail current sheet. We therefore use the open magnetosphere

model, as well as the Dungey cycle [Dungey, 1961] to describe this interaction.

When the IMF is pointed Southward, i.e. in the opposite direction to the Earth’s mag-

netic field, reconnection can take place in the dayside magnetosphere. Subsequently, two

new field lines, each connecting the IMF to the Earth’s poles, are created. They are there-

fore open to the solar wind. The magnetic tension force causes these lines to straighten, and

they are subsequently dragged tailward by the solar wind. As more magnetic flux is added

to the nightside magnetosphere, the magnetotail is stretched further from the Earth, and a

reconnection site is formed at the neutral line. The result of this magnetotail reconnection

is a closed field line connected to the Earth, and an IMF field line pushed out by the solar

wind. The new closed field line convects back to the dayside due to magnetic tension, and

undergoes the same process again.

2.2.4 Substorms

In the nightside magnetosphere, reconnection is usually part of a larger series of events

called a substorm [Mcpherron et al., 1973]. Substorms dissipate energy captured by the solar

wind in the solar wind-magnetospheric-ionospheric system. They are divided into three

phases: the growth phase, expansion phase, and recovery phase. The initial growth phase
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adds magnetic flux to the tail lobes from dayside reconnection. The subsequent expansion

phase is characterised by an exponential increase in auroral intensity and an enhancement

of electrojet currents in the nightside magnetosphere. Lastly, during the substorm recovery

phase, there is a reorganisation of the magnetospheric current system.
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3 Instrumentation and Data

3.1 The Cluster Mission

This project uses data from ESA’s Cluster mission [Escoubet et al., 1997], also known as

Cluster II. Cluster II was launched in 2001 after the original Cluster mission was lost during

launch in 1996. The mission consists of four spacecraft, in tetrahedral formation, each

spinning at a rate of 15 rotations per minute. This setup enables Cluster to collect three-

dimensional data on how the solar wind interacts with and affects Earth’s magnetosphere,

atmosphere and aurorae. It has a highly elliptical polar orbit which evolves over time, so

that the line of apsides has slowly rotated southwards. The spacecraft have a perigee of

∼4 RE and an apogee of ∼19.6 RE. Throughout the course of a year, the spacecraft spend

time in different regions of the Earth’s magnetosphere due to the relative motion of the

magnetosphere to the spacecrafts’ fixed planes of orbits in inertial space.

Each spacecraft carries the same eleven instruments, as listed in Table 1.

3.1.1 The PEACE Instrument

The PEACE instrument measures the three-dimensional velocity distributions of electrons

at a resolution of 4 s. The instrument is made up of two top-hat sensors, HEEA (High Energy

Electron Analyser) and LEEA (Low Energy Electron Analyser), as well as a data processing

unit [Johnstone et al., 1997]. The sensitivity of LEEA is 5 times lower than HEEA as this

instrument is optimised for higher electron fluxes at lower energies. These two sensors are

mounted on opposites sides of each of the four spacecraft, with their field of view pointing

radially away from the spin axis to reduce the entry of photoelectrons from the spacecraft.
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FGM Fluxgate Magnetometer

EDI Electron Drift Instrument

ASPOC Active Spacecraft Potential Control experiment

STAFF Spatio-Temporal Analysis of Field Fluctuation experiment

EFW Electric Field and Wave experiment

DWP Digital Wave Processing experiment

WHISPER Waves of High frequency and Sounder for Probing of Electron density by

Relaxation experiment

WBD Wide Band Data instrument

PEACE Plasma Electron And Current Experiment

CIS Cluster Ion Spectrometry experiment

RAPID Research with Adaptive Particle Imaging Detectors

WEC Wave Experiment Consortium (DWP, EFW, STAFF, WBD, and WHISPER)

Table 1: The eleven instruments on each Cluster spacecraft.
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The 180° field of view of each electrostatic analyser is divided into 12 equal bins of width

15°. A pitch angle of 0° (180°) projects parallel (anti-parallel) to the magnetic field. The

instrument has an energy range of 0.6 eV to 26.46 keV and can take measurements at 88

distinct energy bins. The first 16 energy bins are spaced linearly between energies 0.6 eV

and 9.5 eV, whereas the remaining bins are spaced logarithmically across the rest of the

energy range. The number of bins used depends on the chosen instrument mode.

Electrostatic Analysers Figure 3.1 illustrates the basic geometry of a top hat electrostatic

analyser, as employed by the PEACE instrument. The device is comprised of an inner and

outer hemisphere and a top cap. The inner hemisphere is given a positive voltage in com-

parison to the grounded outer hemisphere. Depending on the potential difference between

hemispheres, an electron with a specific energy passes through the gap and hits the anode

detector. Higher energy particles hit the outer hemisphere, while lower energy particles hit

the inner hemisphere. Particle velocity distribution functions are measured by varying the

potential difference to select different energy particles.

Two micro-channel plates (MCPs) are mounted between the detector and the hemi-

spheres. These MCPs contain microcopic pores which are angled to allow particles to hit

the pores’ walls, causing the emission of secondary electrons that are accelerated towards

the detector. These secondary electrons impact on more walls creating a cloud of secondary

electrons, which are more easily detected by the anodes.

Data Mode This project has used data collected in the ‘PITCH_SPIN’ instrument mode.

This data product, which is available every spin, is based on two instantaneous measure-

ments of the pitch angle distribution per spin. The anode provides measurements for up
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Figure 3.1: Basic geometry of a top hat electrostatic analyser. The path of the electrons is deter-

mined by the voltage [Farnell et al., 2017].

to two pitch angles during each spin by recording at two specific azimuth angles separated

by 180°. The PITCH_SPIN dataset is a two-dimensional product containing the twelve 15°

pitch angle bins and 44 energy bins. At energies and pitch angles covered by both the HEEA

and LEEA sensors, the average of the measured value is used.

3.1.2 The FGM Instrument

The FGM (FluxGate Magnetometer) instrument [Balogh et al., 1997], which provides mag-

netic field information, plays an important part in determining the PITCH_SPIN data from

the PEACE instrument, as velocity distribution functions are resolved in reference to the

direction of the magnetic field. Each spacecraft is attached to a 5.2 m long boom, which

holds two tri-axial fluxgate sensors to measure the magnetic field. The primary sensor is

located at the end of the boom in order to reduce the effects of the spacecraft’s magnetic field

on its measurements. In normal mode, the instruments sends ∼22 vectors/s to the ground.

During burst mode, this increases to ∼67 vectors/s. The resolution of the instrument varies

depending on the magnitude of the magnetic field, ranging from a resolution of 7.8×10−3 nT
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to 0.5 nT as the magnetic field increases from ±64 nT to ±4096 nT.

Fluxgate magnetometers consist of a ring core of a permeable alloy which is highly mag-

netic. Two coil windings: the drive winding and sense winding, are wrapped around this

ring core. The ring core is made up of two separate half cores. As a current flows through

the drive winding, one of the half cores will generate a magnetic field in the same direc-

tion as the external magnetic field, while the other half core will generate a second field in

the opposite direction to the external magnetic field. Under an external magnetic field, the

half core generating the opposing field comes out of saturation sooner than its counterpart.

During this period, the two fields do not cancel out and the sense winding experiences a net

change in flux. This net change induces a spike in voltage. A second voltage spike is also

induced when the half core generating the opposing field comes out of saturation after the

other half core towards the end of a current revolution in the drive winding. The magnitude

and direction of the external magnetic field can be deduced by the size and phase of the two

spikes in voltage.

3.1.3 The CIS Instrument

Ion measurements are provided by the Cluster Ion Spectroscopy (CIS) experiment [Rème

et al., 1997], which consists of two separate sensors called the COmposition and DIstribution

Function analyser (CODIF) and the Hot Ion Analyser (HIA). Both instruments follow the

top hat design. The HIA sensor has not been functional on Spacecraft 2 and 4, while the

CODIF instrument has only been consistently reliable on Spacecraft 4.

CODIF CODIF measures the distributions functions of four different ion species: H+, He+,

He2+, and O+, with the use of a time-of-flight mechanism. In regions of very high ion flux,

58



however, the heavier mass channels become contaminated with protons. Ions which are se-

lected by the top hot analyser traverse through a thin carbon foil which creates a secondary

cloud of electrons. Once these electrons are detected by a secondary detector, a timer mea-

sures the time between the ions traversing the carbon foil and their detection at the primary

detector. This enables the ions’ charge per mass to be calculated.

CODIF is divided into a high G and low g section in order to the range of fluxes expe-

rienced by Cluster. The high G section has a geometric factor 100 times higher than the

low g section. Each section has a field of view of 180◦ × 8◦. The field of view of CODIF is

tangential to the spacecraft. This enables the high G and low g sections to look spinward

and anti-spinward respectively. The polar resolution is 22.5◦ and the azimuthal resolution

is 11.2◦. Due to bandwidth constraints, both sections cannot be operated simultaneously.

Therefore, high G or low g are picked depending on the region Cluster is in. For example,

high G is used in the magnetotail.

HIA The HIA sensor, on the other hand, does not distinguish between different ion species.

The sensor measures ions in the energy to charge ratio range ot 5 eV/e to 32 KeV/e, in

comparison to 15 eV/e to 38 KeV/e for CODIF. HIA also has a high G and low g section,

however the geometric factor difference between high G and low g is only 25 times in this

case. HIA’s field of view is also tangential to the spacecraft. The polar resolution of the

high G section is 11.25◦. The low g section has 8 central polar zones and 8 outer zones with

resolutions of 5.625◦ and 11.25◦ respectively.

Data Products Onboard and ground-calculated moments are available from both the HIA

and CODIF sensors. Due to calibration issues, the onboard moments for CODIF are in-
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ferier to the ground-calculated moments. For HIA, onboard moments are calculated using

full resolution distributions, while ground-calculated moments are calculated using lower

resolution distributions telemetered from the spacecraft. In this case, the ground and on-

board calibrations are the same, so onboard moments are preferred. As the upper limit of

CODIF’s energy range is higher than HIA’s, CODIF moments are preferred for studying the

magnetotail plasma sheet, where ion energies can extend beyond the energy range of both

sensors, causing densities, temperatures, and velocities to be underestimates.
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4 Techniques

4.1 Machine Learning

Machine learning allows computers to learn from existing datasets in order to gain an un-

derstanding of the data’s structure via a hierarchy of concepts. The two types of machine

learning [Sarkar et al., 2018] used in this project are supervised learning and unsupervised

learning.

4.1.1 Supervised Learning

In supervised learning, the machine learns to predict an output from the labelled train-

ing data provided. Mathematically, supervised learning derives the mapping function, Y =

f (X ), between some input variables (training data), X , and their associated output vari-

ables (labels), Y , in order to assign labels to an unseen set of arrays. Supervised learning

can further be divided into two types:

1. Classification: where the output variable is a class or group, e.g. strahl or halo.

2. Regression: where the output variable is a continuous value, e.g. estimating flux in-

tensity.

4.1.2 Unsupervised Learning

In unsupervised learning, no training data is present so the algorithms are left to discover

the internal representations of the input. Unsupervised learning can be further divided into

three subsets:

1. Clustering: discover the inherent groupings of the data (sorting the data into clusters).
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2. Density estimation: learn representations of the data via probability distributions.

3. Dimensionality reduction: provide compact, low-dimensional representation of the

data.

4.2 Model Testing and Accuracy

A number of methods can be used to test the accuracy of supervised learning models and

validate their results. A simple accuracy score comparing a trained model’s labelling to

pre-labelled data is generally the first step towards model validation. However, unless the

dataset has roughly equally weighted classes, an accuracy score is not representative of the

model’s performance.

For datasets with high class imbalances, the F1 score and the ROC AUC (Receiver op-

erating characteristic - Area under curve) score are more useful metrics [Flach and Kull,

2015]. The F1 score represents the harmonic mean of a model’s precision, i.e. the pro-

portion of predicted positives that are correctly classified, and recall, i.e. the proportion of

actual positives that are correctly classified (also known as true positive rate or sensitivity).

Explicitly:

precision= TP
TP+FP

(4.1)

recall= TP
TP+FN

(4.2)

TP, TN, FP and FN represents the number of true positives, true negatives, false positives

and false negatives respectively. This leads to:

F1 score= 2
precision×recall
precision+recall

= TP

TP+ FN+FP
2

(4.3)

The ROC AUC score compares a binary classification model’s specificity and sensitiv-

ity performance. The specificity is defined as the proportion of actual negatives that are
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correctly classified:

specificity= TN
TN+FP

(4.4)

To calculate the ROC AUC score, the true positive rate (sensitivity) is plotted against the

false positive rate (1 - specificity) for various thresholds, as varying the threshold changes

the trade-off between these two values. The area under the plotted relationship between

true and false positive rates corresponds to the ROC AUC score.

A more robust validation of a supervised learning models involves the use of the K-fold

cross-validation procedure [Kohavi, 1995]. This builds off the simple train/test split vali-

dation method [Kohavi, 1995], whereby the manually labelled data is split into a training

set and testing set. A model would use the training set to find how the labels correspond

to the data input, and subsequently use its knowledge to classify the testing data, with-

out having received this dataset’s labels. An accuracy score can then be computed between

the actual labels of the testing set and the model’s predictive labelling. An advantage of

this method means the model is not being trained and tested on the same dataset, which

decreases the chance of models that over-fit from obtaining good scores. The K-fold cross-

validation method splits the dataset into K-parts. The model will use K-1 parts to train, and

subsequently use the remaining part for testing, obtaining an accuracy score. The same un-

trained model will cycle through all the parts to use a different one for testing, while training

on the rest. This can be seen in Figure 4.1. This procedure builds up a more comprehensive

picture of an accuracy metric, as the entire labelled dataset has been used in both training

and testing. Ten folds were used during this project, as recommended [Kohavi, 1995]. It

was also important to use a K-fold cross-validation programme [Scikit-Learn, 2007] which

represents the weightings of classes in each individual part, in order to portray the entire

63



dataset.

Figure 4.1: An example of the K-fold cross-validation procedure, where K=5 in this case [Scikit-

Learn, 2007].

In terms of what is considered a good metric score, 90% is considered the benchmark

for an excellent fitting model [Vallantin, 2018]. A model obtaining scores of above 70% is

usually considered good, depending on the size of dataset and number of classes, and above

80% indicates a very good fitting model. If a model is showing metric scores of very close to

100%, then caution should taken to make sure it is not overfitting to the training data.
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5 Statistics of solar wind electron breakpoint energies using ma-

chine learning techniques

This work has been published in Bakrania et al. ‘Statistics of solar wind electron breakpoint

energies using machine learning techniques’. A&A, 639 A46. (2020).

In this chapter, we demonstrate how machine learning techniques such as clustering can

be applied to solar wind electron data, and we discuss its advantages over previous tradi-

tional methods, which involve fitting to electron velocity distributions. In order to demon-

strate specific advantages, we analyse a particular physical property of solar wind electron

populations - the breakpoint energy - by identifying core, halo, and strahl distributions at

1 au. Characterising the breakpoint energy is important as this property of a distribution

function provides a diagnostic of the relative importance of scattering mechanisms such as

Coulomb collisions and wave-particle interactions.

5.1 Data

We used the solar wind speed measurements from the Cluster-CIS instrument onboard the

C4 spacecraft [Rème et al., 2001], while the position and magnetic field measurements are

taken from the Cluster-FGM instrument [Balogh et al., 1997]. Using the CIS measure-

ments, we initially separated our input electron pitch angle distribution data into three

(fast, medium and slow) solar wind regimes to test our machine learning models. These

regimes cover roughly 1-2 hours of data and have average solar wind velocities of 686

km/s, 442 km/s and 308 km/s. The time periods we identify with these fast, medium and

slow wind regimes are 08:51-10:19 (02/03/2004), 00:38-01:35 (30/01/2003) and 04:33-06:18
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(08/02/2009), respectively [Kajdič et al., 2016]. We use these specific time intervals since

they contain enough data points (> 10,000 samples) to effectively train and test our ma-

chine learning models.

5.2 Machine Learning Techniques

We predominantly used unsupervised learning algorithms to determine breakpoint ener-

gies, as well as separate halo and strahl. Unsupervised learning algorithms do not require

‘training’ so they are more time efficient than supervised learning algorithms. Our choice

of algorithm is the K-means clustering method [Arthur, 2007] from the scikit-learn library

[Pedregosa et al., 2011]. Unsupervised learning algorithms have the advantage of not need-

ing the user to assign labels to training data, which reduces bias and allows large surveys

to be carried out more efficiently. In the K-means algorithm, the number of clusters, K, is

manually set to 2 to reflect the number of populations we aim to distinguish between: a core

cluster and a suprathermal cluster. To calculate the breakpoint energy at a specific pitch

angle, our algorithm sorts between energy distributions, at that pitch angle, and separates

the distributions into two groups on either side of the determined breakpoint energy. We

define xi as the vector representation of the phase space density (PSD) tuples, where the

index i labels tuples of three subsequent energy bins (i.e. energy distributions spanning

three energy bins). We define µ j as the vector representation of two random PSD tuples,

where the index j labels each cluster. The algorithm sorts these energy distributions into

clusters by minimising the function:

n∑
i=1

K=2∑
j=1

ωi j
∥∥xi −µ j

∥∥2 , (5.1)
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where

µ j =
∑n

i=1ωi jxi∑n
i=1ωi j

, (5.2)

ωi j =


1 if xi belongs to cluster j

0 otherwise,

(5.3)

and n is the number of 3-tuples at a fixed pitch angle. As each 3-tuple overlaps with its

neighbouring 3-tuples, n = Ne − 2, where Ne is the number of energy bins at each pitch

angle. By minimising the function in Eq. (5.1), our algorithm calculates the breakpoint

energy by: (1) randomly selecting two PSD vectors in the dataset to become the central

points of each cluster, µ j, known as centroids, (2) assigning all remaining PSD vectors, xi, to

the closest centroid, based on the least-square error between each vector and the centroids,

(3) computing new centroids, µ j, by calculating the average vector representation of the

PSD vectors assigned to the previous centroid, (4) reassigning each PSD vector, xi, to the

new nearest centroid, µ j, and (5) iterating steps 3 and 4 until no more reassignments occur.

Once the two clusters have been finalised, the breakpoint energy at the relevant pitch

angle is determined to be the midpoint between the uppermost energy bin in the cluster of

3-tuples associated with lower energies (which represents the core), and lowest energy bin

in the cluster of 3-tuples associated with higher energies (which represents suprathermal

electrons). As the PSD decreases with increasing energy in the relevant energy range, we

are able to locate a clear boundary between the two clusters. To separate strahl and halo

electrons, we use energy distributions in conjunction with pitch angle distributions. The

process of applying our K-means algorithm to pitch angle distributions is analogous to the

method described above, with xi now representing a pitch angle distribution at a certain

energy, however in this case we find the ‘break’ in pitch angle instead. A detailed account of
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how the K-means algorithm works is provided by Arthur [2007].

Figure 5.1 shows an example of how a simple collection of samples are sorted into clusters

using the K-means clustering algorithm [Arthur, 2007].

Figure 5.1: An illustration of how the K-means clustering algorithm sorts a scatter plot into three

clusters [Patil, 2018].

We validate our clustering method by comparing test cases to an accurate supervised

learning algorithm, trained on a subset of manually labelled (as halo or strahl) pitch angle

and energy distributions. Once trained, the supervised learning algorithm predicts which

class (halo or strahl) a new pitch angle or energy distribution belongs to. We compare super-

vised learning algorithms by calculating their ROC scores [e.g. Flach and Kull, 2015]. We

find the K-Nearest Neighbours (KNN) [e.g. Peterson, 2009] algorithm performs best, achiev-

ing ROC scores > 90% in all tests. This model classifies data by finding the ‘majority vote’

of the nearest (labelled) neighbours to each unclassified data-point.

Figure 5.2 shows how two KNN models would be applied to the same set of data. Each

dot represents a labelled data-point (by colour) and the empty space can be considered as un-

labelled data-points. The colour shading shows how that particular space would be labelled

from a model training on either the nearest labelled dot to that space (left) or the 5 nearest

labelled dots to that space (right).
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(a) K = 1 (b) K = 5

Figure 5.2: An illustration of how the KNN model decides classification boundaries based on labelled

data. The circles represent labelled (by colour) data-points and the shading has been applied by each

model depending on the closest coloured circles to that region [Mirkes, 2011].

5.3 Distinguishing Between Suprathermal and Core Electron Populations

We demonstrate the use of unsupervised clustering to calculate the breakpoint energy. Fig-

ure 5.3, which shows a cut of the differential energy flux distribution at constant pitch

angle, visualises this breakpoint energy. Figure 5.3 contains three regions with different

distribution functions. At energies below the spacecraft potential at ∼10 eV, photo-electrons

dominate (blue dots). At slightly higher energies, between 10 eV and ∼45 eV, the distri-

bution represents core electrons. At larger energies we observe the halo population. We

fit a Maxwellian (red) and κ-distribution (yellow) [Štverák et al., 2009] to the core and halo

respectively, to determine the energy at which the distributions intersect, that is, the ‘break-

point energy’.

The intersection in Figure 5.3 results in an estimated halo breakpoint energy of 45±3 eV.

We apply the same method to flux measured at pitch angles 0◦ and 180◦, where the strahl
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Figure 5.3: Differential energy flux as a function of energy at 90◦, averaged across times 08:51-10:19

(02/03/2004) during our fast wind regime. The red curve represents a fit to the core electron energy

range and the yellow curve to the halo energy range. The grey dashed line marks the so-called

‘breakpoint energy’ at 45±3 eV.

carries the highest value of the flux density in the suprathermal energy regime. These

intersections show a separation between the core and suprathermal strahl population at

42±3 eV. We use the core-halo intersection in Figure 5.3, which is labelled by the dashed

line, to validate our use of clustering analysis to calculate breakpoint energy, detailed below.

We omit energies below 10 eV and above 540 eV from our dataset and use the K-means

clustering algorithm [Arthur, 2007] to classify the suprathermal and core populations, and

hence calculate the breakpoint energy, at our choice of pitch angle. We assess the algo-

rithm’s performance by comparing its classifications of the core population at each time step

to an averaged distribution of the data, such as in Figure 5.3. This unsupervised learn-

ing method produces encouraging results. At 90◦ pitch angle, the algorithm estimates the

average breakpoint energy to be 45 eV±3. The accuracy score between algorithm’s classifi-

cations and a fit to the averaged distribution is 92.9%. As we predict binary classifications,

we consider metric scores close to 90% as ‘good’ scores when testing our models, based on
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what previous studies achieve [e.g. Qian et al., 2015; Zhang et al., 2017].

5.4 Separating Halo and Strahl Electrons

Figure 5.4 illustrates a typical differential energy flux distribution as a function of pitch

angle and energy distribution for one particular time (08:57:28-08:57:32 on 02/03/2004)

recorded by Cluster-PEACE. We limit the energy range to the suprathermal energy regime,

as a result of our breakpoint energy analysis.

Figure 5.4: Two-dimensional colour plot of the measured electron differential energy flux, across a 4

second window (08:57:28-08:57:32 on 02/03/2004) during our fast wind regime. The data are plotted

as a function of pitch angle (degrees) and energy (eV), across an energy range of ∼44 eV to ∼540 eV.

The vertical and horizontal white dashed lines represent where cuts are made to obtain: a) the pitch

angle distribution at 110.09 eV, and b) the energy distribution at 127.5◦.

In order to show the average pitch angle distribution (PAD), we take vertical slices in

Figure 5.4 at a given energy. The white line (a) in Figure 5.4 represents the slice from

which we obtain the example PAD in Figure 5.5a. Below the typical breakpoint energy

these distributions are relatively isotropic across all pitch angles, which is in contrast to

71



the strahl distribution [McComas et al., 1992]. At higher energies within the suprathermal

regime, PADs either show a quasi-isotropic distribution, which represents the halo, or an

anisotropic distribution with peak fluxes recorded at 0◦ and/or 180◦, which represents the

halo population at all pitch angles overlaid with field-aligned strahl.

From our breakpoint energy analysis, we limit our input data to energies above 44 eV

and convert these suprathermal data to PADs across our energy range, e.g. as shown in

Figure 5.5a. We use an arbitrary 10-minute subset of time intervals, equivalent to 1800

samples, as training data. We assign each PAD a label, depending on whether strahl is or

is not present. Subsequently, the entire set of PADs during our chosen wind speed regime

are classified, based on a trained KNN model. We find a strong agreement between this

supervised method and using K-means to cluster the fast wind set of PADs into two groups

(halo and strahl), with a calculated ROC score of 90.3%.

(a) Pitch Angle Distribution at 110.09 eV (b) Energy Distribution at 127.5◦

Figure 5.5: a) Pitch angle distribution at an energy of 110.09 eV and, b) energy distribution at a

pitch angle of 127.5◦ as projected from the vertical and horizontal white lines in Figure 5.4.

Classifying PADs informs us of whether a strahl is present at a certain energy, however

we require classification of the energy distributions at each pitch angle to extract the width
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of the strahl. The white line (b) in Figure 5.4 represents the slice from which we obtain

the example energy distribution in Figure 5.5b. We now use a 10-minute interval of energy

distributions, at each pitch angle, for our training data and provide labels depending on

whether strahl is present or not at that pitch angle. We find a strong similarity between

the supervised and unsupervised methods, when classifying the entire set of flux-energy

distributions, with a ROC score of 98.3%. This comparison therefore validates the use of the

unsupervised method for any larger statistical survey.

For each time step, we combine the classifications of suprathermal PADs and suprather-

mal energy distributions to create a grid detailing whether the measured flux in each energy

and pitch angle bin is dominated by halo electrons or by strahl electrons. A bin is identified

as containing strahl if both the PAD and energy distribution it resides in are classed as

strahl by the K-means algorithm. We show the results of our strahl and halo classification

in fast wind in Figure 5.6. Each point represents a single measurement at a given pitch

angle and energy, with the colour depicting the class (halo or strahl). The higher fluxes near

0◦ and 180◦ are associated with strahl (blue points). On occasion, broader strahl is detected,

as illustrated by the presence of blue points at higher fluxes near 75◦. The existence of red

points across all pitch angles at lower fluxes confirms the presence of the halo as an isotropic

population.

We show the results of our strahl and halo classification in slow wind in Figure 5.7. We

see that the number of blue points, associated with the strahl, is much reduced in the slow

wind than in the fast wind (see Figure 5.6). This finding is consistent with the observed

lower occurrence of strahl during times of slow solar wind [e.g. Gurgiolo and Goldstein,

2017]. Both Figures 5.6 and 5.7 confirm that only halo electrons exist at pitch angles around
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Figure 5.6: 3D scatter plot of the differential energy flux as a function of pitch angle and energy,

for the fast solar wind dataset. The colours define whether the K-means clustering algorithm labels

each bin as either containing strahl and halo flux (blue) or only halo flux (red).

90◦. We see for both fast and slow wind cases that the strahl exhibits higher differential

energy fluxes than the halo. The scattering of strahl electrons into the halo results in a

larger spread of electrons across all pitch angles, decreasing the peak flux at any one pitch

angle.

5.5 Calculating Relative Number Densities

After classifying the dataset into core, halo and strahl regions, we calculate the differential

energy flux attributed to each population. In order to account for halo electrons in strahl

pitch angle and energy bins, we subtract the halo flux, averaged over all pitch angles at a

fixed energy, from strahl fluxes at that energy and assign it to the total halo flux. Differen-

tial energy flux relates to the partial number density (cm-3) of each electron population as

according to Eq. (5.4) [Wüest et al., 2007]:

∆n ≈ 5.4×10−10 E− 3
2 ∆E ∆Ω J (cm−3), (5.4)
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Figure 5.7: 3D scatter plot of the differential energy flux as a function of pitch angle and energy, for

the slow solar wind dataset.

where E is the average energy within interval ∆E (both measured in keV/Q) and J is the

average differential energy flux (keV/cm2-s-str-keV) at energy E. ∆Ω is the solid angle (≤4π)

over which J is measured and relates to the pitch angle widths.

In Figure 5.8, we show the conversion of differential energy flux to number density. In

slow wind: the ratio ns/nh = 0.003 and (ns+nh)/nc = 0.025 where ns, nh and nc represent the

strahl, halo and core number densities. In intermediate wind: ns/nh = 0.53 and (ns +nh)/nc

= 0.043 while in fast wind: ns/nh = 0.79 and (ns +nh)/nc = 0.094.

Our calculated densities are of the same order as those determined by Štverák et al.

[2009], who found (ns +nh)/nc = ∼0.1 and 0.04-0.05 in fast and slow wind respectively. This

test confirms that our algorithm is capable of differentiating between solar wind electron

populations to a similar degree as previous results, with a very different method.
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Figure 5.8: ns/nh and (ns +nh)/nc ratios for slow, medium and fast solar wind.

5.6 Statistical Study of Breakpoint Energy versus Solar Wind Speed

We then used ten years of pristine solar wind data, from 2001 to 2010, to quantify the re-

lationship between strahl and halo breakpoint energies and other solar wind parameters,

notably solar wind speed and core temperature. By quantifying the halo and strahl break-

point energies separately, we determine if each suprathermal population is governed to the

same extent by ambient conditions, or if they scale with each bulk parameter differently. For

this study, we use Cluster-PEACE data in units of phase space density and split the data

into four-minute intervals. The average solar wind speed during each interval is recorded

using CIS measurements.

5.6.1 Confirming Cluster is in Pristine Solar Wind

The first step towards a statistical study involved collating a list of times when Cluster is in

the pristine solar wind. This means the spacecraft should be outside the bow shock and not

magnetically connected to it. To determine this, we used a model of the Earth’s bow shock
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position [Chao et al., 2002]:

r = r0(
1+ε

1+εcosθ
)α (5.5)

where r0 is the sub-solar bow shock standoff distance, α represents the level of tail flaring,

ε represents the bow shock’s eccentricity. r is the distance from the bow shock’s surface to

the centre of the Earth at an angle θ from the x-direction in GSE coordinates. ε is equal to

1.029 [Chao et al., 2002] and α and r0 are given by the following equations:

α= a5(1+a6Bz)(1+a7Dp)(1+a10ln(1+β))(1+a14MMS) (5.6)

r0 = a1(1+a3Bz)(1+a9β)(1+a4
((a8 −1)M2

MS +2)

((a8 +1)M2
MS)

)D−1/a11
P (5.7)

where Bz is the IMF north-south component, Dp the upstream solar wind dynamic pressure,

β is the plasma beta and MMS the magnetosonic mach number. The variables in equations

(5.6) and (5.7) were calculated as [Chao et al., 2002]: Bz =−0.35, Dp = 2.48, β= 2.08, MMS =

6.96, a1 = 11.1266, a3 = −0.0005, a4 = 2.5966, a5 = 0.8182, a6 = −0.017, a7 = −0.0122, a8 =

1.3007, a9 =−0.0049, a10 =−0.0328, a11 = 6.047 and a14 =−0.002.

The value θ in equation (5.5) was determined by Clusters position. When Cluster is on

the dayside:

θ = sin−1(

√
p2

y + p2
z√

p2
x + p2

y + p2
z

) (5.8)

and on the nightside:

θ =π−sin−1(

√
p2

y + p2
z√

p2
x + p2

y + p2
z

) (5.9)

where px, py and pz are Cluster’s position coordinates obtained from the FGM instrument

onboard [Balogh et al., 1997]. Times were then collected for when Cluster’s position d:

d =
√

p2
x + p2

y + p2
z (5.10)
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is larger than the value of r at the angle θ.

Once times of when Cluster was outside the bow shock were obtained, FGM measure-

ments [Balogh et al., 1997] were used to determine the magnetic field direction during those

times. By combining Cluster’s position coordinates with the magnetic field vector at that

point, we could collate a list of times when the field is not intersecting with the Earth’s bow

shock, meaning it is not magnetically connected. Figure 5.9 displays a particular time when

this is the case.
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Figure 5.9: A plot showing a particular time when Cluster is outside the bow shock and magnetically

disconnected from it. The red curves represent the bow shock surface, the blue dot is Cluster’s

position and the orange lines show the direction of the magnetic field at that point and time.

We calculate the halo breakpoint energy, during each four-minute interval, by applying

K-means clustering to phase space density values at 90◦ pitch angles, over a range of en-

ergies from 19 eV to 240 eV. Calculating the strahl/core breakpoint energy entails applying
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these K-means models to pitch angles and intervals which contain strahl. We achieve this

by classifying flux-energy distributions during each interval, using the method in Section

5.4, to determine if strahl is present at 0◦ or 180◦.

Once the breakpoint energy during each 4-minute interval had been determined, the core

energies below the breakpoint energy were converted to velocities. Converting to velocities

allowed a Maxwellian velocity distribution function (see equation 5.11) [Štverák et al., 2008]

to be fitted to the phase space density data across these core velocities.

fc = nc

( m
2πk

)3/2 1
Tc⊥

√
Tc∥

exp

{[
− m

2k

(
v2
⊥

Tc⊥
+

v2
∥

Tc∥

)]}
(5.11)

Where nc is the core density, m the electron mass, k is Boltzmann’s constant, Tc⊥ and Tc∥

are the core perpendicular and parallel temperatures and v⊥ and v∥ are the perpendicular

and parallel velocities. By inputting known values for fc (the phase space density), m, v

and k, our fitting programme [SciPy, 2016] was able to estimate the core temperature and

density which would enable a fit to converge on the smaller core velocities. An example of

this is seen in Figure 5.10.
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Figure 5.10: A velocity distribution plot showing average phase space density (blue scatter points)

vs. velocity over a 4-minute interval. The red line represents a Maxwellian fit to energies below the

breakpoint energy.

5.6.2 Results

Figure 5.11 shows the halo breakpoint energy vs. core temperature distribution in a ‘violin

plot’ to visualise the distribution of data points after binning the data into widths of 50

km/s. A violin plot is similar to a box plot, with the addition that the horizontal extent of

each violin element represents a density plot of the data at different values. The red regions

in Figure 5.11 visualise these density plots.

The widths of the red regions show that data are clustered about certain energies across

all wind speeds. These regions of higher density in fact point to the energy channels (30.1

eV, 37.7 eV, 47.9 eV, 56.7 eV and 70.5 eV) within the C2-PEACE instrument’s dataset. As

the instrument contains discrete energy channels with relatively large spacing, we observe

bumps in the violin plots rather than a smooth distribution, due to our reliance on these

energy channels for calculating the breakpoint energy. Figure 5.11 shows a clear positive

correlation between halo breakpoint energy and core temperature, kBTc, with a gradient of
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Figure 5.11: ‘Violin plot’ of halo breakpoint energy against core temperature. The blue line shows

the line of best fit. The white dots indicate the median of breakpoint energies and the thick black

lines show the inter-quartile ranges (IQR). We plot the thin black lines to display which breakpoint

energies are outliers. They span from Q3+1.5×IQR to Q1-1.5×IQR, where Q3 and Q1 are the upper

and lower quartiles, respectively. The horizontal width of the red regions represents the density of

data points at that given breakpoint energy.

5.74±0.09. A statistical P-test produces a p-value of <0.0001, showing this relationship is

significant at the p = 0.05 (5%) level [Rice, 1990]. The R-squared value of 0.626 indicates

∼63% of variation in halo breakpoint energy can be described by this correlation. Very small

inter-quartile ranges are observed in the 1-2 eV and 5-6 eV bins, while large inter-quartile

ranges are observed in bins 4-5 eV and 6-7 eV. The results for the strahl breakpoint energy

vs. core temperature are shown in Figure 5.12.
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Figure 5.12: ‘Violin plot’ of strahl breakpoint energy against core temperature. The orange line

shows the line of best fit. The remaining features are the same as in Figure 5.11.

In both Figures 5.11 and 5.12, there is small discrepancy between the line of best fit

and the median at core temperatures between 2 eV and 8 eV. When Tc < 2 eV, the linear

fit underestimates all of the measured breakpoint energies, lying below the lower quar-

tile range in both cases. In the strahl’s case, the median and upper quartile at Tc > 8 eV

drop significantly below the line of best fit. Figure 5.12 suggests the dependence between

core temperature and halo and strahl breakpoint energies differs. This is evidenced by the

strahl breakpoint energy relation exhibiting a smaller gradient (5.5±0.1) and larger vari-

ance, based on the R-squared value of 0.51, with Tc than the halo’s relation. A p-value of

<0.0001 suggests that this positive correlation between strahl breakpoint energy and core

temperature is also highly significant at the p = 0.05 level.
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Figure 5.13 shows the results of our study to determine the relationship between halo

breakpoint energy and solar wind speed. The collisionality of the solar wind plasma varies

with its velocity, with slow wind typically exhibiting a higher collisionality than fast wind

[Scudder and Olbert, 1979; Lie-Svendsen et al., 1997; Salem et al., 2003; Gurgiolo and Gold-

stein, 2017]. Therefore, comparing breakpoint energy to solar wind velocity provides use-

ful information on the scaling of breakpoint energy with the collisionality of the ambient

plasma. Solar wind velocity is also a good indicator of the origin of the solar wind [Geiss

et al., 1995; Habbal et al., 1997], enabling us to investigate if breakpoint energy profiles

vary with differing solar wind source regions. The gradient in Figure 5.13 is -5.9±0.1 eV per

100 km/s. The R-squared value of 0.487 is lower than 0.626 in Figure 5.11, indicating that

halo breakpoint energy exhibits a stronger correlation with core temperature than with so-

lar wind speed. A statistical P-test produces a p-value of <0.0001, showing this relationship

is significant at the p = 0.05 (5%) level.

The distribution of breakpoint energies with wind speed in Figure 5.13 displays a step

function at about 500 km/s. The lower quartile within the 450-500 km/s bin lies above the

upper quartiles in faster speed bins. Fitting two linear fits to solar wind speeds below and

above 500 km/s separately produces gradients of -4.2±0.1 eV per 100 km/s and -3.5±0.1 eV

per 100 km/s respectively. The associated R-squared values are 0.588 and 0.651 respec-

tively; both larger than a value 0.487 for a single linear fit, indicating that two separate

correlations better describe the distribution in Figure 5.13 than a single correlation. The

two correlations are also significant at the p = 0.05 (5%) level. The data-points in Figure

5.13 are distributed along a larger range of breakpoint energies at lower wind speeds than

higher wind speeds. However, according to the inter-quartile ranges for the majority of data-
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Figure 5.13: ‘Violin plot’ of halo breakpoint energy against solar wind speed. The blue line shows

the line of best fit. The remaining features are the same as in Figure 5.11.

points, the variance about the median values is relatively small, with the exception of a few

outliers. The medians themselves do not deviate significantly from the line of best fit across

all wind speeds, with the largest median residual equalling 5 eV in the <300 km/s bin. There

is some evidence for positive or negative skewness at certain solar wind velocities, such as

in the <300 km/s and 400-450 km/s bins, as can be seen when the median appears to lie on

one of the edges of the inter-quartile range.

Figure 5.14 shows the strahl breakpoint energy variation with solar wind speed. Accord-

ing to our linear fit, the rate of decrease of strahl breakpoint energy with solar wind speed is

-5.7±0.1 eV per 100 km/s. Solar wind speed has a smaller correlation with strahl breakpoint

energy than halo breakpoint energy, based on the steepness of each gradient and R-squared
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values. This R-squared value of 0.460 in Figure 5.14 also indicates that the strahl break-

point energy has a weaker correlation statistically with solar wind speed than with core

temperature, as the line of best fit describes less of the variation. This is also the case for

the halo breakpoint energy. A p-value of <0.0001 indicates that this negative correlation is

also highly significant at the p = 0.05 level.

Figure 5.14: ‘Violin plot’ of strahl breakpoint energy against solar wind speed. The orange line

shows the line of best fit. The remaining features are in the same format as Figure 5.11.

Similar to Figure 5.13, the variation in breakpoint energy in the strahl violin plot is

larger at smaller wind speeds. However, unlike for halo, the 400-450 km/s bin has a much

larger variance than the <300 km/s bin, as evidenced by their inter-quartile ranges. This

larger spread of data at medium wind speeds explains why the strahl’s R-squared value is

lower than the halo’s. The lack of skewness in Figure 5.14 shows that the data are dis-
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tributed more symmetrically in the strahl’s case than the halo’s. The sum of the median

residuals are also smaller for the strahl, with the largest median residual at 3.5 eV in the

<300 km/s solar wind speed bin. A step function is less apparent in Figure 5.14, however

there is a clear distinction between the median breakpoint energy relation with wind speed

in slow winds (<450 km/s), compared to fast winds. Table 2 contains the gradients and

R-squared values of the correlations in Figures 5.11, 5.12, 5.13, and 5.14.

Table 2: Correlations between halo and strahl breakpoint energies with core temperature, Tc and

solar wind speed, Vsw, as represented by the gradients and R-squared, R2, values.

Tc Vsw

Population Ebp/Tc R2 Ebp/Vsw R2

[eV/(km/s)]

Halo 5.74 0.626 -0.059 0.487

Strahl 5.5 0.51 -0.057 0.460

5.7 Discussion

In this study, we use the K-means algorithm to successfully distinguish between the three

populations and we train a supervised learning algorithm (K-nearest neighbours) to classify

a subset of the pitch angle and energy distributions. There is a strong agreement between

the two machine learning methods, allowing us to apply the K-means clustering method

to a larger subset of solar wind electron data at different solar wind velocities. Machine

learning algorithms provide us with an efficient method of classification from which small

scale variations of electron populations in relation to energy and pitch angle can be derived.

By classifying a single distribution at each time step, we build up a high resolution pic-
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ture of suprathermal breakpoint energy and relative number density, including how they

evolve with different parameters. The techniques we employ can be easily applied to any

classification problem where sufficient data are available.

Distinguishing between strahl, halo, and core electron populations allows us to calculate

their relative number densities, in order to compare our method to previous results. Štverák

et al. [2009] show that suprathermal electrons in the fast wind constitute ∼10% of the total

electron number density, while in slow wind they occupy 4% to 5% of the total electron

density. In comparison, we obtain values of ∼9.4% and 2.5-4.3% for fast and slow wind

respectively. Obtaining densities of the same order as Štverák et al. [2009] confirms that

our method is capable of distinguishing between multiple solar wind electron populations

to a similar degree as alternative methods. Being a zeroth order moment, there is a smaller

level of uncertainty when calculating the density, as opposed to the breakpoint energy or

higher order moments, by fitting distribution functions. Using machine learning techniques

instead of fitting bi-Maxwellian and bi-Kappa functions to electron velocity distributions,

which involves fixing certain parameters [Štverák et al., 2009], eliminates the need to use

prior assumptions about these solar wind electron populations. Therefore, our new method

results in more robust estimations of the solar wind electrons’ breakpoint energies.

The observation that the majority of the halo population is formed due to strahl scatter-

ing [Saito and Gary, 2007; Pagel et al., 2007; Štverák et al., 2009] explains the relationship

between ns/nh and wind speed in Figure 5.8. Strahl in slow solar wind undergoes more

scattering per unit distance than in faster wind [e.g. Fitzenreiter et al., 1998], leading to a

higher value of nh/ne at 1 au. We observe a near absence of strahl in very slow solar wind at

velocities of 308 km/s (see Figures 5.7 and 5.8), which is consistent with observations from
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previous studies [e.g. Fitzenreiter et al., 1998; Gurgiolo and Goldstein, 2017; Graham et al.,

2018]. By analysing a number of periods of slow solar wind, Fitzenreiter et al. [1998] find

that the strahl generally has a larger width in slow solar winds than fast, while Gurgiolo

and Goldstein [2017] find that strahl is often not present at solar wind velocities . 425

km/s. Graham et al. [2018] also note an absence of strahl during certain slow solar wind

times. This absence of strahl remains unexplained. Possible hypotheses include: Coulomb

pitch angle scattering which counteracts magnetic focussing effects during strahl formation

[Horaites et al., 2019], intense scattering due to broadband whistler turbulence [Pierrard

et al., 2001], and the lack of initial strahl formation during the production of slow solar

wind [Gurgiolo and Goldstein, 2017].

Instead of finding the intersection between core and suprathermal fitting functions [e.g.

Pilipp et al., 1987a; McComas et al., 1992; Štverák et al., 2009], a method which according

to McComas et al. [1992] produces ‘somewhat arbitrary’ values, our method calculates the

breakpoint energy based on the data recorded in each individual pitch angle and energy bin.

Our method calculates breakpoint energy values of both sunward and anti-sunward strahl,

occasionally obtaining two strahl breakpoint energy values at a single time if bi-directional

strahl is present. An alternative method is presented by Štverák et al. [2009] who discard

sunward strahl in their calculations of the strahl Ebp/kBTc ratio at each radial distance. By

characterising both sunward and anti-sunward strahl, our method significantly improves

the characterisation of all electron beams in the solar wind.

Our work on the core velocity distribution functions elucidates the relative correlation

between core temperature, Tc, and both halo and strahl breakpoint energies. Using core

temperature as a reference point enables us to predict to what extent strahl and halo char-
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acteristics scale to characteristics of the core. The core temperature has a strong correlation

with both suprathermal breakpoint energies, with the halo breakpoint energy exhibiting a

closer correlation than the strahl’s. Both halo and strahl breakpoint energies statistically

have a stronger correlation with core temperature than with solar wind speed. The gra-

dients between breakpoint energy and core temperature are calculated as 5.74±0.09 and

5.5±0.1 for halo and strahl respectively.

The linear relationship that we observe between breakpoint energy and core tempera-

ture is in line with previous measurements [e.g. McComas et al., 1992; Štverák et al., 2009],

for both the halo and strahl. According to Scudder and Olbert [1979], a linear trend in the

halo relation also follows under the assumption that binary Coulomb collisions dominate

electron dynamics in the solar wind. However, in order to align with available experimental

data, Scudder and Olbert [1979] set a scaling factor of Ebp/kBTc = 7, which differs from our

scaling factor of Ebp/kBTc = 5.5±0.1. With a scaling factor of Ebp/kBTc = 7, Scudder and

Olbert [1979] predict that a transformation of thermal electrons into the suprathermal pop-

ulation occurs as the solar wind flows out from the Sun. Findings by Štverák et al. [2009],

on the other hand, show that the (nh +ns)/nc ratio remains roughly constant with heliocen-

tric distance in the slow wind, suggesting a lack of interchange between the thermal and

suprathermal populations. However Štverák et al. [2009] observes some variability in the

(nh +ns)/nc ratio in the fast wind, which they attribute to either statistical effects due to a

lack of samples or a possible ‘interplay’ between thermal and suprathermal electrons. Scud-

der and Olbert [1979] also predict that the halo Ebp/kBTc ratio remains constant with helio-

centric distance, whereas Štverák et al. [2009] find that the halo Ebp/kBTc ratio decreases

with heliocentric distance. These findings by Štverák et al. [2009], along with the discrep-
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ancy between our calculated ratio of Ebp/kBTc = 5.5±0.1 and the prediction of Ebp/kBTc =

7, suggest that the model of Scudder and Olbert [1979] requires a minor update to either

the theory or to the input parameters. The discrepancy, however, may also be indicative of

other processes, such as wave-particle scattering [e.g. Gary et al., 1994], that possibly mod-

ifies the ratio between breakpoint energy and core temperature while preserving its linear

relationship.

In our statistical study, we find that both strahl and halo breakpoint energies decrease

with solar wind speed. At all solar wind velocities, as well as core temperatures, the halo

breakpoint energy is larger than the strahl’s at equivalent velocities and temperatures.

The halo breakpoint energy exhibits a higher correlation with the solar wind speed than

strahl. The anti-correlation between the two parameters corresponds with the finding that

(nh+ns)/nc increases with solar wind speed [Štverák et al., 2009], where nh, ns and nc repre-

sent the halo, strahl, and core number densities. Assuming all plasma parameters are kept

constant, except for the core density and temperature, the relative density of suprathermal

electrons will increase if the breakpoint energy decreases. This observed relationship be-

tween solar wind speed and electron ratios is most likely a result of the lower collisionality

of fast solar wind [Scudder and Olbert, 1979; Lie-Svendsen et al., 1997; Salem et al., 2003;

Gurgiolo and Goldstein, 2017], which results in more distinctive non-thermal features of

the electron velocity distribution function. Further work is required to analyse whether

different breakpoint energy relations exist that depend on the source of solar wind. Initial

findings in this study suggest the existence of two distinct relationships in the halo break-

point energy vs. wind speed distribution, with a step function at 500 km/s. This finding

links to a sharp distinction between fast and slow solar winds [Feldman et al., 2005]. There-
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fore the origin of the solar wind, i.e., coronal holes for fast wind or streamer belt regions

for slow wind, potentially plays a role in the definition of thermal and non-thermal electron

populations. A step function is less obvious in the strahl breakpoint energy vs. solar wind

speed distribution.
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6 Using dimensionality reduction and clustering techniques to clas-

sify space plasma regimes

This work has been published in Bakrania et al. ‘Using dimensionality reduction and clus-

tering techniques to classify space plasma regimes’. Front. Astron. Space Sci. (2020).

Particle populations in collisionless space plasma environments, such as the Earth’s

magnetotail, are traditionally characterised by the moments of their distribution functions.

2D distribution functions in pitch angle and energy, however, provide the full picture of the

state of each plasma environment, especially when non-thermal particle populations are

present that are less easily characterised by a Maxwellian fit. These non-thermal plasma

populations are ubiquitous across the solar system. They make crucial contributions to the

bulk properties of a plasma, such as the temperature and collisionality [Hapgood et al.,

2011]. Magnetic reconnection, for example, heats non-thermal seed populations in both the

diffusion and outflow regions, making them an important component of the overall ener-

gisation process [Øieroset et al., 2002]. High-quality measurements and analysis of colli-

sionless plasmas are consequently of key importance when attempting to understand these

non-thermal populations.

Distribution functions, unlike moments, are not easily classified by a small number of

parameters. We therefore propose to apply dimensionality reduction and clustering methods

to particle distributions in pitch angle and energy space as a new method to distinguish

between the different plasma regions. 2D distributions functions in pitch angle and energy

are derived from full 3D distributions in velocity space based on the magnetic field direction

and the assumption of gyrotropy of electrons.
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6.1 Machine Learning Models

In this section, we give a detailed account of the internal operations of each of the unsu-

pervised machine learning algorithms used in our method. In unsupervised learning, algo-

rithms discover the internal representations of the input data without requiring training

on example output data. Dimensionality reduction is a specific type of unsupervised learn-

ing in which data in high-dimensional space is transformed to a meaningful representation

in lower dimensional space. This transformation allows complex datasets, such as 2D pitch

angle and energy distributions, to be characterised by analysis techniques (e.g. clustering al-

gorithms) with much more computational efficiency. Our machine learning method utilises

four separate algorithms: autoencoders [Hinton and Salakhutdinov, 2006], principal compo-

nent analysis [PCA, Abdi and Williams, 2010], mean shift [Fukunaga and Hostetler, 1975],

and agglomerative clustering [Lukasová, 1979]. We obtain the autoencoder algorithm from

the Keras library [Chollet et al., 2015], and the PCA, mean shift, and agglomerative cluster-

ing algorithms from the scikit-learn library [Pedregosa et al., 2011].

We use the autoencoder to compress the data by a factor of 10 from a high-dimensional

representation. We subsequently apply the PCA algorithm to further compress the data to

a three-dimensional representation. The PCA algorithm has the advantage of being a lot

cheaper computationally than an autoencoder, however the algorithm only captures vari-

ations that emerge from linear relationships in the data, while autoencoders also account

for non-linear relationships in the dimensionality reduction process [Bishop, 1998]. For this

reason, we only utilise the PCA algorithm after the data have been compressed via an au-

toencoder. After compressing the data, we use the mean shift algorithm to inform us of

how many populations are present in the data using this three-dimensional representation.
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While the mean shift algorithm provides us with this estimate of the requisite number of

clusters, the algorithm is ineffective in constraining the shapes of the clusters to determine

which population each data-point belongs to. Therefore, we use an agglomerative clustering

algorithm to assign each data-point to one of the populations.

6.1.1 Autoencoders

Autoencoders are a particular class of unsupervised neural networks. They are trained

to learn compressed representations of data by using a bottleneck layer which maps the

input data to a lower dimensional space, and then subsequently reconstructing the original

input. By minimising the ‘reconstruction error’, or ‘loss’, the autoencoder is able to retain

the most important information in a representative compression and reconstruction of the

data. As a result, autoencoders have applications in dimensionality reduction [e.g. Hinton

and Salakhutdinov, 2006], anomaly detection [e.g. Kube et al., 2019] and noise filtering [e.g.

Chandra and Sharma, 2014].

During training, an autoencoder runs two functions simultaneously. The first, called an

‘encoder’, maps the input data, xxx, to the coded representation in latent space, zzz. The second

function, called a ‘decoder’, maps the compressed data, zzz, to a reconstruction of the input

data, x̂̂x̂x. The encoder, E(xxx), and decoder, D(zzz), are defined by the following deterministic

posteriors:

E(xxx)= p(zzz|xxx;θE),

D(zzz)= p(x̂̂x̂x|zzz;θD),

(6.1)

where θE and θD are the trainable parameters of the encoder and decoder respectively.

Figure 6.1 illustrates the standard architecture of an autoencoder.
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Figure 6.1: The architecture of an autoencoder, adapted from Sakurada and Yairi [2014]. Each

circle represents a neuron corresponding to a data-point. Layer L1 represents the input data, layer

L2 the encoded data in latent space, and layer L3 the reconstructed data. The circles labelled ‘+1’

are known as ‘bias units’, which are parameters that are adjusted during training to improve the

performance of the neural network.

In feed-forward neural networks, such as autoencoders, each neuron computes the fol-

lowing sum:

y=∑
i

wixi +b, (6.2)

where xi represents the input from the previous layer, wi denotes the weights associated

with the connections between neurons in different layers, and b denotes the bias term as-

sociated with each layer (represented by the circles labelled ‘+1’ in figure 6.1). The number

of neurons in each layer defines the dimension of the data representation in that layer. The

output of each neuron, f (y), is called the activation function. ReLU [Rectified Linear Unit,

Hahnioser et al., 2000] is the most commonly used activation function due to its low compu-
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tational cost [Agarap, 2018]. The function is described as:

f (y)=max(0, y). (6.3)

The sigmoid activation function [Chandra and Singh, 2004] is also commonly used. It is

defined by:

f (y)= 1
1+ e−y , (6.4)

where y is defined in Equation (6.2). Analysis of the use of various activation functions in

the remit of plasma physics are given by Kube et al. [2019].

In order to improve the representation of the compressed data in layer L2 and minimise

the discrepancy between the input and reconstruction layer, the autoencoder adjusts the

weights and biases by minimising a loss function through an optimiser (described below).

The binary cross-entropy loss function [de Boer et al., 2005] is typically used when the input

data, xxx, are normalised to values between 0 and 1. The loss value, c, increases as the

reconstruction data, x̂̂x̂x, diverge from the input data. The loss function is defined as:

c =−[xxx ln(x̂̂x̂x)+ (1−xxx) ln(1− x̂̂x̂x)]. (6.5)

An overview of various loss functions is provided by Janocha and Czarnecki [2017]. Opti-

misers are used to ensure the autoencoder converges quickly to a minimum loss value by

finding the optimum value of the weight, wi, of each neuron. This is achieved by running

multiple iterations with different weight values, known as gradient descent [Ruder, 2016].

The weights are adjusted in each iteration, t, according to:

wt = wt−1 −α ∂c
∂ω

, (6.6)

where ∂c/∂ω is the gradient, which is a partial derivative of the loss value with respect

to the weight. The learning rate, α, updates all the weights simultaneously with respect
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to the gradient descent. This learning rate is randomly initialised between 0 and 1 by

the algorithm. A low learning rate results in a slower convergence to the global minimum

loss value. However a too high value for the learning rate impedes the gradient descent

(Equation 6.6) from converging on the optimum weights. The Adadelta optimiser [Zeiler,

2012] is commonly used due to its rapid convergence to the minimum loss value and its

ability to adapt the learning rate depending on each parameter. The optimiser updates each

parameter, θ, according to:

4θt =−RMS[4θ]t−1

RMS[g]t
gt, (6.7)

where 4θt is the parameter update at the t-th iteration, gt is the gradient of the parameters

at the t-th iteration, and RMS is the root mean square. The parameter θ represents a

combination of both the weights w and biases b. An overview of the various optimisers is

provided by Khandelwal [2019].

6.1.2 Principal Component Analysis

Principal component analysis is a statistical procedure that, as well as autoencoders, also

reduces the dimensionality of input data. The algorithm achieves this by transforming the

input data from a large number of correlated variables to a smaller number of uncorrelated

variables, known as principal components. These principal components account for most of

the variation in the original input data, making them a useful tool in feature extraction.

Before the procedure, the original data, X0X0X0, are represented by a (n×Q) matrix, where

n is the number of observations and Q is the number of variables (also called dimensions).

In the first step, the algorithm scales and centres the data:

XXX = (X0X0X0 − X̄0X̄0X̄0)DDD−1, (6.8)
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where X̄0X̄0X̄0 contains the means of each of the variables, and DDD is a diagonal matrix that

contains the scaling coefficient of each variable. Typically, D ii =σi where σi is the standard

deviation of variable with index i [Peerenboom et al., 2015]. The algorithm then uses XXX to

calculate the covariance matrix:

CXCXCX = 1
n−1

XXX TXXX , (6.9)

which measures the correlation between the different variables. The principal components

are calculated as the eigenvectors, AAA, of the covariance matrix:

CXCXCX = AAALLLAAAT , (6.10)

where LLL is a diagonal matrix containing the eigenvalues associated with AAA. These principal

components are ordered in decreasing order, whereby the first principal components account

for most of the variation in the input data. These input data are finally projected into the

principal component space according to:

ZZZ = XXX AAA, (6.11)

where ZZZ represents the output data containing the principal component scores. The di-

mensionality of these output data are determined by the number of principal components

used.

6.1.3 Mean Shift

The mean shift algorithm is a non-parametric clustering technique that is used for locating

the maxima of a density function in a sample space. The algorithm aims to discover the

number of clusters within a dataset, meaning no prior knowledge of the number of clusters

is necessary.
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For a dataset containing n data-points xxxi, the algorithm starts finding each maximum

of the dataset’s density function by randomly choosing a data-point to be the mean of the

distribution, xxx. The algorithm then uses a kernel function, K , to determine the weights of

the nearby data-points for re-estimating the mean. The variable h is the width of the kernel

window. Typically, a Gaussian kernel, k, is used:

K
(xxx−xxxi

h

)
= ckk

(∥∥∥xxx−xxxi

h

∥∥∥2
)
= exp

(
−ck

∥∥∥xxx−xxxi

h

∥∥∥2
)
, (6.12)

where ck is the normalising constant. With the kernel function, the multivariate kernel

density estimator is obtained:

f (xxx)= 1
nhd

n∑
i=1

K
(xxx−xxxi

h

)
, (6.13)

where d is the dimensionality of the dataset. The gradient of the density estimator is then:

OOO f (xxx)= 2ck

nhd+2

n∑
i=1

(xxxi −xxx)g
(∥∥∥xxx−xxxi

h

∥∥∥2
)

= 2ck

nhd+2

[
n∑

i=1
g

(∥∥∥xxx−xxxi

h

∥∥∥2
)]

mmmh(xxx),

(6.14)

where g(xxx) = −k′(xxx). The first term is proportional to the density estimate at xxx, and the

second term, mmmh(xxx), is:

mmmh(xxx)=
∑n

i=1 xxxi g
(∥∥xxx−xxxi

h

∥∥2
)

∑n
i=1 g

(∥∥xxx−xxxi
h

∥∥2
) −xxx, (6.15)

which is the mean shift vector and points towards the direction of the maximum increase

in density. The mean shift algorithm therefore iterates between calculating the mean shift

vector, mmmh(xxxt), and translating the kernel window:

xxxt+1 = xxxt +mmmh(xxxt), (6.16)

where t is the iteration step. Once the window has converged to a point in feature space

where the density function gradient is zero, the algorithm carries out the same procedure
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with a new window until all data-points have been assigned to a maximum in the density

function.

6.1.4 Agglomerative Clustering

Agglomerative clustering is a type of hierarchical clustering that uses a ‘bottom-up’ ap-

proach, whereby each data-point is first assigned a different cluster. Then pairs of simi-

lar clusters are merged until the specified number of clusters has been reached. During

each recursive step, the agglomerative clustering algorithm combines clusters typically us-

ing Ward’s criterion [Ward, 1963], which finds pairs of clusters that lead to the smallest

increase in the total intra-cluster variance after merging. The increase is measured by a

squared Euclidean distance metric:

di j = d(Ci,C j)=
∥∥Ci −C j

∥∥2 , (6.17)

where Ci represents a cluster with index i. The algorithm implements Ward’s criterion

using the Lance-Williams formula [Lance and Williams, 1967]:

d(Ci ∪C j,Ck)= ni +nk

ni +n j +nk
d(Ci,Ck)

+ n j +nk

ni +n j +nk
d(C j,Ck)− nk

ni +n j +nk
d(Ci,C j),

(6.18)

where Ci, C j, and Ck are disjoint clusters with sizes ni, n j, and nk, and d(Ci ∪C j,Ck) is

the squared Euclidean distance between the new cluster Ci ∪C j and Ck. The clustering

algorithm uses Equation (6.18) to find the optimal pair of clusters to merge.

6.2 Method and Application

In this section, we detail the steps required to classify different regions within a space

plasma environment using machine learning techniques. As an example, we classify Cluster-
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PEACE [Plasma Electron And Current Experiment, Johnstone et al., 1997; Fazakerley et al.,

2010] data [Laakso et al., 2010] from the Earth’s magnetotail to showcase our method, as

this allows us to compare to the Cluster-ECLAT [Boakes et al., 2014] database for evalua-

tion. The same method, however, can be applied to any plasma regime where energy and

pitch angle measurements are available. Our steps are as follows:

1. Data preparation: We obtain the Cluster-PEACE data from different magnetotail

regions based on the Cluster-ECLAT database, and prepare the data for testing.

2. Reducing dimensionality: We build our autoencoder and use the encoder part to

reduce the dimensionality of each pitch angle and energy distribution by a factor of 10.

We use a PCA algorithm to further compress each distribution to a set of coordinates

in 3D space.

3. Clustering: We apply the mean-shift algorithm to determine how many clusters exist

within the compressed magnetotail electron data, and use an agglomerative clustering

algorithm to separate the compressed dataset into this number of clusters. This allows

us to determine how many plasma regimes exist within the overall dataset.

4. Evaluation: We estimate the probabilities of the agglomerative clustering labels and

compare our clustering results to the original ECLAT labels in order to evaluate our

method.

6.2.1 Data Preparation

We prepare PEACE instrument data from the Cluster mission’s C4 spacecraft [Escoubet

et al., 2001] to test and present our method. The Cluster mission comprises of four space-

craft, each spinning at a rate of 0.25 s-1. The PEACE data have a 4 s time resolution and are
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constructed from two instantaneous pitch angle distribution measurements per spin. Each

of our distributions is a two-dimensional differential energy flux product containing twelve

15◦ wide pitch angle bins and 26 energy bins, spaced logarithmically between 93 eV and 24

keV. The dimensionality of each distribution is 312 (12×26). We normalise the differential

energy flux linearly between 0 and 1 based on the maximum flux value in the dataset. An

example of an individual differential energy flux distribution used in our analysis is shown

in figure 6.2. We correct for spacecraft potential with measurements from the Cluster-EFW

instrument [Gustafsson et al., 2001] and corrections (19% increase) according to the results

of Cully et al. [2007].

Figure 6.2: An example two-dimensional electron differential energy flux distribution, as a func-

tion of pitch angle (degrees) and energy (eV), measured by the Cluster-PEACE instrument in the

magnetotail across a 4 second window (09:51:23-09:51:27 on 13/10/2003).

The ECLAT dataset consists of a detailed list of plasma regions encountered by each of

the four Cluster spacecraft in the nightside magnetosphere. The dataset is available from

July to October during the years 2001-2009. Using plasma and magnetic field moments

from the PEACE, CIS [Rème et al., 2001] and FGM [Balogh et al., 1997] instruments, the
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dataset provides a list of (inner and outer) plasma sheet, boundary layer, and lobe times.

These regions are identified based on the plasma β, the magnetic field measurements, and

the current density vectors. A comprehensive account of the ECLAT identification routine

for each plasma region is provided by Boakes et al. [2014]. To ensure that we test our method

on a large number of data from each of the magnetotail regions (>50 000 samples), we obtain

PEACE data from times when the C4 spacecraft has spent at least 1 hour in each region,

according to ECLAT.

6.2.2 Reducing Dimensionality

After preparing the dataset to include a series of >50 000 time intervals, each with its

associated 2D pitch angle and energy distributions (e.g. figure 6.2), the first step towards

reducing the dataset’s dimensionality is to build a suitable autoencoder (described in Section

6.1.1). We construct our autoencoder using the Keras library. This step requires defining

the number of neurons in each layer. The input and reconstruction layer should have the

same number, which is equal to the dimensionality of the original dataset (312 for each

time interval in this example). The middle encoded layer typically contains a compressed

representation of the data that is by a factor of 10 smaller than the input data [Hinton and

Salakhutdinov, 2006]. We therefore specify our encoded layer to contain 32 neurons. The

next step involves specifying the activation function for the neurons in the first and middle

layers. We use the standard ReLU activation function [Hahnioser et al., 2000] in the encoder

part of our autoencoder and the sigmoid activation function [Chandra and Singh, 2004] in

the decoder part, as this function is used to normalise the output between 0 and 1.

The next step defines which loss function and optimiser the autoencoder uses in order

to representatively compress and reconstruct the input data. As we use normalised output
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data, we choose the standard binary cross-entropy loss function [de Boer et al., 2005]. In

terms of the optimiser, we utilise the Adadelta optimiser [Zeiler, 2012] due to its speed and

versatility. All of the activation functions, loss functions, and optimisers are available in the

Keras library.

In the next step, we set the hyperparameters used for training the autoencoder. These

hyperparameters include: the number of epochs, the batch size, and the validation split

ratio. The number of epochs represents the number of training iterations undergone by

the autoencoder, with the weights and biases updated at each iteration. The batch size

defines the number of samples that are propagated through the network at each iteration.

It is equal to 2n, where n is a positive integer. The batch size (256 in our case) is ideally

set as close to the dimensionality of the input data as possible. The validation split ratio

determines the percentage of the input data that should remain ‘unseen’ by the autoencoder

in order to verify that the algorithm is not overfitting the remaining training data. We set

the validation split ratio to 1/12, which is commonly used for large datasets [Guyon, 1997].

At each iteration, a training loss value and a validation loss value are produced, which

are determined by the binary cross-entropy loss function. Both of these values converge to

their minima after a certain number of iterations, at which point the autoencoder cannot be

optimised to the input data any further. Loss values <0.01 are typically considered ideal [Le

et al., 2018].

After retrieving the compressed representation of the input data from the encoding layer

(with a dimensionality of 32 in our case), we apply a PCA algorithm (see Section 6.1.2) to

the compressed data to reduce the dimensionality to 3. We obtain the PCA algorithm from

the scikit-learn library. We set the output dimensionality of the PCA algorithm to 3 as
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the following clustering algorithms used in this method are computationally expensive and

their performance scales poorly with increasing dimensionality [Comaniciu and Meer, 2002;

Lukasová, 1979]. Setting the dimensionality to 3 has the added benefit that the clusters can

be visualised.

6.2.3 Clustering

Once the dimensionality reduction stage has taken place and each pitch angle and energy

distribution is represented by 3 PCA values, we use clustering algorithms to separate the

dataset into the different particle populations. To first determine how many populations

exist within the dataset (8 in our case), we apply a mean shift clustering algorithm (see Sec-

tion 6.1.3) to the data to find the number of maxima, nc, in the distribution of data-points.

We obtain the mean shift algorithm from the scikit-learn library. We set the bandwidth,

represented by h in Equation (6.15), to 1, which we find optimises the time taken for the

algorithm to converge on the maxima in the density distribution.

After determining the number of clusters in the dataset, we use an agglomerative clus-

tering algorithm (see Section 6.1.4) to assign each data-point to one of the nc clusters. We

obtain the agglomerative clustering algorithm from the scikit-learn library and instantiate

the algorithm by specifying the number of clusters, nc, before applying it to the compressed

dataset. Assigning several clusters to a large dataset with 3 dimensions is a computa-

tionally expensive task, however we find the agglomerative clustering algorithm converges

relatively quickly in comparison to other clustering algorithms. A further advantage of the

hierarchical clustering procedure, used in the agglomerative clustering algorithm, is that

data-points belonging to a single non-spherical structure in the 3-dimensional parameter

space are not incorrectly separated into different clusters, unlike the more widely used K-
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means algorithm [Arthur, 2007].

Figure 6.3 contains a flow diagram detailing our method.

Figure 6.3: Flow diagram illustrating the steps we take to reduce the dimensionality of the dataset

and subsequently apply clustering algorithms to characterise the different populations. Our choices

for the functions and input parameters necessary to train the autoencoder are shown in brackets in

steps 3 and 4.
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6.3 Evaluation

Figure 6.4 shows the training and validation loss values associated with each iteration dur-

ing the training of our autoencoder. We use this graph to check if the autoencoder is overfit-

ting to the training data, which is evident if the training loss starts to decrease more rapidly

than the validation loss. In this case, our autoencoder is not overfitting at any iteration dur-

ing training. Figure 6.4 shows that both the loss values start to rapidly level off in less than

100 epochs. Both loss values, however, continue to decrease, with the training loss value

converging to 0.0743 after 444 iterations, and the validation loss value converging to 0.0140

after 485 iterations. We therefore set the number of epochs to 500. As both loss values are

lower than 0.01, we conclude the autoencoder is accurately reconstructing both sets of input

data, assuring us that the encoded data with a lower dimensionality is representative of the

original 2D distribution functions. The lower validation loss than training loss in figure 6.4

indicates the presence of anomalous data in the training set that is not represented in the

validation set. We discuss this anomalous data later in this section.

Figure 6.5 shows the result of applying the agglomerative clustering algorithm to the

compressed magnetotail electron data after the implementation of the autoencoder and PCA

algorithms. The 3-dimensional representation shows that the clustering algorithm is able

to assign data-points of varying PCA values to the same cluster if they belong to the same

complex non-spherical structure, e.g. clusters 0, 4, and 6. The clustering algorithm is able

to form clear boundaries between clusters with adjacent PCA values, e.g. between clusters

0, 1, and 7, with no mixing of cluster labels on either side of the boundaries. The cluster-

ing algorithm locates the boundaries by finding areas with a low density of data-points in

comparison to the centres of the clusters.
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Figure 6.4: The evolution of the training loss value and validation loss value as the autoencoder

iterates through 500 steps (epochs).

Figure 6.6 shows the results of averaging the 2D differential energy flux distributions

in pitch angle and energy space for each of the 8 clusters. Using moments data collected

by the PEACE, FGM, and CIS instruments, we compare the proton plasma βs, electron

densities and temperatures, and magnetic field strengths to the average 2D distribution of

each cluster. This process allows us to verify the consistency of the clustering method and

provide general region classifications in order to make comparisons with the ECLAT labels.

Our classifications (shown in the captions below each sub-figure) are produced with the aid

of previous analyses of electron pitch angle distributions [e.g. Walsh et al., 2011; Artemyev

et al., 2014] and the plasma and magnetic field parameters [e.g. Lui, 1987; Artemyev et al.,

2014] in the magnetotail.

The individual sub-figures in figure 6.6 display large differences in the average electron

2D pitch angle and energy distributions. Each average distribution differs by either: the en-

ergy of the peak flux, the peak value of the flux, or the amount of pitch angle anisotropy, i.e.

the difference in flux between the parallel and perpendicular magnetic field direction. The
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Figure 6.5: Three-dimensional representation of the magnetotail data after undergoing dimension-

ality reduction via an autoencoder and PCA algorithm. The colours represent the clustering results

from the agglomerative clustering algorithm.

lack of identical average distributions amongst the clusters shows the mean shift algorithm

has not overestimated the number of clusters. By observing the individual 2D distributions

within each cluster, we see a distinct lack of intra-cluster variance, showing the mean shift

algorithm does not underestimate the number of clusters.

A limitation of using the agglomerative clustering algorithm is that outliers or anoma-

lous data are not differentiated from the main clusters. Clustering a sizeable number of

outliers with the main populations can lead to ambiguity in the defining characteristics of
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(a) Cluster 0 - PS a (b) Cluster 1 - PS b

(c) Cluster 2 - PS c (d) Cluster 3 - PSBL

(e) Cluster 4 - PS d (f) Cluster 5 - Lobes

(g) Cluster 6 - PS e (h) Cluster 7 - PS f

Figure 6.6: Average electron differential energy flux distributions as a function of pitch angle and

energy for each of the eight clusters. Each cluster is assigned a magnetotail region based on our

interpretation of their plasma and magnetic field parameters.
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each population, reducing the robustness of our method. In our case, figure 6.5 shows only

9 data points, within cluster 6, that are disconnected from the main structure of cluster 6

due to their distinct PCA values. We observe similar phenomenon to a lesser extent with

cluster 2. To counteract this issue, we perform an outlier detection procedure using the

reconstructed output of the autoencoder. By calculating the mean square error (MSE) be-

tween each input data-point and its reconstructed output, we isolate outliers in the dataset

from the agglomerative clustering analysis based on their large MSE values, in compari-

son to 99.95% of the data-points. During training, the autoencoder learns the latent space

representation that defines the key characteristics of the bulk populations present in the

dataset. The most relevant features of an anomalous particle distribution are not present in

this subspace, resulting in a large mean square error between the reconstructed data, which

lacks these important features, and the original data. This technique effectively identifies

the 9 obvious outliers observable by eye in figure 6.5, along with 6 from cluster 2 and 5 from

cluster 1.

We use Gaussian mixture models [GMMs, McLachlan and Peel, 2000] to establish the

probabilities of each of the data-points belonging to the clusters they have been assigned to

by the agglomerative clustering algorithm, providing useful information on the uncertainty

associated with our region classification method. We obtain the GMM from the scikit-learn

library. For each data-point, xi, a GMM fits a normal distribution, N , to each cluster and

computes the sum of probabilities as:

p(xi)=
k∑

j=1
φ jN (xi;µ j,τ j)= 1, (6.19)

where µ j and τ j are the mean and covariance of the normal distribution belonging to cluster

j, and φ j is the mixing coefficient which represents the weight of Gaussian j and is calcu-
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lated by the Expectation-Maximisation (EM) algorithm [Dempster et al., 1977]. A complete

description of GMMs and the EM algorithm is provided by Dupuis et al. [2020].

Figure 6.7 shows a histogram of the probabilities, calculated by the GMM, associated

with each data-point belonging to the cluster it is assigned to by the agglomerative cluster-

ing algorithm. More than 92% of the data-points have a probability of over 0.9, and <1% of

the data-points have a probability of <0.5. This indicates a high certainty in our clustering

method and validates the high precision in our region classifications. Further investigations

of the data-points with associated probabilities of <0.5 show that these data-points exist on

the boundary between clusters 0 and 1, i.e. two plasma sheet populations that differ by tem-

perature. This illustrates a small limitation in the agglomerative clustering method when

distinguishing between relatively similar plasma regimes.

Figure 6.7: Histogram showing the probabilities, generated by GMMs, that the data-points belong

to the cluster assigned to them by the agglomerative clustering algorithm.

Table 3 shows the median and upper and lower quartiles of the electron density, electron

temperature, magnetic field, and ion plasma β for each of the 8 clusters designated by our
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agglomerative clustering algorithm. None of the 8 clusters have comparable median and

quartile values across all four of the chosen parameters. Certain pairs of clusters exhibit

similarities in the median and quartile values for one or two of the four parameters, e.g.

clusters 0 and 4 exhibit similar electron densities and magnetic field strengths, and clusters

3 and 6 exhibit similar magnetic field strengths. However there are large differences in

the values of the remaining parameters for these pairs of clusters. These results show that

clear differences in the 2D pitch angle and energy distributions (see figure 6.6) can translate

into distinctions between certain but not all plasma parameter measurements, providing a

strong indicator that full 2D distributions can effectively be used to distinguish between

similar particle populations. Regarding the ECLAT classifications, which are based on mag-

netic field and plasma β measurements, certain pairs of clusters exhibit a similar range of

values in both of these measurements, e.g. clusters 0 and 4 and clusters 1 and 7. As the

majority of data-points for all of these clusters are considered the same plasma sheet pop-

ulation by ECLAT (see table 4), we conclude that using a limited number of parameters to

provide classifications overlooks distinctions between different populations and incorrectly

groups them into the same category.

Table 4 shows our comparison between the eight agglomerative clustering (AC) labels

and the region names given in the ECLAT database, for the magnetotail data used in our

example.

In table 4, there is some disagreement with three of our clusters, namely AC labels 3,

5, and 7, which correspond to the plasma sheet boundary layer, the lobes, and a plasma

sheet population respectively. However for each of these clusters, the majority of labels are

in agreement with the ECLAT regions (72.4%, 86.8%, and 86.9% for AC clusters 3, 5, and

114



Table 3: Comparisons of the median, Q2, and upper, Q3, and lower, Q1, quartile values of the

electron density ne, electron temperature Te, magnetic field |B|, and plasma β associated with each

of the 8 clusters. The AC labels 0, 1, 2, 4, 6, and 7 belong to the plasma sheet, according to ECLAT, 3

belongs to the plasma sheet boundary layer, and 5 belongs to the lobes.

AC labels
ne (cm-3) Te (eV) |B| (nT) plasma β

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

0 0.21 0.22 0.23 2057.26 2515.28 2913.33 32.45 35.09 37.86 3.54 4.33 5.92

1 0.12 0.14 0.19 1487.67 1838.97 2258.43 10.56 13.65 19.42 15.31 24.54 39.75

2 1.08 1.18 1.30 106.44 114.19 123.33 20.87 22.67 24.25 0.80 0.99 1.17

3 0.21 0.25 0.28 79.21 83.63 93.00 16.64 35.07 39.76 0.28 0.39 0.60

4 0.22 0.28 0.82 783.33 879.77 997.85 24.58 39.10 41.93 1.23 1.52 6.29

5 0.01 0.02 0.03 116.63 170.57 252.85 32.97 41.34 49.00 0.00 0.06 0.27

6 1.29 1.49 1.65 164.41 214.64 269.16 41.65 44.74 46.56 0.30 0.43 0.60

7 0.08 0.10 0.13 669.64 882.30 1217.77 5.42 17.16 25.95 3.69 9.05 128.11

7 respectively). For AC labels 0, 1, 2, 4, and 6, which represent various other populations

within the plasma sheet, there is 100% agreement with the ECLAT label 0, which denotes

the plasma sheet. By using this method to characterise full electron pitch angle and energy

distributions, instead of using the derived moments, we are successfully able to distinguish

between multiple populations within what has historically been considered as one region,

due to the lack of variation in the plasma moments (see table 3) as well as the similarity

in spatial location. Using 2D pitch angle and energy distributions also improves the time

resolution of the plasma region classifications, due to a higher cadence in the spacecraft

flux and counts data (e.g. 4 s resolution for the PEACE instrument) in comparison to the

moments data (e.g. 8 s resolution for CIS moments and 16 s resolution for PEACE moments).
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Table 4: Contingency table comparing the agglomerative clustering (AC) labels of the magnetotail

electron data to the original ECLAT labels (0 = PS, 1 = PSBL, and 2 = lobes). The AC labels are the

same as in table 3.

AC labels
ECLAT labels

0 1 2

0 6549 0 0

1 3074 0 0

2 5092 0 0

3 1590 4188 0

4 2097 0 0

5 156 2228 15641

6 1029 0 0

7 7020 1057 0

6.4 Conclusion

We present a novel machine learning method that characterises full particle distributions

in order to classify different space plasma regimes. Our method uses autoencoders and

subsequently principal component analysis to reduce the dimensionality of the 2D particle

distributions to three dimensions. We then apply the mean shift algorithm to discover the

number of populations in the dataset, followed by the agglomerative clustering algorithm to

assign each data-point to a population.

To illustrate the effectiveness of our method, we apply it to magnetotail electron data and

compare our results to previous classifications, i.e. the ECLAT database, that utilises mo-
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ments. With our method, we find multiple distinct electron populations within the plasma

sheet, which previous studies have identified as one region (table 4). These findings show

that key features in particle distributions are not fully characterised by the plasma mo-

ments (e.g. table 3), resulting in important distinctions between populations being over-

looked. For example, we find two separate cold dense anisotropic populations in the plasma

sheet (clusters 2 and 6), which are less abundant than the hotter and more isotropic plasma

sheet populations. By using our clustering method to specify an exact list of times when

populations like these are observed, we create a more comprehensive picture of their spa-

tial distribution. Inherent time-dependencies may also contribute to our finding of multiple

plasma sheet populations. Even in this case, our method is effective in characterising the

evolution of particle populations, made possible by the high time resolution of our region

classifications.

In a follow up study, we will use this information to link the occurrence of these popula-

tions to other high-resolution spacecraft measurements in different plasma regions, in order

to understand the physical processes driving changes in the less abundant particle popula-

tions. As an example analysis, our high resolution classifications of the observed anisotropic

plasma sheet populations could be combined with previous theories on the sources of these

populations [e.g. Walsh et al., 2013; Artemyev et al., 2014], to understand the relative con-

tributions of particle outflows from distinct magnetospheric regions, such as the magne-

tosheath or ionosphere.

Comparisons between this original method and the previous classifications from ECLAT

also show specific periods of disagreement (e.g. we classify a small number of ECLAT peri-

ods of plasma sheet as the plasma sheet boundary layer). This discrepancy shows that using
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the full 2D pitch angle and energy distributions, without requiring prior assumptions about

magnetospheric plasma regions, may redefine the classifications of electron populations,

along with our understanding of their plasma properties. Possible future modifications to

our model could include applying an outlier detection method to eliminate the distributions

before training the autoencoder to reduce the dimensionality of anomalous data - thereby

altering its network structure for the rest of the dataset. For instances where larger dif-

ferences between populations are prevalent in both the distributions and magnetic field

parameters, then adding a further input to the autoencoder that contains magnetic field

data would allow the autoencoder to better characterise the multiple populations.

Our method, which uses open-source and easily accessible machine learning techniques,

can be used to better characterise any space plasma regime with sufficient in-situ obser-

vations. By not being constrained to a small number of parameters, this method allows

for a more complete understanding of the interactions between various thermal and non-

thermal populations. With increasingly large datasets being collected by multi-spacecraft

missions, such as Cluster [Escoubet et al., 2001] (>109 full distributions in 20 years) and

MMS [Magnetospheric Multiscale Mission, Sharma and Curtis, 2005], similar methods

would provide a useful tool to reduce the dimensionality of distributions, thereby optimising

data retrieval on Earth. Furthermore, combining this method with large-scale survey data,

such as NASA/GSFC’s OMNI database, would allow users to isolate a specific population or

plasma region for analysis of its properties.
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7 Direct evidence of magnetic reconnection onset via the tearing

instability

This work is presented in Bakrania et al. ‘Direct evidence of magnetic reconnection onset

via the tearing instability’. (Under Review in Frontiers in Astronomy and Space Sciences,

endorsed for publication by one Reviewer).

Magnetic reconnection is a fundamental mechanism responsible for explosive energy

release in space and laboratory plasmas. The onset of reconnection is via a plasma insta-

bility that leads to the formation of closed magnetic islands, called the tearing instability.

Due to its elusive nature, there is an absence of in-situ spacecraft observations of the tear-

ing instability. Using neural network outlier detection methods, in conjunction with Clus-

ter spacecraft data, we present the first direct observations of the tearing instability and

the subsequent evolution of plasma electrons within the Earth’s magnetosphere: a natural

plasma laboratory.

7.1 Introduction

Magnetic reconnection is a universal plasma process that changes the topology of the mag-

netic field and converts magnetic energy into particle kinetic and thermal energy [Birn

and Priest, 2007]. This process is responsible for explosive phenomena in laboratory, as-

trophysical, and space plasmas, such as planetary magnetospheres. The Earth’s nightside

magnetosphere, i.e. the magnetotail, provides an accessible medium to directly measure

reconnection with in-situ spacecraft. The recent introduction of the MMS mission in partic-

ular has enabled reconnection physics at the electron scale to be studied [Burch and Phan,
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2016]. For example, distinct regions of electron energisation and mixing have been observed

within the diffusion region of a reconnection site [Chen et al., 2016]. Although there are

in-situ observations of ongoing magnetic reconnection [Eastwood et al., 2010; Øieroset et al.,

2001; Borg et al., 2012; Hwang et al., 2013; Nagai et al., 2001], the question remains what

triggers this process that sporadically changes the magnetic topology, as this process has

not been directly measured [Galeev and Zelenii, 1976; Pellat et al., 1991].

The tearing instability is the central candidate mechanism that creates conditions re-

quired for the onset of reconnection [Coppi et al., 1966; Chen et al., 1997]. In the magne-

totail, this instability may occur for sufficiently thin current sheet and small values of the

magnetic field normal to the current sheet, and causes quasi-periodic spatial perturbations

of the magnetic field and the associated particle distribution functions [Sitnov et al., 2019].

The instability takes place within an externally driven current sheet (current sheet thinning

caused by an external factor), which usually occurs during the substorm expansion phase

[Bessho and Bhattacharjee, 2014]. The result of magnetic reconnection is a rearrangement

of the magnetic field topology threading the thin current sheet [Galeev and Zelenii, 1976],

leading to the formation of plasmoids and X-lines [Zanna et al., 2016], as well as heating

and acceleration of the plasma along the field lines. Using kinetic models, two-dimensional

Particle-In-Cell (PIC) simulations [Bessho and Bhattacharjee, 2014; Pellat et al., 1991] have

shown that in Earth’s magnetotail, the electron tearing instability is the most relevant in-

stability for the initiation of reconnection. However, observational signatures of such a

process are still lacking.

On the other hand, simulations have found electron distributions that exhibit a strong

counter-streaming field-aligned distribution as the tearing mode develops [Furth, 1963;
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Markidis et al., 2012; Zeiler et al., 2001; Buechner and Zelenyi, 1987], followed by an isotropi-

sation across all pitch angles over 5 minutes [Buechner and Zelenyi, 1987]. The counter-

streaming electron distributions during the early evolution of tearing correspond with a

rapid growth in energy and temperature [Buechner and Zelenyi, 1987; Walker et al., 2018].

Following this stage, the perpendicular temperature increases [Liu et al., 2014], driving the

onset of magnetic reconnection. Here we hypothesise that these field-aligned distributions

and their subsequent evolution can be identified in the magnetotail current sheet in order to

locate the tearing instability. We apply a neural network outlier detection method to Clus-

ter spacecraft electron data to identify the location where the tearing mode develops. We

verify that the plasma and magnetic field parameters at those locations are consistent with

tearing instability by applying the stability criterion derived by Schindler et al. [1973]; Liu

et al. [2014], valid for a collisionless plasma with a finite normal component. It is found that

tearing mode events identified via our neural network outlier method are consistent with

the tearing instability. Furthermore, data analyses of the subsequent evolution of particles

and magnetic fields confirm the typical features found in reconnection simulations. The

present work provides strong observational support to theories predicting tearing mode as

the onset mechanism for reconnection in the magnetotail.

7.2 Method

7.2.1 Data

We use electron data [Laakso et al., 2010] from the Cluster [Escoubet et al., 2001] mission’s

PEACE [Johnstone et al., 1997; Fazakerley et al., 2010] (Plasma Electron And Current Ex-

periment) instrument on all of the four spacecraft to detect signatures of the tearing mode in
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the electron distribution functions. Cluster’s four spacecraft fly in a tetrahedral formation

with a spin period of 4 seconds. We use pitch angle distributions from the PITCH-SPIN data

product, which have a 4 s time resolution and are constructed from two instantaneous pitch

angle measurements per spin. Each distribution consists of a two-dimensional differential

energy flux product with twelve 15◦ pitch angle bins and 26 logarithmically spaced energy

bins ranging from 93 eV to 24 keV. Therefore, each distribution has a dimensionality of 312

(12×26). We correct our PEACE measurements with the method presented by Cully et al.

[2007] to account for the effect of the spacecraft potential measured by the Cluster-EFW

instrument [Gustafsson et al., 2001]. We normalise the value of differential energy flux be-

tween 0 and 1, based on the value of maximum flux in the dataset, in order to concentrate on

the shape of the distribution rather than the flux value, given that the Earth’s magnetotail

plasma sheet can vary by 5 orders of magnitude with different conditions [Artemyev et al.,

2014].

We use the ECLAT database [Boakes et al., 2014] to isolate relevant times for detecting

the tearing instability. The ECLAT database uses data from PEACE, FGM [Balogh et al.,

1997], and CIS [Rème et al., 2001] to construct a list of plasma regions encountered by the

four Cluster spacecraft in the magnetotail from July to October, during the years 2001-2009.

The ECLAT database associates the measurement intervals with three magnetotail regions:

the plasma sheet, the plasma sheet boundary layer, and the lobes [Hughes, 1995], which are

defined by their plasma and magnetic field characteristics. The database also lists times

of current sheet crossings at the centre of the plasma sheet. We obtain PEACE data from

times when the spacecraft has spent at least 30 minutes in the plasma sheet, as this region

is most likely to undergo magnetotail reconnection [Angelopoulos et al., 2008].
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7.2.2 Autoencoder

We employ an autoencoder [Hinton and Salakhutdinov, 2006] to detect anomalous distribu-

tions from the entire set of plasma sheet data [Bakrania et al., 2020]. Autoencoders are a

class of unsupervised neural networks which are trained to learn compressed representa-

tions of data. These compressed representations are achieved via a ‘bottleneck’ layer which

maps (encodes) the input data to a lower-dimensional latent space, and subsequently recon-

structs (decodes) the original input from this latent space. By minimising the reconstruction

error, or ‘loss’ between the input and output data, the autoencoder retains the most impor-

tant characteristics in the compressed version of the data. For an anomalous distribution,

its most important features are not present in the latent space, which results in a large

reconstruction error between the input and output data. Autoencoders are therefore an

effective method for isolating outliers [Kube et al., 2019]. Figure 6.1 illustrates the typi-

cal architecture of an autoencoder [Sakurada and Yairi, 2014]. A detailed description of

autoencoders is provided by Hinton and Salakhutdinov [Hinton and Salakhutdinov, 2006].

We construct our autoencoder using the Keras library [Chollet et al., 2015]. Building an

autoencoder requires the definition of the number of neurons in each layer. The number

of neurons in the input and output layers equals the dimensionality of each distribution:

312 in our case. We set the number of neurons in the bottleneck layer at 32, representing

a compression factor of 9.75. Each layer uses an activation function to pass on signals

to the next layer [Kube et al., 2019]. For the encoder part, we use the ReLU activation

function [Hahnioser et al., 2000], and for the decoder part, we use the sigmoid activation

function [Chandra and Singh, 2004], which normalises the output between 0 and 1. We

then define the loss function and optimiser, which the autoencoder uses to representatively
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compress and reconstruct the input data. We choose the binary cross-entropy loss function

[de Boer et al., 2005] and the Adadelta [Zeiler, 2012] optimiser. All activation functions,

loss functions, and optimisers are available in the Keras library. We set the number of

epochs to 500 and the batch size, i.e. the number of distributions propagated through the

network at each epoch, to 256. The validation split ratio defines the ratio of distributions

that remain ‘unseen’ to the autoencoder in order to avoid overfitting. We set this to 1/12. At

each epoch a training loss and validation loss value are produced, which both converge to

<0.1 after training, indicating that the autoencoder accurately reconstructs the majority of

the dataset.

To isolate the field-aligned tearing distributions from the dataset, we calculate the mean

square error (MSE) between each original and reconstructed distribution. We set the MSE

threshold to 99.5%, which locates all distributions which have a MSE in the upper 0.5% of

the dataset. We subsequently visually inspect each anomalous distribution to find signa-

tures of the tearing instability based on the flux anisotropy, as outlined in section 7.1. We

then obtain a list of outlier measurements to be studied further.

7.3 Coordinate system

For the intervals which contain a current sheet crossing, we transform the coordinate sys-

tem from the GSM coordinate system to the local (LMN) coordinate system. This coordinate

system provides a more accurate representation of the magnetic field vectors as it takes

into account the current sheet tilt. We obtain the local coordinate system from a minimum

variance analysis [Sonnerup and Scheible, 1998] of the magnetic field data during a short

interval before each instance of tearing. In this coordinate system, L is in the direction of

the anti-parallel magnetic field, M is in the direction of the current, and N is in the normal
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direction to the current sheet. Our algorithm identifies an event on 07/08/2004. For this

event, we obtain this coordinate system from the minimum variance analysis of the mag-

netic field data from 23:26:30 UT to 23:27:30 UT. The vector representations of the local

magnetic coordinates are: L = (0.9859, -0.1110, -0.1253), M = (0.1491, 0.9221, 0.3570) and

N = (0.0759, -0.3707, 0.9257) in GSM coordinates. We also account for a small out-of-plane

(M-direction) guide field of +1.06 nT during this event.

7.4 Tearing mode stability criteria

We determine whether an outlier event is tearing unstable based on the instability criteria

set out by Schindler et al. [1973], Liu et al. [2014], and in other studies (see below). Simula-

tions [Bessho and Bhattacharjee, 2014] show that the electron tearing instability only occurs

when the magnitude of BN is small (<10 nT), in agreement with other studies [Galeev and

Zelenii, 1976; Pellat et al., 1991]. Schindler et al. [1973] predicts that BN must be positive

for the instability to arise. Both theory [Coppi et al., 1966; Zanna et al., 2016; Schindler

et al., 1973] and simulations [Bessho and Bhattacharjee, 2014], show that current sheet

thinning is especially important for the tearing mode instability.

By applying the energy principle to two-dimensional Vlasov equilibria, Schindler et al.

[1973] derived a stability criterion that predicts instability when kρe ≥ 1, where k is the

wavenumber of the perturbation and ρe the electron gyroradius associated with the normal

magnetic field component. This criterion can be equivalently written as [Liu et al., 2014]:

b
LN

di
< f
ζ

√
meTe

miT
, (7.1)

where b = Bn/B0, B0 is the lobe magnetic field, LN is the half-current sheet height, di is the

ion inertial length, f = kLLN , ζ is a parameter which we set to 1, T = Te+Ti, and Te and Ti
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are the electron and ion temperatures.

After identifying possible candidate measurement points for tearing, we check if each

candidate complies with all three of the following instability criteria:

1. The criterion in equation 7.1, which we determine by comparing the corresponding

magnetic field measurements (GSM coordinate system) from the FGM instrument,

and electron temperature measurements from the PEACE instrument.

2. The presence of a rapid growth in temperature, in conjunction with an isotropisa-

tion, shortly after the anomalous distribution is observed, in line with the results from

PIC simulations described in section 7.1 [Buechner and Zelenyi, 1987; Liu et al., 2014;

Walker et al., 2018].

7.5 Hall quadrupole field

To link our events to magnetic reconnection, we look for evidence of a Hall quadrupole

magnetic field and flow reversals. The Hall quadrupole field shows that BM exhibits a

correlation with vL above the current sheet (Northern Hemisphere), and an anti-correlation

with vL below the current sheet (Southern Hemisphere). During the intervals in which

we observe flow reversals, a small out-of-plane (M-direction) guide magnetic field [Denton

et al., 2016] may be present which needs to be accounted for. Averaging BM prior to the

flow reversal informs us of the magnitude of this guide field. We therefore correct for this

by shifting all BM values in this interval until the average BM vanishes.
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7.6 Results

7.6.1 Tearing mode stability check

In order to find signatures of the tearing instability, we apply our neural network outlier de-

tection method [Bakrania et al., 2020] to Cluster-PEACE data from the magnetotail plasma

sheet (see section 7.2.2). From the collection of outlier events, we identify 15 separate time

intervals, between 2001 and 2009, (see Table 5) that all fulfill the criteria for field-aligned

distributions described in section 7.1, as well as the magnetic field criteria (see section 7.4).

We refer to the field-aligned distributions as tearing distributions. Figure 7.1 shows the re-

sults of our stability analysis for all events. We create the plot by inputting measurements

during each event into equation (7.1) [Liu et al., 2014], with the only unknown being f .

The figure 7.1 confirms that all events adhere to the instability criterion in equation (7.1).

Using multi-spacecraft measurements, we calculate for this figure the magnetic field, cur-

rent sheet height (see below), ion internal length, mass ratio and temperature ratio for each

event. As the parameter f relates to the wavenumber, we provide different estimates for f

based on the analysis by Liu et al. [2014]. For a realistic mass ratio (me/mi) of 1/1836, Liu

et al. [2014] predict that f = 0.91. Figure 7.1 shows that all events are below the f = 0.91

line and therefore adhere to the instability criterion.

7.6.2 Case study

In this section we discuss the event which occurred on 07/08/2004. We discuss the rest of

the events in section 7.6.3. In this case study event, Cluster passed from North to South

through the magnetotail, crossing the current sheet at 23:27:13 UT before encountering

an electron population that shows signatures of the tearing mode instability, followed by
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Figure 7.1: Verification of the tearing instability. The black dots represent each of the 15 events

identified by our neural network method. The axes correspond to the terms on the left and right hand

side of equation (7.1), while the background colour represents the parameter f in equation (7.1). The

straight lines represent the boundaries for different values of f , below which the plasma is tearing

unstable [Liu et al., 2014].
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a crossing through a diffusion region. The first outlier distribution, or tearing distribution,

was detected by the C4 spacecraft at 23:29:05 UT, when the spacecraft was below the current

sheet in the position (-16.4, -9.0, 0.1) RE (where 1 RE = 6,371 km) in GSM (Geocentric

Solar Magnetospheric) coordinates. The remaining three Cluster spacecraft, which were

separated by 0.2 RE from the C4 spacecraft, also observed similar tearing distributions.

Figure 7.2 shows how the electron temperature, magnetic field, and plasma flow evolve

during this particular event. The times of tearing distributions are indicated by red dots.

The lines A, B, and C represent the times of the distributions which we show in Figure 7.3,

line A represents a time before the detection of the tearing distribution at which C4 crossed

the tail current sheet, line B represents the time of a tearing distribution detection, and line

C represents a time after this detection.

According to the data presented in Figure 7.2, this event fulfills the tearing criteria listed

in section 7.4 [Schindler et al., 1973; Liu et al., 2014]:

1. The plasma fulfills the criterion in equation 7.1 (see Figure 7.1).

2. The temperature increases rapidly after the detection of the tearing distribution, in

conjunction with an increase in electron anisotropy (T⊥/T∥) from ∼0.6 to ∼1. These

anisotropy changes agree with PIC simulations [Buechner and Zelenyi, 1987; Liu et al.,

2014; Walker et al., 2018] that predict that the tearing distribution evolves into an

isotropic distribution during the growth of the tearing instability. Figure 7.3 illus-

trates this temperature and anisotropy evolution. A low energy isotropic distribution

prior to tearing evolves into a strong field-aligned distribution, followed by an isotropic

distribution with a higher temperature, as expected from theory.

After noting the close correspondence between the observations and simulations of the
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Table 5: Times of the 15 tearing events, along with the spacecraft which detected the tearing distri-

butions and the subsequent magnetic reconnection signatures.

Event # Spacecraft Time of Tearing Reconnection Seen

1 C1, C2, C3, C4 17:11:12 UT, 18/08/2002 Yes

2 C1, C2, C3, C4 13:26:57 UT, 18/09/2002 Yes

3 C1, C2, C3, C4 20:48:37 UT, 02/10/2002 Yes

4 C1, C2, C3, C4 21:21:21 UT, 02/10/2002 Yes

5 C1, C2, C3, C4 16:43:17 UT, 17/08/2003 Yes

6 C1, C2, C3, C4 18:57:27 UT, 24/08/2003 Yes

7 C1, C2, C3, C4 06:19:12 UT, 04/10/2003 Yes

8 C1, C2, C3, C4 23:29:05 UT, 07/08/2004 Yes

9 C2, C3, C4 02:16:57 UT, 10/08/2005 Yes

10 C2, C3, C4 02:58:28 UT, 10/08/2005 No

11 C3, C4 21:52:25 UT, 07/08/2008 No

12 C1 01:19:21 UT, 15/09/2008 Yes

13 C1, C3, C4 01:17:59 UT, 02/09/2009 No

14 C1, C3, C4 21:19:37 UT, 13/09/2009 No

15 C1, C3, C4 21:31:52 UT, 13/09/2009 No
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Figure 7.2: Spacecraft measurements indicating the presence of the tearing instability.

The plasma and magnetic field parameters obtained by the C4 spacecraft across times 22:50:00 -

23:50:00 on 07/08/2004. From top to bottom: electron temperature, electron T⊥/T∥, magnetic field

in the L, M, N-directions respectively (in local magnetic coordinates), plasma flow velocity in the

L-direction, and the BN /BN=0 ratio. A flow reversal is highlighted in the BN and vL panels. The

red points indicate times of the tearing distributions identified by our outlier detection method. The

lines labelled A, B, and C represent times of pre-tearing, tearing, and post-tearing distributions

respectively. We show the distributions measured at these times in Figure 7.3.
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tearing mode, we can gain further insight into the time evolution of the tearing mode.

Firstly, the field-aligned population lasts for just over two minutes, during which the total

temperature remains approximately stable at ∼400 eV. After the last tearing distribution

is detected, a rapid growth in temperature reaches a peak of 1979 eV, 336 s after the first

tearing distribution. As the tearing mechanism is characterised by the evolution of a field-

aligned distribution into an isotropic distribution at higher temperatures, we attribute this

time of 336 s to the growth time of the instability for this event. After this temperature

increase, the spacecraft observes direct evidence of magnetic reconnection at 23:36:52 UT,

i.e. 467 s (or 7 min 47 s) after the first tearing distribution, as shown by the simultane-

ous reversal in BN and vL (from positive to negative values) in Figure 7.2 after the tearing

distributions.

To calculate the current sheet thickness, a (where a = 2LN), we use the following equa-

tion [Thompson et al., 2005]:

a = 2
B2

0 −B2
L

µ0B0JM
, (7.2)

where B0 is the lobe magnetic field strength, obtained from Bakrania et al. [2020], BL is

the local magnetic field in the L direction (depending on the coordinate system), and JM

is the local current density in the M direction. We obtain the current density using multi-

spacecraft measurements from [Perri et al., 2017; Dunlop et al., 1988]:

µ0Ji jk · (∆rik ×∆r jk)=∆Bik ·∆r jk −∆B jk ·∆rik, (7.3)

where i, j,k represent the C1, C3, and C4 spacecraft respectively. Ji jk and Bi jk are the local

current density and magnetic field. For our 07/08/2004 event, we estimate a current sheet

width of 0.72 RE, corresponding to ∼2 ion gyroradii.
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(a) Pre-tearing (b) Tearing

(c) Post-tearing

Figure 7.3: The evolution of a tearing distribution into an isotropic distribution with a

higher bulk energy. The differential energy flux distributions as a function of pitch angle and

energy, which correspond to the times A (23:27:13 UT), B (23:34:23 UT), and C (23:34:41 UT) in

Figure 7.2 as measured by the C4 PEACE instrument.

133



The local Alfvén speed is calculated as [Landi et al., 2015]:

vA = BL/
√

4πρ0, (7.4)

where BL is the L-component of the background magnetic field and ρ0 is the plasma den-

sity. The magnetic field and ion density used for calculating the Alfvén speed (Eq. 7.4) are

obtained by averaging the measurements across all Cluster spacecraft when they were out-

side the current sheet, within ∼30 min of the tearing event. With an average background

density and BL field of 0.14 cm−3 and 13.1 nT respectively, we calculate an Alfvén speed of

7.6×105 m/s for our case study event.

Nagai et al. [2001] find that the reconnection process generates a current system known

as the Hall quadrupole magnetic field [Karimabadi et al., 2004]. Figure 7.4 shows the

out-of-plane magnetic field (BM) values in the along-current sheet (BL-vL) plane after our

07/08/2004 tearing event, which confirms the presence of this characteristic Hall quadrupo-

lar field (see section 7.5). The scatter of the points in Figure 7.4 shows that negative BM

values dominate in the upper left and bottom right quadrants, while positive BM values

dominate in the other two quadrants. This pattern corresponds to the quadrupole signature

of correlation (anti-correlation) with vL, i.e. the speed of plasma flow in the L-direction, in

the Northern (Southern) Hemisphere (this quadrupole pattern is also illustrated in Figure

7.5). The bar chart in Figure 7.4b confirms this quadrupole observation, as there is a clear

dominance of positive or negative BM depending on the respective quadrant, in keeping

with the expected signatures from magnetic reconnection.

Figure 7.5 provides a schematic detailing the evolution of a laminar current sheet into a

reconnection site via the tearing instability consistent with the observations of our 07/08/2004

event. We also illustrate the magnetic islands [Ishizawa and Nakajima, 2010] in 3D along
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(a)

(b)

Figure 7.4: (a) Statistical determination of a reconnection site. Quadrupole plot showing BM

as a function of BL and vL, across a 10 minute window centered on the BN reversal in Figure 7.2

(at 23:36:52 UT) after the tearing instability distributions. Black dots correspond to BM > 0 and red

dots correspond to BM < 0. The size of the dots is proportional to the magnitude of BM. (b) The

percentage of instances with BM > 0 and BM < 0 in each quadrant.
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with their expected location in near-Earth space. Each panel corresponds to the timestamps

A, B, or C in Figure 7.2. The green crosses show the C4 spacecraft position at each time,

and the green arrow shows the overall trajectory, as informed by the magnetic field mea-

surements. The background colours illustrate the electron temperature in the reconnection

site and the surrounding magnetic islands [Lu et al., 2019], with the scale informed by tem-

perature measurements in our event. As the diagram shows, the magnetic island formation

coincides with an increase in electron temperature, as observed by the spacecraft after time

B in Figure 7.2. The spacecraft then observes the X-point, as signified by the flow reversal

in Figure 7.2, which aligns with a region of lower temperature. Subsequently, the spacecraft

observes the second region of high temperature.

From our case study, we construct a picture of the tearing instability, incorporating the

temperature profiles and electron distribution functions of a tearing unstable plasma. We

also relate the instability to the onset of reconnection. Our statistical survey will allow us

to further quantify the tearing instability and its relationship with reconnection, building

in analysis from all 15 of our tearing events.

7.6.3 Statistical survey of tearing events

Our method finds 14 other events that we use to explore the properties of the tearing mode.

We carry out a superposed epoch analysis of the SML (SuperMAG Auroral Lower) [Gjerloev,

2012] indices around each of the 15 tearing events, to determine how they relate to substorm

phase [Forsyth et al., 2015]. At the end of the expansion phase, the SML index is at its

maximum magnitude, and subsequently decreases in the recovery phase. Fig. 7.6 shows

that the tearing events occur during the expansion and recovery phase, with the average

time located at the end of the expansion phase. The box plot shows that the majority of the
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Figure 7.5: Illustration of the evolution of magnetic field lines from a flat current sheet

into a reconnection site via the tearing instability, with a 3D representation of the mag-

netic islands in the Earth’s vicinity. The background colours represent the local electron tem-

perature [Lu et al., 2019], with the scales based on the temperatures observed by the C4 spacecraft

during the 07/08/2004 tearing event. The white lines represent the magnetic field lines. The three

panels correspond to the times A, B, and C in Fig. 7.2, and the green crosses show the location the

C4 spacecraft at each time. The green arrow shows the overall trajectory of the spacecraft across this

reconnection region in our case study event. The Hall quadrupole field (blue dots and crosses) and

corresponding ion flows (dotted grey arrows) are also displayed.
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tearing times are located closer to the maximum SML magnitude. As the growth phase is

by far the most prevalent phase of a substorm [Forsyth et al., 2015] (see Fig. 7.7), a chi-

squared test [Tallarida and Murray, 1987] between the tearing events and plasma sheet

distributions in Fig. 7.7 shows that the occurrence of all tearing events during the expansion

and recovery phase is statistically significant to a p-value of <<0.05, as the two distributions

cannot be derived from the same source. This analysis confirms that our tearing events

occur under an externally driven current sheet (which is the case during the expansion

phase), as expected from simulations [Bessho and Bhattacharjee, 2014].

Fig. 7.8 shows a histogram of the amount of time Cluster spent in each MLT bin during

the times ECLAT recorded the spacecraft to be in the plasma sheet. We see that the plasma

sheet is clearly more prevalent on the dawn side, especially between MLT 3 and 4. There is

also a smaller peak in the dusk side between MLTs 21 and 22. Fig. 7.9 shows a histogram

of MLTs for each of the 15 tearing events. Similar to Fig. 7.8, there are peaks in both

the dusk side and the dawn side, with the dawn side peak appearing much larger. These

peaks are located at different MLT bins however: 22-23 and 1-2 respectively. We perform a

Kolmogorov-Smirnov (KS) 2-sample test [Jr., 1951] on the distributions in Fig. 7.8 and 7.9,

to determine whether they are derived from the same or different distributions. We obtain

a KS statistic of 0.46 with a p-value of 0.0019, which confirm that the longitudinal location

of tearing events is independent of the location of the magnetotail plasma sheet.

Fig. 7.10 shows a histogram of MLTs of the 15 substorm events (obtained from the

SOPHIE dataset) that took place at similar times to our 15 tearing events. Unlike the pre-

vious two histograms, this substorm MLT distribution only has one peak, which is located

in the dawn side in the MLT bin 1-2 (the same as the dawn side peak in the tearing MLT
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Figure 7.6: Superposed epoch analysis of SML relating tearing to substorms. The spread

of tearing times for all 15 events compared to the superposed epoch analysis of SML measurements

across each of the 15 events. The blue curve is calculated by averaging the SML peak around each

of the 15 tearing events, while the location of the red dots represents the relative timings of each

particular tearing event in comparison to the its associated peak in SML. The box plot underneath

summarises the distribution of tearing event timings in comparison to the peak in SML. Red dots

overlay the box plot to distribution of tearing times independent of the SML value. The vertical lines

of the red box show the lower quartile, mean, and upper quartile of the relative times, while the two

longest lines show the earliest and latest tearing event.

139



Figure 7.7: Bar chart comparing the substorm phase occurrence during each tearing event to the

overall substorm phase occurrence when the spacecraft was in the plasma sheet.

Figure 7.8: Histogram of the time Cluster spent in each MLT bin when the spacecraft was in the

plasma sheet.
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Figure 7.9: Histogram of MLTs of all 15 tearing events.

histogram). As previously, we apply the KS 2-sample test to compare this substorm MLT

distribution to both the plasma sheet MLT distribution and the tearing MLT distribution.

Firstly, we obtain a KS statistic of 0.46 with a p-value of 0.0018 when comparing the plasma

sheet to the substorm MLT distributions. This again shows that the longitudinal locations

of substorm events are independent of the location of the plasma sheet, highlighting the fact

that other factors are important in determining where substorms are found to take place.

Finally, we obtain a KS statistic of 0.13 with an associated p-value of 0.9998 when compar-

ing the tearing to substorm MLT distributions. As the p-value is larger than 0.95, these

distributions can therefore be derived from the same source (to a confidence level of 5%).

This confirms that the location of substorm events, that occurred during our tearing events,

is linked to the location of our tearing events.

Our calculations of the current sheet thickness [Thompson et al., 2005] using equation

(7.2) also reveal evidence of current sheet thinning, further showing that the current sheet is
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Figure 7.10: Histogram of MLTs of the recorded substorms linked to the 15 tearing events.

being driven by the substorm expansion phase. Saito [2015] finds that the average current

sheet thickness is roughly 6 RE. Across each of the tearing events, we calculate an average

of 0.6 RE, with a minimum value of 0.39 RE and a maximum value of 0.77 RE.

In our statistical survey, we determine the growth times of the instability across all

events, based on the time between the first detection of a field-aligned distribution and the

subsequent peak in temperature. In the 15 events, we find that the average growth time

is 601 s, with a lower quartile of 348 s and an upper quartile of 766 s. The minimum and

maximum growth times are 224 s and 1200 s respectively. The average peak temperature

across all events is 2691 eV, with a lower quartile of 1766 eV and an upper quartile of 2871

eV. The average change in temperature is 1712 eV. Our analysis shows large variations in

the temperature of a tearing unstable plasma. As expected [Galeev and Zelenii, 1976], we

do not observe a correlation between the temperature and growth time of the instability.

Using multi-spacecraft techniques, we also constrain the size of the region undergoing

142



tearing. In the 07/08/2004 event (Fig. 7.2), we find that all four Cluster spacecraft observe

the characteristic field-aligned distributions indicating tearing. The maximum distance be-

tween the spacecraft is 0.20 RE at this time, and for all events, when the spacecraft are less

than 1 RE from an observed tearing distribution, a similar field-aligned tearing distribution

is observed; spacecraft that are more than 1 RE from an observed tearing distribution do not

observe tearing distributions. However, all four spacecraft in all tearing events observe the

characteristic temperature rise after the tearing distribution, suggesting the region of sub-

sequent particle energisation from tearing-initiated reconnection extends to at least 1.36 RE

in the surrounding plasma (the largest distance between two spacecraft across all tearing

events).

In order to better understand the plasma dynamics experienced by Cluster around a tear-

ing event when either multiple spacecraft or a single spacecraft observes tearing, we produce

the quiver plots shown in Fig. 7.11 and 7.12. These plots show the plasma flow velocities

experienced by two Cluster spacecraft during their flight around the time a tearing event is

observed. Fig. 7.11 is our 07/08/2004 case study event where both C3 and C4 (the two space-

craft shown in the plot) observe tearing. Fig. 7.12 shows the 15/09/2008 event where the

flight paths of the C1 spacecraft, which observes tearing, and the C3 spacecraft, which does

not observe tearing, are displayed. It is clear that the plasma flow velocities experienced by

both C3 and C4 in Fig. 7.11 are very similar across the whole hour of flight shown, with the

direction of plasma flow being mirrored for both spacecraft. On the other hand, the plasma

flows experienced by the two spacecraft in Fig. 7.12 are noticeably different (before and

after tearing), with the direction of flow varying between the spacecraft across the whole

flight path shown. These differences show that the spacecraft are far enough away from
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(a) X-Y plane (b) X-Z plane

Figure 7.11: A quiver plot showing the plasma flow velocities experienced by the C3 (black arrows)

and C4 (red arrows) spacecraft around the 07/08/2004 tearing event from times 22:50 UT to 23:50

UT in the (a) X-Y plane and the (b) X-Z plane (GSM coordinates). Both spacecraft observe tearing.

The green dots show the time of the event during the spacecraft trajectory, the orange arrows shows

the direction of spacecraft travel, and the length of the red and black arrows correlates to the plasma

flow velocity.

each other (>1 RE) so that plasma environments are different, and therefore the signatures

of tearing are not observed by both spacecraft, as opposed to Fig. 7.11.

Of the 15 tearing events, we observe signatures of reconnection after 10 of them. For 8

of these 10 events, the spacecraft crosses the current sheet and we observe the character-

istic Hall quadrupole magnetic field [Borg et al., 2012]. Eastwood et al. [2010] also confirm

the presence of a reconnection site for 7 of these events. For the remaining two reconnec-

tion events, the spacecraft do not traverse the current sheet; rather they remain below the

current sheet and therefore cannot detect all quadrants of the Hall quadrupole field. In
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(a) X-Y plane (b) X-Z plane

Figure 7.12: A quiver plot showing the plasma flow velocities experienced by the C1 (red arrows)

and C3 (black arrows) spacecraft around the 15/09/2008 tearing event from times 00:07:54 UT to

02:21:20 UT in the (a) X-Y plane and the (b) X-Z plane (GSM coordinates). Only the C1 spacecraft

observes tearing. All other features are the same as in Fig. 7.11.

145



these two events, the spacecraft and current sheet are moving closer together, so we observe

an anti-correlation between BM and vL, i.e. two of the four expected quadrants, highlight-

ing the presence of a diffusion region associated with reconnection [Eastwood et al., 2010].

For the other 5 tearing events where the spacecraft do not observe a diffusion region, the

spacecraft remain in the Southern Hemisphere and the BL field increases in magnitude,

indicating that the spacecraft and current sheet are moving apart.

Fig. 7.13 shows a summary of the quadrupolar signatures expected from magnetic re-

connection for all 10 of the tearing-reconnection events. It can be seen from Fig. 7.13 that

there is a clear average quadrupole signature which the corresponding bar chart confirms.

There are similar time delays between the first tearing distribution and the observation of a

reconnection X-point across all 8 events where a reconnection X-point is observed. This de-

lay varies between 5 min 32 s and 8 min 20 s, a variation possibly caused by unpredictable

current sheet flapping [Sergeev et al., 2003; Forsyth et al., 2009]. These findings provide

an insight into the characteristic timescale of reconnection site formation as a result of the

tearing instability.

7.7 Discussion

The tearing mode instability is widely considered to be the dominant mechanism responsible

for the onset of magnetic reconnection in high-β collisionless plasmas [Galeev and Zelenii,

1976; Schindler et al., 1973]. Although this instability has not previously been observed with

in-situ data in space plasmas, past studies have found evidence of the tearing instability

and subsequent field line reconnection in laboratory plasmas [Gekelman and Pfister, 1988;

Gekelman et al., 1991]. There have also been qualitative observations of tearing-induced

reconnection in solar flares [Gekelman et al., 1991], as well as countless simulation studies
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(a)

(b)

Figure 7.13: (a) Quadrupole plot showing the out-of-plane magnetic field BM in the BL-vL plane,

for 10 of our observations where a reconnection signature is observed after the tearing instability

distributions. The features of this plot are consistent with those seen in Fig. 7.4. (b) The percentage

of instances with BM > 0 and BM < 0 in each quadrant.
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of how the tearing instability leads to reconnection [e.g. Liu et al., 2014].

In this study, we present the first in-situ observations of distributions that are consis-

tent with the tearing mode instability in the high-β environment of Earth’s magnetotail

plasma sheet. These tearing mode events are discovered by applying a neural network out-

lier detection method [Bakrania et al., 2020] to Cluster-PEACE data of the electron velocity

distribution functions taken within the plasma sheet. These neural network methods have

applications in any plasma environment where in-situ measurements are available. We

identify 15 separate cases of the tearing mode, and confirm that they fulfill the theoretical

tearing instability criteria [Schindler et al., 1973] and match simulations of the evolution of

electron anisotropy and temperature.

As magnetotail current sheet plasmas share similarities with other environments in

which the tearing instability is important, our observations provide a fundamental under-

standing of the mechanism responsible for the initiation of magnetic reconnection. We de-

tect signatures of magnetic reconnection after 10 of the 15 events, producing observational

evidence for the link between tearing and reconnection, a link which has only been shown

in simulations to date [Bhattacharjee et al., 2009]. The lack of reconnection signatures after

the other 5 tearing events can be explained by the relative position and trajectory of the

spacecraft with respect to the reconnecting current sheet (based on the increase in magni-

tude of BL).

Our observations enable us to make the first experimental measurements of the growth

times of the tearing mode, improving our understanding of the timescales of the instability.

The growth time of each tearing event varies between 4 and 20 minutes, and with no ap-

parent correlation between the tearing growth time and the value of the subsequent peak
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temperature, which is a measure of the energisation of the plasma following reconnection.

In order to understand how the growth of the tearing instability relates to the properties of

the surrounding plasma, we calculate the characteristic Alfvén timescales (τA) of the system

for each event. We find that the ratio between the tearing and Alfvén timescales is ∼100

across all 15 events. These results show that the relative growth rate of the tearing mode

is in fact one order of magnitude lower than predicted in simulations [Walker et al., 2018;

Wang et al., 1988].

The main source of uncertainty in our estimation of the growth time lies in the assump-

tion that the spacecraft observe the true start and end of tearing, which cannot be un-

ambiguously determined by in-situ observations alone. If the spacecraft are not observing

the true start of the tearing instability, then our calculated time delays may actually char-

acterise the physical distance between the tearing distribution and isotropic distribution,

rather than the growth time. As our calculations of the growth rate are underestimates

of the true growth rate, the discrepancy between our calculations and previous studies, re-

garding the growth time to Alfvén timescales, may not be as large.

With the aid of the SOPHIE dataset, we can link the occurrence of the tearing events, as

well as their longitudinal locations, to the substorm phase and location of substorm events

that occurred at similar times to our 15 tearing events. We find that the tearing instability is

significantly more likely to occur during the expansion and recovery phase, than the growth

phase, and on average the tearing instability occurs on the boundary between the expansion

and recovery phase. As the expansion phase is initiated due to an externally driven current

sheet, we confirm that this externally driven current sheet is also a prerequisite for tearing

in the magnetotail, as expected from simulations. In terms of our investigation into the
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MLT of tearing and substorm events, we find that the location of both tearing and substorm

onset are consistent, based on their MLT distributions. This consistency shows that both

phenomena occur under the same process, and that the tearing events we found are part of

a larger substorm process in the Earth’s magnetosphere.

The time delay between the first tearing distribution and the formation of the reconnec-

tion site varies within a narrow range of 5 min 32 s to 8 min 20 s across our events. This

narrow range of times points towards a consistent delay between tearing and reconnection

site formation, similar to that found in simulations [Chen et al., 1997]. Our multi-spacecraft

analysis shows that the size of the tearing region itself is less than ∼1 RE. More high ca-

dence multi-spacecraft measurements, such as measurements from the MMS [Sharma and

Curtis, 2005] (Magnetospheric Multiscale Mission) mission, will be important in furthering

this investigation into the size and location of tearing regions.
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8 Conclusions and Future Work

In our first study, we apply unsupervised K-means clustering algorithms to Cluster-PEACE

data to separate solar wind electron pitch angle and energy distributions into the core, halo,

and strahl populations. This enables us to perform an accurate statistical analysis of strahl

and halo breakpoint energies. In our statistical study, we compare the relationship between

core temperature, Tc and both halo and strahl breakpoint energies. We present a strong

correlation between suprathermal breakpoint energies and Tc, and conclude this is due to

core temperature being a determining factor for breakpoint energy. As a result of higher core

temperatures, the Maxwellian part of the total electron velocity distribution function, which

represents the core, extends across a wider range of velocity space [Pilipp et al., 1987a]. The

core distribution therefore overlaps with the halo and strahl at higher energies and thus

increases the suprathermal breakpoint energy.

We find that halo breakpoint energy remains larger than the strahl’s across all temper-

atures. This difference between halo and strahl breakpoint energies suggests that there

are certain energies, below the halo breakpoint energy, at which a strahl and core popula-

tion are both present. At these energies, strahl dominates at parallel pitch angles and core

dominates at perpendicular pitch angles. Wave-particle scattering processes [Gary et al.,

1994; Vasko et al., 2019; Verscharen et al., 2019] scatter these low energy strahl electrons

to higher perpendicular velocities and smaller parallel velocities. At sufficiently high core

temperatures, these strahl electrons would be absorbed by the core population [Pilipp et al.,

1990], instead of the higher energy halo population. The absorption of strahl electrons by

the core increases the number of Coulomb collisions [Landi et al., 2012], which then leads
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to an increase in core temperature [Marsch and Goldstein, 1983; Boldyrev et al., 2020].

This scenario is consistent with previous studies [Pilipp et al., 1987b] which show a trans-

fer of electron kinetic energy from the parallel to perpendicular direction, increasing core

temperature in the perpendicular direction. The increase of core temperature, due to the

absorption of strahl electrons, acts to extend the core component of the electron velocity

distribution function to higher velocities [Pilipp et al., 1987a], therefore increasing the halo

breakpoint energy at pitch angles at which the strahl is not present. This phenomenon

explains the larger difference between strahl and halo breakpoint energies at higher core

temperatures, as a larger difference in breakpoint energy means more strahl electrons are

scattering into the core population rather than the halo population.

This work signifies the first extensive study in characterising the relation between break-

point energy and solar wind speed, for each of the suprathermal populations. Our results

show there is a significant decrease in both halo and strahl breakpoint energies with in-

creasing solar wind speed, with the halo relation exhibiting a stronger correlation. We find

two distinct relationships in the halo breakpoint energy vs. solar wind speed distribution,

with a step function at 500 km/s. We predict this step function relates to the difference in

origin of fast and slow solar wind electrons [Feldman et al., 2005]. Further investigation,

with the aid of new facilities provided by the Parker Solar Probe and Solar Orbiter mis-

sions, can test this prediction and investigate why the step function is prevalent in the halo

breakpoint energy relationship but not in the strahl breakpoint energy relationship with

solar wind speed. In future studies, using Solar Orbiter measurements at smaller heliocen-

tric distances will allow us to better characterise halo and strahl breakpoint energies and

improve our understanding of their dependence on bulk solar wind parameters.
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In Chapter 6, we employ novel machine learning techniques to characterise particle dis-

tribution functions in the magnetotail. Particle populations in collisionless space plasma

environments are traditionally characterised by their moments. Distribution functions,

however, provide the full picture of the state of each plasma environment. Distribution

functions are not easily classified by a small number of parameters. We therefore propose

to apply dimensionality reduction and clustering methods to particle distributions in pitch

angle and energy space as a new method to distinguish between the different plasma re-

gions. Dimensionality reduction is a specific type of unsupervised learning in which data

in high-dimensional space is transformed to a meaningful representation in lower dimen-

sional space. This transformation allows complex datasets to be characterised by analysis

techniques with much more computational efficiency. We use the autoencoder to compress

the data by a factor of 10 from a high-dimensional representation. We subsequently ap-

ply the PCA algorithm to further compress the data to a three-dimensional representation.

After compressing the data, we use the mean shift algorithm to inform us of how many

populations are present in the data using this three-dimensional representation. And fi-

nally, we use an agglomerative clustering algorithm to assign each data-point to one of the

populations.

Fig. 6.5 shows the result of applying the agglomerative clustering algorithm to the com-

pressed magnetotail electron. The plot shows that the clustering algorithm is able to assign

data-points of varying PCA values to the same cluster if they belong to the same complex

non-spherical structure. The clustering algorithm is able to form clear boundaries between

clusters with adjacent PCA values, with no mixing of cluster labels on either side of the

boundaries.
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Fig. 6.6 shows the average electron differential energy flux distributions for each cluster.

We see large differences in the average pitch angle/energy distributions. Each distribution

differs by the: peak flux energy, peak flux value, or the pitch angle anisotropy. The lack of

identical distributions shows mean shift has not overestimated the number of clusters.

Table 4 shows a contingency table comparing our classifications to the original ECLAT

labels. The majority of clustering labels are in agreement with the ECLAT regions. For AC

labels 0, 1, 2, 4, and 6, which represent various populations within the plasma sheet, there

is 100% agreement with the ECLAT label 0.

By using this method to characterise pitch angle and energy distributions, instead of us-

ing the derived moments, we successfully distinguish between multiple populations within

what has historically been considered as one region, due to the lack of variation in the

plasma. The automated classification of different regions in space plasma environments

provides a useful tool to identify the physical processes governing particle populations in

near-Earth space. These tools are model independent, providing reproducible results with-

out requiring the placement of arbitrary thresholds, limits or expert judgment. Similar

methods could be used onboard spacecraft to reduce the dimensionality of distributions in

order to optimize data collection and downlink resources in future missions.

Magnetic reconnection is a ubiquitous process in space, laboratory, and astrophysical

plasmas that converts magnetic energy to kinetic energy and results in a large variety of

energetic events, including aurora, solar flares, astrophysical jets, and tokamak disruptions.

Since the start of the space age, reconnection has been widely studied in different physical

environments. Relatively little has been known, however, about the process by which recon-

nection is triggered. And until now, theory and simulations have provided the only insight
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into this elusive tearing instability mechanism. The novel machine learning techniques we

employ make our identification of the tearing instability possible on a consistent basis. In

10 years of high-resolution magnetotail plasma sheet crossings, we find 15 clear examples

of tearing unstable distributions that occur prior to observations of magnetic reconnection,

providing a clear link between these two physical processes. We show that the time delay be-

tween the two processes is of the order of a few minutes, which is also similar to the growth

time of the instability prior to reconnection. Furthermore, we show that the timing of these

events are linked to current sheet thinning, which occurs during the substorm expansion

and recovery phases, confirming that the electron tearing instability results from externally

driven processes.

In Chapter 7, we provide a comprehensive analysis of the temperature profiles and

timescales during the tearing instability. Furthermore, we produce observational evidence

for the connection between the tearing mode and reconnection, taking the first step in solv-

ing the longstanding problem of reconnection initiation with real-world data. More high

cadence multi-spacecraft measurements, such as measurements from the MMS [Sharma

and Curtis, 2005] (Magnetospheric Multiscale Mission) mission, will be important in fur-

thering this investigation into the size and location of tearing regions. Our study serves as

the groundwork for future studies that would investigate how tearing mode growth times

vary across different plasma environments, from the magnetosphere to the solar corona and

beyond.
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