1,878 research outputs found

    Bounds on the Per-Sample Capacity of Zero-Dispersion Simplified Fiber-Optical Channel Models

    Get PDF
    A number of simplified models, based on perturbation theory, have been proposed for the fiber-optical channel and have been extensively used in the literature. Although these models are mainly developed for the low-power regime, they are used at moderate or high powers as well. It remains unclear to what extent the capacity of these models is affected by the simplifying assumptions under which they are derived. In this paper, we consider single channel data transmission based on three continuous-time optical models i) a regular perturbative channel, ii) a logarithmic perturbative channel, and iii) the stochastic nonlinear Schr\"odinger (NLS) channel. We apply two simplifying assumptions on these channels to obtain analytically tractable discrete-time models. Namely, we neglect the channel memory (fiber dispersion) and we use a sampling receiver. These assumptions bring into question the physical relevance of the models studied in the paper. Therefore, the results should be viewed as a first step toward analyzing more realistic channels. We investigate the per-sample capacity of the simplified discrete-time models. Specifically, i) we establish tight bounds on the capacity of the regular perturbative channel; ii) we obtain the capacity of the logarithmic perturbative channel; and iii) we present a novel upper bound on the capacity of the zero-dispersion NLS channel. Our results illustrate that the capacity of these models departs from each other at high powers because these models yield different capacity pre-logs. Since all three models are based on the same physical channel, our results highlight that care must be exercised in using simplified channel models in the high-power regime

    Waveform Conversion and Wavelength Multicasting with Pulsewidth Tunability Using Raman Amplification Multiwavelength Pulse Compressor

    Get PDF
    A combination of nonreturn-to-zero (NRZ)-to-return-to-zero (RZ) waveform conversion and wavelength multicasting with pulsewidth tunability is experimentally demonstrated. A NRZ data signal is injected into a highly nonlinear fiber (HNLF)-based four-wave mixing (FWM) switch with four RZ clocks compressed by a Raman amplification-based multiwavelength pulse compressor (RA-MPC). The NRZ signal is multicast and converted to RZ signals in a continuously wide pulsewidth tuning range between around 12.17 and 4.68 ps by changing the Raman pump power of the RA-MPC. Error-free operations of the converted RZ signals with different pulsewidths are achieved with negative power penalties compared with the back-to-back NRZ signal and the small variation among received powers of RZ output channels at a bit-error-rate (BER) of 10-9. The NRZ-to-RZ waveform conversion and wavelength multicasting without using the RA-MPC are also successfully implemented

    Demodulation and Detection Schemes for a Memoryless Optical WDM Channel

    Get PDF
    It is well known that matched filtering and sampling (MFS) demodulation together with minimum Euclidean distance (MD) detection constitute the optimal receiver for the additive white Gaussian noise channel. However, for a general nonlinear transmission medium, MFS does not provide sufficient statistics, and therefore is suboptimal. Nonetheless, this receiver is widely used in optical systems, where the Kerr nonlinearity is the dominant impairment at high powers. In this paper, we consider a suite of receivers for a two-user channel subject to a type of nonlinear interference that occurs in wavelength-division-multiplexed channels. The asymptotes of the symbol error rate (SER) of the considered receivers at high powers are derived or bounded analytically. Moreover, Monte-Carlo simulations are conducted to evaluate the SER for all the receivers. Our results show that receivers that are based on MFS cannot achieve arbitrary low SERs, whereas the SER goes to zero as the power grows for the optimal receiver. Furthermore, we devise a heuristic demodulator, which together with the MD detector yields a receiver that is simpler than the optimal one and can achieve arbitrary low SERs. The SER performance of the proposed receivers is also evaluated for some single-span fiber-optical channels via split-step Fourier simulations

    Low Noise And Low Repetition Rate Semiconductor-based Mode-locked Lasers

    Get PDF
    The topic of this dissertation is the development of low repetition rate and low noise semiconductor-based laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analogto-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated chirped pulse laser sources. Moreover, the focus is shifted to a specific application of the linearly chirped pulses, timestretched photonic analog-to-digital conversion (TS ADC). The challenges of surpassing the speeds of current electronic converters are discussed, while the need for low noise linearly chirped pulse lasers becomes apparent for the realization of TS ADC. The experimental research addresses the topic of low noise chirped pulse generation in three distinct ways. First, a chirped pulse (Theta) laser with an intra-cavity Fabry-Pérot etalon and a long-term referencing mechanism is developed that results in the reduction of the pulse-topulse energy noise. Noise suppression of \u3e 15 times is demonstrated. Moreover, an optical frequency comb with spacing equal to the repetition rate (≈100 MHz) is generated using the etalon, resulting in the first reported demonstration of a system operating in the sub-GHz regime based on semiconductor gain. The path for the development of the Theta laser was laid by the precise characterization of the etalon used in this laser cavity design. A narrow linewidth laser is used in conjunction with an acousto-optic modulator externally swept for measuring the etalon\u27s iv free spectral range with a sub-Hz precision, or 10 parts per billion. Furthermore, the measurement of the etalon long-term drift and birefringence lead to the development of a modified intra-cavity Hänsch-Couillaud locking mechanism for the Theta laser. Moreover, an external feed-forward system was demonstrated that aimed at increasing the temporal/spectral uniformity of the optical pulses. A complete characterization of the system is demonstrated. On a different series of experiments, the pulses emitted by an ultra-low noise but high repetition rate mode-locked laser were demultiplexed resulting in a low repetition rate pulse train. Experimental investigation of the noise properties of the laser proved that they are preserved during the demultiplexing process. The noise of the electrical gate used in this experiment is also investigated which led into the development of a more profound understanding of the electrical noise of periodical pulses and a mechanism of measuring their noise. The appendices in this dissertation provide additional material used for the realization of the main research focus of the dissertation. Measurements of the group delay of the etalon used in the Theta laser are presented in order to demonstrate the limiting factors for the development of this cavity design. The description of a balancing routine is presented, that was used for expanding the dynamic range of intra-cavity active variable delay. At last, the appendix presents the calculations regarding the contribution of various parameters in the limitations of analog-todigital conversion
    • …
    corecore