962 research outputs found

    A new asymmetrical corner detector(ACD) for a semi-automatic image co-registration scheme

    No full text
    Co-registration of multi-sensor and multi-temporal images is essential for remote sensing applications. In the image co-registration process, automatic Ground Control Points (GCPs) selection is a key technical issue and the accuracy of GCPs localization largely accounts for the final image co-registration accuracy. In this thesis, a novel Asymmetrical Corner Detector (ACD) algorithm based on auto-correlation is presented and a semi-automatic image co-registration scheme is proposed. The ACD is designed with the consideration of the fact that asymmetrical corner points are the most common reality in remotely sensed imagery data. The ACD selects points more favourable to asymmetrical points rather than symmetrical points to avoid incorrect selection of flat points which are often highly symmetrical. The experimental results using images taken by different sensors indicate that the ACD has obtained excellent performance in terms of point localization and computation efficiency. It is more capable of selecting high quality GCPs than some well established corner detectors favourable to symmetrical corner points such as the Harris Corner Detector (Harris and Stephens, 1988). A semi-automatic image co-registration scheme is then proposed, which employs the ACD algorithm to extract evenly distributed GCPs across the overlapped area in the reference image. The scheme uses three manually selected pairs of GCPs to determine the initial transformation model and the overlapped area. Grid-control and nonmaximum suppression methods are used to secure the high quality and spread distribution of GCPs selected. It also involves the FNCC (fast normalised crosscorrelation) algorithm (Lewis, 1995) to refine the corresponding point locations in the input image and thus the GCPs are semi-automatically selected to proceed to the polynomial fitting image rectification. The performance of the proposed coregistration scheme has been demonstrated by registering multi-temporal, multi-sensor and multi-resolution images taken by Landsat TM, ETM+ and SPOT sensors. Experimental results show that consistent high registration accuracy of less than 0.7 pixels RMSE has been achieved. Keywords: Asymmetrical corner points, image co-registration, AC

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    An Overview on the Generation and Detection of Synthetic and Manipulated Satellite Images

    Get PDF
    Due to the reduction of technological costs and the increase of satellites launches, satellite images are becoming more popular and easier to obtain. Besides serving benevolent purposes, satellite data can also be used for malicious reasons such as misinformation. As a matter of fact, satellite images can be easily manipulated relying on general image editing tools. Moreover, with the surge of Deep Neural Networks (DNNs) that can generate realistic synthetic imagery belonging to various domains, additional threats related to the diffusion of synthetically generated satellite images are emerging. In this paper, we review the State of the Art (SOTA) on the generation and manipulation of satellite images. In particular, we focus on both the generation of synthetic satellite imagery from scratch, and the semantic manipulation of satellite images by means of image-transfer technologies, including the transformation of images obtained from one type of sensor to another one. We also describe forensic detection techniques that have been researched so far to classify and detect synthetic image forgeries. While we focus mostly on forensic techniques explicitly tailored to the detection of AI-generated synthetic contents, we also review some methods designed for general splicing detection, which can in principle also be used to spot AI manipulate imagesComment: 25 pages, 17 figures, 5 tables, APSIPA 202

    GeoAI-enhanced Techniques to Support Geographical Knowledge Discovery from Big Geospatial Data

    Get PDF
    abstract: Big data that contain geo-referenced attributes have significantly reformed the way that I process and analyze geospatial data. Compared with the expected benefits received in the data-rich environment, more data have not always contributed to more accurate analysis. “Big but valueless” has becoming a critical concern to the community of GIScience and data-driven geography. As a highly-utilized function of GeoAI technique, deep learning models designed for processing geospatial data integrate powerful computing hardware and deep neural networks into various dimensions of geography to effectively discover the representation of data. However, limitations of these deep learning models have also been reported when People may have to spend much time on preparing training data for implementing a deep learning model. The objective of this dissertation research is to promote state-of-the-art deep learning models in discovering the representation, value and hidden knowledge of GIS and remote sensing data, through three research approaches. The first methodological framework aims to unify varied shadow into limited number of patterns, with the convolutional neural network (CNNs)-powered shape classification, multifarious shadow shapes with a limited number of representative shadow patterns for efficient shadow-based building height estimation. The second research focus integrates semantic analysis into a framework of various state-of-the-art CNNs to support human-level understanding of map content. The final research approach of this dissertation focuses on normalizing geospatial domain knowledge to promote the transferability of a CNN’s model to land-use/land-cover classification. This research reports a method designed to discover detailed land-use/land-cover types that might be challenging for a state-of-the-art CNN’s model that previously performed well on land-cover classification only.Dissertation/ThesisDoctoral Dissertation Geography 201

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Augmented Terrain-Based Navigation to Enable Persistent Autonomy for Underwater Vehicles in GPS-Denied Environments

    Get PDF
    Aquatic robots, such as Autonomous Underwater Vehicles (AUVs), play a major role in the study of ocean processes that require long-term sampling efforts and commonly perform navigation via dead-reckoning using an accelerometer, a magnetometer, a compass, an IMU and a depth sensor for feedback. However, these instruments are subjected to large drift, leading to unbounded uncertainty in location. Moreover, the spatio-temporal dynamics of the ocean environment, coupled with limited communication capabilities, make navigation and localization difficult, especially in coastal regions where the majority of interesting phenomena occur. To add to this, the interesting features are themselves spatio-temporally dynamic, and effective sampling requires a good understanding of vehicle localization relative to the sampled feature. Therefore, our work is motivated by the desire to enable intelligent data collection of complex dynamics and processes that occur in coastal ocean environments to further our understanding and prediction capabilities. The study originated from the need to localize and navigate aquatic robots in a GPS-denied environment and examine the role of the spatio-temporal dynamics of the ocean into the localization and navigation processes. The methods and techniques needed range from the data collection to the localization and navigation algorithms used on-board of the aquatic vehicles. The focus of this work is to develop algorithms for localization and navigation of AUVs in GPS-denied environments. We developed an Augmented terrain-based framework that incorporates physical science data, i.e., temperature, salinity, pH, etc., to enhance the topographic map that the vehicle uses to navigate. In this navigation scheme, the bathymetric data are combined with the physical science data to enrich the uniqueness of the underlying terrain map and increase the accuracy of underwater localization. Another technique developed in this work addresses the problem of tracking an underwater vehicle when the GPS signal suddenly becomes unavailable. The methods include the whitening of the data to reveal the true statistical distance between datapoints and also incorporates physical science data to enhance the topographic map. Simulations were performed at Lake Nighthorse, Colorado, USA, between April 25th and May 2nd 2018 and at Big Fisherman\u27s Cove, Santa Catalina Island, California, USA, on July 13th and July 14th 2016. Different missions were executed on different environments (snow, rain and the presence of plumes). Results showed that these two methodologies for localization and tracking work for reference maps that had been recorded within a week and the accuracy on the average error in localization can be compared to the errors found when using GPS if the time in which the observations were taken are the same period of the day (morning, afternoon or night). The whitening of the data had positive results when compared to localizing without whitening

    Intelligent Data Analytics using Deep Learning for Data Science

    Get PDF
    Nowadays, data science stimulates the interest of academics and practitioners because it can assist in the extraction of significant insights from massive amounts of data. From the years 2018 through 2025, the Global Datasphere is expected to rise from 33 Zettabytes to 175 Zettabytes, according to the International Data Corporation. This dissertation proposes an intelligent data analytics framework that uses deep learning to tackle several difficulties when implementing a data science application. These difficulties include dealing with high inter-class similarity, the availability and quality of hand-labeled data, and designing a feasible approach for modeling significant correlations in features gathered from various data sources. The proposed intelligent data analytics framework employs a novel strategy for improving data representation learning by incorporating supplemental data from various sources and structures. First, the research presents a multi-source fusion approach that utilizes confident learning techniques to improve the data quality from many noisy sources. Meta-learning methods based on advanced techniques such as the mixture of experts and differential evolution combine the predictive capacity of individual learners with a gating mechanism, ensuring that only the most trustworthy features or predictions are integrated to train the model. Then, a Multi-Level Convolutional Fusion is presented to train a model on the correspondence between local-global deep feature interactions to identify easily confused samples of different classes. The convolutional fusion is further enhanced with the power of Graph Transformers, aggregating the relevant neighboring features in graph-based input data structures and achieving state-of-the-art performance on a large-scale building damage dataset. Finally, weakly-supervised strategies, noise regularization, and label propagation are proposed to train a model on sparse input labeled data, ensuring the model\u27s robustness to errors and supporting the automatic expansion of the training set. The suggested approaches outperformed competing strategies in effectively training a model on a large-scale dataset of 500k photos, with just about 7% of the images annotated by a human. The proposed framework\u27s capabilities have benefited various data science applications, including fluid dynamics, geometric morphometrics, building damage classification from satellite pictures, disaster scene description, and storm-surge visualization

    Deep neural networks based automated extraction of dugong feeding trails from UAV images in the intertidal seagrass beds

    Get PDF
    Dugongs (Dugong dugon) are seagrass specialists distributed in shallow coastal waters in tropical and subtropical seas. The area and distribution of the dugongs’ feeding trails, which are unvegetated winding tracks left after feeding, have been used as an indicator of their feeding ground utilization. However, current ground-based measurements of these trails require a large amount of time and effort. Here, we developed effective methods to observe the dugongs’ feeding trails using unmanned aerial vehicle (UAV) images (1) by extracting the dugong feeding trails using deep neural networks. Furthermore, we demonstrated two applications as follows; (2) extraction of the daily new feeding trails with deep neural networks and (3) estimation the direction of the feeding trails. We obtained aerial photographs from the intertidal seagrass bed at Talibong Island, Trang Province, Thailand. The F1 scores, which are a measure of binary classification model’s accuracy taking false positives and false negatives into account, for the method (1) were 89.5% and 87.7% for the images with ground sampling resolutions of 1 cm/pixel and 0.5 cm/pixel, respectively, while the F1 score for the method (2) was 61.9%. The F1 score for the method (1) was high enough to perform scientific studies on the dugong. However, the method (2) should be improved, and there remains a need for manual correction. The mean area of the extracted daily new feeding trails from September 12–27, 2019, was 187.8 m2 per day (n = 9). Total 63.9% of the feeding trails was estimated to have direction within a range of 112.5° and 157.5°. These proposed new methods will reduce the time and efforts required for future feeding trail observations and contribute to future assessments of the dugongs’ seagrass habitat use

    Autonomous Vehicles

    Get PDF
    This edited volume, Autonomous Vehicles, is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of vehicle autonomy. The book comprises nine chapters authored by various researchers and edited by an expert active in the field of study. All chapters are complete in itself but united under a common research study topic. This publication aims to provide a thorough overview of the latest research efforts by international authors, open new possible research paths for further novel developments, and to inspire the younger generations into pursuing relevant academic studies and professional careers within the autonomous vehicle field
    corecore