1,160 research outputs found

    Prioritising sensory systems for Queensland: An evaluation of alternative sensory systems using multiple criteria analysis

    Get PDF
    Sensor technology is an extensive field – the Encyclopedia of Sensors comprises 10 volumes of more than 400 chapters. Although sensors have been in use for centuries, sensor technology is rapidly developing now; the digital age provides the opportunity for real-time decision-making based on data received from complex technical systems. New opportunities for sensor technology platforms are becoming available, and the benefits from the application of these platforms have greatly increased

    Impacts of new and emerging assistive technologies for ageing and disabled housing

    Full text link
    This research looks at how smart home assistive technologies (AT) may be best used in both the aged care and disability sectors to reduce the need for support services. It includes an assessment of ease of use, quality-of-life and cost benefit analysis, and contributes to the development of policy options that could facilitate effective adoption of smart home AT in Australia

    Distributed Computing and Monitoring Technologies for Older Patients

    Get PDF
    This book summarizes various approaches for the automatic detection of health threats to older patients at home living alone. The text begins by briefly describing those who would most benefit from healthcare supervision. The book then summarizes possible scenarios for monitoring an older patient at home, deriving the common functional requirements for monitoring technology. Next, the work identifies the state of the art of technological monitoring approaches that are practically applicable to geriatric patients. A survey is presented on a range of such interdisciplinary fields as smart homes, telemonitoring, ambient intelligence, ambient assisted living, gerontechnology, and aging-in-place technology. The book discusses relevant experimental studies, highlighting the application of sensor fusion, signal processing and machine learning techniques. Finally, the text discusses future challenges, offering a number of suggestions for further research directions

    Carbon Emission Policies in Key Economies

    Get PDF
    The Australian Government asked the Productivity Commission to undertake a study on the ‘effective’ carbon prices that result from emissions and energy reduction policies in Australia and other key economies (the UK, USA, Germany, New Zealand, China, India, Japan and South Korea). The Commissions research report, released 9 June 2011, provides a stocktake of the large number of policy measures in the electricity generation and road transport sectors of the countries studied. And it provides estimates of the burdens associated with these policies in each country and the abatement achieved. While the results are based on a robust methodology, data limitations have meant that some estimates could only be indicative. More than 1000 carbon policy measures were identified in the nine countries studied, ranging from (limited) emissions trading schemes to policies that support particular types of abatement technology. While these disparate measures cannot be expressed as an equivalent single price on greenhouse gas emissions, all policies impose costs that someone must pay. The Commission has interpreted ‘effective’ carbon prices broadly to mean the cost of reducing greenhouse gas emissions — the ‘price’ of abatement achieved by particular policies. The estimated cost per unit of abatement achieved varied widely, both across programs within each country and in aggregate across countries. The relative cost effectiveness of price-based approaches is illustrated for Australia by stylised modelling that suggests that the abatement from existing policies for electricity could have been achieved at a fraction of the cost. The estimated price effects of supply-side policies have generally been modest, other than for electricity in Germany and the UK. Such price uplifts are of some relevance to assessing carbon leakage and competitiveness impacts, but are very preliminary and substantially more information would be required.carbon pricing; cost abatement; greenhouse gas emissions; abatement technology; carbon policy; energy reduction policy; emissions trading scheme; carbon leakage

    Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges

    Get PDF
    The increasing population across the globe makes it essential to link smart and sustainable city planning with the logistics of transporting people and goods, which will significantly contribute to how societies will face mobility in the coming years. The concept of smart mobility emerged with the popularity of smart cities and is aligned with the sustainable development goals defined by the United Nations. A reduction in traffic congestion and new route optimizations with reduced ecological footprint are some of the essential factors of smart mobility; however, other aspects must also be taken into account, such as the promotion of active mobility and inclusive mobility, encour-aging the use of other types of environmentally friendly fuels and engagement with citizens. The Internet of Things (IoT), Artificial Intelligence (AI), Blockchain and Big Data technology will serve as the main entry points and fundamental pillars to promote the rise of new innovative solutions that will change the current paradigm for cities and their citizens. Mobility‐as‐a‐service, traffic flow optimization, the optimization of logistics and autonomous vehicles are some of the services and applications that will encompass several changes in the coming years with the transition of existing cities into smart cities. This paper provides an extensive review of the current trends and solutions presented in the scope of smart mobility and enabling technologies that support it. An overview of how smart mobility fits into smart cities is provided by characterizing its main attributes and the key benefits of using smart mobility in a smart city ecosystem. Further, this paper highlights other various opportunities and challenges related to smart mobility. Lastly, the major services and applications that are expected to arise in the coming years within smart mobility are explored with the prospective future trends and scope

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Digital Economy Strategy (2021)

    Get PDF

    Divergent consumer preferences and visions for cooking and heating technologies in the United Kingdom: make our homes clean, safe, warm and smart!

    Get PDF
    Decarbonising the global housing stock is imperative for reaching climate change targets. In the United Kingdom, hydrogen is currently being tested as a replacement fuel for natural gas, which could be used to supply low-carbon energy to parts of the country. Transitioning the residential sector towards a net-zero future will call for an inclusive understanding of consumer preferences for emerging technologies. In response, this paper explores consumer attitudes towards domestic cooking and heating technologies, and energy appliances of the future, which could include a role for hydrogen hobs and boilers in UK homes. To access qualitative evidence on this topic, we conducted ten online focus groups (N = 58) with members of the UK public between February and April 2022. The study finds that existing gas users wish to preserve the best features of gas cooking, such as speed, responsiveness and controllability, but also desire the potential safety and aesthetic benefits of electric systems, principally induction hobs. Meanwhile, future heating systems should ensure thermal comfort, ease of use, energy efficiency and smart performance, while providing space savings and noise reduction, alongside demonstrable green benefits. Mixed-methods multigroup analysis suggests divergence between support levels for hydrogen homes, which implies a degree of consumer heterogeneity. Foremost, we find that domestic hydrogen acceptance is positively associated with interest and engagement with renewable energy and fuel poverty pressures. We conclude that internalising the perspectives of consumers is critical to enabling constructive socio-technical imaginaries for low-carbon domestic energy futures.Engineering and Physical Sciences Research Council (EPSRC): EP/T518104/1 Cadent Gas Lt

    Engineering Education for the Future

    Get PDF
    corecore