8 research outputs found

    Evolving GANs: When Contradictions Turn into Compliance

    Full text link
    Limited availability of labeled-data makes any supervised learning problem challenging. Alternative learning settings like semi-supervised and universum learning alleviate the dependency on labeled data, but still require a large amount of unlabeled data, which may be unavailable or expensive to acquire. GAN-based synthetic data generation methods have recently shown promise by generating synthetic samples to improve task at hand. However, these samples cannot be used for other purposes. In this paper, we propose a GAN game which provides improved discriminator accuracy under limited data settings, while generating realistic synthetic data. This provides the added advantage that now the generated data can be used for other similar tasks. We provide the theoretical guarantees and empirical results in support of our approach.Comment: Generative Adversarial Networks, Universum Learning, Semi-Supervised Learnin

    Case study of Hyperparameter Optimization framework Optuna on a Multi-column Convolutional Neural Network

    Get PDF
    To observe the condition of the flower growth during the blooming period and estimate the harvest forecast of the Canola crops, the ‘Flower Counter’ application has been developed by the researchers ofP2IRC at the University of Saskatchewan. The model has been developed using a Deep Learning based Multi-column Convolutional Neural Network (MCNN) algorithm and the TensorFlow framework, in order to count the Canola flowers from the images based on the learning from a given set of training images. To ensure better accuracy score with respect to flower prediction, proper training of the model is essential involving appropriate values of hyperparameters. Among numerous possible values of these hyperparameters, selecting the suitable ones is certainly a time-consuming and tedious task for humans. Ongoing research for developing Automated Hyperparameter Optimization (HPO) frameworks has attracted researchers and practitioners to develop and utilize such frameworks to give directions towards finding better hyperparameters according to their applications. The primary goal of this research work is to apply the Automated HPO Optuna on the Flower Counterapplication with the purpose of directing the researchers towards among the best observed hyperparameter configurations for good overall performance in terms of prediction accuracy and resource utilization. This work would help the researchers and plant scientists gain knowledge about the practicality of Optuna while treating it as a black-box and apply it for this application as well as other similar applications. In order to achieve this goal, three essential hyperparameters, batch size, learning rate and number of epochs, have been chosen for assessing their individual and combined impacts. Since the training of the model depends on the datasets collected during diverse weather conditions, there could be factors that could impact Optuna’s functionality and performance. The analysis of the results of the current work and comparison of the accuracy scores with the previous work have yielded almost equal scores while testing the model’s performance on different test populations. Moreover, for the tuned version of the model, the current work has shown the potential for achieving that result with substantially lower resource utilization. The findings have provided useful concepts about making the better usage of Optuna; the search space can be restricted ormore complicated objective functions can be implemented to ensure better stability of the models obtained when chosen parameters are used in trainin

    The Technological Emergence of AutoML: A Survey of Performant Software and Applications in the Context of Industry

    Full text link
    With most technical fields, there exists a delay between fundamental academic research and practical industrial uptake. Whilst some sciences have robust and well-established processes for commercialisation, such as the pharmaceutical practice of regimented drug trials, other fields face transitory periods in which fundamental academic advancements diffuse gradually into the space of commerce and industry. For the still relatively young field of Automated/Autonomous Machine Learning (AutoML/AutonoML), that transitory period is under way, spurred on by a burgeoning interest from broader society. Yet, to date, little research has been undertaken to assess the current state of this dissemination and its uptake. Thus, this review makes two primary contributions to knowledge around this topic. Firstly, it provides the most up-to-date and comprehensive survey of existing AutoML tools, both open-source and commercial. Secondly, it motivates and outlines a framework for assessing whether an AutoML solution designed for real-world application is 'performant'; this framework extends beyond the limitations of typical academic criteria, considering a variety of stakeholder needs and the human-computer interactions required to service them. Thus, additionally supported by an extensive assessment and comparison of academic and commercial case-studies, this review evaluates mainstream engagement with AutoML in the early 2020s, identifying obstacles and opportunities for accelerating future uptake

    Markov models of biomolecular systems

    Get PDF
    corecore