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Abstract

To observe the condition of the flower growth during the blooming period and estimate the harvest

forecast of the Canola crops, the ‘Flower Counter’ application has been developed by the researchers of

P2IRC at the University of Saskatchewan. The model has been developed using a Deep Learning based

Multi-column Convolutional Neural Network (MCNN) algorithm and the TensorFlow framework, in order to

count the Canola flowers from the images based on the learning from a given set of training images. To ensure

better accuracy score with respect to flower prediction, proper training of the model is essential involving

appropriate values of hyperparameters. Among numerous possible values of these hyperparameters, selecting

the suitable ones is certainly a time-consuming and tedious task for humans. Ongoing research for developing

Automated Hyperparameter Optimization (HPO) frameworks has attracted researchers and practitioners to

develop and utilize such frameworks to give directions towards finding better hyperparameters according to

their applications.

The primary goal of this research work is to apply the Automated HPO Optuna on the Flower Counter

application with the purpose of directing the researchers towards among the best observed hyperparameter

configurations for good overall performance in terms of prediction accuracy and resource utilization. This

work would help the researchers and plant scientists gain knowledge about the practicality of Optuna while

treating it as a black-box and apply it for this application as well as other similar applications.

In order to achieve this goal, three essential hyperparameters, batch size, learning rate and number of

epochs, have been chosen for assessing their individual and combined impacts. Since the training of the model

depends on the datasets collected during diverse weather conditions, there could be factors that could impact

Optuna’s functionality and performance. The analysis of the results of the current work and comparison

of the accuracy scores with the previous work have yielded almost equal scores while testing the model’s

performance on different test populations. Moreover, for the tuned version of the model, the current work

has shown the potential for achieving that result with substantially lower resource utilization. The findings

have provided useful concepts about making the better usage of Optuna; the search space can be restricted or

more complicated objective functions can be implemented to ensure better stability of the models obtained

when chosen parameters are used in training.
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1 Introduction

In recent years, Deep Learning (DL) has solved several challenging problems because of its powerful

computational technique of applying Neural Networks (NN) for dealing with huge and complex datasets

based on powerful Machine Learning (ML) algorithms [21]. ML applications, particularly Deep Neural

Networks (DNNs), depend critically on several model specific parameters termed as ‘hyperparameters’ [10],

which if set appropriately, can enhance the performance (accuracy and precision, execution time, usage of

resources, etc.) of the model to a great extent. As this is a cumbersome task for humans, Automated Machine

Learning (AutoML) frameworks take this responsibility of automatically selecting the better configurations of

hyperparameters among hundreds of thousands of possible combinations in order to optimize the performance

of the model [42].

Automated Hyperparameter Optimization (Automated HPO) can have a significant and helpful impact on

a Neural Network’s (NN) architecture, optimization and performance [39]. Currently, it is broadly recognized

that, over the default parameter values set by developers in conventional ML practice, tuned hyperparam-

eter configurations can improve the performance of the NN model significantly [32] [62]. If the process of

optimization is aided by some kind of Automated HPO, the manual efforts and elapsed time can be reduced

to a great extent [51]. Optuna [2] is one such Automated HPO framework that has presented innovative

searching mechanisms for providing hyperparameter optimization in the perspective of above-mentioned sce-

nario. Optuna provides APIs for constructing the search space of different hyperparameters at runtime,

efficient strategies for searching and pruning for achieving cost-effective optimization and an easy-to-setup

architecture which can work with any experimental setup, as in, from interactive, light-weight experiments

to heavy-weight distributed computing [2].

The main objectives of this research work are the following:

• understand the behaviour and assess the impact of an Automated HPO in the context of a case study

of a DL application,

• observe and analyze the corresponding individual or combined impact of varying the selected hyperpa-

rameter values of the model on its accuracy and resource usage when using diverse training and testing

datasets,

• observe and evaluate the results of tuning the model with previous similar research [19] in order to

identify if Optuna has been able to find good and/or stable hyperparameter configurations for the

considered application, and
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• compare the results with the previous work in terms of different accuracy metrics to understand Op-

tuna’s practicality.

More details about the algorithms applied in Automated HPO and the Optuna framework will be discussed

in Chapter 2.

1.1 Thesis motivation

The Canada First Research Excellence Fund (CREF)1 has funded the Plant Phenotyping and Imaging Re-

search Centre (P2IRC)2 of University of Saskatchewan (USask) to develop a system called, Camera On A

STick (COAST)3 system. In this system, cameras were set up in flower fields and each camera was positioned

in an individual plot to capture a series of time-lapse images. The image data recorded at periodic intervals

by the cameras from the fields help the researchers to study different growth patterns of Canola plants and

understand the impact on crop harvest. These images were captured each day from dawn till dusk, mostly

during the summer season of 2016, 2017 and 2018 by using the COAST system from different fields.

The Laboratory in Computer Science department of Usask for Performance Studies of Distributed Com-

puting Systems (DISCUS lab) is allied with P2IRC for the research of high-performance computing and

analysis. One of the projects has been to optimize compute-intensive image processing applications that usu-

ally take excessive time to complete. One such application is a DL application, the Canola Flower Counter

[19], that has been developed for monitoring the shifting of blooming period and the status of flower growth

within the flowering portion of the season. The dynamics of flowering are an indicator of the season’s harvest

potential and general hardiness (health and robustness of the crop under changing environmental conditions,

resistance to drought, pests/weed infestation etc.) of different varieties of crops.

Since DL requires huge datasets and complex image processing algorithms [35], the application needs

powerful computational resources and extensive computing time to process results. Fine-tuning of the appli-

cation using Automated HPO could help researchers to utilize fewer resources and shorten training time by

suggesting possible hyperparameter configurations instead of manual trial-and-error to set hyperparameters;

at the same time, this may also greatly enable augmentation of the performance with respect to accuracy of

the application.

Optuna’s features of selecting among the best observed hyperparameter configuration settings and perfor-

mance optimization capabilities might have significant influence to achieve this performance goal. Thus, the

main motivation of this research work is to present a case study to aid the researchers of P2IRC, the plant

scientists who are working with complex NN applications for image processing and other interested parties,

in the pursuit of insights regarding the applicability of Automated HPO to their applications, to be able to

reduce manual effort and elapsed resources required to provide acceptable prediction accuracy.

1https://www.cfref-apogee.gc.ca/home-accueil-eng.aspx
2https://p2irc.usask.ca/
3https://p2irc.usask.ca/theme-pages/computing/project-3-2.php#PracticalApplications
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1.1.1 Research questions

The objective function that has been chosen for Optuna is to minimize the average pixel-wise loss on the

validation dataset of the Flower Counter application [19]. The pixel-to-pixel loss is computed by the Tensor-

Flow application and Optuna component uses that result. It is computed individually between every pair of

pixels of the prediction and the original images and then averaged over all the pixels; thereby, equal value is

assigned to every pixel in the image [78].

According to the objectives mentioned earlier, this research work aspires to answer the following research

questions:

1. How should a deployment of Optuna best use the hyperparameter search configurations?

• should it be applied to optimize one parameter at a time, or multiple (e.g. 2) parameters at once,

or all the considered parameters at once?

• what search range should be given to Optuna for each hyperparameter, a huge range, so as to

make sure that Optuna investigates all feasible values of the hyperparameter? or, a narrow range,

but then how should such a narrow range be determined?

2. Would the hyperparameter search space set up using Optuna be able to select good configurations for

the Flower Counter application?

• if yes, then how much optimization and performance enhancement in accuracy has been provided

by Optuna suggested parameters compared to the previous version of untuned application?

• if no, then what are the potential reasons that Optuna was unsuccessful in hyperparameter selec-

tion?

3. Are the suggestions by Optuna among the best observed hyperparameter values settings within a given

range stable or reproducible?

• if yes, then does it work for all the datasets?

• If not, then what are the possible reasons?

4. What are the primary reasons behind the performance variability of the tuned Application?

• Is there any impact of the datasets on Optuna’s effectiveness?

1.2 Limitations

There are certain constraints under which the experiments are executed and analyzed; therefore, this might

have an impact on the stability of the results, such as

3



• Since the main aim of this work is to conduct a case study, both the Flower Counter application and

the HPO Optuna have been therefore treated as blackboxes; thus, neither the detailed architecture

and functionality analysis of the designated application’s model nor the tweaking of several other high-

functionality APIs offered by Optuna, have been explored deeply in this work.

• The specific datasets and the binning strategy are chosen based on some preliminary experiments for

this work; they are not guaranteed to yield the best results from the experiments with respect to

prediction accuracy; different datasets, different combinations of binning strategies and their associated

distributions can certainly have significant impact on Optuna’s performance.

• Under each ‘study’ (optimization based on an objective function), Optuna runs ‘trials’ (one single

execution of the objective function). There could be multiple number of trials in every study; based on

the size of the datasets, time constraints, availability of the machines etc., it has been fixed to 60 per

study.

• In this work, a single objective function (which is, minimizing the average pixel-wise loss on the vali-

dation dataset) has been chosen for Optuna. The other options for objective functions have not been

explored.

• Multiple people were responsible for doing the annotation and labeling of flowers in order to prepare

the ground truth images for training the model, so the choices of images for annotation was somewhat

dependent on the individual’s choice, hence the annotated images from each dataset might lack appro-

priate consistency for robust learning; therefore, there might be inconsistencies in the labeling. Also,

determination of flower locations in dense images is objectively challenging.

1.3 Thesis statement

This thesis determines whether the Automated HPO Optuna can select appropriate hyperparameters that

provide good training and flower counting prediction results while reducing the error rates of the accuracy

metrics considered to reasonable levels. This will help the researchers of P2IRC to analyze the impact of the

Automated HPO framework, Optuna, on the performance of a CNN-based DL application.

Several sets of experiments are conducted to show the circumstances where HPO works well or does not

work well. After that, the results derived from the corresponding training-testing on different datasets are

analyzed to determine if Optuna enhances the performance of the application in terms of the objective function

and resource utilization compared with the previous research [19]. Later, the comparison of the results are

investigated thoroughly to infer the potential reasoning of the corresponding performance. Different sets of

experiments are conducted to learn how to make the best use of Optuna (at least, for the type of application

exemplified by the Flower Counter), so that others (e.g. in P2IRC) can make the most effective and efficient

use of this technology.

4



1.4 Thesis organization

The remaining chapters of this thesis are arranged as follows:

Chapter 2 starts with a brief description of background for understanding the basic concepts of CNN,

DL framework Tensorflow, HPO and its popular search techniques, the algorithms of Automated HPO etc.

Later, it presents the works related to hyperparameter tuning and the optimization frameworks used for

ML/DL applications and their feature-wise elemental comparison along with a detailed description about

Optuna.

Chapter 3 presents brief description of the Flower Counter model and its fundamental architecture, a con-

cise review about the characteristics of the datasets used for the experiments and the hardware-software con-

figuration settings used for the experiments along with representative sample images from different datasets

and their distribution.

Chapter 4 presents the details of the conducted experiments, the results, evaluations and analysis of the

results and comparison of the performance with the previous work.

Chapter 5 draws conclusions regarding the performance comparison of Optuna and then indicates the

potential future areas that could be explored on the basis of this work’s results and analysis.
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2 Background and Related Work

This chapter starts with a brief description of Convolutional Neural Network’s (CNN) common terminolo-

gies and core concepts of the DL framework Tensorflow that has been used to develop the Flower Counter

application being considered. Next, it presents a background on the basic concepts of hyperparameters,

hyperparameter tuning and optimization and popular hyperparameter search algorithms for ML/DL appli-

cations. Later, the existing research works on Automated HPO frameworks are discussed followed by the

detailed description of Optuna’s architecture and the reasons of its preference for this work.

2.1 Convolutional Neural Networks (CNN)

Convolutional Neural Network (CNN) is a Deep Learning (DL) algorithm which takes in an input image,

passes it to neurons through a series of hidden layers (configurable connected units) [67], which are connected

to all the neurons of the next layer, assigns learnable parameters of importance (e.g., weights and biases) to

different objects/aspects in the input image to distinguish one object from the other, learn that and generate

a prediction of class scores [3].

The number of parameters and the pre-processing required in a CNN is lower and the focus is more

on domain-specific features rather than spatial features (CNNs learn the features from the training images

based on their attributes regardless of their positions) [69]. Moreover, CNNs have the ability to learn the

characteristics automatically by themselves if enough training is provided, allowing CNNs to handle complex

image processing tasks. A depiction of a regular NN can be seen in Figure 2.1 (based on Hyndman et al.

[43]).

2.1.1 Terminologies related to CNN

In a CNN, the most crucial building block is the ‘convolution (CONV)’ layer which consists of a set of N

dimensional arrays called ‘filters’, which slide across the pixels along the height and width of the incoming

input image. During the sliding, dot products are computed between the values of the of the input pixels

and the values of the filter; a 2-dimensional activation map is created as a result. Throughout the training

time, when there is any presence of certain visual elements such as shapes, patterns, or edges of particular

orientations, the CNN models learn those filters that get activated [52]. A CNN then trains a model using a

backpropagation [53] [54] technique, learning from errors and rectifying them accordingly. The ultimate goal

of a CNN is reducing the value of some type of loss function and achieving as much prediction accuracy as

6



Input #1

Input #2

Input #3

Input #4

There could be 
more hidden layers 

in-between

Input layer Hidden layers Output layer

Output

Figure 2.1: A general architecture of Neural Network (NN) (based on Hyndman et al. [43])

possible for images outside the training dataset.

There are many essential terms [69] related to CNN which are used repetitively throughout the rest of

this thesis document. Therefore, a brief description of those terminologies are explained below:

Filters (Convolution Kernels): A filter (or kernel) refers to an operator which is a smaller-sized

matrix (smaller than the input image’s dimensions). It is slid over the entire image in order to transform the

encoded information in the pixels of that image and then convolved (a process similar as any general matrix

multiplication) with the input to obtain ‘activation maps’ (shown in Figure 2.2). The ‘activated regions’

are the regions where features identifiable to the kernel have been spotted from the input. Activation maps

indicate these regions, so that the network can learn which regions are worthy of extracting features from

the input.

Pooling: There is another layer called ‘pooling (POOL)’ which is placed over the image after CONV

layers for retaining the most important features by reducing the dimensionality (the number of trainable

parameters) of each feature map. The technique is similar to the CONV layer, there are fixed sized filters

which slide over the convolved inputs passed to them. Instead of computing the dot product, the max value

of the input region upon which the filter is positioned currently, is taken by the filter. POOL filters can also

be set to take the average value instead of taking the max value (max POOL was used for the Flower counter

application considered in this work). Despite being destructive in nature, the POOL layer usually saves a lot

of computations and helps the CNN to focus on the most important features [80].

Weights: A weight is a value which is multiplied with every input when it enters the neuron. The weights

are initialized randomly and updated during the training process. If, after training the model, a higher value

of weight is assigned to a particular input, then it is considered to be more important compared to others.

The strength of the connections are controlled by the weights between two neurons. The weights are assigned
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Figure 2.2: Implementation of ‘filter’ operation and ‘convolution’ operation on the input in a CNN
(based on Millstein et al. [69])
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internally by the CNN model itself based on the amount of influence the input will have on the output. More

weight on a particular feature indicates that it is an important feature and vice-versa.

Bias: Another linear component called ‘bias’ is also applied to the input in addition to the weights. Bias

is a constant with the value of 1 and an additional input into the next layer. Since the bias does not have

any incoming connections, it is not influenced by the previous layer. However, it has outgoing connections

with its own weights. It is guaranteed by the bias unit that there will still be an activation in the neuron,

even when all the inputs are zeros.

The weight is multiplied with the input and the bias is added like this:

output = sum(weights ∗ inputs) + bias.

It is used so that the output adjusts with the weighted sum of the inputs.

Activation Function: It is a non-linear function that is applied to the previous result in order to

transform the input signals into output signals. After applying the activation function f(), the output looks

like

output = f(sum(weights ∗ inputs) + bias).

This function is used to make a decision whether a particular neuron would fire or not. The most used

activation functions are: ReLU, Sigmoid, Softmax, etc. [69].

Loss function: It is the method of evaluating how good or bad the CNN model is performing on training

and validation sets after each iteration. For every example in training or validation sets, the sum of the errors

made, is calculated; this process is interpreted as ‘loss’ function.

In general, the loss function is a measurement of the difference between the ground truth value and the

predicted value. The objective of the model is to minimize this loss function in order to increase the accuracy.

Epoch: One epoch refers to the traversing of the whole dataset once. For a CNN, training with the

same dataset is reiterated several times. It helps the CNN to learn from its mistakes that it made in the

prior epochs so that it can rectify the errors in the next time when it sees similar data and provide better

prediction results.

Learning Rate: During training, the speed at which an ML model ‘learns’ (or the rate at which the

weights are updated) is known as the ‘learning rate’ or the ‘step size’. The goal is to reach to the minima of

the loss function. In response to the estimated error, it controls how much to change the model every time

when the model weights are updated. The rate should be chosen very carefully; it should neither be very

small that the model takes too long for the model to converge, nor should be very large that the model might

miss the optimal solution.

Gradient descent (GD): In order to minimize the loss function, there is an iterative method of opti-

mization called Gradient Descent (GD), which calculates the slope of the loss function and gradually corrects

the model parameters, such as the biases and weights as per that slope. The goal of any successful imple-
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mentation of GD is to ensure that a model can converge to a state with as low as model errors possible

[54].

Mini-batch stochastic gradient descent (mini-batch SGD): Among few variants of GD, Mini-batch

Stochastic Gradient Descent (mini-batch SGD) is a kind where only a mini-batch of data is arbitrarily chosen

and taken from the dataset instead of loading the whole dataset during each training step. Since the real-life

datasets tend to be very large in size, hence for training the model it becomes almost impractical to load

the whole of it into memory. For the selected mini-batch, the gradients are calculated and this procedure is

repeated so that every batch is used at least once. For instance, if there are N samples in a dataset and if

10 samples are randomly chosen to be picked for every batch, then to complete an epoch there will be N/10

training steps [54].

Backpropagation: This is the technique of propagating the total error or loss back into the Neural

Network in order to calculate how much of the loss the nodes are responsible for and update them accordingly.

The model learns the features and outputs for a single iteration after training the CNN model using the weights

and bias values. Once the output is received, now it is time to calculate the error and feed it back through

the hidden layers (in the reverse direction) along with the loss function’s gradient in order to update the

weights of the model and minimize the error. This process as a whole is called backpropagation. After this,

the model corrects itself to an extent and again iteratively keeps updating the weights via backpropagation

unless a optimum minima value of the gradient is found [53].

Dropout: In order to prevent over-fitting (the model tends to memorize the training data, thus provides

very good accuracy during training but performs poorly on testing data) of the model, dropout sacrifices

some precision by randomly dropping a certain number of neurons in the hidden layer during training.

Accuracy: This is a metric for evaluating the performance of the CNN models. It is the fraction of

correct predictions that the model could predict correctly. The accuracy of a model is usually calculated in

the form of a percentage (%). Compared to the true data, how accurate the model’s prediction is coming out,

is called the ‘accuracy’ (for example, among 1000 test samples, if the model identifies 990 samples correctly,

then the accuracy of the model is 99.0%.).

There are two other metrics related to accuracy, namely, Precision and Recall; they are also measured in

percentages and used to measure how often the model is actually correct when it predicts positive or negative

(based on the model’s specifications on a certain threshold, the relative error less than that threshold is a

‘True’ prediction and a large relative error is a ‘False’ prediction). Their mathematical representations are

presented in the following equations.

Precision =
True Positive

True Positive + False positive
, and (2.1)

Recall =
True Positive

True Positive + False Negative
. (2.2)

There is another metric called ‘F1 score’ which is calculated using Precision and Recall. If there is an
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unbalanced class distribution (e.g., True Negatives are larger in number), then it can be used to seek a

balance between Precision and Recall [77].

F1 score = 2 ∗ Precision ∗Recall

Precision + Recall
. (2.3)

2.2 Overview of TensorFlow

For facilitating and deploying large scale ML models in diverse heterogeneous environments, researchers

developed an open source ML framework called TensorFlow [1]. This framework has made the process

of creating NN applications flexible by offering both local and distributed training options by offering a

dataflow-based programming abstraction for every types of users. A high-level scripting interface wraps the

construction of the dataflow graph which allows the users to conduct experiment with the use of their self-

defined optimization algorithms and NN architectures without modifying the core system. For leveraging

faster training, there is Distributed TensorFlow that can effectively cope with hundreds of GPU-enabled

servers.

2.2.1 Core concepts and execution model

TensorFlow uses an integrated directed dataflow graph to characterize the operating states and computations

of an algorithm. The graph encompasses edges and nodes, where the edges correspond to the flow of data and

each node or vertex corresponds to a unit of computation. The data that flows through these edges is called

a ‘tensor’. These can consist of multidimensional arrays of several data types, such as string, int32, float16

or float32, etc. The calculations performed at the nodes are called ‘operations’. Some example operations

are addition or matrix multiplication [1].

A mutable buffer, called a ‘variable’1 is used during training. It is used to hold ‘shared parameters’ (they

are made of tensors) of the model. It is often required that the dataflow-graph of the NN application has to

be rerun several times. However, tensors cannot live past after the completion of a single execution of the

graph. Thus, variables are used to persist the tensors.

There are two sections in a TensorFlow application: specifying the computational graph and performing

the execution of the defined graph. The graph in the TensorFlow system is executed through the initiation of

a ‘session’. There is a primary function called ‘run’ inside the session interface. The ‘run’ function executes

the operations that are invoked for execution by the client program. It also takes care of the process of

finding the order of execution before evaluating the requested operation based on the dependencies of the

nodes. After that, the executed tensors are fed to computational nodes (operations) by ‘run’. The ‘run’ calls

are executed thousands or millions of times in order to execute the graphs or subgraphs once a ‘session’ is

set up[73].

1https://www.tensorflow.org/guide/variable
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A typical TensorFlow application’s dataflow graph can be composed of several subgraphs which can be run

simultaneously and via shared variables and queues. The graphical representation of TensorFlow’s dataflow

graph is given in Figure 2.3 (based on Wongsuphasawat et al. [94]).
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(training)
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Input
data

Output
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Figure 2.3: TensorFlow’s dataflow graph (based on Wongsuphasawat et al. [94])

To describe briefly, at the beginning of the application, the execution starts with subgraphs that read

inputs from the filesystem and preprocess the input data. Next, there is the core training subgraph which

takes on the processed input batches, runs a training session and saves the trained model parameters in

a distributed file system using a periodic separate checkpointing subgraph to ensure fault tolerance. The

checkpointing subgraph and the training subgraph can be run concurrently. Similar concurrency can be

achieved in the initial subgraphs of the application as well. User provided inputs from the queues can be

decoded by the preprocessing subgraph and concurrently the callable functions can be mapped to the sequence

of input data [94]. TensorFlow’s distributed execution has been simplified by the method of explicitly defining

the communications among the subgraphs in the dataflow graph. A particular device such as CPU or GPU

is assigned to execute individual operations.

2.3 Hyperparameter Optimization (HPO)

2.3.1 Hyperparameters

Hyperparameters are those model-specific parameters that are ‘fixed’ prior to training or testing the ML/DL

model. For instance, in case of a Random Forest classifier, the number of decision trees in the forest is a

hyperparameter [76]; for an NN, the number of hidden layers, the learning rate, the number of units in each

layer, batch size, etc. are the hyperparameters [13].

The method of searching for the ‘right set of hyperparameters’ that can help to obtain better results and

performance for any ML/DL model, is known as Hyperparameter Optimization (HPO). In the process of
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building ML models, optimizing hyperparameters constitutes one of the trickiest parts. The goal of HPO

is to find the potential good configuration values of hyperparameters of a given model which would yield

better performance [36]. In contrast to model parameters, hyperparameters are set by the experiments prior

to training. Briefly, the objective is to find the hyperparameters which, provided on the validation set metric

(e.g., accuracy and loss function), give a better score [36]. Some examples of objective functions could be the

following [42]:

• minimizing the cross-entropy loss function,

• maximizing the log-likelihood function,

• maximizing the total reward/value function in Reinforcement Learning,

• maximizing a fitness function in Genetic programming, minimizing the hinge loss in Support Vector

Machine, and

• minimizing the MSE function in linear regression, Classification And Regression Trees (CARTs), deci-

sion tree regressions, etc.

An objective function takes hyperparameters that the user wants to optimize as input and provides a real-

valued score as output that is to be maximized or minimized [20]. Since the hyperparameters are mapped

to the probability of a score on the objective function from a high-dimensional perspective, it is sometimes

called a ‘response surface’. For example, for a Random Forest regression [85] problem, the user might want

to get a good set of values for some of the hyperparameters such as maximum depth of the trees, number

of estimators, etc. and minimize the score of RMSE (objective function) [18]. Inspite of the fact that the

objective function might appear to be quite simple, its computational cost could be in fact very expensive! If

the model is simple, the hyperparameters to be evaluated are simple and small in number, and the amount of

data on which the objective function has to be evaluated is small, etc., then it could be calculated quickly like

in Grid search [14], that is, by trying every single possible hyperparameter combination. Otherwise, there

might be situations where it might take hours or even days for evaluating the objective function, resulting

into a very expensive search [97].

Each time when a different hyperparameter set is considered, a model has to be trained on the training

data, and the predictions should be made on the validation data and then the validation metric is calculated.

With the infinite numbers of hyperparameters available to choose from and complex DNN models that take

days to train, selecting suitable and close to optimal hyperparameters could become the prime challenge and

infeasible to do manually! Some popular searching methods that are used for HPO are described in the

following sections.

13



2.3.2 Popular search methods and algorithms used for HPO

The most basic HPO method is Grid search or Exhaustive Search. In Grid Search, a predetermined list

of hyperparameter values is taken into consideration, every combination is applied to evaluate the model for

each of them and the best accuracy is noted [13]. In this search, all the hyperparameter values are positioned

in the form of a matrix. A finite set of values for each hyperparameter is specified by the user and then all the

combinations are evaluated. Since the necessary number of function evaluations increases exponentially with

the increasing dimensionality of the configuration space, this method suffers from the problem of ‘curse of

dimensionality’. Grid search facilitates independent searches and evaluations because the current evaluations

do not depend on the previous ones, so it is scalable as the searches can be conducted in parallel. However,

this strategy wastes a lot of time in exploring parameter values that have poor objective function scores since

it treats every evaluation independently and does not keep track of the past evaluations [13].

In Random Search, combinations of a range of hyperparameter values are explored at random within the

parameter space and are used to obtain better solutions for model optimization. That means some parameters

will be sampled within a preset number of iterations at random instead of trying all the parameter values.

This searching algorithm actually has no end. Rather, a specific time budget or number of trials is determined

as an ending criterion. Bergstra and Bengio [14] showed that Random Search found equal or better results in

fewer function evaluations than Grid search and performed more efficiently for HPO while saving a significant

amount of time compared to Grid search. However, the tradeoff to the decreased processing time is that there

is no guarantee of finding the most optimal hyperparameters combination or even a good one; the search

process might miss it because of being random in nature [14].

Both Grid and Random Search often spend a significant amount of time evaluating ‘bad’ hyperparameters

as they are completely uninformed by the past evaluations. Past results can provide significant insights, but

these techniques ignore previous results. Therefore, even though the optimal answer might (probably) lie in

a small region, they would keep searching across the entire range of the number of estimators [13].

Bayesian optimization (BO) [4] [23] focuses on the most promising hyperparameters. If there is a

record of past evaluations, then it would be helpful to use that information to create a probability model for

deciding upon the next choice of hyperparameters, whereas Random or Grid search would keep exploring the

whole search space. The main idea of BO is to take the objective function and develop a probability model of

it and apply it for selecting the most promising hyperparameters for the assessment of the objective function

[23].

There are two most important features for characterizing BO method, (1) a surrogate model for the

function f , and (2) an acquisition function for making selection about the sampling of the next evaluation

points from the hyperparameter space. The surrogate function is a model of the original objective func-

tion expressed as a probability representation which is built using previous evaluations [9]. It is a cheaper
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representation of the original model and is usually used to reduce the time and cost consumption of training

and evaluating the original model. The key steps of generating a surrogate model include the selection of

representative (evenly spread) samples for training the model across the parameter space, generation of the

predictive model using certain statistical distributions (the popular ones used in BO are discussed in the

subsequent sections under SMBO technique) based on the labeled training dataset and then evaluating the

model.

For an acquisition function, Expected Improvement (EI) function [23] is considered as the most

popular one. It is defined as EI(x) = E[max(0, f(x)− f(x∗)], where f is the choice of the function used for

the surrogate model in order to fit the response surface, x is the hyperparameter to be optimized and x∗ is

the best value of the hyperparameter so far.

So briefly, the approach goes as follows:

1. a surrogate probability model (often called a ‘prior’) of the objective function is built,

2. the hyperparameters that perform the best on the surrogate model are explored in each iteration,

3. these hyperparameter values are applied to the true objective function and evaluated using an acquisi-

tion function,

4. the surrogate model is updated incorporating the new results, this phase of updating is called ‘active

learning’ (the updated model is often mentioned as a ‘posterior’), and

5. steps 2-4 are repeated until maximum time or number of iterations is reached or expected output is

received.

In tuning a small number of hyperparameters, BO is efficient, but when the search dimension increases

too much, its efficiency degrades quite a bit [25]. This search method is not parallel, in contrast to Random

or Grid searches. For launching a new trial, the previous learning needs to be finished. The focus of Bayesian

model-based optimization is to choose only the most promising set of hyperparameters based on previous

calls to a model of the objective function called ‘surrogate’ in order to decrease the number of times the

objective function needs to be run and evaluated.

Sequential Model-based Bayesian Optimization (SMBO) is a formalization of BO which refers to

running trials one after another [41]. By applying Bayes rule each time, it tries to find better hyperparameters

and updates the surrogate model accordingly [92]. SMBO differs in the way it builds the surrogate using

different methods, but all of those methods depend on information from the history of previous trials in order

to propose better candidate set of hyperparameters for evaluating next. The aspects of this model-based

HPO go as follows:

1. a domain of hyperparameters is defined over which the search would take place,
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2. an objective function is set which takes in the considered hyperparameters as input and outputs,

3. the objective function’s surrogate model is formulated,

4. a criterion, also known as a selection function, for choosing next hyperparameters from the surrogate

model for evaluation is decided, and

5. to update the surrogate model, a history consisting of (score, hyperparameter) pairs is used by the

algorithm.

SMBO has many variations in steps 3 and 4, based on how the surrogate model of the objective function is

built and the conditions for selecting the next hyperparameters. The most common choices for the surrogate

model in step 3 are: Random Forest Regressions [103], Gaussian Processes [83] and Tree Parzen Estimators

(TPE) [83]; and the most frequent choice for the criteria in step 4 is the Expected Improvement (EI) score

[13]. These choices of surrogate models are discussed in the subsequent sections.

The efficiency of SMBO lies in the fact that it proposes better candidate hyperparameters for evaluation

compared to Random or Grid search. Also, it leads to fewer overall evaluations of the objective function.

At the same time, SMBO improves the score on the objective function at a much faster pace than those

two search strategies. The computational cost in SMBO is actually much cheaper than evaluating the actual

objective function; this method is useful where evaluating the objective function is costly in terms of money

or time (e.g.- in Oil exploration [70]). However, significant time is spent in this algorithm for selecting the

next hyperparameters in order to achieve the maximum EI. It has been proved that when SMBO is applied,

it takes hours for evaluating the actual objective function, but it requires only several seconds to find out

the next suggested set of candidate hyperparameters [13]. For choosing the next hyperparameters, less time

would be spent in evaluating poor hyperparameter choices if better-informed methods are used. So, in a

brief, there are two key advantages of using SMBO:

• overall runtime for HPO would be reduced, and

• it would be easier to achieve better scores on the objective function and also the test sets.

Random Forest (RF) regression is a Supervised ML technique that is a popular choice for constructing

surrogate models [4]. It follows Ensemble learning (a technique where multiple ML algorithms make their

own predictions which are later combined together for making more accurate predictions compared to any of

those individual models) used for regression (also classification) problems. At training time, it constructs a

multitude of decision trees and as output, it generates the mode of the classes (for classification problems)

or the mean prediction of the individual trees [85]. RF technique is often used to build the surrogate model

for HPO [103].

There are several benefits of RF, for which it is a great choice for constructing surrogate models [4].

It acts as an efficient and highly accurate classifier or regressor for large datasets. It can handle several
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missing data and numerous input variables but still focus on the important variables for producing correct

classification results. During the process of building forests, it produces an internal impartial calculation of

the generalization error for accurate outputs.

Gaussian process (GP) [93] is a collection of random variables indexed by time or space, such that

every finite linear combination of them is normally distributed, i.e. every finite collection of those random

variables has a Multivariate Normal (MVN) distribution [16]. In the MVN or Gaussian distribution, the

distribution is generalized to multi dimensions from the one-dimensional normal distribution [4].

In the area of ML, Gaussian Process Regression (GPR) is a form of non-parametric Bayesian approach

to regression. The term ‘non-parametric’ means that it is not limited by any particular functional form, so

the curves in the graph can take any shape according to the data. This is a popular method because it

works efficiently on small to large scale datasets. Also, based on probabilistic model, it is able to provide

predictions on uncertainty measurements. Therefore, GP provides information about both the likely value

and the uncertainty range around that value of function f .

Tree-structured Parzen Estimator (TPE) is an iterative method that proposes the next set of

hyperparameters to be evaluated based on the probabilistic model created from the history of evaluated

hyperparameters (the initial evaluations are performed based on Random Search). TPE method treats cate-

gorical hyperparameters in a tree-structured fashion [13] and applies Bayes rule to build a probabilistic model

[4]. For TPE, Bayes’ rule makes an estimate of an initial surrogate model of the objective function; this gets

updated every time when more samples are drawn. Consequently, after a specified number of evaluations

on the objective function, it is hoped that the model would almost accurately reflect the behaviour of the

objective function and the hyperparameters that have maximized the objective function are the ones which

have produced the greatest EI. SMBO with TPE method has shown to perform better in structured and

high-dimensional model space [59]. A drawback of TPE is that the interactions between the hyperparameters

are modeled less explicitly compared to GPs.

Population-based Training (PBT) is an efficient algorithm for asynchronous training and optimizing

a NN within a fixed computational budget of resources [46]. PBT connects and expands the above stated two

search methods which are Random Search and Bayesian search. At the beginning of the search, PBT starts

training the NN with random hyperparameters like Random Search. PBT collects information from the

workers or population for refining hyperparameters and directing the computational resources for promising

runs. Here in PBT, a worker can copy or replicate the parameters of a better performing worker and search

for new hyperparameters by altering the existing values. With the progress of the search process, PBT

identifies better hyperparameters and dedicates more training time and resources to the promising trials,

directing to automatic learning of the finest configurations learned from the workers or population like the

Bayesian search. Therefore, this method offers faster learning, reduced usage of computational resources and
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conservation of time [46].

PBT fuses ideas from genetic optimization algorithms. Some well-known PBT methods are Genetic al-

gorithms [30] [91] , Evolutionary algorithms and Evolutionary strategies [7], Covariance Matrix Adaptation

Evolutionary Strategy (CMA-ES) [44] [61], and Particle Swarm Optimization algorithms [8].

Evolutionary optimization has been greatly used in HPO for statistical ML algorithms, Automated

ML, DNN training and architecture search [98]. Evolutionary optimization algorithms are used for noisy

black-box functions and originated from the biological ‘evolution’ concept (via mutation and recombination).

The process briefly follows the steps mentioned below.

1. an initial population is created containing random solutions (e.g., tuples of hyperparameters are gen-

erated randomly, usually 100+),

2. the hyperparameter tuples are evaluated and their fitness function is calculated accordingly (i.e., with

those hyperparameters, 10-fold cross-validation accuracy scores of the ML algorithm is checked),

3. the hyperparameter tuples are ranked by their relative fitness score (e.g., cross-validation score),

4. the worst-performing hyperparameter tuples are replaced with new hyperparameter tuples with the

help of mutation (evolution), and

5. steps 2-4 until are repeated unless algorithm performance is satisfactory or it is not improving anymore.

Early stopping-based search strategy is very useful when search spaces are vast in size, containing

a mixture of continuous and discrete hyperparameters and also the computation of loss function and the

evaluation of a set of hyperparameter result in quite high computational costs. Successive Halving Algorithm

(SHA) [55], Irace [63] are some early stopping-based optimization methods which initiate the process as a

Random Search, but periodically applies statistical tests and analysis for pruning poor-performing configu-

rations and focusing on the promising ones instead. Asynchronous Successive Halving (ASHA) [55] is the

asynchronous version of SHA for further improving SHA’s performance by eliminating ‘synchronous’ eval-

uation and pruning strategy of underperforming models. Hyperband [56] is another early stopping-based

algorithm that calls upon SHA or ASHA several times with different levels of pruning mechanisms with fewer

numbers of inputs.

The algorithm in ASHA is performed asynchronously and in parallel for searching high accuracy hyperpa-

rameters while escalating the computational proficiency. In a parallel distributed environment and in terms

of both efficiency and accuracy, ASHA can accomplish improvements by executing a Random Search with

active early stopping. The results in ASHA showed that it could achieve linear scalability with the increasing

number of workers in a distributed environment.
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2.4 Features of Automated Hyperparameter Optimization (Auto-

mated HPO) frameworks

There is neither any ultimate one-stop solution about what is the best HPO to use, nor any universal HPO

algorithm which can provide the best performance over all problems, since the types of ML problems vary

so much from one to another. All HPO algorithms share the following identical workflow, which comprises

major three steps:

1. search space and configuration settings are initialized,

2. values for hyperparameters are proposed, and

3. the model is trained and the result is updated.

2.4.1 Distributed and/or parallel computation and scalability

Hyperopt [15] can implement parallel evaluation of trials by utilizing a cluster of computers. The objective

function is provided with a handle to Mongodb [17] databases for running a search in parallel in Hyperopt.

Therefore, the objective function can update the database even with partial results, interact with concurrent

processes, etc. [15]

Spearmint [83] is a software package designed to perform BO and run experiments automatically itera-

tively adjusting a number of parameters and minimize some objective functions using as few runs as possible.

It uses GP and accomplishes sampling over the hyperparameters. It can be implemented in parallel on a

single machine by using multiple processors, as well as in a distributed cluster environment. Spearmint offers

‘driver’ modules for enabling different environments. For running on a single machine with likely many cores,

the ‘driver’ flag is set to ‘–driver=local’, which will spawn a new process on the current machine. Distributed

experiments can be run in parallel on a multi-node cluster with the help of Sun Grid Engine (SGE) [29]; the

‘driver’ module is then set to ‘–driver=sge’.

HPOlib [23] is another HPO library where, the function evaluations can be executed in parallel by setting

the argument ‘n jobs’ offered by HPOLib if the target machine has enough processors/cores. The authors

suggested that the value should not be higher than the available number of cores in the machine).

HyperOpt, Spearmint, and HPOLib are open-source systems which can act as distributed model selec-

tion and training tools for both the search and evaluation of the model. Nevertheless, they require manual

administration of computational resources across a cluster and are tightly coupled to the search algorithm

structure [59]. Moreover, they do not allow for intermediate control of trial execution; rather they treat a full
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trial execution as an atomic unit, as a result, efficient usage of cluster resources is impeded by them. These

solutions are mainly devised for research purposes and hence challenging to expand or incorporate with other

algorithms. As a result, users face challenges to switch among these choices without substantially changing

their existing code base [59].

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [61] is an HPO that is very

useful for continuous black-box DNN models. Loshchilov et al. have shown that, while BO techniques usually

work better for function evaluation within smaller numbers of hyperparameters (e.g., when the numbers are

below 10), CMA-ES performs better for higher numbers of hyperparameters (e.g., more than 10) [34].

CMA-ES is an iterative algorithm. It samples candidate solutions from an MVN distribution in each of

its iterations. The solutions are evaluated in parallel or sequentially and then, the good samples with higher

probability distributions are used for the next iteration. CMA-ES has proved to outperform BO and thus

it could be a great choice for parallel HPO (it optimized 19 hyperparameters of a DNN in parallel on 30

GPUs [61]). However, a much broader comparison on parallel computation should be executed comprising

of various modifications and more test problems to meet various constraints as stated by Gelbart et al. [28].

Auptimizer [59] is another HPO framework, where for training models, users can use all available

computing resources in a distributed environment. It has integrated Random search, Grid search, and open-

source Auto ML/HPO libraries/software such as AutoKeras [47], Spearmint, HyperOpt, Hyperband [56]

(discussed later), Bayesian optimization (BO) and Hyperband (HB) (BOHB) [24], etc. to be used as the

search techniques.

It deploys a pool of computing resources for scalability and users just need to specify the resources

required. For the HPO process, the user can scale out the experiment by specifying the number of jobs that

can be executed in parallel (concurrently) on the CPU resources via using ‘n parallel’ and number of processes

required by the jobs by using ‘n samples’ as offered by Auptimizer. Furthermore, it offers extensibility via

enabling easy integration of new HPO algorithms according to the specified interface.

However, ensuring smooth communication among the heterogeneous machines that jobs run on and be-

tween the jobs themselves, is a key challenge of usability, which has scopes for improvement. In future

releases, they intend to launch other services as, model compression, etc.

Ray [72] is a distributed system, maintained by a single dynamic execution engine, that employs a unified

interface to convey both actor-based [12] and task-parallel computations; it offers distributed HPO by lever-

aging its combination with Tune [57]. This distributed cluster-computing framework has provided a single

platform for training, simulation, processing large inputs (e.g. images, video), efficiently for ML applications.

Generally, model training and hyperparameter tuning of any CNN model comprises vast datasets. Running

them on a single GPU can take several days. Therefore, a cluster-based system in a distributed environ-
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ment can be very advantageous in such situation by employing several machines in parallel. Ray helps to

accomplish it by using their offered APIs, such as ‘train policy.remote()’.

Tune is an open-source unified framework for distributed ML model selection and training based on Ray

[72]. It offers various HPO algorithms, such as BO, PBT, HyperOpt, HyperBand/ASHA [56], etc. Tune can

be used for executing experiments using large clusters and tuning hyperparameter at any scale. Tune allo-

cates CPU and GPU instances to each ‘trial’ (a single training run) through the help of Ray. Furthermore,

using Ray APIs, individual trials can launch further subprocesses and leverage themselves distributed com-

putation. Nevertheless, their adaptation is noticed to be often ad-hoc in nature to the distributed computing

environment.

Katib [104] is a scalable AutoML platform, which is deployed on top of Kubernetes-based distributed

systems. A wide range of AutoML algorithms (e.g., BO technique, Hyperband, Grid search, Reinforcement

Learning [84]) together with both hyperparameter fine-tuning and Neural Architecture Search (NAS) [58] are

supported. It divides the system into discrete components that are encapsulated as microservices and each

of them operate within a Kubernetes pod. They have integrated Google Vizier’s [31] search techniques with

their design. The search can be accelerated by spawning multiple parallel ‘trials’ in each iteration offered

by their controller. The Vizier Core is furthermore connected to a MySQL database that manages the data

communication between the containers; hence, flexible management and scalable deployment are ensured.

Nonetheless, they have mentioned that they would be integrating parameter sharing for facilitating advanced

acceleration techniques.

Autotune [49] is an automatic parallel derivative-free [79] optimization framework. It is capable of

applying multiple occurrences of global and local search algorithms (e.g., Genetic Algorithms (GAs) [33], BO

technique) in parallel. Multiple worker nodes can be assigned to each model to be trained in Autotune; also,

multiple models can be trained and/or tuned in parallel. Autotune operates on SAS Viya [27], which supports

cloud computing and enables distributed analytics. The system keeps performing simultaneous global and

local searches while uninterruptedly distributing computational resources and function assessments.

Basically the hybrid approaches use the output of one algorithm to start the second algorithm. Since the

information is shared among concurrent searches in Autotune, the strength of this approach can be improved

over other the hybrid approaches. More research is required to enable the effective handling of early-stopping

of unpromising trials. Also, there are rooms for improvement regarding the mechanism of Bayesian search

method and the support for multi-objective tuning with exploration of trade-offs between model complexity

and model quality [59].
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2.4.2 Static vs. dynamic search space

In DL frameworks, the term ‘define-and-run’ refers to the deployment of training models in which the

computational graph is built at first, then the model is trained using training data. It leads to inefficient

usage of memory because all layers of the NN that comprise of the computational graph must be loaded

in memory prior training, even though some layers might be required only at the starting or ending of the

training process [88]. For example, this scheme could be easily implemented for static NN models, like CNNs,

but this is not useful for RNNs. In RNNs, it is generally trained using backpropagation through time and

applying thresholds for the propagation for achieving computational efficiency. The entire computational

graph still must remain in the memory even if it does not matter whether certain layers are no longer

necessary in backpropagation [68].

This scheme does not allow the user to access the inner workings of the NNs, thus, leading to difficulties

while creating an effective model; the user would need to access the inner details for debugging and tuning a

model efficiently. However, the computational graph in this technique contains information about the model

as a whole like a black-box; therefore, the profiler and debugger would not be able to determine the errors

and the required solutions [88].

The term ‘define-by-run’ [88] means that, rather than defining in advance, the user is able to construct

the search space dynamically during runtime. In this technique, the model’s computational graph is not fixed

before training. Rather, when the forward computation for the training data is started, the computational

graph is initialized accordingly, leading to efficient usage of memory and enough user-flexibility for debugging.

These two techniques are shown in Figure 2.4 (based on Tokui et al. [88]).
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Figure 2.4: Hyperparameter optimization (‘define-and-run’ vs. ‘define-by-run’) (based on Tokui et al.
[88])

Many popular HPO frameworks, such as HyperOpt [15], Spearmint [83], Autotune [49], Katib [104],
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Tune [57], GPyOpt,2 Sequential Model-based Algorithm Configuration (SMAC) [40], Vizier [31] etc. follow

‘define-and-run’ style for constructing the hyperparameter search space. They construct the search space at

first and then start the computations.

Chainer [88] is an open-source distributed framework for DL models. Existing optimization methods

are supported by Chainer, such as AdaGrad [90], Stochastic Gradient Descent (SGD) [64], Adam [102], RM-

Sprop [106]. Chainer does not fix a model’s computational graph before the model is trained. When the

forward computation for the training data set takes place, the computational graph or the network is defined

dynamically [88]. Using the ‘define-by-run’ approach, Chainer defines complex NNs with user-flexibility and

allow them to make modifications during runtime. Therefore, researchers and engineers can easily work on

complicated models through trials-and-errors [88].

Optuna presents the ‘define-by-run’ [88] API, enabling users to construct the search space dynamically.

In this process, the user does not have to explicitly define everything about the search space and optimization

before execution. Rather, Optuna receives a living trial object when the ‘optimize API’ is invoked on the

objective function and through the interaction with that trial object, the objective function is built gradually.

During the runtime of the objective function, the methods of the trial object construct the search spaces

dynamically [2].

2.4.3 Early-stopping and pruning

The use of a multi-armed bandit strategy [89] [89] has shown promising results for DNN models; it can help in

optimizing the hyperparameters as well as the training budget. Therefore, this approach has been considered

in the design procedure of Hyperband [56]. For optimizing hyperparameters, Hyperband has implemented

Random Search through adaptive resource allocation and early-stopping [26]. They have addressed how to

assign resources among arbitrarily sampled hyperparameter configurations.

Furthermore, Hyperband counts on an early-stopping strategy to distribute resources and assess orders-

of-magnitude more configurations than general black-box techniques like BO methods, feature subsets and

iterative algorithms. The finite computational resources (e.g. training epochs or dataset size, data samples,

iteration, etc.) are dynamically allocated in Hyperband through random sampling and under-performing

hyperparameter settings are eliminated by implementing Successive Halving (SH) [74].

Jamieson and Talwaker [55] have taken into consideration the fact that a huge number of configurations

must be evaluated for exploring the large hyperparameter spaces efficiently. Since the costs and time of

training models keeps growing in complex ML models, authors in this work have introduced Asynchronous

2https://github.com/SheffieldML/GPyOpt
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Successive Halving Algorithm (ASHA), a bandit-based partial training method and a robust hyperpa-

rameter tuning algorithm which exploits parallelism and aggressive early-stopping as already discussed earlier.

Google Vizier [31], provides black-box hyperparameter optimization. Automated early stopping is

supported in Vizier via an API call to a method ‘ShouldTrialStop’. Based on the early-stopping rules im-

plemented in Vizier, this API analyzes and determines the trials that should be stopped. Vizier follows the

median-stopping rule, where a pending trial is stopped at a certain time if the trial’s best objective value

by that time is worse compared to the median value of the completed trials’ objective values by that time [31].

2.4.4 Lightweight and ease-of-use

The updated version of Waikato Environment for Knowledge Analysis (WEKA) project named

Auto-WEKA [87] is particularly devised for helping users by exploring through WEKA’s ML algorithms

using the BO technique. Later, Kotthoff et al. [50] have updated the software and added four major features,

which made the usage of WEKA easy-to-use and lightweight.

1. previously it had support only for classification algorithms, now it supports regression algorithms,

2. all performance metrics of WEKA is getting support for the optimization from 2.0,

3. parallel executions (on a single machine) is now supported natively; moreover, instead of just the single

best configuration, the N best configurations of each run are being saved by the framework, and

4. Auto-WEKA 2.0 is now completely integrated with WEKA.

SMAC, GPyOpt, Spearmint, Hyperopt and Optuna provide the convenience of easy setup and installa-

tion for the frameworks. Also, they provide the facility to conduct the computations in a user-friendly light-

weight way through their interfaces. In Optuna, the general users can run their experiments in their own

local machine with Jupyter Notebook;3 and instead of dealing with the extra effort for deploying a database

by themselves, they can rather use Optuna’s in-memory based built-in data-structure as the backend storage.

2.5 Optuna

Optuna [2] is an open-source hyperparameter optimization toolkit, which is particularly designed for ML and

DL applications. As long as the objective function can be defined, it can operate on non-ML applications also.

It has simplified architectural design and other flexible features, which are the reasons why it has been chosen

3https://jupyter.org/
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as the HPO for the designated Flower Counter application in this research work. Many existing optimization

frameworks are not appropriately addressing some major issues. Therefore, they have incorporated these

important features in Optuna.

• A ‘define-by-run’ style to dynamically construct the search space of different hyperparameters was

deployed.

• Efficient strategies for searching and pruning for making better cost-effectiveness of optimization

has been incorporated in it.

• The architecture is scalable for handling any size of experiment. It can be configured in a distributed

environment for parallel optimization.

• It is very easy to configure and installable with the lowest setup requirements (e.g., via using minimal

commands).

• It is available as an open-source software and provides the support to incorporate new ideas and

methods of optimization from the community, etc.

The HPO process in Optuna basically considers a specific target of maximizing/minimizing an objective

function as the input using the given range of hyperparameters and provides the (validation) score as the

output. They use the term ‘study’ to indicate each process of optimization and ‘trial’ to indicate each

assessment of objective function. Optuna provides samplers for hyperparameter sampling. For each trial, the

user is asked to call ‘suggest API’ sampler within the objective function, e.g., a method called ‘suggest int ’

suggests a number for ‘n layers’; an integer number to decide the number of hidden layers in the Multilayer

Perceptron (MLP) [86] or a ‘suggest uniform()’ for suggesting a continuous value for momentum [6] for NN

training, etc. Heterogeneous parameter spaces can be described using simple code in Optuna.

Optuna enables HPO by adopting efficient sampling and pruning techniques for unpromising trials. The

search space is continually narrowed down by the samplers via using the suggested parameter values based

on the records or previous history and evaluated objective function’s values. This could lead to stable

search space, better values of objective function and better hyperparameter values. The following sampling

algorithms are applied by Optuna, they can be accessed under the ‘BaseSampler’ class.

• SMBO based GP and TPE sampler,

• CMA-ES based, sampler,

• Random Search,

• Grid Search, and

• User-defined algorithm
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Unless specified otherwise by user, the default sampler is ‘optuna.samplers.TPESampler ’. 4 Furthermore,

Optuna also permits users to use their own personalized sampling procedure.

For the pruning mechanism, there are two phases:

1. monitoring the intermediate objective values periodically and

2. terminating the trial which does not encounter the pre-defined conditions for the objective function.

As already stated previously, the following pruning algorithms are available in Optuna:

• ASHA,

• Hyperband,

• Median pruning algorithm [37], and

• Threshold pruning algorithm [105].

Optuna offers early-stopping and pruning strategies by implementing various APIs under the ‘pruner()’

module. It uses the ‘report()’ API to monitor the functionality and the ‘should prune()’ API to terminate

the unpromising trials prematurely. A boolean value is returned by this module for a given trial and its

associated study; the value represents if the trial should be pruned or not. There is a ‘BasePruner’ class

as the parent pruner class, from which the remaining child classes inherit from for implementing different

pruning strategies. Different pruning strategies are offered by this module, such as pruning based on any

particular threshold value or median value, any specified percentile (25%, 50%, 75% etc.), pruner using ASHA

and Hyperband etc [2]. ASHA is mostly advantageous in distributed applications since at each round of the

pruning, no worker waits for the results from further workers. So, parallel computation is achieved as there

is a minimal delay during multiple trials.

Optuna is scalable from a single machine to multiple machines. It offers a built-in in-memory data

structure as the storage back-end for small scale or personal use. Any Relational Database (RDB) can be

defined using ‘storage name’ for working with large-scale datasets and parallel optimization. Databases such

as SQLite5 can be employed as the backend as well (for distributed experiments, they suggest using other

RDBs instead of SQLite, such as PostgreSQL [71] or MySQL for better performance). An RDB backend

enables access to the history of studies and maintains the persistence of experiments (i.e., facilitates the

users to save and resume the studies). Optuna provides a web dashboard for the purpose of visualization

and analysis of studies in real-time. Optuna can easily be merged into a container-based system such as

Kubernetes. The flexible system design lets the users conduct distributed computations which scales almost

linearly with the increasing number of workers.

4https://optuna.readthedocs.io/
5https://www.sqlite.org/
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Figure 2.5: Architectural overview of Optuna (based on Akiba et al. [2])

The architectural diagram of Optuna is shown in Figure 2.5 (Akiba et al. [2]). Every worker runs an

instance of the objective function within each study. Using the Optuna APIs, the model executes a trial

and computes a value for the objective function. The shared storage is accessed by the objective function

upon the invocation of the associated APIs. Necessary information from the previous studies can be easily

obtained from the storage at anytime. The model runs trials on the objective function using each worker

independently and the progress of the current study is shared among them via the storage.

2.6 Review of the HPO frameworks

Some well-known HPO frameworks and DL libraries have been discussed so far. Most of the HPO follow

the ‘define-and-run’ strategy, except Optuna [2] and Chainer [88] follow ‘define-by-run’ scheme to facilitate

dynamic and flexible computational strategy. Optuna, Tune-on-Ray, Hyperopt, Sckit-Optimize,6 etc. are

open-source projects but Google Vizier is a paid service (since it provides cloud storage). Optuna, Tune-on-

Ray, Hyperopt and Google Vizier can provide parallelization, use GPUs and handle large datasets but Sckit-

Optimize can not. Autotune, Google Vizier, Katib, Tune-on-Ray provide pruning mechanisms, facilitate

real-time dashboard for visualizing the experiments and results but being distributed systems in nature,

the configuration process could be difficult for general users. Other frameworks such as SMAC, GPyOpt,

Spearmint and Hyperopt do not offer a pruning mechanism or a dashboard, but they are lightweight and

easy to setup and install.

Optuna almost fulfills all of the features of HPO that have been mentioned above; it offers an efficient

pruning mechanism, supports real-time dashboard via Tensorboard [94], can operate both on a single machine

or distributed machine and just takes few lines of instructions to install and setup, therefore, making it very

simple for general users to easily configure it and use it for their applications. Therefore, based on the

6https://scikit-optimize.github.io/stable/
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overall easiness and technology compatibility, and other useful characteristics, Optuna has been chosen as

the designated HPO for this work.

2.7 Summary

In this chapter, essential terminology used in CNN which will be mentioned recurrently in the upcoming

chapters have been explained. A brief idea about the DL framework Tensorflow’s execution model has been

presented that has been used for Flower Counter application. Next, the concepts of HPO and their features,

various techniques and algorithms used for searching among the best observed hyperparameter values in

HPO are explained. The popular automated HPO frameworks have been categorized according to some

fundamental characteristics of HPO methods and their working mechanisms have been discussed in detail

correspondingly. Then, the architectural description and the significant characteristics of HPO framework

Optuna, which has been selected as the HPO for optimizing the hyperparameters of the designated Flower

Counter application, has been described comprehensively along with the reasons of its preference compared

with the other frameworks.
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3 Experimental Design and Configuration

This chapter begins with a brief description of the architecture of the CNN-based Flower Counter appli-

cation [19], which is being used as the case study in this work that has been developed in DISCUS Lab. Also,

a detailed description and pictorial depiction of the datasets being used for the experiments, the process of

generating the ground truths and the configuration details are presented.

3.1 Architecture of the Flower Counter application

3.1.1 Overview of MultiColumn CNN-based (MCNN) Flower Counter model’s

architecture

The Multi-column Convolutional Neural Network (MCNN) model for estimating crowd count by calculating

the density map of a given crowded image was proposed by Zhang et al. [100] [101] which inspired the

architecture of the CNN based model of the Flower Counter application [19]. The MCNN model of Flower

counting is shown in Figure 3.1. The diagram is rotated 90 degrees and it turned the columns into rows

just pictorially, conceptually they are the columns. The structure follows this columnar pattern in the CNN:

(CONV-POOL- POOL-CONV-DECONV-DECONV). The last layer of the columns stack feature maps from

the previous layers and passes it on to a final CONV layer which generates the density map. The loss function

is calculated between the ground truth and the predicted density map. The twofold usage of POOL layers

reduces the spatial resolution of each image by 1/4 as well as the output resolution of the predicted density

map; thus, to prevent this down-sampling and loss of useful information two Deconvolutional (DECONV)

layers have been inserted. A deconvolution is a mathematical operation that is the inverse of the convolution

function in order to reverse the effect of convolution. The purpose of deconvolutional layer is to find signals

which are lost or features that might not have been considered significant previously CNN’s task. Due to

having been convoluted with other signals, a signal might be lost. The architectural diagram is taken directly

from the original work [19] and shown in Figure 3.1.

3.1.2 Datasets

The datasets being used are the images of Canola flowers from various cameras which were positioned in

distinct locations of various Canola flower fields [19] as stated in Chapter 1. They were collected as a part

of the COAST project. Some filtering was done explicitly by visual inspection to exclude images captured
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Figure 3.1: Multi-column Convolutional Neural Network architecture of Flower Counter application
[19]

during bad weather conditions, such as the days when there was fog or it was very dark or windy, cameras that

had extremely out of focus pictures etc. After the filtering, the images were tiled into small sub-images for

getting better visuals of the flowers. Then, those sub-images were annotated by the researchers for generating

the ground truth and used for the training the model [19].

Throughout the rest of this document, the image capture date/camera ID for all 2016 images will be

referred to using the format: ‘camera-day’, where camera represents the camera id and the day presents the

date of data collection. The date is formatted as mmdd, where the mm stands for month and the dd stands

for day. For example, the images captured on the second of August by camera 1109 will be represented

as 1109-0802. For 2018 dataset, the camera id is represented as: ‘canola40-mmdd-split’. For example, the

images captured on the 14th of July will be represented as canola40-0714-split.

3.1.3 Generation of ground truths and density maps

To match the software expectation of image resolution, each filtered image was split up into 224x224 sized

tiles. To split the images in parallel, a python script was developed which performed in such a way that,

when given the single coordinate for each image, it would automatically crop a variable sized window and

then split into 224x224 sized tiles.

In order to train the Flower Counting application, the ground truth density maps were required, which

were prepared by using the coordinates of the flowers. The procedure of generating density map was like

this: a) all the visible flowers from each image was located and manually annotated by putting a red marker

into the center of each observable flower with GIMP1 (the annotations were verified by the supervisors),

and then, b) a python program was executed to extract the coordinates of each flower. A two-dimensional

1https://www.gimp.org/
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(2D) empty array was created with the same height and width of input image tile. The value 255 is put

in the same locations inside the two-dimensional array as in the annotated images (generated from manual

annotation). Finally, a Gaussian kernel [82] normalized to sum to one was used that blurred the non-zero

elements of the array. Some sample images and their corresponding density maps for 2016 and 2018 datasets

are demonstrated in Figure 3.2 and 3.3 respectively.

3.2 Hardware and software configurations

The experiments have been run on four Ubuntu servers. All of them have the same hardware configurations

with Ubuntu Linux version 18.04.5 LTS, 64 bit OS, RAM size 1.4 TB, NVIDIA Tesla V100 PCIe 16 GB

graphics card. Other software and hardware configurations are listed below in Table 3.1.

Table 3.1: Configuration details of the servers used in the experiments

Configuration Parameters Characteristics

Architecture x86 64

CPU(s) 64

Model name Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz

System memory size 1.4 TB

GPU configurations Product Name: TeslaV100-PCIE-16GB

NVIDIA-SMI Driver Version: 418.181.07

CUDA Version: 10.1

Software versions inside Anaconda matplotlib: 3.2.2

numpy: 1.18.5

optuna: 1.5.0

pandas: 1.0.5

pip: 20.0.2

python: 3.6.10

seaborn: 0.10.0

tensorboard: 2.0.2

tensorflow: 1.14.0

tensorflow-gpu: 1.14.0

3.3 Dataset characterization

Based on the existing variations of the images of the datasets and image qualities, four datasets have been

chosen as representatives in this work to train, validate and test the necessary experiments on the flower
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(a) Image: frame000254 0 4
1109-0704

(b) Image: frame000359 0 1
1109-0704

(c) Image: frame000368 1 0
1109-0709

(d) Density map:
frame000254 0 4

1109-0704

(e) Density map:
frame000359 0 1

1109-0704

(f) Density map:
frame000368 1 0

1109-0709

(g) Image:
frame000415 2 2

1109-0802

(h) Image:
frame001026 0 1

1109-0704

(i) Image:
frame001327 1 0

1109-0706

(j) Density map:
frame000415 2 2

1109-0802

(k) Density map:
frame001026 0 1

1109-0704

(l) Density map:
frame001327 1 0

1109-0706

Figure 3.2: Sample images from different camera-days of 2016-all dataset and corresponding density
maps
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(a) Image: d-e18345ae-2018-07-
01 16-45-02 2 1 0 1
canola40-0701-split

(b) Image: e18345ae-2018-07-
06 09-00-01 2 1 1 1
canola40-0706-split

(c) Image: e18345ae-2018-07-
08 20-00-01 1 2 1 0
canola40-0708-split

(d) Density map: d-e18345ae-
2018-07-01 16-45-02 2 1 0 1

canola40-0701-split

(e) Density map: e18345ae-2018-
07-06 09-00-01 2 1 1 1 ,

canola40-0706-split

(f) Density map: e18345ae-2018-
07-08 20-00-01 1 2 1 0

canola40-0708-split

(g) Image: e18345ae-2018-07-
14 17-15-01 2 3 1 0
canola40-0714-split

(h) Image: e18345ae-2018-07-
20 04-45-01 2 4 0 0
canola40-0720-split

(i) Image: e18345ae-2018-07-
28 08-00-01 2 4 0 1
canola40-0728-split

(j) Density map: e18345ae-2018-
07-14 17-15-01 2 3 1 0

canola40-0714-split

(k) Density map: e18345ae-2018-
07-20 04-45-01 2 4 0 0

canola40-0720-split

(l) Density map: e18345ae-2018-
07-28 08-00-01 2 4 0 1

canola40-0728-split

Figure 3.3: Sample images from different camera-days of 2018 dataset and corresponding density maps
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counter model. They are: 2016-all dataset, 2018-split dataset, 2016-1109-5-12 dataset and 2018-july-2-23

dataset.

The images of the 2016-all dataset were captured 1x per minute, usually only in daylight, but some

cameras took pictures 24 hours a day. The resolution of the images are 1280x768. Images from cameras

were retrieved every 14 days. The timestamps are on the image itself, and follows an ordinal filename for

the image within the day. Several of the cameras had unusable pictures which were very out of focus. There

are 6 cameras under 2016 camera: 1108, 1109, 1122, 1207, 1225, and 1237. The images of camera 1108 are

very fuzzy, and thus, unusable until the date of July 15. Camera 1109 is good the whole time, but is missing

for the middle two weeks, because the camera was not functioning. Camera 1207 is blurry again; images are

sampled from 1225 and 1237.

The images of 2017 dataset were captured 1x every 5 minutes. Clocks were broken, so there are no

reliable timestamp. There were approximately 5-6 cameras taking pictures of Canola; among them one

camera’s images are obtained which gave better visibility. The resolution of 2017 camera is 3280x2464.

The images of 2018 dataset were captured 1x every 15 minutes. There are timestamp in the filename, so it

is easy to distinguish the cameradays. Images from the cameras were retrieved at end of season. There were

probably 5 or 6 cameras that had data; among them, data from 3 cameras with better quality are retrieved.

The resolution of the images are the same as 2017 images and the cameras were of better quality.

The 2016-all dataset and the 2018-split dataset have lots of images and so many images with zero flowers

relative to the total number of images. So, it would take several hours/days to complete a single trial for

these huge datasets and also those zero-flower images would impact the learning of the model significantly

(the training of the model would be biased towards zero flowers while learning).

Hence, some pre-experiments have been conducted to decide upon a suitable binning strategy for facilitat-

ing suitable learning and training of the CNN model. This strategy has been explained, used and its accuracy

has already been proved in the chowdhury’s work [19]. Briefly, this strategy can be described as follows: in

order to select sample images to reduce the bias towards sparse images, a fixed number of bins are loaded

with certain number of images that fit the criteria. An equal number of images from each bin are selected

based on the smallest bin. If it is not binned, then the model would be biased and lead towards the problem

of ‘overfitting’, meaning memorizing everything and not being to able generalize well on unseen data. So

the training and the validation of the model would be greatly affected, such as it would provide very good

accuracy scores on the similar test populations but poorer scores on unseen test polulations. This strategy

of under-sampling the majority group and over-sampling the minority group reduces the total number of

training images; it also reduces overall model bias [69].

Therefore, based on pre-experiments, nine bins have been selected for this work to be loaded with the

particular number of flowers respectively (shown in Table 3.2) for the large datasets. The trade-off between

the equal ranges of flowers and equal numbers of images in each bin as shown in Table 3.2 can be explained

as follows: 1) the size of the smallest bin has been kept as large as possible to get a larger number of samples,
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2) the number of samples within each bin have been fairly selected, and 3) it has been ensured that there was

an adequate amount of diversity. As an example, if 0-9 was chosen as a bin, there would have been far more

images with zero flowers than that of 9’s. The distribution would have looked like this (42196, 7156, 2808,

2522, 567) for 0-9 flowers. But between 25-29 flowers, the distribution would have looked like this (76, 64, 59,

66, 57) where the number of images were more evenly distributed. There are 42196 images with 0 flowers.

A bin which is this large, would underrepresent the image with 9 flowers. For the 2016-1109-5-12 dataset

and the 2018-july-2-23 dataset, the whole datasets are used as the total number of images are comparatively

fewer in number already. The bins have been loaded with certain number of flowers to include enough flowers

in each bin according to the availability of the annotated images at hand. Based on the applied binning

strategy, the total number of flowers in each bin for training-validation-testing (the ratio that is followed is

70-20-10(%)) are shown in Table 3.3. They show the number of images in each bin according to the number

of flowers as per Table 3.2 and finally, the number of samples that would be selected according to the smallest

number among all the bins for different datasets respectively.

Table 3.2: Binning strategy being used for the 2016-all dataset and the 2018-split dataset

Bin index Flower count range

1 0-4

2 5-9

3 10-14

4 15-19

5 20-24

6 25-29

7 30-39

8 40-69

9 70 and above

A histogram of the annotated images used for model training from these 4 datasets is shown in Figure

3.4; it shows the distribution of the number of flowers in each bin. The distributions are skewed to the right

end because more images contain lower numbers of flowers. The reason is the choice of sparse images by

individuals while doing manual annotation which takes less efforts and scarcity of images with larger numbers

of flowers available at hand.

Figure 3.4 shows the distributions of training datasets: the distributions shown in Figure 3.4a and Figure

3.4b are the distributions for the 2016-all dataset and the 2018-split dataset respectively before binning,

and 3.4c and 3.4d are are the distributions for the 2016-1109-5-12 dataset and the 2018-july-2-23 dataset

respectively without any binning. In the 2016-all dataset, for 4 days (0802, 0803, 0805, 0806 cameradays),

images were annotated at the end of the season with nearly all zero flowers since blooming was finished. This

is a limitation, because this was the camera with the clearest pictures, but it was not functional between
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Table 3.3: Total number of images (before and after binning) used for training for datasets

Dataset Number of Images

(train-validation-test ratio: 70%-20%-10%)

2016-all dataset Before binning : Total number of images = 76,576

After binning : 53,603 + 15,315 + 7,658 = 76,576

Images per Bin: [66502, 4202, 1388, 765, 472, 325, 374, 909, 1639]

Number of samples to be collected from each bin: 325

2018-split dataset Before binning : 2924

After binning : 2,047 + 585 + 292 = 2924

Images per Bin: [1254, 473, 318, 140, 142, 140, 186, 155, 116]

Number of samples to be collected from each bin: 116

2016-1109-5-12 dataset Without binning : 3720 + 1063 + 532 = 5315

2018-july-2-23 dataset Without binning : 1296 + 370 + 186 = 1852

July 13 and August 1.

Figure 3.5 shows the distributions of testing only datasets; the distributions shown in Figure 3.5a and

Figure 3.5b are the distributions for 2016 camera-1237 dataset and the 2018-split canola40-0706 dataset

respectively, and 3.5c and 3.5d are are the distributions for the 2016-other-cameras dataset and the 2018-

july-20-28 dataset respectively. The above mentioned four datasets have following number of images as shown

in Table 3.4.

Table 3.4: Training and test datasets for different population experiments

Training dataset Test dataset Number of Images in Test datasets

2016-all dataset 2016 camera-1237 354

2016-1109-5-12 dataset 2016-other-cameras dataset 562

2018-split dataset 2018-split canola40-0706 124

2018-july-2-23 dataset 2018-july-20-28 dataset 864

Four training datasets and four test datasets have been taken from two years 2016 and 2018. The

camera-days of the test datasets for both the 2016-all dataset and the 2018-split dataset, are also part of

the population of training datasets. Therefore, a bash script has been run to exclude the test images from

the training datasets and prepare a separate test dataset. The test datasets are similar to the training

datasets, but not exactly the same; rather, they are taken from a different camera and different day in order

to check the overfitting problem [96] of the model. The model has been trained-tested on different datasets

respectively. Also, the number of test populations in each test dataset are mentioned in Table 3.4.

The datasets have images captured in various weather conditions which might significantly impact the
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(a) 2016-all dataset (b) 2018-split dataset

(c) 2016-1109-5-12 dataset (d) 2018-july-2-23 dataset

Figure 3.4: Density histograms of training datasets
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(a) 2016-camera-1237 dataset (b) 2018-split canola40-0706 dataset

(c) 2016-other-cameras dataset (d) 2018-july-20-28 dataset

Figure 3.5: Density histograms of testing datasets
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learning of the model. In the 2016-all dataset, in the early morning, it was foggy some days or some days it

was windy; so those images were not annotated. In the mid-days, it was sunny and thus, the visibility was

comparatively better. In some images, there were just pods with glare on the leaves and pods. The datasets

have both sparse and dense images (depending on the user’s choice for any threshold, ‘k′, images could be

considered as sparse or dense). Some images just did not have any flower except leaves or pods. The dark

images are either from very early in the morning or evening, so giving poorer visibility etc.

Comparatively, the 2018 dataset has better camera resolution than the 2016-all dataset but with similar

types of weather conditions as mentioned. All these variabilities certainly provided the model with a wider

range of characteristics while training and testing and indeed, this could have a significant impact during

training-testing on all the datasets.

3.4 Experimental design and methodology

In the beginning of this section, the accuracy metrics that are used in this work are explained, then the general

concept of a boxplot distribution is explained for understanding the experiments conducted in Chapter 4.

Later, the configurations and range of values selected for different experiments and their associated reasoning

are described.

3.4.1 Accuracy metrics used in Flower Counter

The following accuracy metrics have been used in the testing and training phases of the Flower Counter

application [19]. The Loss metric is used in both training and testing and is pixel/channel-based, while the

other three metrics are based on total number of predicted flowers and are only used in testing.

Loss: The loss function used for training the model in Flower Counter model is the average pixel-wise

loss based on the Euclidean distance metric between the density map values from the manually annotated

images and the predicted density maps as stated in Chowdhury’s work [19].

Mean Absolute Error (MAE): This metric calculates the error difference between the predicted

value and the actual value and takes the absolute of the difference; therefore, the arithmetic mean of all the

absolute prediction error values is the Mean Absolute Error (MAE) [81]. Mathematically, it can be computed

as follows.

MAE =

∑n
i=1 |yi − ŷi|

n
, (3.1)

where n is the total number of observations, yi is the actual value for ith observation and ŷi is the predicted

value. So, for the Flower Counter model, n would be the total number of images in the test datasets, yi

would be the number of flowers in the original density maps and ŷi would be the number of flowers in the

predicted density maps.

Mean Relative Error (MRE): The metric Mean Relative Error (MRE) measures the uncertainty of

measurement in percentage (%) [81] compared to the size of the measurement. For instance, if the total length
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of a measurement is 15 cm, then an error of 1 cm would be a lot, but if the length was 15 km, it would be just

insignificant. Mathematically, the absolute error of each instance is first divided by its corresponding actual

value and then the arithmetic mean of all the instances of the test dataset is calculated. Mathematically, it

is computed as follows:

MRE =
1

n

n∑
i=1

|yi − ŷi|
yi

. (3.2)

An important note regarding the calculation of MRE metric is that, if the original flower count is zero,

then the value of the predicted count itself is considered as the MRE (as seen from the equation above, the

denominator is the predicted count and thus, it cannot be divided by zero) in the Flower Counter application.

So, if there are zero flowers but the predicted count is 10 then the MRE is 10% and so on.

Root Mean Squared Error (RMSE): The Root Mean Squared Error (RMSE) takes the square root

of the mean of the square of all differences of actual and predicted values [81]. In RMSE, the errors are

squared and then they are averaged. When large errors are particularly undesirable, this criteria becomes

more useful to detect them. The mathematical formulae is shown below.

RMSE =

√∑n
i=1(yi − ŷi)

2

n
. (3.3)

3.4.2 Measurements/visualization

Figure 3.6 shows a general boxplot which is a standard statistical method of summarizing data distribution

using five numbers: ‘minimum’ value MIN, first quartile (Q1) (25th percentile), median value, third quartile

(Q3) (75th percentile) and ‘maximum’ value MAX [66]. The difference between first and third quartile is

called ‘Interquartile range (IQR)’; the MIN is (Q1 − (1.5 × IQR)) and the MAX is (Q3 + (1.5 × IQR)).

The boxplot indicates important statistics regarding the distribution of the measurements, including outliers,

which are values below the MIN or above the MAX. It also shows how tightly the measurements are grouped

and whether the distribution is symmetrical or not [66]

3.4.3 Batch Size

For training CNNs, all data cannot be fed to the model at a time unless it is comparatively a small dataset,

because it is impossible to process vast amount of data at once using regular machine’s processing power and

memory resources. So, a particular number of examples of the training data are passed everytime to train the

model. Then the gradient descent is calculated to estimate the errors between the predicted values and the

original values. Next, the errors are fed back to the model using backpropagation technique for updating the

weights of the neurons accordingly in order to reduce the loss values. This learning process keeps repeating

until the errors are reduced to a desired minimum level [69].

The model’s one circulation through the entire training dataset is called one training ‘epoch’, where

samples are split into arbitrarily selected ‘batch size’ units. The batch size has significant effects not only on
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Figure 3.6: Boxplot interpretations

the speed of a model’s learning, but also on the steadiness of the learning process [5] [65].

Since a larger batch size would most likely allow practitioners to exploit the parallelism of GPUs and

computational speedups, thus they often want to train their model using a larger batch size. It can be

assumed that the learning process would be more accurate and the weights of the neurons of the CNN model

would be adjusted more accurately if more examples are included per batch during the training time. On

the contrary, poor or noisy estimates regarding the error gradient would be generated as a result of using

smaller number of examples. This can in turn, often cause noisy updates of the model weights; there would

be several different updates with different error gradient estimates because of the lack of enough samples

to converge to a certain estimate. However, practitioners had exposure to poorer generalization capabilities

because of large or very large batch sizes (e.g., 256, 512, 1024 etc.) [38].

The larger batch sizes take fewer steps for a fixed number of training epochs which might lead to poor

generalization capability [60]. Sometimes these noisy updates can rather lead to faster learning by providing

a normalizing effect, smaller generalization error and a good model. Thus, training the model for a longer

time instead by using smaller batch sizes might be beneficial. Smaller batches do not need to make a full pass

through the entire training data for updating the weights, therefore, they tend to converge quickly. Also,

fitting one batch of training data in GPU memory becomes easier because of using smaller batch sizes [60].

In many cases, batch size ≤ 32 has been demonstrated to provide the best outcomes [69]. A moderate

batch size of 32 examples is often chosen as the default value [11] for the models and has been proven to

achieve good stability of training and performance of generalization. It has been chosen as the default value

for the batch size for this work as well.

Considering the GPU memory constraints of the systems that are being used for the experiments in this

work, a range of batch sizes of 8, 16 and 32 has been considered for experiments on different datasets. The

41



other two hyperparameters were kept at their respective default vales during the individual experiments

on batch size; they are the learning rate of 0.00001 and the number of epochs of 600. These fixed values

have been decided upon the compatibility check based on some preliminary experiments on the considered

datasets. Moreover, Bengio et al. [11] have suggested to pair up a high learning rate with a large batch size

and a low learning rate with a small batch size, meaning that, the ratio should be compatible.

3.4.4 Learning Rate

Learning rate is a significant hyperparameter for achieving a good performance in an NN every time the

model weights are updated after every iteration, learning rate controls the model’s degree of change based on

the estimated error. Here, the rate at which the model learns or the rate at which the weights get updated

while the model is going through the training phase, is known as the ‘step size’ or often, the ‘learning rate’

[22].

The learning rate can be tuned by hand; the range is often kept greater than 10−6 and less than 1.0 [75].

Unfortunately, there is no optimal learning rate to be calculated analytically for any given model based on a

particular dataset. There is no other option except discovering a good learning rate just via trial and error.

A ‘too low’ learning rate will make the progress of training very slow, requiring a greater number of training

epochs to reach to the minimum point and also, it might get stuck into local minimas; hence, may not be

able to reach the global minima [45]. Larger learning rates would require fewer training epochs, but the case

might happen too where a ‘too high’ learning rate would result in producing unusual divergent behaviour.

It might ‘jump over’ the ideal minimum point, the updates might cause a noisy convergence, so it would

keep bouncing within in-between but might never hit the minima. An appropriate learning rate will lead the

training process to reach the minimum point swiftly and might help to converge at some time, resulting in

lower score for loss values [99].

The range of learning rate from 1.0×10−5 to 1.0×10−4 has been chosen for experimenting on the considered

four datasets. The other two parameters were kept at their respective default values while experimenting on

learning rate individually; they are the batch size of 32 and number of epochs of 600.

An important note should be mentioned here to distinguish between the ‘learning rate’ used for training

the model and the ‘learning rate’ suggested by Optuna. The learning rate which is used to train the NN,

updates the gradient descent accordingly to minimize the loss function. The Adam optimizer [102] is applied

in the Flower Counter model by Tensorflow, which is responsible for adaptively updating the true learning

rate and training the model using that. Optuna does not directly train-and-update the weights of model;

it uses different searching algorithms as mentioned in chapter 2, to explore the configuration space for a

potential good value of learning rate within the given range. Using that suggestion, the dedicated Adam

optimizer would train-and-update the model accordingly, trying to find stablility with the goal of yielding

loss values as low as possible [48].
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3.4.5 Number of Epochs

Number of epochs is another important hyperparameter that can impact the functioning of any NN. If the

model provides a lower error rate (better accuracy score) on training data but a higher error rate (poorer

accuracy score) on validation data, then it means that the model has memorized the dataset and also the

unwanted noise from training phase well enough to provide good training accuracy score, but not learn the

actual patterns to be able to generalize well on validation (new) data. If the loss becomes too low, then

there is a potential of overfitting [69]. The term ‘underfitting’ is used to describe the concept when the

model provides a higher error rate (poor accuracy score) on both training data and also validation data; it

means that the model has neither been able to learn the actual patterns, nor been able to generalize well on

validation (new) data. Overfitting can often be solved by stopping the training of the model after a certain

number of epochs while the validation error rate is minimum; increasing it would lead to overfitting otherwise

[69]. Training for a longer period of time to a certain number of epochs would help the model to learn the

patterns well enough to prevent underfitting as well. Therefore, it is significant to identify an appropriate

number of epochs for any individual NN model [95] to be able to ensure good training.

Different ranges of epochs have been chosen for experimenting on each of the four datasets. The other

two parameters were kept at their respective default values while experimenting on epochs individually; they

are the batch size of 32 and learning rate of 0.00001. One study considers epochs in the lower range of

(25-50-100-200) and another in the higher range of (200-400-800-1600). Optuna’s ‘trial.suggest categorical′

API has been used to run these experiments.

3.4.6 Combined impact of hyperparameters

After the individual analysis on the hyperparameters, the combined effect of all the three hyperparameters

have been taken together into consideration. In particular, all three parameters are varied together for a

study of 60 trials, with the purpose of acquiring knowledge about the possible good configuration settings for

each of those four datasets. Two seperate experiments have been conducted on each of these datasets: one

with lower number of epochs (25, 50, 100, 200) and another with higher numbers (200, 400, 800, 1600).

3.4.7 Analysis of Optuna’s performance on test datasets

After that, based on the suggestions from Optuna about possible suitable hyperparameter values for batch

size and learning rate, the model has been trained 10 times again for different higher number of epochs

(200,400,800,1600) on the same training dataset.

In order to assess Optuna’s performance and for checking the overfitting problem, it was tested on both

the same populations and different populations. As stated in section 3.2.3, the same population indicates the

10% of dataset that has been shown in Table 3.3 and different test populations are chosen from a different

camera-day as shown in Table 3.4. From 10 sets of testing, the results of different accuracy metrics, which
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are MAE, MRE, RMSE and loss, have been averaged and the results are used to generate respective boxplot

graphs. After that, the model is trained and tested 10 times using the default values (batch size 64, learning

rate 1.0× 10−5 and number of epochs 3000) used in Chowdhury’s work [19]. The results are averaged for the

considered accuracy metrics and used to generate respective boxplots for four different datasets. Afterwards,

the testing results of the current and the previous work are compared and analyzed.

3.5 Summary

In this chapter, an overall overview of the CNN-based Flower Counter application, being used as the DL

application as a part of the case study has been provided. After that, the techniques for annotating the

images, preparing ground truths and corresponding density maps for training the model has been described.

Followed that, some representative sample images from different datasets and their density maps have been

depicted. Next, a brief description of the major characteristics training and test datasets have been presented

along with the number of images per bin according to the binning technique applied in this work. Moreover,

the histogram distribution of the training and test datasets have been illustrated. Following that, the sta-

tistical concepts of boxplots for understanding the experimental results have been shown. Furthermore, the

significance of the three hyperparameters that have been chosen for the experiments in this work have been

discussed in detail. Later, the experimental design, settings and methodologies with corresponding reasoning

have been explained.
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4 Results and analysis

This chapter presents the details of the experiments conducted on different sets of hyperparameters and the

analysis of the results. Later, for the sake of assessing Optuna’s parameter selection and associated prediction

accuracy, the results are compared with previous experiments with the Flower Counter application [19].

Among several possible hyperparameters of any CNN model, three major hyperparameters have been

chosen for this work. They are batch size, learning rate and numbers of epochs. The chapter begins with

the analysis of the individual impact of these hyperparameters, then their combined impact is analyzed and

later a comparison with Chowdhury’s work [19] is presented.

4.1 Experimental results and analysis of batch size

In this section, the Optuna-conducted experiments varying ‘batch size’ on four datasets are described. Figure

4.1 shows the Optuna-driven impact of batch size vs. pixel-wise loss values on the validation set for each

of the four datasets. Table 4.1 shows the number of trials per batch size from the studies conducted on

the datasets. Since the width of the IQRs of each batch size are visually quite similar, the numbers aid in

understanding whether there were actually few points chosen by Optuna itself or there were in fact many

points which were tightly grouped.

Figure 4.1a shows the results of batch size vs. loss values on validation images of the 2016-all dataset.

The median values of the validation loss values for the batch sizes (8, 16, 32) are ∼0.17 and less than ∼0.20;

the MIN values start from ∼0.16 and the MAX values cover the range up to ∼0.19. This is very tightly

grouped. Table 4.1 shows that the batch size 8 was the most popular as it was chosen 45 times and the other

two batch sizes 16 and 32 were less popular as they were chosen 7 and 8 times respectively. Figure 4.1b shows

the results for the 2018-split dataset with the loss values in the similar ranges but with few outliers. Batch

sizes 8 and 16 were more popular with almost equal number of trials 28 and 25 respectively but batch size

32 was the least popular choice with just 7 trials for this dataset.

Figure 4.1c and Figure 4.1d show the results for the 2016-1109-5-12 dataset and the 2018-july-2-23 dataset

respectively. The results for the 2016-1109-5-12 dataset are again very tightly grouped for batch size 8 and 16

with equal number of trials for each of them, but batch size 32 is the least popular choice again. The batch

size 16 is the most popular choice for the 2018-july-2-23 dataset; this dataset shows the lowest ranges of loss

values compared to the other datasets because it is overall a less dense dataset. There are more images with

zero or fewer flowers from the begining of the growing season on July 2-5 particularly. All the datasets have
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(a) 2016-all dataset with binned data (b) 2018-split dataset with binned data

(c) 2016-1109-5-12 dataset with all data (d) 2018-july-2-23 with all data

Figure 4.1: Batch size vs. validation loss (single parameter experiment)
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shown bimodal behaviour for the experimental results presented here; either it trains or it does not.

Table 4.1: Total number of trials in study per batch size used in batch sizes experiment

Batch size

Dataset 8 16 32

2016-all 45 7 8

2018-split 28 25 7

2016-1109-5-12 27 27 6

2018-july-2-23 19 30 11

Overall, Table 4.1 shows that the distribution for batch size 32 is less stable, because there are very few

datapoints and Optuna considered this to be a less-promising value, even though the results from the loss

function were not that different. So except for a few random outliers, there is no major difference in the

IQR ranges of the loss values for each of the batch sizes that has been considered for the datasets. It did

not impact the range of MAX or MIN or even the median values of the loss values, even though the number

of trials per batch size vary considerably. These observations indicate that there is no distinct individual

impact of the range of values of the hyperparameter ‘batch size’ on the loss values.

4.2 Experimental results and analysis of learning rate

Figure 4.2 shows the effect of the hyperparameter ‘learning rate’ on the validation loss values for different

training datasets. For all these datasets, Optuna has explored the given search range entirely. Optuna kept

searching more in the lower scale in order to find more stable regions. That is why, in Figure 4.2a and 4.2b,

and also for Figure 4.2c, the number of trials are quite dense in the lower region. The loss values are in the

same ranges (∼0.15 to ∼0.20) for validation runs that correspond to successful training. A successful training

would indicate to the fact that the model has been trained to the point where it can identify identify objects in

the image as flowers that somewhat correspond to the annotated ground truth. Therefore, predicted density

map is not uniformly zero.

The 2018-july-2-23 dataset exhibits unstable behaviour as shown in Figure 4.2d. Almost half of the points

yield the loss values ∼0.13 and the rests ∼0.25 within the provided learning rate range. This means the model

was trained properly for some trials (those with lower loss values ∼0.13) not at all during the others (yielding

consistent higher loss values ∼0.25). There could be many reasons behind this behaviour for that particular

dataset. As the whole dataset was used and there are many zero flowers as seen in Figure 3.4d, it did not

train successfully for certain trials. Depending on the manner in which images were divided up into batches,

the training may have had difficulties determining the insights to reduce the loss values for the model. Some

batches may provide good loss values; others could not converge so the model remained poorly trained.

Overall, as observed from the graphs, Optuna is pointing towards the lower range of values of learning
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rate (as in ≤ 0.00006) to be a good choice for this model. That should be sufficient for training the model and

be able to detect flowers from various images. A wider range of learning rate values could be unstable due to

the data skew towards sparse images and random selection of images, even though this effect is dampened

for the binned datasets. Figure 4.2 shows that the values of the hyperparameter ‘learning rate’ selected by

Optuna for the trials have a significant impact on the validation loss metric obtained from the training of

the model.

(a) 2016-all dataset with binned data (b) 2018-split dataset with binned data

(c) 2016-1109-5-12 with all data (d) 2018-july-2-23 with all data

Figure 4.2: Learning rate vs. validation loss (single parameter experiment)

4.3 Experimental results and analysis of numbers of epochs

Figure 4.3 shows the Optuna-driven impact of hyperparameter ‘epochs’ on different datasets for different

ranges. Table 4.2 aids in understanding the IQR spreads according to the number of trials selected per

epoch by Optuna in the conducted studies respectively for different datasets. It shows how many datapoints

are in each column.
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For the 2016-all dataset in Figure 4.3a, 200 and 400 epochs were popular choices with 48 and 38 trials

respectively; they were tightly grouped producing lower loss values ∼0.20. The IQR ranges are widespread

and dispersed with few trials for lower number of epochs, specially for 50 and 100 epochs. For the 2018-split

dataset in Figure 4.3b, 200 and 1600 epochs were more popular than the others and 50 epochs was the least

popular one. Except for a few outliers, the loss values were lower for 1600 epochs, but a very wide IQR is

noticeable for 200 epochs with comparatively higher loss values. In spite of being a popular choice by Optuna,

training for 200 epochs was not able to provide stability and lower loss values. For the 2016-1109-5-12 dataset

in Figure 4.3c, 100 and 800 epochs were popular choices; 800 epochs provided comparatively lower loss values

than others also. For the 2018-july-2-23 dataset in Figure 4.3d, 200 and 400 epochs were popular choices and

they yielded low loss values except some outliers.

The loss values are mostly in lower ranges of the scale starting from (or after) 200 epochs for the datasets

except for the 2018-split dataset (Figure 4.3b). For this dataset, 200 epochs was the most popular choice with

48 trials (as seen in Table 4.2) with a wide range of values, leading to a wide IQR spread in the boxplot. 400

epochs had just 6 trials with a wide IQR spread in the boxplot as well. Therefore, both 200 and 400 epochs

were quite unstable and provided higher loss values at times, suggesting that more epochs were necessary

to train the model to learn all the diverse characteristics it might have encountered. Overall, Figure 4.3

indicates that the loss values were in higher ranges for lower number of epochs irrespective of any dataset.

So the model does not train well for lower number of epochs (25-50-100) as the loss values are in the range of

∼0.30 (Figure 4.3d) or above ∼0.30 (4.3a, 4.3b and 4.3c) to ∼0.40. There is also noticeable variation in the

IQR ranges for the lower number of epochs. Though Optuna tried different lower number of epochs (as seen

in Table 4.2), they were not enough for ensuring good training of the model and producing low loss values.

Each of these datasets exhibits a similar range of loss values from 200 epochs to 1600 epochs the range

starting mostly from ∼0.20 (for the 2018-july-2-23 dataset in Figure 4.3d, it is below ∼0.20). The median

values and the IQR range for all of them for those epoch numbers are also similar. Therefore, higher number

of epochs (starting from or after 200) are suitable for the Flower Counter model to train sufficiently to identify

flowers from various images of various weather conditions. From this analysis of the values in Figure 4.3, the

Optuna-driven values of the hyperparameter ‘epochs’ has a substantial impact on the validation loss obtained

by the model of the Flower Counter.

Table 4.2: Total number of trials in study per epoch used in epochs experiment

Epochs

Dataset 25 50 100 200 400 800 1600

2016-all 5 5 8 48 38 11 5

2018-split 7 5 8 48 6 16 30

2016-1109-5-12 9 6 45 11 6 37 6

2018-july-2-23 6 6 6 54 32 11 5
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(a) 2016-all dataset with binned data (b) 2018-split dataset with binned data

(c) 2016-1109-5-12 dataset with all data (d) 2018-july-2-23 dataset with all data

Figure 4.3: Epoch vs. validation loss (single parameter experiment)
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4.4 Simultaneous parameter search space

4.4.1 Analysis for lower number of epochs

In this section, the analysis of simultaneous combined impact of three hyperparameters, namely batch size,

learning rate and lower number of epochs (fewer or equal to 200), is presented on four different datasets.

Figure 4.4 shows the result for the following range of hyperparameter values: the batch sizes are 8, 16 and 32;

the learning rate is from 1×10−5 to 1×10−4 and the numbers of epochs are 25, 50, 100 and 200. The colours

used in Figure 4.4 are green, red, blue and black, representing 25, 50, 100, and 200 epochs respectively. The

plus signs with the solid lines, the stars with the dashed lines and the squares with the dotted lines indicate

the batch size 8, 16 and 32 respectively.

For the 2016-all dataset, Figure 4.4a shows that 100 epochs was a popular choice as indicated by the

presence of blue lines. 100 epochs with batch size 16 produced very stable results of low loss values ∼0.20

till higher learning rate ∼9 × 10−5. Also, 200 epochs with batch size 16 and 32 produced stable results till

learning rate ∼7 × 10−5. 25 epochs was totally unstable as indicated by the green lines. 50 epochs was

unstable for different batch sizes as well (specially, for batch size 32) except with the batch size 8 in the range

of learning rates from ∼5× 10−5 to ∼9× 10−5.

For the 2018-split dataset, Figure 4.4b shows that Optuna explored very few points for the three

combinations of batch sizes and epoch numbers 25 and 50. In some cases, it did not train at all; as a result, it

produced a straight line hitting high loss values ∼0.36 (for instance, batch size 32 and 25 epochs). 100 epochs

was very popular since many blue points are observed in the graph. Optuna explored many combinations for

batch size 8 and 16 than batch size 32. Compared to the other combinations, 100 epochs with batch size 16

was more stable producing lower loss values ∼0.18 consistently upto the learning rate ∼6.0× 10−5.

For the 2016-1109-5-12 dataset, Figure 4.4c shows that it yields few random points with epochs 25,

50, and 100 (red, green and blue) regardless of any batch size. For these three batch sizes and 200 epochs, it

had fluctuated between the range of loss values between ∼0.20 and ∼0.42 within the range of learning rate

from ∼4.0× 10−5 to ∼9.0× 10−5. Among all the combinations, Optuna found 200 epochs with batch size 8

comparatively the most stable configuration for learning rate below ∼6.0× 10−5.

The 2018-july-2-23 dataset in Figure 4.4d produces the lowest loss values for any combination compared

to the other three datasets. As mentioned previously, this is due to the average sparsity of the dataset, so

each of the density map would be zero. The existence of many blue points in the graph indicate that 100

epochs was the most popular choice. However, Optuna appeared to explore arbitrary points for all the

combinations of different batch sizes and epochs. It kept exploring randomly between the low and high

ranges and produced loss values from ∼0.10 to ∼0.20. For several combinations, they are consistently in the

unstable region producing straight lines; meaning that it did not train at all for those combinations. Overall,

for the whole dataset, it is quite unstable for all epochs.
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(a) 2016-all dataset
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(b) 2018-split dataset
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(c) 2016-1109-5-12 dataset
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(d) 2018-july-2-23 dataset

Figure 4.4: Batch size, learning rate and epochs vs. validation loss (fewer epochs)
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To summarize, very little green and/or red shows that Optuna did not want to use 25 or 50 epochs

respectively; lots of blue and/or black shows that 100 or 200 epochs were popular respectively compared to

the former two. Lots of plus signs or star signs or square signs indicate that batch size 8 or 16 or 32 was a

popular choice respectively. Therefore, 200 epochs and batch size of 16 was quite popular for the 2016-all

dataset as chosen by Optuna (in Figure 4.4a), but it was the most stable and successful with batch size of 32

with 200 epochs. For the 2018-split dataset (Figure 4.4b), batch size 8 with 100 epochs was the popular choice

but it was inconsistent and unstable, whereas, batch size 16 with 100 epochs was comparatively more stable,

so it was better than the former choice. Batch size 16 with 200 epochs was the most popular choice but it

fluctuated a lot for the 2016-1109-5-12 dataset (Figure 4.4c), but batch size 8 with 200 epochs comparatively

generated more stable, lower loss values. Lastly, though both of the batch sizes 16 and 32 with 100 epochs

were popular choices for the 2018-july-2-23 dataset as spotted in Figure 4.4d, no combination was stable for

this dataset.

All these observations from four different datasets indicate that most of the combinations for lower number

of epochs kept exploring with little incremental success and were not able to yield very stable regions while

training. Only 200 numbers of epochs performed comparatively better than the others for some datasets.

The loss values for many of these combinations do seem to fluctuate a lot and Optuna cannot find stable

regions; this indicates that the model does not train consistentlly enough for lower number of epochs, and

that Optuna realizes this and chooses fewer combinations with those parameter values.

4.4.2 Analysis for larger number of epochs

In this section, the analysis of simultaneous combined impact of three hyperparameters has been presented

on four different datasets for higher number of epochs (starting from 200 and higher). Figure 4.5 shows that

result for this range of hyperparameter values: batch sizes are 8, 16 and 32; learning rate is from 1 × 10−5

to 1× 10−4 and numbers of epochs are 200, 400, 800 and 1600. The color notation used in Figure 4.5 is the

same as that of Figure 4.4.

For the 2016-all dataset in Figure 4.5a, 800 epochs is a popular choice as indicated by the presence of

lots of blue lines. 800 epochs with both of the batch sizes 16 and 32 produce stable results and low loss value

scores ∼0.20 upto the learning rate of 8× 10−5. 400 epochs does not provide stable results (especially with

batch size 8); although it does train with batch size 32 even in the higher learning rate 9× 10−5. 200 epochs

is not a popular choice and unstable as indicated by the green lines. 1600 epochs with batch size 16 does not

train for higher learning rates and thus produces a constant line in higher loss value range ∼0.35 as indicated

by the black dotted line.

For the 2018-split dataset in Figure 4.5b, the loss was more stable for 400 epochs across the range of

batch sizes, so it was the most preferred number of epochs. More red points indicate that 400 epochs was

more popular than the others. Optuna did not explore 200 epochs much, since very few green points are

observed. For batch size 8 and all selected epoch parameters, Optuna explored as few as either two or three
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points only. Batch size 16 with 400 epochs was noticed to explore more combinations than the other epochs;

it has explored many combinations with low loss values ∼0.18. For batch size 32 and 400 and 800 epochs,

the similar behaviour is noticed again.

For the 2016-1109-5-12 dataset in Figure 4.5c, Optuna chose very few combinations of any epoch with

batch size 8 because very few plus signs with solid lines are observed in the graph. 200 and 1600 epochs

were not at all popular for this dataset since very few green and black points are noticed in the graph. For

batch size 16, Optuna selected the most combinations to have 400 epochs; this showed very good stability

and low loss values ∼0.19 up to the learning rate of ∼6 × 10−5. Though few points for batch size 16 and

1600 epochs were selected, those combinations showed good stability also. For batch size 32, Optuna again

selected very few points. Comparatively, batch size 16 with 400 epochs showed better stability than others

below a learning rate of ∼6× 10−5.

For the 2018-july-2-23 dataset in Figure 4.5d, it did not train at all for batch size 8 with any epoch

combinations, resulting into a constant loss value of ∼0.26. It explored a lot of combinations with 200 epochs,

but few for 1600 epochs. For batch size 16 and 200 epochs, Optuna has selected many points within the

range of learning rate from ∼3.5× 10−5 to ∼9.0× 10−5, yielding loss values in the entire range of ∼0.12 to

∼0.26. Though 200 epochs seems to be a popular choice for the 2018-july2-23 dataset, it exhibits instability

again as seen in the previous figures. For the other epochs, Optuna just visited either one or two points. For

batch size 32 and 200 and 400 epochs, Optuna has again explored quite a few combinations with random

inconsistencies. For 800 and 1600 epochs, it did not train at all. Batch size 16 with 200 epochs comparatively

showed a little bit of stability upto the learning rate ∼6.0× 10−5; but the whole dataset is mostly unstable

for any number of epochs.

To summarize, lots of green and/or red shows that 200 or 400 epochs respectively were popular choices

to Optuna compared to less blue and/or black for 800 and 1600 epochs respectively and different signs refer

to different batch sizes. Therefore, 800 epochs was the most preferred choice and also more stable than other

combinations for the 2016-all dataset as seen in Figure 4.5a. The 2018-split-dataset was more stable for 400

epochs with different batch sizes as observed in 4.5b. Batch size 16 with 400 epochs is noticed to provide the

lowest error scores and stability for the 2016-1109-5-12 dataset as chosen by Optuna (in Figure 4.5c). Though

200 epochs seem to be a popular choice for the 2018-july-2-23 dataset, but again, it exhibits instability as

seen from Figure 4.5d.

In general, Figure 4.4 and 4.5 showed that there is stability as well as inconsistencies for different combi-

nations for different datasets. Specifically, the 2018-july-2-23 dataset had lots of inconsistencies and points

producing the constant straight lines indicated that it did not train properly for those combinations. Similar

behaviour was noticed for learning-rate based experiments as shown in Figure 4.2. Yet, compared to the ex-

periment with lower number of epochs, the higher number of epochs trained better and found good stability

for various combinations overall as seen from these two figures (better results for higher number of epochs

is also evident from Figure 4.3). Therefore, for training the Flower Counter model better and for finding
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(a) 2016-all dataset
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(b) 2018-split dataset
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(c) 2016-1109-5-12 dataset
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(d) 2018-july-2-23 dataset

Figure 4.5: Batch size, learning rate and epochs vs. validation loss (more epochs)
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comparatively more stability in further experiments, hyperparameter combinations in the range of higher

number of epochs should be selected. The stability is observed to be comparatively better than that yielded

by the lower number of epochs.

From the results observed so far, it is quite evident that the search techniques which are applied by

Optuna, sometimes randomly choose a lot of selections in an unstable region. In that case, either the search

space should be further constrained or a different optimization function could be used for Optuna to increase

stability. The optimization function that has been used here has taken a single train-test run and that is

given to Optuna to make the loss value as low as possible according to the choice of hyperparameters for

each trial. During this process, Optuna has not been advised that stability is a concern.

To address this issue, a more complicated objective function could be given to Optuna. For example,

rather than doing a single train-test run with Tensorflow, the objective function could be given “k” train-

test runs and the average or the minimum of those loss values can be selected to train the model for some

values of “k”. In the current experimental setup, for each training, Tensorflow is trying to minimize the

pixel-wise loss. Based on that, the testing is run and each test run yields a loss value. In order to assure

that Optuna is operating in a stable region, one way it could be done is that, run that train-test “k” times

in an ‘unstable region’ initially. It is very likely that one of those “k” train-test sequences, even with the

same set of hyperparameters, the model would not end up training well and therefore, a high loss value

would be produced for the test dataset. Now if the Optuna function is made to take the maximum of the

loss value among those “k” test runs, a high loss value would be reported when it would be operating in one

of those unstable regions. Now Optuna would be made to reject that particular choice of hyperparamters

that generated that high loss value and the search space can be constrained accordingly. Another way to

provide more stability in the value of the objective function might be to restrict the search space. From the

preliminary experiments, the search range could be restricted just to stable regions.

4.5 Testing accuracy results

4.5.1 Same population experiments

In this section, the results of the four accuracy metrics (MAE, MRE, RMSE and Loss) using Optuna’s

parameters and Chowdhury’s [19] parameters on the same populations has been presented, compared and

analyzed as shown in Figure 4.6. The results for the four different accuracy metrics have been plotted for the

four different datasets. The boxplot distributions are demonstrated using a grid of 4× 4 = 16 square boxes

where each column represents one dataset and every row represents an accuracy metric.

The following configurations as shown in Table 4.3 are suggested by Optuna to be the best configuration

parameters after the corresponding studies conducted in the section 4.4.2. Since these configurations provided

the lowest loss values from their validation training, they are considered the best ones (to be noted, they are

not guaranteed to produce the best results for repeated training and testing). As well, the configurations
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maybe in unstable regions. Thus, only runs that produced non-zero predictions are used. Then based on

the associated model generated by the training, the model is tested on the generated dataset from the same

population (10%, as described in Table 3.3).

Table 4.3: Parameters for testing suggested by Optuna experiments

Dataset Learning rate Batch size Epochs Validation loss value

2016-all 8.94 ×10−5 16 100 0.165

2018-split 5.34 ×10−5 32 400 0.159

2016-1109-5-12 3.68 ×10−5 16 400 0.191

2018-july-2-23 7.94 ×10−5 16 200 0.128

Overall, the results for the median values are close for the 2016-all dataset for both of the experiments.

2018-split dataset has conflicting results as the MRE follows a different direction than the other metrics. The

results for the median values are close for the 2016-1109-5-12 too except for RMSE. 2018-july2-23 is only

better for MRE and RMSE for Chowdhury [19], but the results are quite unstable, given the wide range of

the IQRs.

The 2016-all dataset and the 2018-split dataset are the binned datasets. Therefore, the impact of data

skew towards the sparse images are reduced by the process of binning and their corresponding training-testing

datasets now have a balanced mixture of all kinds of images. For the 2016-all dataset, the median values for

MAE are ∼8.30 and ∼8.11, for MRE it is ∼0.32, for RMSE are ∼17.12 and ∼16.74, and for Loss are ∼0.17

and ∼0.19 for Optuna and Chowdhury’s [19] work respectively. Since the medians/means are very similar

and the coefficient of variation is nearly zero, it means that the experiments did not show a difference in the

metrics for both of the works for this dataset.

For the 2018-split dataset, the median values for MAE are ∼6.40 and ∼3.24, MRE are ∼0.22 and ∼0.34,

RMSE are ∼13.23 and ∼3.27, and Loss are ∼0.17 and ∼0.12 for Optuna and Chowdhury’s [19] work re-

spectively. Therefore, Chowdhury’s parameters produced lower error results in general. An exception is the

MRE score. Mathematically, if the larger errors are for dense images then that would enhance the RMSE. If

the larger errors are for the sparse images, then the MRE would be higher and the RMSE would be lower.

After examining the predicted vs. actual flower counts, it appears that the latter case was more prevalent.

Some sample testing outputs of actual vs. predicted counts for Optuna and Chowdhury’s [19] work for

2018-split dataset and 2016-1109-5-12 dataset are shown in Figure 4.7 respectively. Among 10 runs, three

sample test results have been shown here using three different colors and shapes, such as, orange triangles,

green plus signs and blue circles. The black diagonal line shows the line where the actual count is equal to

the prediction for all images correspondingly. Since the number of dense images is fewer than the sparse

images (i.e. the image flower counts are concentrated below 60) in 2018-split dataset (Figure 4.7a and 4.7c),

the error calculations will be more representative of the sparse images. Hence, the opposite trend of MRE

and RMSE is noticed in Figure 4.6 for this dataset. Another thing that is noticeable is, with the increasing
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number of flowers the results are more underpredicted for one of the three runs for both of the works, such

as, the blue in Figure 4.7a and green in Figure 4.7c respectively. The selection of the training run in case of

underprediction is random for them and the reason might be again because of the model’s less exposure to

the diversity of denser flowers.

For the 2016-1109-05-12 dataset, the median values for MAE are ∼8.60 and ∼9.02, MRE are ∼0.25

and ∼0.27, RMSE are ∼16.33 and ∼9.60, and Loss are ∼0.19 and ∼0.20 for Optuna and Chowdhury’s

[19] work respectively. For this dataset, there are close results for three of the metrics. It means that

the experiments did not show a difference for those metrics; therefore, the medians/means are very similar

and the coefficient of variation is nearly zero. It is only RMSE that is different, so some sample testing

outputs of actual vs. predicted counts for Optuna and Chowdhury’s [19] work are shown in Figure 4.7b and

4.7d respectively. Again, three sample test results have been shown here using different colors and shapes

as mentioned previously. It is evident from the figure that there are a lot of images above 250 that are

underpredicted compared to the actual count, which has contributed to the RMSE. 2016-1109-5-12 dataset

has comparatively more numbers of dense images than 2018-split dataset and the model performs almost

equally and the results are actually pretty close for both of the works as observed in Figure 4.7b and 4.7d.

Therefore, the visual difference or gap of the MRE and RMSE trend is less prevalent for this dataset compared

to 2018-split dataset as observed in Figure 4.6. For this dataset, the model mostly underpredicts for both of

the works as observed from the corresponding three runs.

For the 2018-july-2-23 dataset, the median values for MAE are ∼5.23 and ∼4.45, MRE are ∼0.34 and

∼0.22, RMSE are ∼11.05 and ∼6.64, and Loss are ∼0.13 and ∼0.11 for Optuna and Chowdhury’s [19] work

respectively. For this dataset, Chowdhury’s [19] work’s configurations are less stable, because wide IQR

ranges are noticeable in the accuracy metrics compared to Optuna. The median values for the metrics MAE

and Loss are close, the MRE is unstable, and RMSE is different. Due to the instability of the dataset,

running for more epochs is likely to reduce the instability, because the model that is generated has much

more opportunity to find a descent to lower training loss values, given 15 times the number of epochs. This

may also lead to overfitting, which will be evaluated in more detail in the following section 4.5.2.

This dataset has shown unstable behaviour and instances of not training in the other experiments as

observed earlier; even here during the training process, it was sometimes training, sometimes not. Therefore,

the training was redone several times in order to yield the testing results for which it could train. The

histogram distribution in Figure 3.4d shows that this dataset is quite imbalanced because of the existence of

relatively more sparse images. There are relatively few dense images in this dataset and the whole dataset

is used for the experiments. So the training might have become biased towards the sparse images, causing

the inconsistencies in the training process and overfitting. This fact might have had the influence on the

model’s learning process and thus, impacted its ability to generalize well on the test dataset. The observations

indicate that the model could not always train better with increasing numbers of epochs in Chowdhury [19]

either, leading to widely dispersed IQRs, hence poor testing results overall.
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Figure 4.6: Same population experiments (Optuna vs. Chowdhury [19])
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(a) 2018-split dataset (Optuna) (b) 2016-1109-5-12 dataset (Optuna)

(c) 2018-split dataset (Chowdhury [19]) (d) 2016-1109-5-12 dataset (Chowdhury [19])

Figure 4.7: Samples for Actual vs. Predicted counts (same population experiments)
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The reason behind Chowdhury’s [19] work performing comparatively better overall than Optuna could

be explained by the fact that, it has been trained using more epochs. Therefore, better accuracy scores for

different metrics for Chowdhury’s [19] parameters have been provided than the ones suggested by Optuna

while testing on the same populations. Any ML model produces better accuracy scores with the increasing

number of epochs, because the model starts to memorize the characteristics with the ongoing training for

the longer period of time and therefore, yield lower error scores (which might sometimes lead to ‘overfitting’

[96]).

4.5.2 Different population experiments

In this section, the results of the four accuracy metrics using Optuna’s parameters and Chowdhury’s [19]

parameters using a test dataset from a different population (from a different camera day in the same year

with somewhat similar images) have been presented, compared and analyzed as shown in Figure 4.8. The

y-axis for different datasets have been changed accordingly so that the boxplots can be analyzed better is

where the IQRs are very small or tightly coupled compared to the others.

In this case, there are comparatively smaller differences overall between the results of different accuracy

metrics for Optuna’s and Chowdhury’s [19] work in their respective datasets. The medians/means are similar

and the coefficient of variation is nearly zero. The experiments did not show a difference in the metrics. The

overall performance of Chowdhury’s [19] work did not improve much with extra numbers of epochs. A possible

occurrence of overfitting can be noticed for Chowdhury’s [19] work for the 2018-split canola-0706 dataset for

the MRE metric. It performed worse with higher number of epochs than Optuna (to recall, similar trend

for the MRE has been noticed in Figure 4.6 for the 2018-split dataset and the potential reasons have been

discussed). Although 1600 epochs were used in the experiments, Optuna rarely selected that number of

epochs, instead of selecting no more than 400 epochs as the best parameter.

For the 2016-camera-1237 dataset, the median values for MAE are ∼31.70 and ∼29.20, MRE are ∼0.23

and ∼0.22, RMSE are ∼43.74 and ∼41.64, and Loss are ∼0.44 and ∼0.48 for Optuna and Chowdhury’s

[19] work, respectively. Since this dataset contains a mixture of sparse images and dense images in the test

populations as seen in Figure 3.5a, the model had exposure to more variety during training. Therefore, with

increasing number of epochs, the model’s performance on different test populations has provided slightly

better results for Chowdhury’s [19] work compared to Optuna.

For the 2018-split-canola40-0706 dataset, the median values for MAE are ∼2.32 and ∼2.42, MRE are

∼0.16 and ∼0.42, RMSE are ∼3.44 and ∼3.33, and Loss are ∼0.10 and ∼0.11 for Optuna and Chowdhury’s

[19] work, respectively. This dataset mostly contains sparse images as seen in Figure 3.5b, so there might had

been less exposure of the model to dense images while training. Therefore, a wide IQR spread and outliers

are noticeable for the MAE metric for Optuna and Chowdhury respectively; the MRE is better for Optuna;

the corresponding median values for RMSE and Loss metrics are very close for both of the works.

For the 2016-other-cameras dataset, the median values for MAE are ∼40.37 and ∼38.81, MRE are ∼0.41
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Figure 4.8: Different population experiments (Optuna vs. Chowdhury [19])
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and ∼0.43, RMSE are ∼58.04 and ∼58.76, and Loss are ∼0.44 and ∼0.42 for Optuna and Chowdhury’s [19]

work, respectively. Like 2016-camera-1237 dataset, this dataset contains diversity in terms of sparse and

dense flowers as well as seen in Figure 3.5c. Hence, the results are slightly better for Chowdhury’s [19] work

with increasing number of epochs than Optuna.

For the 2018-july-20-28 dataset, the median values for MAE are ∼1.98 and ∼1.71, MRE is ∼0.42 and

∼0.43, RMSE is ∼3.45 and ∼2.81, and Loss is ∼0.08 and ∼0.07 for Optuna and Chowdhury’s [19] work,

respectively. This dataset has mostly sparse flowers images as seen in Figure 3.5d. Therefore, it might have

happened that the model had less exposure to variety of images which led to wider spreads of the metrics

(except the Loss) for both Optuna and Chowdhury’s [19] work.

As observed from the histogram distributions of the test populations in Figure 3.5b and 3.5d, they mainly

have images with sparse flowers and few dense images. Therefore, the results on test populations for the

2018-split-canola40-0706 dataset and the 2018-july-20-28 dataset provided better accuracy scores (low loss

values) than compared to the 2016-camera-1237 dataset and the 2016-other-cameras dataset. Certainly, the

model is prone to make larger absolute errors if it would have to make predictions for dense flowers compared

to predicting sparse flowers. Therefore, while testing on the latter two datasets, the error scores are naturally

higher.

The MAE, the loss and the RMSE values of the 2018-split canola40-0706 dataset and the 2018-july-20-28

dataset are comparatively smaller compared to other two datasets. The reason is that with the fairly large

numbers of sparse images, these values would be small. The loss is small, because the density map is mostly

0. The RMSE is small, because squaring the small MAE values (below 1) makes things even smaller. The

MRE has wider spread but as explained previously, it does not require to necessarily follow the trend of the

MAE and the RMSE.

However, the error scores of all the performance metrics have overall increased a lot for the different pop-

ulations compared to the performance on the same populations. This is because the model would supposedly

do better with the increasing numbers of epochs while predicting the similar test samples than compared to

the unseen test samples from a different camera-day. Neither Optuna nor Chowdhury’s [19] parameters have

been able to generate a model that performs better on the different (unseen) test populations compared to

its performance on the same populations. This is an indication that the models overfit somewhat.

Overall, it is apparent that almost equal test results for different accuracy metrics have been generated

using fewer resources by this work if compared to Chowdhury’s [19] work. The highest numbers of epochs

used for the experiments in this work was 1600, whereas the default values of Chowdhury’s [19] work was

3000. This indicates that resource (e.g., CPU/GPU processing power, time, memory usage etc.) utilization

has been reduced using Optuna-suggested hyperparameter values compared to Chowdhury’s parameters.
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4.6 Summary

In this chapter, the Optuna-driven experiments on four different datasets of the Flower Counter application

and their analysis have been presented. Experiments started with investigating the impact of individual

hyperparameter on the pixel-wise validation training loss values. After that, the combined impact of the

three hyperparameters were investigated for lower vs. higher number of epochs. The results showed that the

hyperparameter batch size does not have distinct individual impact on various datasets, whereas, the model

provided lower error scores for comparatively lower learning rates and higher number of epochs. Apart from

some inconsistencies, higher number of epochs with lower learning rates and different batch sizes performed

better than the similar experiments with the lower number of epochs when the combined impact of the

hyperparameters was assessed. For the sake of better handling the inconsistencies, more complex objective

functions could be implemented to ensure the stability and yield consistent results.

After experimenting on the validation datasets, the Optuna-suggested better hyperparameter values were

derived from the corresponding studies. More experiments were conducted using those values for evaluating

the generalization capability using the hold-out test populations from the same camera-day datasets, as well

as test populations from different camera-days. The results of the experiments using Optuna vs. Chowdhury’s

[19] suggested parameters were compared on the Flower Counter application. The potential reasoning and the

analysis of the results were presented according to the distributions of their respective training-test datasets.

Though for the same populations Chowdhury’s [19] work produced comparatively better accuracy scores,

almost equal results were derived for the different populations overall. Therefore, it can be implied that, the

model is likely to learn better with more epochs for the populations from the same datasets. However, the

model seems to perform almost equally well using the Optuna-suggested hyperparameter combinations for

the populations from similar but different datasets with the potential of resource-optimization as observed

in the latter case.
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5 Conclusion and Future Work

This chapter starts with the summary of the results from Chapter 4. Based on the results, necessary

conclusions about the observations and findings have been presented according to the research questions

mentioned in Chapter 1. Following that, the major contributions of this work is mentioned. At the end,

some possible future scopes of this work is pointed out.

5.1 Summary

Based on the results executed so far, the findings and observation according to the research questions can be

summarized as follows:

1. Initially, the effects of all the hyperparameters has been assessed individually with the help of Optuna,

where for different datasets, batch size did not appear to have strong individual impact for different

values. The other two hyperparameters, learning rate and number of epochs, comparatively showed to

have noticeable impacts within given search ranges.

For determining the suitable search space for Optuna, different ranges of values were provided initially.

Based on the comparative results of the experiments for those ranges, it was expanded gradually and

decided upon which range provided good results (e.g. two ranges of epoch numbers were provided; at

first, the experiments were conducted using lower numbers, then based on the performance observations,

the higher numbers were considered). That means, top-down approach was followed here. The bottom-

up approach would have led to otherwise: starting with a broader search space and then narrowing it

down accordingly.

Therefore, based on the nature of the application, various ranges of hyperparameter values can be

experimented using either top-down approach or bottom-up approach on Optuna and via observation

of its impact on the accuracy metrics, potential stable regions can be chosen for the considered model.

2. Regarding the suggestions about the best observed hyperparameter configurations by Optuna, it has

been quite helpful in pointing out towards a direction for making choices about potential good con-

figurations about the considered hyperparameters, such as it preferred the higher number of epochs

(at least, starting from or after 200 epochs depending on the datasets) which yielded better stability

compared to the lower number of epochs; it could recommend that the points are more dense in the

low to mid ranges for learning rate (e.g., upto 6.0 × 10−5) which yielded better training and stability
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than higher learning rate etc.

In terms of accuracy score enhancement, it has not been able to yield better results for the same test

populations compared to the previous work. The reason is that, it is very obvious for the model to

learn and/or memorize the characteristics of the dataset better with the increasing number of epochs.

However, their median values were almost in the same ranges while testing on different populations.

Therefore, Optuna-driven model could perform almost equally well on the unseen test populations as

the previous work on different accuracy metrics, that again, using fewer resources.

3. The results of the experiments are not presumably reproducible since everytime a different study is

started afresh and produces variable results based on the randomly shuffled training dataset it gets;

thus, the best hyperparameter configuration values received at the end of each study and the findings

regarding the combinations in each study, are not guaranteed to reproduce the same results in the next

studies. It has been observed that the regions were not stable for the results; perhaps, higher level of

complex objective function for defining and/or restricting the search range should be implemented to

address this issue.

4. Performance variability has been noticed for Optuna in the conducted experiments. For some datasets,

it could comparatively yield better stability, for others, it could not (e.g., in the combined hyperparam-

eters impact-checking based experiments, there were steady lines for 2018-july-2-23 dataset, for which

did not train); while testing on datasets, it showed very low error scores and very small IQR spreads

for some datasets (e.g., for testing on 2018-split canola40-0706 and 2018-july-20-28 dataset), but for

others it had comparatively longer IQR spreads (e.g., testing on 2016 camera-1237 dataset). Therefore,

it could be said that, based on the diverse characteristics (e.g., sparse flowers vs. dense flowers etc.) of

different datasets, the performance of Optuna also varies.

To mention, the detailed analysis of the results according to the characteristics of individual datasets

is not the part of this study.

5.2 Thesis contribution

This work has been conducted as a case study for demonstrating the usability of an Automated HPO, namely

Optuna, for any ML/DL application. Some points about this research work’s contribution could be mentioned

as follows:

• This case study could certainly help the plant scientists, researchers, practitioners, enthusiasts, general

users etc. for giving idea about the applicability of Automated HPO, Optuna for their ML/DL appli-

cations. Using the provided APIs offered by Optuna, the search spaces can be constructed dynamically

and easily based on the type (e.g., integer, float, categorical etc.) of the hyperparamters. By conduct-

ing experiments on different hyperparameters, the more influential ones can be found by Optuna too
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(some hyperparameters might have more impact than the others when considered individually and/or

combinedly). Therefore, the researchers could get directions about the best observed hyperparameter

configurations specific to their applications, which would lead them to better tune their applications.

• The scores yielded from different accuracy metrics from Optuna-driven experiments could give the

plant scientists added knowledge about the efficiency of the Flower Counter application. The scientists

would be able to tune the model accordingly (even, treating the application and the framework as

black-boxes) using the suggested best observed hyperparameter configurations and apply the tuned

model for flower-counting as well as, gain more knowledge of flower yields and general hardiness. This

technique could be applicable for other similar CNN applications also.

• The process of gradual exploration of the search space (the approach of exploration should be chosen

based on the nature of the application) for finding among the best observed hyperparameters by Optuna

is indeed effective. Though more research is necessary for confirming better stability, suggestions about

possible hyperparameters among the best observed values have been received from Optuna based on the

progressive exploration. Following the suggestions of those hyperparameters has shown the potential

of less resource consumption over the fixed set of values of hyperparameters.

• Furthermore, potential direction towards better stability and useful suggestions from Optuna would be

able to considerably reduce manual efforts and resources for deciding upon suitable hyperparameter

configurations. Also, potential indication towards any particular dataset, that has not been able to

produce very good stability, is indicated by Optuna; therefore, Optuna has certainly been helpful to

point out towards the dataset that requires further analysis.

5.3 Potential future scope of the work

There could be certain potential scopes to be explored based on the findings of this work. Some areas which

could be worthwhile of exploring as an extension of this work or future work, are mentioned as follows:

A single objective function has been chosen for Optuna for this work. There could be other potential

options (e.g., minimizing or maximizing other accuracy metrics, using more complex objective functions to

yield more stability and consistency etc.), that could be explored in the future. Also, the impact of the

increasing number of trials for finding better stability of the hyperparameters could be examined.

The potential impacts of the characteristics of the datasets on Optuna’s performance could be analyzed

in detail. As per the observations from the results, datasets can be categorized according to sparse flowers vs.

dense flowers and their individual impacts can be assessed and compared accordingly. Also, different binning

techniques could be applied for sampling the images and the associated impacts on Optuna’s performance

could be evaluated.

Optuna could be deployed using distributed systems for achieving scalability and further analysis could
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be conducted on performance gain etc. Since efficient pruning techniques are offered by Optuna, different

pruning techniques could be applied in order to check if there is any performance improvement in terms of

saving time, memory usage, CPU/GPU processing power enhancement etc.

Three hyperparameters have been considered in this work; there are many other hyperparameters (such as

the number of hidden layers, dropout rate etc.), whose impact could be analyzed. After that, the performance

of Optuna and the other HPO frameworks on the Flower Counter application could be compared in order to

assess more about Optuna’s efficiency.
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[54] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[55] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-tzur, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. A system for massively parallel hyperparameter tuning. In
Proceedings of the Machine Learning and Systems, volume 2, pages 230–246, Virtual, 2020.

[56] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel Bandit-Based Approach to Hyperparameter Optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

[57] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph Gonzalez, and Ion Stoica. Tune:
A Research Platform for Distributed Model Selection and Training. In Proceedings of the 35th Inter-
national Conference on Machine Learning AutoML Workshop, pages 1–8, Stockholm, Sweden, July
2018.

[58] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 19–34, Munich, Germany, 2018.

[59] Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. Auptimizer–An Extensible, Open-
Source framework for Hyperparameter Tuning. In Proceedings of the 2019 IEEE International Confer-
ence on Big Data (Big Data), pages 115–123, Los Angeles, CA, December 2019.

[60] Xuliang Liu, Daolun Li, Jinghai Yang, Wenshu Zha, Ziqi Zhou, Liping Gao, and Jiahang Han. Auto-
matic well test interpretation based on convolutional neural network for infinite reservoir. Journal of
Petroleum Science and Engineering, 195:107618, 2020.

[61] Ilya Loshchilov and Frank Hutter. Cma-es fpr hyperparameter optimization of deep neural networks.
In Proceedings of the ICLR Worskshops Posters, pages 1–8, San Juan, Puerto Rico, May 2016.

72



[62] Gang Luo. A Review of Automatic Selection Methods for Machine Learning Algorithms and Hyper-
parameter Values. Network Modeling Analysis in Health Informatics and Bioinformatics, 5(1):18, 2016.
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