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ABSTRACT

Markov models are a popular technique for understanding the dynamics of systems which
move through “rough” potentials [1]. In such cases, the system is well approximated as
transitioning between discrete states with a set state-to-state probability, independent of

its history. Choosing how these states relate to the coordinates of the system (the discretization)
and how these are partitioned into metastable sets (the coarse graining) is of central importance to
the technique. This thesis contributes to methods for making these choices and applies them to two
systems: water diffusion and enzyme dynamics.

Markov models were used to provide an explanation of water diffusion through viscous aerosol
particles, where diffusion is known to diverge from typical Stokes-Einstein behaviour. The choice of
discretization and coarse-graining techniques came from established methods and heuristics in the
Markov modelling literature. The analysis showed that water diffuses by hopping between transient
cavities created by the organic fraction of the aerosol particle. For the majority of the time this
process is irreversible but the water can also establish local equilibria between clusters of cavities
arresting the diffusion process.

A more complex workflow was proposed and evaluated for the case of the aromatic amine
dehydrogenase, an enzyme at the heart of the debate surrounding hydrogen tunneling and enzyme
dynamics. This workflow used ideas from the statistics and machine learning communities in order to
make the modelling process more transparent, efficient and reproducible. The response surface of an
MSM - the change in model quality in response to modelling choices - was estimated and optimised
using Bayesian optimisation. Statistical model selection techniques for selecting the number of
metastable states in a hidden Markov model were evaluated. Theoretical and practical arguments
are made in favour of the integrated complete-data likelihood criterion. The benefits of this more
elaborate workflow were mixed. The response surface proved useful in creating tests of the sensitivity
of inferences to the modelling choices. Many of the modelling choices were shown to not affect the
model quality and as a result Bayesian optimisation proved of little benefit. The conformational
landscape of aromatic amine dehydrogenase was found to consist of many short lived (20 ns to
300 ns) metastable states which slowly interconvert on a timescale of approximately 1.2 µs. However,
the simulations had moved away from their reactive conformations and so the implications for
understanding reactivity were limited. In addition, these results could not be validated and sensitivity
tests cast doubt on the robustness of this conclusion. The source of these problems was investigated
and several solutions were proposed.
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INTRODUCTION

This thesis describes the use of statistical model selection and optimisation techniques applied
to Markov models (MM) for describing the slow conformational dynamics of two biomolecular
systems: water diffusing through a sucrose matrix and the conformational landscape of aromatic
amine dehdyrogenase (AADH).

1.1 The importance of conformational changes in biochemical systems

Quantitatively describing the conformational changes in biomolecular systems is of central importance
for understanding their function, chemical and biological properties. Conformational changes are at
the heart of enzyme catalysis [2–5]. For example, triosephosphate isomerase (TIM) catalyses the
isomerisation dihydroxyacetone phosphate and (R)-glyceraldehyde-3-phosphate [6] and is considered
a paradigmatic system for enzyme catalysis [7], having been studied by molecular simulation since
at least 1987 [8, 9]. The catalytic process requires the closure of a loop (through approximately
7 Å) after ligand binding which creates the necessary conditions to allow the isomerisation to occur,
opening again to allow product release [6]. More extensive conformational changes are present in
other systems. Dihydrofolate reductase (DHFR) catalyses the reduction of 7,8-dihydrofolate to
5,6,7,8-tetrahydrofolate [10] with at least five kinetically distinct intermediates detected across the
catalytic cycle [11]. The Met20 loop adopts at least three distinct conformations across the catalytic
cycle [12] with mutation experiments demonstrating its importance in the rate determining step
[13]. The importance of conformational change in the relative positions of DHFR’s two sub-domains
has also been implied in transition state stabilisation and product release [12]. Conformational
changes have also been invoked to understand non-linear Arrhenius plots (which relate the rate of
reaction to its activate barrier) [14, 15]. The cold adapted psychrophilic α-amylase enzyme has an
optimum rate for catalysis well below its melting temperature [16]. Macromolecular rate theory [17]
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posits changing heat capacities as an explanation, however, simulation studies found an equilibrium
between a reactive and an unreactive enzyme-substrate complex a more fitting explanation [16].
There is evidence that population shifts in their conformational landscapes are the mechanism by
which enzymes evolve to catalyse different substrates and reactions [18–20]. Other biochemical
examples of conformational change include G protein-coupled receptors (GPCRs), a large family of
transmembrane proteins involved in extracellular sensing and signalling which are responsible for
olfaction, vision and taste [21]. They transmit information from outside of the cell by way of ligand
binding which induces a series of conformational changes which in turn triggers a response within
the cell [22]. Conformational changes are also central to allosteric modulation - where binding of a
ligand at one protein site affects the function of the protein at a separate site [23]. A classic example
is of the enzyme aspartate transcarbamoylase which binds asparate and carbamoyl phosphate at the
active site and catalyses their reaction into carbamoyl-aspartate. Binding of cytidine triphosphate, a
product formed downstream in the metabolic chain, inhibits the reaction by binding to a site 60 Å

from the active site [24]. Upon binding, conformational changes occur which shift the enzyme to
the unreactive conformational state from the reactive site. Adenosine triphosphate binds similarly
but instead shifts the equilibrium in the opposite direction, activating the reaction. Allostery thus
allows metabolic pathways to react to the cellular environment. The function of GPCRs and other
protein receptors is also guided by allosteric mechanisms [25]. Finally, large conformational changes
are also implicated in the mechanism by which proteins associate with specific parts of DNA, thus
enabling a whole host of cellular functions from gene regulation to DNA replication [26].

1.2 Learning conformational dynamics from molecular simulations

Computational approaches to studying conformational dynamics are important because they allow
descriptions with high temporal and spatial resolution beyond the scope of most experimental
techniques [27]. A popular approach is to evolve the systems’ equations of motion using molecular
dynamics (MD) to produce a set of trajectories through phase space. These trajectories can be used
to reveal conformational transition pathways, metastable states and other properties of interest by
estimating the relevant regions of the free energy landscape (the free energy with respect to a given
set of coordinates) [28].

There are a wide range of techniques for understanding conformational dynamics from MD
simulations, the suitability of which depend on current knowledge of the system and the questions
being asked. Path based techniques such as transition path sampling (TPS) [29–31], transition
interface sampling (TIS) [32] and forward flux sampling (FFS) [33] all start with two specified
metastable conformations, A & B, and can be used to estimate rate constants and reaction
coordinates of the reaction A 
 B without previous knowledge of reaction pathways. TPS works by
first proposing a reaction pathway between A and B. Then, a statistical ensemble of pathways is
generated from this initial path using a stochastic algorithm which takes into account the potential

2
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energy of the system (Metropolis Monte Carlo). TIS and FFS are similar to TPS but define interfaces
which separate A and B based on an order parameter1. Molecular dynamics simulations are then
used to estimate the flux between the interfaces and hence the transition rate between A & B (FFS
relaxes the assumption of equilibrium dynamics required in TIS and TPS). These techniques have
been applied [34–36] to the model protein folding system Trp-cage [37] to elucidate its folding
pathway and have replicated some of the experimental microscopic rates in the folding pathway.
String methods are similar but posit a discrete set of states along a path (or string) of fixed length
and moves these states such that the string corresponds to minimum free energy path between
A and B [38, 39]. String methods have been used to determine, for example, the mechanism and
binding free energy of platinum based drugs to DNA [40].

Directional milestoning [41–43] is a technique which does not require knowledge of specific
metastable states, only a collective variable known to be related to the important conformational
changes. First a set of states which cover the relevant conformational space, known as anchors, are
selected. The milestones are sets of conformations which separate (as measured by the collective
variable) the anchors from one another, and are used to restart trajectories, calculate reaction
coordinates and kinetics rate constants. Milestoning has been used to understand the selectivity of
DNA reverse transcriptase [44] and the mechanism and rate of tryptophan permeation through cell
membranes [45].

When no previous information such as known metastable states or appropriate collective variables
are known, more abstract statistical and machine learning methods have been increasingly shown to
be important. Principal component analysis (PCA) finds the linear combinations of features of a
molecule, such as the α-carbon coordinates of a protein, which explain the variance observed in a
trajectory (the principal components are mutually orthogonal and explain decreasing amounts of
the variance) [46]. Molecular motion can then be approximately described by a handful of principal
components, rather than the full set of atomic coordinates. In reference [47] the authors used PCA
of the heavy atom coordinates of the ribonuclease barnase to identify the highly flexible (high
variance) regions of the enzyme which they related to the enzyme’s activity and stability. The
authors of reference [48] used PCA in the protein lysozyme to identify highly flexible regions which
are related to the opening and closing of the active site (the “essential” degrees of freedom in their
language). One of the draw backs of PCA is that only linear combinations of features make up the
principal components. Kernel PCA, which incorporates non-linear transformations of input features,
has also been developed and used with TPS simulations to extract a reaction coordinate for the
reaction of lactate dehydrogenase [49, 50]. Multidimensional scaling (MDS) [51] is similar to PCA
in that it seeks to represent high dimensional data with a smaller number of combinations of input
features. Rather than finding components to capture the variance, MDS preserves distances between
observations. MDS has been used to characterise the conformational states and track simulation
convergence of bovine pancreatic trypsin inhibitor [52]. Similar machine learning methods, which

1a quantity such as the root mean square deviation, which, while not a true reaction coordinate, varies between the
two states.
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find low dimensional representations of the dynamics while preserving various metrics, have also been
used. Isomap [53] preserves the distances between conformations on a curved surface (manifold), the
geometry of which is inferred from the observed conformations. A computationally efficient method
of Isomap (SciMAP) was used to determine the protein folding reaction coordinate for SH3 domain
[54]. Sketch-map [55] preserves only certain subsets of distances deemed to be important and has
been used to understand the unfolding dynamics and the effect of point mutations of a beta hairpin
polypeptide [56]. Diffusion map [57] and locally scaled diffusion map, preserve diffusion distances
(i.e., how easily states can diffuse to one another). They have been used to characterise folding
pathways in a number of small proteins: Trp-cage [58], a beta-hairpin [59] and in Microcin J25 [57].

1.3 Markov models and their applications

An alternative to the techniques described above are Markov models. Markov models provide a
framework for classifying conformations into metastable states, finding reaction pathways and
estimating kinetic and thermodynamic quantities. While they are able to incorporate knowledge of
important order parameters or features, they do not require such knowledge [60, 61].

The central idea [62] is that for complex systems, over a sufficiently long periods of time, the
rate at which the system transitions out of region A and into region B of configurational phase space
is not dependent on how the system arrived at A. In other words, these transitions are “memoryless”.
In mathematical notation this is [63]:

(1.1)
dp(t )

dt
= p(t )K,

where the i ’th element of p represents the probability of the system being in a region of phase
space labelled by i ; Ki j is the rate of transitioning from region i to j , and Ki i = −∑

j 6=i Ki j . In
addition to being “memoryless”, equation 1.1 also implies that the rate matrix K does not change
with time, i.e., the system is “stationary” [62]. The solutions to this equation describe how the
probability of the system being in discrete regions of phase space changes smoothly over time. The
justifying assumption for memoryless transitions is that biomolecular systems have a free energy
surface (the free energy with respect to some set of coordinates) which is is characterised by many
local minima, arising due to the many degrees of freedom afforded by its large structure (e.g.,
rotations about bonds or dihedral angles). The system resides in these minima for a sufficiently long
period of time that transitions between them become independent of one another. While this is
not the case for very short timescales, over a sufficiently long time τ, the Markov lag time, this
becomes a valid assumption. Memoryless dynamics over this timescale will also be referred to as
“Markovian” throughout this work.

The Markov model approach to solving equation 1.1 is to consider a discrete time process
(t = kτ, k = 1,2, . . .) and to partition the configurational phase space into n discrete states so that
the dynamics of the system can be described by an n ×n transition matrix T [64]. Each element of
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T describes the conditional probability of the system jumping between states over the Markov lag
time, τ i.e., [63]:

(1.2) p((k +1)τ) = p(kτ)T

The eigenvectors and eigenvalues of T represent the associated slow dynamic processes, such as
protein folding or loop opening and closing, and their associated timescales [64].

Applications of Markov models (MMs) are concentrated on biomolecular systems and form
an intrinsic part of the biomolecular simulation tool-box [27]. Applications include modelling both
protein folding pathways [65, 66] as well as intrinsically discorded proteins [67]. MMs have been
applied to enzyme systems and used to elucidate, for example, ligand docking pathways [68] and
regioselectivity mechanisms in cytochrome p450 [69], the conformational heterogeneity in the
important cancer target SETD8 [70], loop dynamics in triosephosphate isomerase [6], and allosteric
effects in cyclophilin A [71]. Other applications include self-assembly [72] and dimer formation [73]
of amyloid peptides, identifying important conformations in drug targets to improve drug docking
free energy calculations [74], and rational drug design [75]. There has been comparatively fewer
applications of MMs on smaller systems (whose kinetics tend to be derived from quantum mechanical
and thermodynamic data [76, 77], rather than statistically estimated from MD data), however, one
recent example used MMs to determine hydrogen bond rearrangement in liquid water [78].

Early MM construction consisted of describing the conformational dynamics of systems in
thermal equilibrium by constructing only a handful of discrete states, and modelling the dynamics as
Markov chain also known as a Markov state model (MSM). For example the authors of reference [79]
investigated the folding of a heptapeptide into a β-hairpin conformation in a solution of methanol.
To decide whether the folding process is a memoryless process (i.e., conforms to equation 1.1)
they estimated a four state MSM and compared the transition probabilities implied by the model
(the elements of the 4×4 matrix T) to those observed in the MD trajectory. The four states were
based on their geometric similarity in the space of a principal component analysis of the peptide
backbone coordinates. They found them to be in good agreement and so concluded that their
reduced dimension description of the folding process was valid.

However, the more common approach [60, 80] is a two stage process. In the first stage, frames
from MD simulations are geometrically clustered into n discrete microstates (where typically
n . 1000) and the elements of T are estimated in this microstate basis. The purpose of this
discretization is to allow an precise description of the eigenvectors of T in terms of these microstates,
the eigenvectors in turn describe the various conformational transitions [81]. The assumption behind
the validity of this approach is that with a fine-grained definition of microstates (i.e., each microstate
is structurally very similar) their geometric similarity is enough to guarantee their kinetic similarity. In
other words, if a set of MD frames are clustered into the same state i (the elements of p in equation
1.1) then they are all accurately described by the same set of rates to other discrete states (Ki , j ).
Care must be taken here as geometric similarity does not always imply kinetic similarity, so that
structures which appear similar according to some metric may have very dissimilar kinetic properties
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[63, 82–84]. The methods for creating this fine-grained kinetic model as well as alternatives to
geometric clustering will be described in this section.

The second stage makes use of the fact that very often there is a separation in timescales
between the slow processes of interest and other processes. To take the triosephosphate isomerase
example of earlier, loop 6 opens and closes on the timescale of 100 µs [6], whereas the microstates
might resolve oscillations of contact distances or side chain rotations (which maybe of the order 1 ns

to 100 ns) which are not relevant to the overall loop motion. This fact allows coarse-graining these
microstates into a handful, g , of macrostates based on their kinetic properties. The macrostates are
usually defined such that microstates have a low probability of transitioning between the macrostates,
compared to inter-conversion within a macrostate [64, 66, 85]. Coarse-graining will be discussed in
depth in sections 1.7 and 1.8.

One approach to creating accurate MSMs is to focus on finding the “essential degrees of
freedom” of the system [62, 85] i.e., a small number of features (compared to the number of
atomic coordinates) which describe the slowest conformational processes in the system. This is
justified when the slowest conformational changes are the ones of interest. Examples of features for
describing protein folding include the root mean square deviation from the crystal structure, the
fraction of contacts found in the crystal structure, or even thermodynamic quantities like energies
arising from solvent interactions [86]. There are several benefits to identifying these features before
clustering atomic configurations into microstates to estimate an MSM. First, geometric similarity
as measured in the space of the features is more likely to correlate with kinetic similarity than
atomic coordinates. Second, it reduces the computational effort required to cluster MD frames
into microstates. K-means clustering, a popular method for performing geometric clustering, has a
computational complexity which scales with the number dimensions [87]. So reducing the number
of variables from 1000–10000 (the order of the number of atomic coordinates for a typical protein2)
to 10–100 for typical number of molecular features, e.g., dihedral angles of the protein backbone,
represents a large reduction in computational complexity.

As already discussed there have been many machine learning techniques for reducing the
dimension MD trajectories, e.g., PCA, multidimensional scaling, iso-map, and sketch-map. However,
these techniques do not directly address capturing slow dynamics. For example, the problem with
using PCA as a preprocessing step before clustering into microstates is that the principal components
explain the greatest configurational variance [81]. To address this drawback, time-lagged independent
component analysis, TICA [81, 89], was introduced whose components capture the greatest kinetic
variance. The total kinetic variance describes the ability of the TICA components (or any basis set)
to capture the slow dynamics of the system [90]. TICA identifies linear combinations of the atomic
positions which are maximally correlated at a given lag-time (also referred to as τ but not necessarily
the same as the Markov lag-time). TICA is a stand-alone technique whose eigenvectors are the
optimal linear approximation to the eigenvectors of T [91]. TICA can also be used a preprocessing

2The modal number of atoms of structures in the Protein Data Bank is 2000–3000 according [88]
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step to reduce the dimensionality of MD data prior to estimating a MSM by projecting only onto
the first m TICA components (where m has to be specified). Using TICA as a preprocessing step in
MSM construction has been systematically investigated and shown to be more accurate at capturing
the slow dynamics than both PCA and no preprocessing at all [92]. In this work the authors randomly
chose different MSM hyperparameters - different modelling choices such: as the choice of protein
feature, dimensionality reduction using PCA, TICA (or none at all), the TICA lag time and number
of retained TICA components, and the number of microstates. Using these hyperparameters they
estimated MSMs and evaluated their accuracy in capturing the the folding dynamics of twelve
fast-folding proteins [93] (using the GMRQ score, described below). They found that, on average,
models built with TICA had significantly greater accuracy. However, using TICA brings with it two
new modelling choices: the TICA lag-time τ and the number TICA components, m, onto which the
protein features are projected. These TICA lag time affects what slow processes are captured by the
TICA projection, while the number of retained components affects the accuracy of the description.
The effects of these parameters will be investigated in chapter 6.

The variational approach to conformational dynamics, (VAC [91]), cast estimating MSMs and
TICA as a variational optimisation problem. VAC showed that TICA and MSMs were the optimal
description of the slow dynamics for a given continuous (for TICA) or discrete (for MSMs) basis set.
The authors of reference [94] extended this idea and showed that the same variational principle could
optimize the basis sets themselves. The key innovation of this work was to combine cross-validation
[95] and the variational principle to score a given basis set using the generalized matrix Rayleigh
coefficient, GMRQ 3. Cross-validation is a technique for estimating how well models perform on
unseen data - i.e., it estimates the model generalizability. MSM theory for biomolecular simulations
was then broadened with Koopman models to encompass simulations of systems out of thermal
equilibrium [96]. With the variational approach to Markov processes (VAMP [97]) the theory of
MSMs and Koopman models was unified into one conceptual framework. This increased the scope
of MMs and presented a range of model scoring metrics, called VAMP scores, of which the GMRQ
was a special case. These theoretical advances have allowed the development the following iterative
optimisation MM pipeline, starting with a set of MD trajectories:

1. project atomic coordinates on to important features;
2. project features onto TICA components (“essential degrees of freedom”);
3. geometrically cluster MD frames into discrete microstates;
4. estimate an MSM and score using a VAMP score;
5. repeat the previous steps by varying the type of feature, number of discrete states, etc., until

a satisfactory VAMP score has been achieved.

Other approaches to building MSMs exist which do not focus on find the essential degrees of
freedom as a preprocessing step. VAMPnets [98] still utilises the variational framework but instead of

3similar to finding variationally optimised electronic wave function basis sets
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discretising MD trajectories it uses a deep neural network to learn continuous, non-linear estimates
of the eigenvectors of T. It uses the atomic coordinates of MD trajectories directly, essentially
condensing the whole pipeline into a single process. Enspara [99] is a package which facilitates
clustering large volumes of MD data without the need to perform dimensionality reduction first. By
focusing on producing fine-grained microstates without the need to project the coordinates onto the
slowest collective variables, this technique retains a larger range of dynamic processes (not just the
slowest ones). For example, coordinate trajectories of a cefotaximase [100] were clustered into fine
grained microstates based on similar values of RMSD relative to a crystal structure. As a result, the
authors were were able to reveal important, rapidly interconverting, conformations, not captured in
X-ray and other structural data, to explain the enzyme’s specificity and antibiotic resistance.

Another similar approach to Markov state models for understanding conformational dynamics is
discrete path sampling (DPS [101]). DPS solves equation 1.1 by creating microstates based on their
kinetic properties rather than their geometric properties, using the potential energy surface rather
than MD trajectories. First, a database of local minima (which define the discrete microstates) and
saddle points (corresponding to transition states between the microstates) are created by geometry
optimisation of the potential energy surface of the system. Then, the elements of K can be estimated
using transition state theory [102]. This method is limited by the number of degrees of freedom
(which increase the fluctuations in the potential energy surface) which for biomolecules can become
prohibitively large [63]. However, using implicit solvent models to limit the number of degrees of
freedom, the conformational dynamics of small and medium sized systems have been investigated.
These include the folding dynamics of met-enkephalin [103] and tryptophan zipper peptide [104],
characterising the free energy surface of intrinsically disordered proteins [105], and the effect of
point mutations on the a coiled-coil peptide [106].

Chapter 2 sets out the theory of MMs relevant to this thesis which focuses on MSM estimation,
TICA for preprocessing, and variational optimisation of basis sets using VAMP scores.

1.4 Simplified Markov state model construction

The MSM literature has concentrated on large biomolecules because their hierarchy of atomic motions
[107] give rise to a rugged, free energy surface with “memoryless” conformational transitions. As
already mentioned, the key to success of the MM process is the creation of a good set of microstates
to represent the dynamics of the system. When the focus is on the slow dynamics, identification of
relevant features is key to this process. For biomolecules the process is complicated by the large
number of potentially relevant features and other modelling choices which cannot be determined a
priori [108]. Instead, the iterative optimisation process delineated in the previous section, is used
to choose the best set of modelling choices, however, this can be computationally intensive. In
contrast, for systems with a much smaller number of relevant degrees of freedom, chemical intuition
and visualisation techniques can be used to guide the choice of collective variable.
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Chapter 3 describes computational and experimental work designed to understand the diffusion
of a single water molecule through a sucrose matrix, designed to mimic the conditions of water
diffusion in secondary organic aerosol (SOA) droplets [109] (i.e., aerosol consisting of organic
molecules dissolved in water [110, chapter 1]).

The motivation for studying aerosols in general is that they have wide ranging impacts on human
and planetary health [111], from smog in cities [112], directly affecting the radiative balance of the
atmosphere by altering its chemical composition [113], and indirectly through their effect on cloud
formation [114]. As to SOAs in particular, they have been increasing recognised as an important
source of total atmospheric aerosol, alongside the more well known primary sources such as ocean
spray, smoke from natural and man-made sources [115]. The water content of SOA influences its
chemical reactivity [116] and physical properties like size and refractive index [117, 118]. Predicting
water diffusion in SOA is therefore important to explaining a range of SOA phenomena.

The Stokes-Einstein (S-E) definition of diffusion, D, relates the viscosity of the solvent, η, to
the hydrodynamic radius of the solute, a, at a temperature T is given by [119, chapter 17]:

(1.3) D = kBT

Cπηa
,

(C and kB are constants). For SOA droplets existing in the low humidity parts of the atmosphere,
water evaporates to the point that the organic constituents of the particle become the dominant mole
fraction leaving water as the solute [120–122]. In these regimes large deviations from S-E diffusion
occur [120, 123, 124]. There is a continuing debate over the applicability of the S-E description
of diffusion in SOA droplets (see chapter 7 of reference [111] for a review), with different ad hoc
modifications of the S-E being suggested [125–127] as well as a case being made for entirely new
explanations [128]. For the system studied in this thesis, the observed diffusion rate is much larger
than that predicted from the observed viscosity of the sugar component and the water radius using
the S-E equation. These deviations occur when the viscosity is so high that the aerosol droplets
start to transition to a glassy state [129]. The motion of sucrose matrix in this case becomes slow
on the timescale of the motion diffusing water molecules, but not so slow that it can be considered
stationary.

The aim of chapter 3 is to both add to the debate over water diffusion in SOA by suggesting a
microscopic mechanism for water diffusion in a system with large deviations from S-E behaviour, and
to show that the iterative, variational approach to building Markov state models described in the
previous section is not always necessary. Instead a simplified approach utilising chemical knowledge
and intuition can be used to construct valid and informative MSMs. The MSM approach is justified
because the interactions of the water molecule with the much large sucrose molecules creates a
sufficiently complex free energy landscape that the “memoryless” assumption for configurational
transitions holds. However, the assumption that the transition rates do not change with time was
not met due to the slow but persistent motion of the sucrose matrix. Another aim of this chapter
was therefore to demonstrate a simple way of accounting for non-stationary transition rates when
constructing MSMs.

9
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1.5 Evaluating Markov state model performance

The MM analysis pipeline described so far, consists of first transforming MD trajectories into features
(the essential degrees of freedom, χ), then reducing the dimension with TICA, discretizing the
TICA components into n microstates, and finally estimating the MSM. The modelling choices or
hyperparameters, (χ,τ,m,n), create the MSM basis set, which in turn determine the accuracy of
the resulting MSM, and so a method of evaluating the performance of these hyperparameters is
needed. While the ground truth of the kinetic processes is not available, the initial way forward
came through cross-validation and the GMRQ [94].

The innovation in reference [94] was to create a model score, the GMRQ (the Rayleigh trace
from quantum mechanics), which could be used to judge the quality of the model choices while
accounting for the tendency of models to fit to noisy signals in the data (over-fitting). This was
achieved through cross-validation [95]: a model is estimated using a portion of the data and scored
on the remaining data. Maximizing the cross-validated GMRQ by varying the hyperparameters
increases the accuracy of the eigenvectors [94]. The GMRQ is a special case of the first VAMP
score, VAMP-1, while maximizing the total kinetic variance is the same as maximizing the VAMP-2
score. These VAMP metrics completed the analysis pipeline [130] which now can be summarised
as: i) transform MD trajectories into features, χ, ii) select reasonable choices of hyperparameters
(features, TICA parameters, number of discrete states) and calculate the cross-validated VAMP-2
score, iii) change the hyperparameters and repeat analysis, iv) stop when the VAMP-2 score stops
increasing.

1.6 Hyperparameter optimisation

Choosing the hyperparameters which maximize the VAMP-2 score is a ‘black-box’ optimisation
problem [131], so called because no gradient information on the response of the VAMP to the
hyperparameters is available. This is a common problem in the machine learning community where
models have many parameters and may take days to train [132]. In this case it is not feasible to
exhaustively search through combinations of hyperparameters. A popular method for optimising large
sets of hyperparameters is Bayesian optimisation (also known as sequential model based optimisation,
SMBO) [133–136]. The idea behind Bayesian optimisation is that there is an objective function which
is costly to optimise [137, 138] (in this case the VAMP-2 score). So instead of optimising this directly,
the BO procedure builds an statistical model of objective function known as a surrogate function or
response surface, using randomly sampled values of the objective function. Having built an initial
response surface, searching for the next hyperparameter to evaluate is guided by an acquisition
function. These can be selected or adjusted to trade off high-uncertainty regions (the ‘explore’
regime) of the response surface with the high-value, low-uncertainty regions (the ‘exploit’ regime)
[138]. A suggestion is evaluated, the response surface updated and the process repeats. Bayesian
optimisation for hyperparameter optimisation is popular, as the number of packages designed
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for this purpose will attest (this list is non-exhaustive): Hyperopt [139]; sequential model-based
algorithm configuration [133], SMAC; BayesOpt [140]; Spearmint [134, 141–144], GPyOpt [145],
DragonFly [146]; Auptimiser [147]; and Osprey [148]. A popular choice of response surface model
is a Gaussian process (GP) [149], a highly flexible type of model which fits naturally within the
Bayesian optimisation paradigm [138]. Indeed, six of the eight packages listed here all implement
some kind of Gaussian process as their response surface model.

The aim of chapter 4 is to demonstrate the use Bayesian optimisation to optimise the MSM
hyperparameters using cross-validated VAMP-2 scores of the model system alanine dipeptide. In
addition, the parameters of GPs are explored as a way to describe the relevance of hyperparameters
in determining the VAMP-2 score. This chapter lays the ground-work for performing a similar
analysis on AADH in chapter 6, in particular: how to fit and interpret GPs and how to use GPs with
Bayesian optimisation to optimise hyperparameters.

1.7 Coarse-graining

The first stage of the Markov modelling processes is to create n microstates via an optimal set of
MSM hyperparameters by maximising the kinetic variance. The second stage in the process is to
coarse-grain potentially thousands of microstates into a handful of macrostates to create a more
interpretable model.

However, coarse-graining an existing MSM is not the only approach to gaining insight into the
conformational landscape of biomolecules. There are other statistical clustering techniques that
have been used for this purpose. The authors of [52] used hierarchical clustering [150, chapter 10] to
group MD frames into groups with mutual root mean square deviation (RMSD) in their alpha-carbon
positions below some small threshold value. Hierarchical clustering shows how conformations cluster
together as the threshold RMSD is increased. In this way the conformational landscape at different
levels of spatial resolution can be determined and the number of clusters determined by other
criteria. In reference [52] the number of clusters was chosen so that members of each cluster were
in the same potential energy minima (albeit this was imperfect as the clustering was still based
on geometric similarity, see discussion in section 1.3). In reference [151] the authors used a neural
network clustering algorithm, ART-2′ [152], to investigate the folding mechanism of a pentapeptide.
Folding events were described by up to six different clusters where the clustering took place in the
space of residue dihedral angles. The number of clusters was determined by considering the size of
the clusters in the dihedral space, as opposed to considerations arising from observed conformational
changes.

The main drawback of clustering based on geometric measures of similarity are that metastable
macrostates are actually defined by their kinetic properties (i.e., conformations in a metastable
macrostate undergo rapid, mutual, inter-conversion over a given timescale) which are not necessarily
the same [85] as configurational similarity, as already discussed in section 1.3. Kinetic clustering dates
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back to at least 1969 when Kuo and Wei [153, 154] investigated the conditions under which both
exact and approximate coarse-graining of systems of coupled first order reactions could occur. The
term exact implying that the coarse-grained description gave rise to a kinetic description consistent
with the underlying microscopic kinetics. Hummer and Szabo [155] tackled the problem of how to
define an appropriate coarse-grained rate matrix for a given coarse-graining scheme. i.e., given a
mapping of micro- to macrostates, what is the most appropriate way of defining the rate matrix?
They derived expressions for coarse rate matrices which are exact for non-Markovian dynamics (i.e.,
for systems where transition probabilities are dependent on the history of states visited). They also
derived expressions for the case of Markovian dynamics which, while approximate, ensured that the
cross-relaxation times between macrostates were consistent with those in the microstate picture.
This was later shown to be equivalent to ensuring the mean-first passage times were preserved
between the macrostate and microstate pictures [156]. This work has been used as the basis of
a method for identifying not only metastable macrostates, but also the comparatively short lived
transition states [157], which are known to increase the accuracy of the Markov model description
[64].

Other methods, solely based on identifying metastable macrostates have been developed. The
underlying idea behind these methods is similar i.e., that kinetic properties of the microstates should
determine the assignment of micro- to macrostates, however they differ in how this is achieved.
Perron Cluster Cluster Analysis (PCCA) [158] and its subsequent ‘robust’ alternative PCCA+ [159]
were proposed in 2000 and 2005 respectively and were the first methods to explicitly coarse-grain
MSMs. They use the properties of the slow eigenvectors of T to group microstates and are still being
utilised, see for example the recent references [6, 160, 161]. Many other methods have been proposed
[162–167], some of which have been quantitatively compared in reference [168] and all of which will
be described in more detail in chapter 5. However, one of the most popular methods are hidden
Markov models (HMMs) [169] which are dynamical models in which the microstate/macrostate
coarse-grained structure is directly incorporated into the model definition is estimated from the
data. HMMs are models of a Markovian process between g hidden macrostates i.e., states which
are not directly observed in the data. While in a macrostate the system emits randomly, according
to a probability distribution, to one of a set of observed microstates, which are seen in the data.
The hidden states correspond to metastable macrostates and the emission distributions define the
mapping between the macrostates and microstates. HMMs are well studied [170, 171] and have
been used in many different areas of science from speech recognition [171] to animal movement
[172] and have been applied to a large number of biochemical systems [173–186].

1.8 Number of metastable states

When coarse-graining MSMs (or performing any type of cluster analysis) a key parameter is the
number of clusters g , e.g., does the data support the hypothesis of g = 2 or g = 3 (say) clusters
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[187]. Choosing the value of g (or any parameter not estimated from the data) is known as model
selection [150, chapter 7]. Choosing the optimum value of g is important as each macrostate
pertains to conformations important to the dynamical process being studied [107]. If the number
of macrostates modelled are too few, then important conformations will be lost, whereas with too
many macrostates, the model loses its interpretability and can potentially create macrostates which
are artifacts of noise in the data, a processes called ‘over-fitting’ [150, chapter 7]. The dynamics of
proteins are hierarchical [107] with short lived states aggregating to longer lived states, and as such
kinetic clustering must always be in relation to some timescale. However, even given this timescale
coarse-graining methods do not automatically select the number of macrostates. A general approach
to determining the appropriate number of macrostates is to look for gaps in the eigenvalues of the
transition matrix or its implied timescales [64, 94, 158]. The number of slow process defined by
this gap defines the number of metastable states. However, due to poor microstate construction
or insufficient sampling, identifying a clear cut gap is not always possible [168]. In addition, this
also does not allow for easy identification of macrostates corresponding to transition-states [157]. A
general method for MSMs using Bayesian statistics has been developed, which takes as its data the
mapping between the micro- and macrostates [188] and so is independent of clustering method. To
decide on an appropriate number of macrostates, the Bayes factor (the Bayesian weight of evidence
for a particular hypothesis [189]), for different numbers of macrostates is calculated and used to
select g . The evidence is proportional to the probability of observing the microstates given the
particular coarse-graining and data [188]. This method is versatile and naturally takes into account
model over-fitting [188] but is computationally intensive.

Hidden Markov models are distinct from the other techniques in that they can be estimated
by maximizing a likelihood function [167, 169] i.e., the probability of observing model parameters
given a set of data. Maximum likelihood models have a wide range of model selection techniques
available to them which are not explicitly related to Markov processes but are nevertheless applicable
because the Markov property is subsumed into the likelihood function [150, chapter 7][187, 190].
Some popular techniques include cross-validation [95], the Akaike information criterion (AIC) [191],
the Bayesian information criterion (BIC) [192], and cross-validation of the log-likelihood (CVLL)
which have all been used to estimate the number of macrostates in HMMs [193]. The AIC uses
the likelihood to approximate the out-of-sample predictive accuracy of the model, whereas the
difference in BICs for two models is approximately equal to the Bayes factor for those models (this
is directly related to the Bayes factor approach of [188] described previous). Both the AIC and
BIC benefit from requiring negligible extra calculation once a model has been estimated and have
additionally been used to select the number of microstates in MSMs of conformational dynamics
[194] as well as being ubiquitous for general model selection [150, chapter 7]. A BIC-like criterion
called the integrated complete data likelihood (ICL) [195] has been derived specifically for clustering
methods such as HMMs and mixture models (which group observations into macrostates, albeit
without Markov dynamics) [190]. The ICL differs from the BIC and Bayes factor approaches in
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that the evidence it considers is proportional to the probability of observing the microstates and
the coarse-graining given the data [190, 195]. The ICL has been used extensively [190] for mixture
models and a recent assessment [196] finds it performs well across a range of types of mixtures. The
CVLL, BIC, AIC and ICL, have been utilised to determine the number of macrostates in HMMs,
but yet not within biomolecular dynamics context.

Chapter 5 explores the utility of approximations to the Bayes factor and similar criteria for
determining the optimal value of g : the Bayesian information criterion, BIC [192], the integrated
complete data likelihood criterion, ICL [195], the Akaikie information criteria, AIC [191], and
cross-validated log-likelihood, CVLL [193]. The aim of this chapter is to determine which of these
statistical model selection criteria can determine the correct number of metastable states from
simulations of a model system. The main benefit of the these criteria (except CVLL) are that they
require little additional calculation after estimating a model, in contrast to the full Bayes-factor
method of reference [188]. This chapter lays the ground-work for application to determining the
optimal coarse-grained description of the dynamics of AADH in chapter 6.

1.9 Aromatic amine dehydrogenase

Aromatic amine dehydrogenase (AADH) oxidizes primary aromatic amines, such as tryptamine,
into the corresponding aldehyde and ammonia. The rate-limiting step is the proton transfer from
a covalently bound Schiff base intermediate to an acceptor aspartate oxygen atom [197]. AADH
is notable because it exhibits a large primary kinetic isotope effect: substituting deuterium for the
hydrogen being cleaved in tryptamine causes the rate to drop by up to a factor of 55 [197]. A
drop in the rate is expected when considering the cleavage of the heavier deuterium atoms as the
C—H bond has a larger zero-point energy than the C—D bond, effectively decreasing the height of
potential barrier the reaction has to cross. However, if the zero-point energy were the only difference
contributing to the difference in rates, a KIE of approximately 8 would be expected [198]. The fact
that the observed KIE is almost 7 times as large implies significant quantum mechanical tunneling
[197, 199, 200], i.e., at C—H bond distances below the top of the potential energy barrier for
the reaction, the proton can transfer to the product state without the need for the kinetic energy
required by classical mechanics. In addition to the presence of tunneling indicated by the inflated
KIE, the KIE of AADH is independent of temperature, despite the fact that the underlying reaction
is dependent on temperature [197].

The motivation for studying AADH and other enzymes such as monoamine dehydrogenase
(MADH) [201, 202], soyabeen lipoxygenase (SLO) [203, 204] and DHFR [205, 206] (as well as many
others [207]) is that the KIEs are temperature independent and often large in absolute value, which
cannot be explained [208] by the dominant explanation of thermally activated reaction rates, namely
transition state theory (TST) [209]. These observations have prompted a range of explanations and
models going beyond TST [198, 199, 210–212]. Importantly for this thesis these models link the
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conformational dynamics of the to observable properties (reaction rates and KIEs) of the enzyme.
Understanding the conformational dynamics of AADH will be important evidence in future debates
over the validity of these models.

In the TST picture the enzyme-substrate complex (for AADH this is the Schiff-base after
reaction with tryptamine) undergoes thermal fluctuation from the reactant state, along the reaction
coordinate through a transition state, and on to the product state (the oxidized Shiff-base in AADH).
The rate at which this happens is proportional to exp(−∆GTS/RT ), where ∆GTS is the free energy
difference between the reactant and transition states (the activation free energy), R is the gas
constant and T is the temperature. The zero-point energy difference in isotopes changes the value
∆GTS. Tunnelling occurs when the thermal fluctuation along the reaction coordinate brings hydrogen
atom close enough to the acceptor atom so that wave-functions of the reactant and product state
overlap, effectively lowering the value of ∆GTS [207]. However, as Klinman and Kohen point out
[208], this model predicts both rates and KIEs which are temperature dependent, while for AADH
the rate determining step is temperature dependent while the KIE is temperature independent.

The main alternative to TST used to explain enzymatic reactions involving tunneling are ‘Marcus-
like’ (which take their name from their similarity to the Marcus theory of electron transfer [213]) or
full-tunneling models, which were originally adapted for hydrogen transfer reactions by Kuznetsov
and Ulstrop [214]. These models decouple tunneling from other processes by factorizing the rate
into two terms [198, 204, 214] (for an extensive review of the different types of models and their
applications see reference [207] and [215, chapters 4, 5 and 6]). The first term describes the process
of rearranging the heavy atoms into an state ready for tunneling and is an activated process - i.e.,
determined by an activation energy. The second term describes the tunneling process and is therefore
largely determined by the properties of the atom being transferred (the hydrogen or deuterium atom
or ion). This second term describes the probability of of tunneling occurring in terms of fluctuations
in the donor-acceptor distance (DAD - the distance moved by the hydrogen atom in the course of
the reaction). This may or may not depend on temperature, depending on whether fluctuations in
the DAD are necessary for tunneling to occur. This separation allows the model to accommodate
both temperature dependent rates of reaction and KIEs which are either temperature dependent or
independent [208]. Full tunneling models been applied to experimental results of AADH, MADH
and others [207, 208, 210, 216–219] which explain the temperature dependent rates as being largely
due to the rearrangement of the enzyme prior to the tunneling process. Once in the necessary
configuration, tunneling occurs without the need for further thermal fluctuations, meaning the
tunneling rate does not depend on temperature and only on the mass of the transferring hydrogen
isotope, giving rise to temperature independent KIEs.

Full-tunneling models are not the only explanation for reaction rates and temperature independent
KIEs. In reference [220, 221] the authors argue that by extending transition state theory to include
the effect of conformational dynamics, the temperature dependencies of KIEs can be explained
without the need for full-tunneling models. Their model posits two conformational sub-states, rapidly
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interconverting (relative to the reaction timescale) which both react via different pathways and
therefore with different activation energies and different degrees of tunneling. They showed that
fitting this model to kinetic data from AADH, MADH, SLO and DHFR, reproduced the temperature
dependence of the KIE in all four enzymes, however the fitted parameters have been criticized as
being unrealistic [208].

Other models of enzymatic reaction rates have been put forward which incorporate non-
equilibrium dynamic motions such as networks of promoting vibrations which couple to the reaction
coordinate across the enzyme (see reference [222] for a supportive review of these proposals). In fact,
the role of DAD fluctuations in the rate of tunneling driven reactions have prompted some [223, 224]
to assume that this implies non-equilibrium effects are needed to explain both the rates of reactions
and the catalytic rate enhancement of proteins. However this has been refuted [208] on the grounds
that these fluctuations are thermally activated (this will be more thorough described in chapter
6). This critique is part of a larger controversy [207, 208, 220, 221, 225] surrounding proposals for
models incorporating non-equilibrium effects in enzyme catalysis. One particular proposal is that
certain fast conformational transitions provide the inertia needed for the enzyme to take the reaction
to completion [226–228]. While this has been criticized in light of evidence from simulations [229],
it provides yet another example of the need to consider the role of conformational dynamics in
explaining enzymatic reaction rates.

It is clear from the preceding discussion that the conformational dynamics of an enzyme such as
AADH, with its large and temperature independent KIE, will be an important contribution to the
debate over the validity of the number of different models of enzyme reactivity. Despite being well
studied in other areas, no simulation study has so-far described the conformational dynamics of
AADH in the reactant state of its rate determining step.

The aims of Chapter 6 are thus two-fold. First, this chapter describes molecular dynamics
simulations of AADH in its reactant state and uses this data to create a Markov state model
description of its conformational dynamics. To do this an set of MSM hyperparameters is optimised
and understood in terms of the response surface, utilising the work of chapter 4, in addition a set
of sensitivity tests are proposed. The model selection criteria of chapter 5 are used to select the
appropriate number of hidden states for a coarse-grained description using HMMs. The second aim
is to critically assess the MSM optimisation and model selection criteria using the AADH system as
a ‘real-world’ test. Chapter 7, discusses the conclusions of this thesis and sets out concrete steps
for further work in this area.
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Contributions

This chapter represents a summary of existing work and contains no original contributions by the
author of this thesis.

2.1 Introduction

This chapter sets out the theory of Markov state models (MSMs) and hidden Markov models
(HMMs) to describe the dynamics of biomolecular systems. Table 2.1 summarises the nomenclature
used in this chapter.

2.2 Markov processes

Markov state models are now used routinely to quantitatively describe the conformational kinetics and
thermodynamics of biomolecular systems using data collected from molecular dynamics simulations
[80, 230]. A general, molecular system can be described by a vector of phase space coordinates
(momentum and position) as a function of time, x(t ). A thermodynamic ensemble of such systems
can be described by a probability density over x(t ), p(x; t ) [64]. Modelling a system in thermodynamic
equilibrium as a Markov process imposes a number of assumptions on p(x; t ) [64]:

1. that there exists a period of time, τ, over which the evolution of the system from a point x(t )

to a new point y(t +τ) is dependent only on x(t ), i.e. the joint probability density p(x,y;τ) is
conditional only on x:

(2.1) p(x,y;τ) =P[
x(t +τ) ∈ y+dy|x(t ) = x

]
.
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Symbol Definition

NA Number of atoms.
NT Number of trajectory frames.
NC Number of important continuous features
t Time index or variable.
x/y(t ) Point in phase space as function of time.
τ Markov lag-time.
p(x,y;τ) Probability of observing x and then y a time τ later.
p(x; t ) Probability distribution over phase space at time t .
µ(x) Stationary distribution of system in thermodynamic equilibrium.
T (τ) Transfer operator, equation 2.4.

q(x; t ) Normalized descriptor of a thermodynamic ensemble. q(x) = p(x)
µ(x) .

(ψi (x),λi ) Eigenfunctions and eigenvalues of the transfer operator.

r The number of dominant eigenvalues: λ2,...,r ' 1 and λr
λr+1

À 1.

n Number of discrete states/microstates.
si i = 1, . . . ,n Indicator functions used to discretize phase space into n states.
s = {s1, . . . , sNT } Trajectory in the basis defined by si .
T Transition matrix. The discrete analogue of the transfer operator.
π Stationary distribution of the MSM.
p(t ) State probability vector. Discrete analogue of p(x; t ).
q(t ) Normalized state vector. Discrete analogue of q(x; t ).
v Right eigenvectors of T. Discrete analogue of ψi (x).
u Left eigenvectors of T. u and v are related by: ui = vi ·πi

X Data matrix. Coordinates snapshots of trajectory: X ∈RNT×NA .
χ Feature matrix. Transformation of X into important features of system.

χ ∈RNT×NC .
χ′ TICA transformed feature matrix.
C Time lagged correlation matrix between states. Ci j = cor(i , j ;τ)
c Count matrix for discrete states. ci j ∝Ci j .
S Overlap matrix between either continuous or discrete states. In the

discrete basis, S = diag{π}.
g Number of hidden states of a HMM.
h = {ht } Trajectory of hidden states.
T̃ Hidden state transition matrix of a HMM.
π̃ Hidden state stationary distribution of a HMM.
M Membership matrix of HMM. M j i =P(ht = i |st = j ).
E Emission matrix of HMM. Ei , j =P(st = j |ht = i ).

Table 2.1: Important symbols used throughout this chapter.
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2. That there are no regions of phase space disconnected from one another, i.e. that the system
is ergodic. In this case there is a unique stationary distribution, µ(x). At constant temperature
µ(x) is the Boltzmann distribution.

3. The system is reversible and so obeys detailed balance:

(2.2) µ(x)p(x,y;τ) =µ(y)p(y,x;τ),

in other words, the absolute probability of observing a transition from x to y (also known as
the flux, F (x,y)) is the same as that from y to x.

The dynamics of a Markov process in continuous space is described by the transfer operator,
T (τ), which propagates q(x; t ):

(2.3) q(x; t ) = p(x; t )

µ(x)
,

forward in time by [64]:

q(y; t +τ) =T (τ) ·q(y; t )

= 1

µ(y)

∫
dxp(x,y;τ)µ(x)q(x; t ).

(2.4)

All the kinetic and thermodynamic information of the system is contained within T , its
eigenfunctions, ψi (x), and eigenvalues λi , which, for reversible dynamics, all lie within the interval
−1 <λi ≤ 1 [85]. The first eigenvector, with λ1 = 1, is given by ψ1(x) = 1 which corresponds to the
stationary distribution µ(x) by virtue of the definition of q(x), equation 2.3 [64]. The remaining
eigenvector/eigenvalue pairs shall be assumed to be ordered in decreasing value of λ.

The remaining eigenfunctions, ψ2,3,4..., correspond to the relaxation processes which take the
system from any initial distribution, q(x; t = 0) towards the stationary distribution on a timescale
related to its corresponding eigenvalue [64]. This can be seen by writing the time evolution of q(x; t )

as:

(2.5) q(x; t +kτ) = 1+
∞∑

i=2
e−kτ/ti

〈
q(x; t ),ψi (x)

〉
µψi (x),

where k = 1,2,3 . . . is a time index, and

(2.6) ti =− τ

ln |λi |
,

are the implied timescales for the relaxation process described by ψi (x) [64]. The bracketed quantity
is the overlap between q(x) and the eigenfunctions:

(2.7)
〈

q(x; t ),ψi (x)
〉
µ =

∫
dxµ(x)q(x; t )ψi (x).

Each term in equation 2.5 will decay exponentially, and in the long time limit, as k →∞, leave
just the first eigenvector, ψ1(x) = 1, the stationary distribution. If the first r eigenvalues are / 1 and
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are separated from the remaining values by a gap such that λr Àλr+1, then its possible to truncate
equation 2.5, without serious loss of accuracy, to:

(2.8) q(x, t +kτ) ' 1+
r∑

i=2
e−kτ/ti

〈
q(x; t ),ψi (x)

〉
µψi (x).

These r eigenfunctions are known as the dominant eigenfunctions and they correspond to the
slow relaxation processes of the system [64]. The truncation amounts to describing just the slow
kinetic processes of the system while ignoring the fast processes. This separation of timescales
implies the existence of regions of phase space, partitioned by the dominant eigenfunctions, known
as metastable states [64].

2.3 Markov state models

Markov state models (MSMs) are discrete models of Markovian dynamics described in previous
section [64]. The continuous quantities described above all have discrete analogues which will be
described in detail in this section [64]:

• The system is described by a set of n discrete states denoted, i = 1, . . . ,n. Instead of the
continuous vector x(t), each trajectory is denoted by a vector of integers s, where each
component, st , is the state at time t . t is now a discrete quantity, an integer multiple of the
time-step, ∆t , used to record the coordinates in an MD trajectory: t = k∆t , k = 1,2, . . ..

• The system can be described by a probability mass vector, p(t ), instead of a probability density
function p(x; t ). The i th component of p(t ) is the probability of the system being in state si

at time t .
• The stationary distribution, π, is defined by integrating the stationary distribution, µ(x), over

the domain of each discrete state, si :

πi =
∫

x∈si
dxµ(x)

• By analogy with equation 2.3, the system can also be described by q(t ) where qi = pi /πi .
• The time evolution of q(t ) and p(t ) is determined by the transition matrix, T(τ):

q(t +τ) = T(τ) ·q(t )

p>(t +τ) = p>(t ) ·T(τ)

• The eigenfunctions, ψ(x), are now the right eigenvectors of T(τ), v, with the same interpretation.
The left eigenvectors, u, are related to the right eigenvectors by: vi = ui /πi .

Creating an MSM starts with the collection of molecular dynamics (MD) data in the form of a
set of short trajectories, with configurations saved every ∆t seconds. This thesis will consider only
canonical ensemble simulations, using both over-damped Langevin dynamics [231, 232] and velocity
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re-scaling [233] to maintain temperature. As a consequence, the momentum coordinates will be
ignored as a feature for constructing MMs.

If each trajectory has NT frames and NA atoms then a trajectory can be represented by a data
matrix, X ∈RNT×3NA . The trajectories undergo a series of processing steps on the way to creating an
MSM, these are [80, 130]:

1. Create features: A set of continuous features, the “essential degrees of freedom” [85],
χi , i ∈ {1, . . . , NC} are chosen to capture the slow dynamics of the system:

X →χ, χ ∈RNT ×NC

Examples of continuous features include dihedral angles [234–237], residue contact distances
[238–240], root mean square deviation (RMSD) [241, 242], or secondary structure (SS) metrics
[243]. Neither SS or RMSD are amenable to further dimensionality reduction (step 2), but
can be clustered (step 3) and so are included here.

2. Dimensionality reduction: The number of features is reduced still further by transforming χ
into a small number, m, of collective variables.

χ→χ′, χ′ ∈RNT×m

This thesis will exclusively use time-lagged independent component analysis (TICA) as a
method of dimensionality reduction [81] [89].

3. Discretization: Each of the MD frames is assigned to one of n different discrete states using
a clustering algorithm such as k-means [244] clustering:

χ′ → s, s ∈ZNT

4. MSM estimation: The transition matrix, T, is estimated by counting transitions between
discrete states separated by a time τ.

5. Coarse-graining: The MSM is then coarse-grained by grouping the n microstates into g

macrostates states. This thesis will exclusively consider hidden Markov models (HMMs) as a
method for doing this.

2.3.1 Create features

The choice of continuous feature χ may be determined or at least strongly suggested by the
question being asked and/or from prior knowledge of the system. However, since the introduction of
variational scoring rules such as the GMRQ [94] and VAMP [97], they are typically chosen using
cross-validation. This is discussed in depth in chapter 4.
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2.3.2 Dimensionality reduction with TICA

Dimensionality reduction using TICA was introduced as a preprocessing step for improving MSM
construction [81, 89]. The result of a time-lagged independent component analysis is an estimate of
the eigenvectors of the transfer operator. So if MD trajectories have been projected onto the contact
distances of the protein, then the TICA eigenvectors are linear combinations of these distances such
that the first component represents the equilibrium distribution, the second component represents
the slowest relaxation process and so on. These are approximations to the true transfer operator
eigenvectors because the true eigenvectors, in general, are non-linear in such features. If TICA
is performed then the feature trajectories can be projected onto the first m TICA components
(where m must be chosen), creating a new, smaller set of features. There are two advantages to
this. First, the fact that the number of features has been reduced to m dimensions, means that
clustering will be more efficient. This is because the amount of computation required by k-means
clustering, a popular approach to clustering, scales with the number of dimension [87], as was
discussed in section 1.3 of the introduction to this thesis. The second, more important advantage,
is that if the TICA components are scaled by their eigenvalues (a process called kinetic mapping)
then distances in the space of these components approximate kinetic distances [90]. The kinetic
distance between two conformations correlates with how slowly they interconvert. This means that
geometric similarity now implies (at least approximately) kinetic similarity. Geometrically discretizing
this space means that molecular dynamics frames which are all mapped to the same discrete state,
will have similar rates of interconversion to other discrete states. This fulfills the main assumption
behind approximating the dynamics of a system with a discrete master equation (see equation 1.1
of the introduction) [62, 63].

The TICA operator is a result of variationally optimising a set of continuous basis functions, χi ,
to estimate the eigenfunctions, ψi , of the transfer operator. The method can be summarised as
follows: a trial function, f , is expanded in the basis χi :

(2.9) f (x) =
NC∑
i

aiχi (x)

The variational principle for operators with bounded eigenvalues (such as the transfer operator)
states that any approximate eigenfunction will have eigenvalues less than the true eigenvalues [245].
So choosing the coefficients ai to maximize the eigenvalues from using equation 2.9 will be the
closest approximation to the true eigenfunctions that can be achieved with linear combinations of
basis functions. Using the method of Lagrange multipliers to maximize the eigenvalues using f (x)

results in the following generalized eigenvalue equation [91]:

(2.10) Ca =λSa

Solving this equation requires estimating the matrix elements of C and S. The elements of C are the
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time-lagged correlation functions (cor) between χi and χ j [91]:

Ci j =cor
(
χi ,χ j ,τ

)
=

∫ ∫
χi (z)P

(
x(t +τ) = z | x(t ) = y

)
×χ j (y)P

(
x(t ) = y

)
dydz,

(2.11)

which can be estimated from the MD trajectories. The matrix S is the overlap matrix whose elements
are the scalar product between the basis functions, weighted by the stationary distribution [91]:

Si j =
∫
χi (x)χ j (x)µ(x)−1dx(2.12)

Having solved for the TICA eigenvectors, keep the first m columns of a and use this to transform
feature matrix χ [81, 89]:

(2.13) χ′ =χ · [a1,a2, · · · ,am]

2.3.3 Discretization

Discretization is performed on the m dimensional feature matrix χ′ using a clustering algorithm
such as k-means or Ward clustering [246]. Each region of feature space, Si , is assigned uniquely to
the microstate i through the associated indicator function, si

(
χ′) [64]:

(2.14) si (
χ′)={

1, χ′ ∈ Si

0, χ′ ∉ Si

To avoid introducing too many symbols, si
(
χ′) denotes the indicator functions, while s is the MD

trajectory in the indicator function basis. The individual components of s will be denoted st where t

is a time index. To highlight the time series nature of s it will sometimes denoted {s1, s2, . . .}.

2.3.4 MSM estimation

MSM estimation is analogous to TICA estimation but with indicator basis functions si replacing the
continuous basis functions χi in equation 2.9 [91]. The result of the optimisation of coefficients
ai results in the same generalized eigenvalue expression, equation 2.10. Solving this equation is
simplified by the fact that the indicator functions are orthogonal and so Si j = 0 if i 6= j and Si i =πi .
Equation 2.10 then becomes [64, 91]:

Ca =λΠa(2.15)

Ta =λa(2.16)

where Π= diag{π1, . . . ,πn} and T =Π−1C. In other words:

(2.17) Ti j (τ) = cor(si , s j ,τ)

πi
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For systems in thermodynamic equilibrium, the transition matrix elements must be estimated such
that they respect the assumptions of i) reversibility and detailed balance, and ii) that the ergodicity
i.e. that each state is connected to all other states [64, 91]. Two methods exist for estimating Ti j :
maximum likelihood estimation, MLE [64, 247], and Bayesian estimation [248]. This work will make
use of both: MLE will be used for model selection while Bayesian optimisation will be used when
error estimates are required. Detailed explanations of both techniques can be in reference [248] but
certain concepts need highlighting here: i) maximum likelihood estimation, ii) count matrices and
ergodicity, iii) Bayesian estimation.

2.3.4.1 Maximum likelihood estimation

Parameter estimation through maximum likelihood estimation proceeds by first modelling the
probability of observing the data {s1, s2, s3, . . .} given fixed parameters, Ti j [249]. For a MSM with
τ= 1 this is [248]:

(2.18) P(s|T) ∝
NT∏
t=1

Tst ,st+1

The likelihood, L (T|s), is equal P(s|T) but treats the the data as fixed and the parameters as
varying1 [249]. Equation 2.18 can be re-written in terms of the count matrix, ci j , which counts all
the observed transitions between states i and j [248]:

L (T|s) =P(s|T)(2.19)

∝
n f∏

t=1
Tst ,st+1(2.20)

∝∏
i
Π j T

ci j

i , j(2.21)

=P(c|T)(2.22)

So to calculate the maximum likelihood estimates (MLE) for Ti j , the count matrix c is estimated
from the trajectories and then Ti j are varied until a maximum value of L is found [249]. For
reversible MSMs an iterative scheme is used which ensures T satisfies detailed balance [248].

2.3.4.2 Count matrix

When the Markov lag-time is greater than the time-lag between frames, i.e., τ> 1 ·∆t , then there
is ambiguity as to how the count matrix should be calculated. For accurate confidence intervals
for the parameters Ti j each pair of states, (st , st+τ) should be independent [248]. The two extreme
methods for counting are sliding window and sample count [248].

Sliding window counts all pairs of frames separated by τ:

(s0, sτ), (s1, s1+τ), (s2, s2+τ)

1The integral of the likelihood over the parameter space can be greater 1 hence it is not a probability.
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For example, a trajectory with NT = 100 frames, with τ= 2 has ∑
i j ci j = 98 observed transitions.

If, as is usually the case with MD data, the observations are correlated at t < τ, the confidence
intervals generated will be too narrow, i.e., optimistic.

The sample count method uses the only the states separated by τ:

(s0, sτ), (sτ, s2τ), (s2τ, s3τ)

Continuing the previous example, ∑
i j ci j = 49, a factor of 2 different to the sliding window method.

This leads to the confidence intervals being over-estimated. A third method, effective counting,
uses the sliding window method but scales count matrix elements by a factor, Ii j , to account for
correlation between the observations [248, 250]. Continuing the previous example, if the observations
separated by t < τ are weakly correlated then the effective count matrix will be close to the sliding
window estimate and Ii j . 1; if the observations are highly correlated the count matrix will be
closer to the sample count method and Ii j < 1. This method has been shown to give more accurate
confidence intervals [248].

An MSM can only describe transitions between groups of microstates that are ergodic. For
example, with 10 microstates, if no transitions are observed between a group consisting of microstates
1 and 2 and a group consisting of microstates 3–10 (but transitions are observed between all other
pairs), then an MSM describes either the first group (a 2-state MSM results), or the second group (a
8-state MSM results). However, the method of counting transitions between states, will determine
whether or not those states are ergodic. There is a path between states a and z if there is a set
of intermediate states, b,c, . . . , y such that ca,b > 0, cb,c > 0, . . . , cy,z > 0. Two states are strongly
or reversibly connected if there is a path from a → z and from z → a. The full set of states are
ergodic if each state pair of states is strongly connected [251]. The sliding window procedure utilises
more transitions than the sample count method, and will generally increase the size of the strongly
connected set. In all estimation procedures used in this thesis, if the full set of state are not strongly
connected, then a subset of states are used such that all states within the subset are strongly
connected.

2.3.4.3 Bayesian estimation

Bayesian estimation uses not just the likelihood, P(c|T), but the prior probability of the parameters,
P(T), to estimate the posterior probability of the parameters given the data, P(T|c), using Bayes’
rule [252]:

(2.23) P(T|c) ∝P(c|T) ·P(T)

Rather than point estimates of the parameters, samples are drawn from the whole posterior
distribution for each parameter, Ti j , using Markov chain Monte Carlo [252]. These samples can then
be used to estimate the distribution, and hence error, of any quantity determined by the transition
matrix, e.g., eigenvalues or implied timescales [252]. The details of the sampling procedures used for
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estimation of MSM in this work can be found in reference [248] and are implemented in the Python
package PyEMMA (version 2.5) [253], however two points should be highlighted here. First, the
count matrices used are estimated using the effective count method. Second, the prior distribution
for the transition matrix elements are defined over a reversible matrix X, where Xi j ∝ Ti jπi , and is
given by [248]:

(2.24) P(X) ∝Πi≥ j x−1
i j .

This is to ensure the prior is consistent with detailed balance. As a result the posterior transition
matrix elements have the same connectivity structure as the count matrix. i.e., if ci j = 0 then for
any posterior sample Ti j = 0 [248].

A method for testing the convergence of the MCMC sampling procedure is to calculate the
rank-normalized R̂ statistic using four independent sampling chains [254]:

(2.25) R̂ = V̂

W
.

Here V̂ is the pooled variance of the four chains after rank normalization (i.e., sampled values
are ranked and then the rank converted to a standard normal distributed variable) and W is the
within-chain variance. The recommended threshold value for convergence in reference [254] is 1.01,
i.e if the sampling is converged then R̂ < 1.01. The more stringent convergence tests in reference
[254] are not considered here due to the exploratory nature of this thesis.

2.3.5 Choice of Markov lag-time

The lag time, τ, is not a hyperparameter of the model but rather a part of the model specification; it
defines the temporal resolution of the description of the dynamics. For large values of τ the truncation
in equation 2.8 becomes more accurate, or, put another way, the Markov assumption becomes more
plausible [64]. In addition, for small values of τ the correlation between the observations will mean
that the transition matrix is non-Markovian, i.e., does not obey the Chapman-Kolmogorov equation
[249]:

(2.26) [T(τ)]k = T(kτ)

However, if τ is too large then there may be processes of interest with timescales, ti < τ which will
not be captured [64].

As a compromise, τ is chosen by inspection of the data through an implied timescale plot [64,
255]. Starting from a given discrete trajectory, {st } the implied timescales, ti , are estimated for a
range of different values of τ. The lag time is chosen as the smallest τ such that d ti

dτ ' 0, where the
range of i is determined by the number of number slow relaxation processes.
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2.3.6 Choice of hyperparameters

The hyperparameters of the MSM are the modelling choices which transform the raw MD data
into the n discrete states, si , used in MSM estimation. This work will consider only the following
hyperparameters:

1. χ the continuous feature,
2. τ′ the TICA lag time (τ′ can be different from τ),
3. m the number of retained TICA components,
4. n the number of cluster centers.

In principle, there are a large number of modelling choices which will have an effect on the final
definition of the discrete states. These will described in the relevant sections later in this thesis.
However, two important choices which will be kept fixed are:

1. the scaling of the TICA components. Each component will be scaled by their eigenvalues (the
“kinetic mapping” option in PyEMMA [253]);

2. the k-means [244] algorithm will be used to cluster the TICA transformed trajectories into the
discrete states.

Kinetic mapping is recommended for TICA dimensionality reduction [90] because it maps
geometric distances to kinetic distances (section 2.3.2). As already discussed in section 1.3 of the
introduction to this thesis, a recent study looked at the quality of MSM models, created with
different MSM hyperparameters [92], of twelve fast-folding proteins. The metric they used to judge
model quality was the generalized matrix Rayleigh coefficient, which is discussed in full below, but
essentially measures how accurately the model describes the slow eigenvectors of the true transition
matrix. They found that on average using kinetic mapping with TICA increases the quality of the
model compared to using TICA without kinetic mapping (which is in turn better than using PCA
or no preprocessing). Kinetic mapping mitigated the degradation in model quality introduced by
including too many TICA components. However, this effect was smallest when using a small number
of TICA components and for seven of the 12 optimum hyperparameters (the optimum for each
protein) kinetic mapping was not used. This may be due to the small number of scoring iterations
used to estimate the model score: only five iterations were used, later studies on the same systems
used 50 [130].

The choice of clustering algorithm has been investigated in reference [246] where the authors
looked at the quality of MSMs, created using different clustering algorithms, of three of the twelve
fast-folding proteins investigated in reference [92]. They found that k-means and Ward clustering
performed equivalently well when judged with the same model score used in reference [92]. K-means
will be used in this work because of its good performance and the fact that it is implemented in the
MSM package PyEMMA [253]. Fixing both the kinetic mapping and clustering algorithm reflects
an arbitrary decision to keep the number of hyperparameters to a minimum.
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The variational principle, used previously to optimize the coefficients in the basis function
expansion, equation 2.9, can also be used to optimize the basis functions themselves [92, 130]. In
order to do this objective functions known as the VAMP (variational approach to Markov processes)
scores [97] were derived which reach their upper limit when the resulting eigenfunctions become
the exact eigenfunctions of the transfer operator. The VAMP scores generalize previous work on
variationally optimising basis functions using the generalized matrix Rayleigh coefficient, GMRQ
[94]. The VAMP scores are a family of scores, parameterized by an integer w [97]:

(2.27) VAMP−w =
r∑

i=1
(λi )w ,

where r is the number of dominant eigenvalues of the transition matrix i.e. the r in equation 2.8.
The GMRQ corresponds to w = 1 and has been used to optimize parameters for MSMs of protein
folding [92]. This work will follow the suggestion in reference [97] and a recent study which looked
at selecting appropriate features for protein folding [130]. They used the VAMP score with w = 2

(VAMP-2), which is equivalent to maximizing the kinetic variance [97]. Maximizing the VAMP-2
score is then equivalent to choosing a basis set which most accurately describes the the slow dynamic
processes of the system (see the earlier discussion of kinetic variance in section 2.3.2).

In order to use the VAMP-2 score the following steps can be used [130]:

1. select a set of hyperparameters to create a MSM basis, si ,
2. estimate the MSM transition matrix,
3. calculate the VAMP-2 score,
4. repeat steps (1) - (3) a number of times until the VAMP-2 score converges.

However, using equation 2.27, will tend to produce overly complex basis functions that fit to noisy
fluctuations in the data, rather than the ‘true’ relaxation processes [94, 97, 130], a process known
as over-fitting [150].

Two popular techniques for mitigating over-fitting [150] are the bootstrap [256] and cross-
validation, CV [95]. The bootstrap consists of drawing samples (typically 100s or 1000s) from the
data, with replacement, to form new data sets. Models are estimated and scored on these data. The
distribution of model scores is used to calculate their mean and confidence intervals. Models can
then be compared using these mean scores, which take into account an estimate of the sampling
uncertainty. The idea of CV is to estimate the model parameters on a subset of the data, the
training data Dtrain, and then evaluate the performance of the parameters on the remaining data
Dtest [150]. K-fold CV is popular for MSMs [94, 130]. In this method, the model is trained on K −1

disjoint ‘folds’, where a fold is 1⁄K of the total data, e.g., if there are 100 MD trajectories, a fold
will be 100⁄K trajectories. The score is then evaluated on the single held out fold and the average
score over the K folds is used to evaluate the model. However, many different methods exist [95]
and this work will use 50:50 shuffle split CV, which has been used previously for MSMs [92, 257].
It is equivalent to repeated 2-Fold CV with a random permutation of the data in between each
evaluation and is described in algorithm 1.
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Algorithm 1: 50:50 shuffle split cross-validation.

Data: N independent trajectories: D = [s1,s2, . . . ,sN ]
Input: hyperparameter set: θ
Input: estimator of model parameters: P = P (θ;D)
Input: scoring function: CV (θ) =CV (P ;D)
Parameter: number of iterations: J

for i ← 1 to J do
permute (“shuffle”) location of trajectories in D: e.g., D → [s5,s17, . . . ,s2]
split trajectories into two equal size, disjoint sets: D →Dtrain, Dtest

estimate model parameters on training data: P train = P (θ,Dtrain)
score model on test data: CV test

i =CVi (P train;Dtest)

Result: Cross-validated score: MCV(θ) = 1
J

∑
i CV test(θ)

It is important to note that for CV to judge the performance of all the hyperparameters, the
‘estimator of model parameters’ must take as its input the raw data [150]. For the case of MSMs,
the estimator takes the cartesian coordinates, applies TICA, clusters trajectories, and then estimates
the transition matrix elements. The scoring function, CV , for the VAMP-2 score is given by [97]:

(2.28) CV (C,S,v |Dtest ) =
∥∥∥∥(

v>Stestv
)− 1

2
(
v>Ctestv

)(
v>Stestv

)− 1
2

∥∥∥∥2

2

where ‖A‖2
2 is the square of the Frobenius norm of the matrix A [97]. The matrices Stest and Ctest

are the overlap and time-lagged correlation matrices estimated on the test data, while v are the
eigenvectors of the transition matrix estimated using the training data.

2.4 Coarse-graining with hidden Markov models

2.4.1 HMM definition

Hidden Markov models (HMMs) are models of a dynamic process consisting of the following
elements2 [171]:

1. A number of hidden states, g . These are not observed in the data used to train the model.
2. Hidden-state to hidden-state transition probabilities, P(ht+1|ht ), where ht is the hidden state

at time t . These are encoded in the hidden state transition matrix, T̃ ∈Rg×g . This has the
same interpretation as the MSM transition matrix, T. In keeping with the notation of reference
[169], the ˜ pertains hidden quantities.

3. A number of observed states, n. These are the observations used to train the model.
4. Probabilities of seeing the observed states, given a hidden state. These encoded in the ‘emission

matrix’, E, where Ei j =P(s = j |h = i ).
2This treatment focuses exclusively on discrete hidden Markov processes.
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Figure 2.1: Example hidden Markov model. A schematic representation of a
HMM with g = 2 hidden states and n = 4 observed states. The dashed circles represent
the hidden states, the solid circles the observed states. Transition probabilities (from
T̃) between hidden states label the dashed arrows; emission probabilities (from E)
label the solid arrows.

5. An initial distribution of hidden states, π̃′.

An example HMM is shown in figure 2.1. The hidden states are shown in dashed circles and the
hidden-state to hidden-state transition probability label the dashed arrows. These are taken from
the transition matrix T̃ shown. The stationary distribution, π̃, ensures detailed balance:

T̃1,2 × π̃1 = T̃2,1 × π̃2

0.09×0.1 = 0.9×0.01

While in each hidden state the system emits to a observed state shown as solid circles and the
emission probabilities label the solid arrows. These are taken from the emission matrix E shown.
Other quantities of interest are the observed state distribution π which is related to the emission and
stationary distribution by π j =∑

i Ei j π̃i ; and the membership matrix, M. The membership matrix
encodes the probability of the system being in an hidden state given the observed state [169], i.e.,
M j i =P(h = i |s = j ). This can determined from the stationary distributions of the hidden states and
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observed states, the emission matrix and the laws of probability:

P(h = i |s = j ) = P(h = i )

P(s = j )
P(s = j |h = i )(2.29)

M j i =
π̃ j

πi
Ei j(2.30)

The eigenvalues and eigenvectors of the hidden transition matrix have a similar interpretation as
the eigenvectors and eigenvalues of an MSM, i.e., they are the relaxation processes and associated
timescales, respectively, of the hidden states.

2.4.2 Coarse-graining procedure

HMMs have been proposed as a method for modelling biomolecular dynamics by coarse-graining a
MSM [169]. This coarse-graining is accurate under the following assumptions [169]:

1. The underlying dynamics of the system are Markovian, i.e. they can be modelled by a transfer
operator, T (τ) (equation 2.4).

2. There is a gap between the r ’th and r +1’th eigenvalues of T (τ) i.e. λr
λr+1

À 1.
3. The r dominant eigenfunctions partition the stationary distribution into r metastable states.

The probability of the system being in the boundary between these sets is negligible.

The process for coarse-graining an MSM is as follows (adapted from algorithm 1 in [169]):

1. Estimate an MSM. Using the process described in section 2.3, transform the raw MD
trajectories, {X1,X2, . . .}, into trajectories of discrete states, {s1,s2, . . .}. Using these discrete
trajectories estimate the MSM transition matrix, T at a lag-time τ.

2. Determine number of metastable states. The number of metastable states, r , is determined
by looking for a gap in the eigenvalues of T, such that λr

λr+1
À 1. The number of hidden states

of the HMM, g , is equal to the number of metastable states, r .
3. Coarse-grain the transition matrix. Estimate initial HMM parameters, T̃0, E0 and π̃′

0, using
robust PCCA [159].

4. Estimate the HMM. Optimise the HMM parameters (maximize the likelihood) using the
Baum-Welch algorithm [170, 258], which is described in the next section.

Robust PCCA (or PCCA+) effectively utilises the sign structure of the dominant eigenvectors
of the MSM in the microstate basis to assign microstates to metastable states. For example, if
there are r = 3 dominant eigenvalues (including the λ= 1 eigenvalue corresponding to the stationary
distribution) identified in step 2, then PCCA+ will partition the microstates into three metastable
states. The method for assigning microstates to metastable states is as follows (this follows the
description given in reference [168] assuming grouping into three metastable states): for each
microstate i , create a vector vi = (q i

1, q i
2, q i

3) where qk are the values of the kth eigenvector for
that microstate. From among all the vi choose three that are the most distinct from one another
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(using the Gram-Schmidt orthonormalisation algorithm). These three states are assigned to the
three metastable states. Assign the remaining microstates to either of these three metastable states
based on their similarity to the three representative vectors vi .

The g eigenvalues and g−1 relaxation processes of the HMM will be the coarse-grained equivalent
of the eigenvalues and eigenvectors measured in the MSM basis [169].

2.4.3 HMM estimation

The Baum-Welch algorithm as used for coarse-graining reversible MSMs is given in detail in reference
[169]. The algorithm is sketched in algorithm 2 to introduce some of the important quantities used
later in this thesis. In particular, the ‘forward’ part of the algorithm calculates the αi (t) variable
which is the probability of arriving at hidden state i at time t and seeing the actual observed
trajectory up to that point [171]. Summing this value for t = NT over the hidden states gives
the probability of the observed trajectory given the model parameters [171]. This is equal to the
likelihood of the parameters given the observed trajectory, P({st }|θ) =L (θ|{st }) [171].

In addition to the maximum likelihood estimation of the parameters, Bayesian estimation can
be used. The details of the implementation used in PyEMMA (version 2.5) [253] can be found in
reference [259] and the references therein, but the broad outline for estimating a Bayesian HMM
with g hidden states is as follows: First, an MSM is estimated and the implied timescales, t2, t3, . . .,
saved. Second, the trajectories are sub-sampled, or strided, to account for the correlation between
observed states. The striding is by a factor ∆t given by [253]:

(2.31) ∆t = min
(
τ,2 · tg+1

)
.

i.e., if g = 5 the HMM will capture the first five timescales in the full MSM basis. The 6th implied
timescale measured in the MSM basis will the slowest relaxation timescale but which is nevertheless
considered too fast to be included in the HMM. This is analogous to the expression given in reference
[250]. This means only the following transition are counted:

(2.32) {(s0, sτ), (s∆t , s∆t+τ) . . .} .

Third, a maximum likelihood HMM is estimated and is used to i) determine the largest strongly
connected set of hidden states and ii) define the prior distribution of π̃′. The count matrix of
the maximum likelihood model is determined by ξi j from the Baum-Welch algorithm. The largest
connected set is defined the same way as for the MSM case.

Fourth, the parameters are sampled using MCMC. The prior function for T̃ is given by equation
2.24 and for π̃′ is given by:

(2.33) π̃′ ∼∏
i
π̃

ai+ni−1
0,i ,

where ai are the initial distribution from the maximum likelihood model and ni is the population
of each hidden state at each sampling step in the MCMC algorithm. No priors for the emission
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Algorithm 2: The Baum-Welch algorithm.

Data: Initial HMM parameters: θ0 = (T̃0, E0, π̃′
0)

Data: observed state trajectory: {st }, t = 1, . . . , NT

Parameter: likelihood tolerance: ε

begin
ll0, θ, continue ←− 0, θ0, True
while continue do

Forward procedure
Calculate the probability of being in hidden state i at time t and seeing the partial

trajectory s1, . . . , st ′ , given the model parameters:

αi (t ) =P({s1, . . . , st }|ht = i ,θ)

Backward procedure
Calculate the probability of seeing the partial trajectory st+1, . . . , sNT , given being in

hidden state i and the model parameters, θ:

βi (t ) =P({st+1, . . . , sNT }|ht = i ,θ)

Update model parameters
Calculate probability of being in hidden state i at time t given the entire trajectory {st }

and θ:

γi (t ) =P(ht = i |{st },θ) = αi (t )βi (t )∑g
j=1α j (t )β j (t )

Calculate probability of begin in hidden state i and time t and transitioning to state j
at time t +1 given the entire trajectory {st } and θ:

ξi j (t ) =P(ht = i ,ht+1 = j |{st },θ) = αi (t )Ti jβ j (t +1)E j ,st+1∑g
k,l αk (t )Tklβl (t +1)El ,st+1

Update parameters using:

π̃′
i ←− γi (t = 1)

T̃i j ←−
∑NT −1

t=1 ξi j (t )∑NT −1
t=1 γi (t )

Ei j ←−
∑NT

t=1 1st= jγi (t )∑T
t=1γi (t )

θ←− (π̃′, T̃,E)

Calculate log-likelihood

ll′ = log
(∑g

i αi (NT )
)

if ll′− ll < ε then
continue ←− False

ll ←− ll′
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distributions are used, instead the values of are determined from the other sampled quantities.
Convergence of the parameters is performed in the same manner as for the MSM, i.e., through
sampling independent chains and calculating the R̂ statistic.

2.5 Markov model validation

Markov model validation for both MSMs and HMM is performed by checking to see if the Chapman-
Kolmogorov equation,

(2.34) [T(τ)]k ≈ T(kτ),

holds to within sampling error for a range of k. This check is called the Chapman-Kolmogorov
test (CK test) [64]. The left-hand side is a transition matrix predicted at time kτ from the matrix
estimated at time τ. The right hand-side is the transition matrix estimated at time kτ. This equality
will hold exactly for a discrete Markov process (i.e., one for which there was no error in creating the
discretized states, si [64]). For an MSM, testing equality of two n ×n transition matrices requires
n2 comparisons which is both computationally intractable and would result in large uncertainties
[64]. Instead, the MSM is coarse-grained as a HMM and the CK test adapted as follows [64]:

1. For each value of k = 1,2,3, . . . calculate T̃(kτ)

2. Using an initial state vector p(0) and T̃(τ) predict the values of p(kτ) using:

p>(kτ)HMM = p(0)>[T̃(τ)]k

3. Now predict p(kτ) from the same initial state using the T̃(kτ) matrices:

p>(kτ)Trajectory = p(0)>T̃(kτ)

4. Compare the p(kτ)HMM and p(kτ)Trajectory for a range of values of k and for different initial
state vectors, p(0). In PyEMMA (version 2.5) [253] p(0) are the HMM basis vectors, i.e.
p = (1,0,0, . . .), (0,1,0, . . .).

2.6 Summary

This chapter has described the theory underlying constructing Markov state models in a fine grained
microstate basis and then coarse-graining this model using hidden Markov models. To summarise
the methods detailed here, starting from a set of molecular dynamics trajectories. Step 1 : choose a
feature, χ, related to the slow dynamic processes being studied and project the atomic coordinates
of the trajectories onto this feature. Step 2 : perform a time-lagged independent component analysis
(TICA) parameterized with a lag time of τ′, and project the feature trajectories onto the first m TICA
components. This step is optional and is not used in the work of chapter 3 which estimates Markov
models of water dynamics in aerosol particles. Step 3 : cluster the reduced dimension trajectories
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into n microstates used k-means clustering. Step 4 : determine an appropriate Markov lag time by
estimating Markov state models at different lag times and looking for the smallest lag such that
the slow implied timescales remain constant. Step 5 : estimate a Markov state model at this lag
time, τ, and determine the number of dominant processes, r , by looking for gaps in eigenvalue
spectrum of T(τ). This model is then specified by the hyperparameters (χ,τ′,m,n). Step 6 : Score
this model by calculating the cross-validated VAMP-2 score using the r dominant eigenvectors. Step
7 : repeat steps 1−3 varying the values of the hyperparameters and re-scoring the resulting models,
while keeping the number of dominant eigenvectors, r , and the Markov lag time, τ, fixed. Then
choose the set of hyperparameters which maximize the VAMP-2 score. A more efficient method
for performing these steps, utilising ideas from the machine learning community, is investigated
in chapter 4 using the benchmark system of alanine dipeptide. Step 8 : coarse-grain the optimum
MSM using a hidden Markov model with r hidden states representing the r metastable states, as
determined in step 5. In chapter 5 a different method for determining the number of metastable
states is investigated. This method uses more abstract classification techniques taken from the
statistics community and tests them on a model four-well system. Chapter 6 incorporates the work
of chapters 4 and 5 into this general method in order to develop a Markov model description of the
conformational dynamics of the enzyme aromatic amine dehydrogenase.
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3
TRANSIENT CAVITY DYNAMICS AND DIVERGENCE FROM THE

STOKES–EINSTEIN EQUATION IN ORGANIC AEROSOL

Contributions

This chapter contains an adaption of “Transient cavity dynamics and divergence from the Stokes–Einstein
equation in organic aerosol” by Young-Chul Song, Stephen Ingram, Robert E. Arbon, David O.
Topping, David R. Glowacki, and Jonathan P. Reid. This was published in the journal Chemical
Science, volume 11, pages 2999-3006. Copyright 2020 Royal Society of Chemistry. The article was
published under a CC-BY license and so no special permission from the publishers was needed to
reproduce the article here.

Changes have been made including figures, section and reference numbers to suit a thesis
structure and maintain formatting conventions with the rest of this thesis. Additional discussion of
the results and conclusions have also been added. Some of the supplementary information from the
paper has been included in the main text, the remaining supplementary information can be found in
appendix 8.

Contributions to the work: Young-Chul Song performed the experimental work; David O.
Topping performed the analysis of diffusion constants from the experimental results; Stephen
Ingram performed the MD simulations, the determination of the diffusion constants from MD
simulations, the exploration of the cavity dynamics and the packing efficiency. The author of this
thesis contributed to sections 3.4, 3.1 and 3.5 of this work. Specifically:

1. Suggested the splitting of the molecular dynamics trajectories into times-slices, although did
not do the analysis of the sucrose cavities (figure 3.3 and 3.5).

2. Performed all Markov state modelling (exemplified in figures 3.4 and 3.6)) and wrote the
Markov state modelling section of the supplementary material of the published paper, which
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has been incorporated into this chapter.
3. Classified the time-slices as being in equilibrium and non-equilibrium, and calculated the water

hopping barrier heights (figure 3.7) for the equilibrium time-slices.
4. Added discussion of Markov state models to the introduction (section 3.1) and of the Markov

analysis to the conclusions (section 3.5).

The work was supervised by David R. Glowacki and Jonathan P. Reid.

3.1 Introduction

Examining the relationship between the diffusion rates of small molecules and the viscosity of
the surrounding molecular matrix is important for exploring problems as diverse as the molecular
mechanisms of crystallization and the formation of amorphous phases in drying droplets [260–262],
the controlled-release of active ingredients from structured micro-particles in pharmaceutical and
consumer products [263–266], and the mass concentration of secondary organic aerosol particles
in a polluted urban environment [267–269]. The simplest relationship, the Stokes–Einstein (S–E)
equation, expresses the inverse correlation between the translational diffusion coefficient, D, of a
large spherical solute molecule of radius a, moving within a solvent continuum with a dynamic
viscosity, η [120, 270]:

(3.1) D = kBT

Cπηa

where C is a constant. However, in many important cases the “solvent” (i.e. the dominant component
by mole fraction) may be a large organic molecule and the “solute” (i.e. the minor component) may
be a small molecule, e.g. water [120–122]. For example, in the drying of aqueous-organic solution
droplets, the evaporation of water can lead to an involatile solute surpassing its solubility limit,
thereby becoming the major component with a mole fraction that can approach 1. The sudden
removal of water can lead to a “frozen” organic-rich matrix with a sufficiently high viscosity such that
nucleation and crystallization are delayed, unable to occur on an experimentally realisable timescale,
with the solution composition crossing the threshold for a moisture-induced glass transition [129].
Even then, the residual moisture content can impact product lifetime and particle morphology. Under
these conditions, it is most appropriate to consider the diffusion of water within an organic matrix at
infinite dilution of water; however, it is typical that a significant divergence from the S–E equation
is observed in this limit [120, 123, 124]. Modifications to the S–E equation have been suggested,
including the use of a fractional exponent (i.e. D ∝ η−α), that account for different relationships
between the diffusion coefficient and viscosity [125–127].

Independent measurements of diffusion coefficients and viscosities over the appropriately wide
ranges needed to observe the failure of the S–E equation are challenging. Most measurements
report the temperature-dependence of viscosities and diffusion coefficients for super-cooled liquids
or solutions of fixed composition, and can approach close to the glass transition temperature
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[270–273]. By contrast, there are many fewer studies of the compositional dependence of the
divergence from the S–E equation, for example with diminishing moisture content as the glass
transition relative humidity (RH) is approached [120, 121, 123, 124, 126, 274]. Moisture acts as a
plasticizer in atmospheric aerosol particles, regulates the viscosity and, thus, shelf-life of amorphous
particles used in formulations, and could play a critical influence in governing crystal formation
in drying droplets and films as opposed to the formation of an amorphous solid. Examining the
compositionally dependent divergence of an organic solute–water mixture from S–E behaviour not
only requires accurate measurements of diffusion coefficients and viscosities over as much as 15

orders of magnitude but requires accurate measurements of composition, recognising that both
viscosity and diffusion coefficients are highly dependent on the identity for the functional groups
forming the organic solute [275]. To access the full viscosity range, moisture must be removed from
metastable supersaturated solution droplets without crystallization.

Reported here is a systematic experimental and computational study of the failure of the S–E
equation for a range of aqueous-saccharide solutions, varying the molecular size of the organic
molecule forming the viscous matrix relative to water and exploring the detailed mechanism of
water transport in the limit of a pure saccharide particle. The experimental measurements are
complemented with 9 µs of molecular dynamics (MD) simulations at atomistic resolution for a single
type of saccharide matrix. In order to understand the microscopic dynamics of the water transport a
Markov model (MM) approach was used. Much of the recent work [60, 130] in Markov modelling
has been on the feature selection problem: creating variationally optimised basis sets which capture
the slow dynamics of the system. However, this work uses the Cartesian coordinates of the water
molecule, with no variational optimisation, as a method for both i) partitioning and classifying the
dynamics as being in either local equilibrium or non-equilibrium and, ii) determining the typical free
energy barriers faced by water as it moves through the saccharide matrix. This chapter is structured
as follows. In section 3.2 the experimental measurements of diffusion coefficients are described and
discussed; section 3.3 makes the link between the diffusion and viscosity; section 3.4 describes the
elucidation of the microscopic mechanism from molecular dynamics simulations and MMs; section
3.5 concludes and discusses limitations of the Markov modelling.

3.2 Measurements of diffusion coefficients of water in

aqueous-saccharide aerosol particles

Not only are saccharides used widely as excipients for drug delivery [276–278] and excipient particles
are often prepared by spray drying [279–281], they find widespread application in the food industry and
are commonly used as laboratory surrogates for high oxidized viscous secondary organic atmospheric
aerosol [129, 262, 282–285]. Using aerosol particles levitated in optical tweezers, measurements
were carried out which avoid the process of heterogeneous nucleation that occurs in the presence
of a substrate, allowing access to particle viscosities spanning dilute aqueous solutions (10 mPas)
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Figure 3.1: Example experimental workflows. Examples of each step in the
workflow required to extract the compositional dependencies the diffusion coefficients
from a time-dependence in particle size. The panels show: (a) a collection of response
functions for size changes of aqueous-raffinose particles following a step change in
RH; (b) a single response function following a change in RH from 30 to 5 RH for a
sucrose particle and the best-fit produced by the Fickian diffusion model. (c) The
estimated compositional dependencies of the diffusion of water in the six binary
aqueous-organic aerosol systems studied. The estimate of the diffusion coefficient for
water in sucrose from the MD simulations also presented (yellow diamond).

to an amorphous solid (10 TPas). The moisture content is readily altered by varying the relative
humidity of the gas phase. Specifically, considered here are five binary aqueous-saccharide solution
aerosols: glucose (a mono-saccharide); sucrose, trehalose and maltose (all di-saccharides); and
raffinose (a tri-saccharide). Also considered are aqueous aerosol droplets containing levoglucosan, a
representative oxygenated compound of biomass burning aerosol particles in the atmosphere [286].

Figure 3.1 panel (a) shows examples of the time-dependence in the size response functions for
aqueous-raffinose particles following transitions in RH. The significant changes in the equilibration
time reflect the significant changes in particle viscosity that are observed over this range in
RH/moisture content: equilibration at RHs above the glass-transition RH occurs on timescales
¿ 1h; at low RH, the release of moisture from an amorphous glass occurs over many hours and
indeed is not complete over the experimental timescales. The time-constant, τ, and “stretch factor”
β of the multiexponential decay observed in both evaporation and condensation events show a path
dependence, varying with both the initial and final RH, the initial particle size and the wait-time at
intermediate RHs (see figure 8.4). Tabulated values of both parameters observed in each of the
new systems may be found in table 8.1. To fit the compositional/water activity dependence of the
diffusion coefficient of water for binary solution aerosol droplets requires measurements at many RH
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transitions [111, 287]. Measurements were performed over 6 RH transitions for 96 droplets for the
six binary aqueous-organic aerosol systems studied (glucose, sucrose, trehalose, maltose, raffinose
and levoglucosan). Transitions in size were slowest for maltose droplets at the lowest RHs. Moreover,
the characteristic timescale increases with increasing particle size for every binary organic system
studied (see figure 8.3 and table 8.1). Time-constants for all particle sizes in the range 3 µm to
6 µm show the same ordering: maltose > raffinose > trehalose > sucrose > glucose ≥ levoglucosan.
In other words, the chain length of the organic fraction appears to be important to the internal
mixing dynamics but is not the only controlling factor.

The compositional dependencies of the diffusion coefficients of water estimated for these binary
aqueous-organic systems are summarized in panel (c). For reference, the moisture driven glass
transition RH has been reported as 53 % for raffinose [285, 288] and 32 % for maltose [285]; the
majority of evaporation measurements for these two systems have been made with ultra-viscous and
even glassy particles. A value of 23 % RH has been reported for sucrose [285, 288] while glucose and
levoglucosan are not expected to become glassy at any moisture content at this temperature [283];
indeed, levoglucosan crystalizes at an RH of 30 % and diffusion coefficients cannot be measured below
this. The trend in Dw is not monotonic with molecular weight: levoglucosan (162.1 gmol−1) > glucose
(180.2 gmol−1) > raffinose (504.4 gmol−1) > trehalose (342.3 gmol−1) > sucrose (342.3 gmol−1) >
maltose (342.3 gmol−1) at the same water activity. Water in the monosaccharide shows the fastest
diffusivity, and diffusion in the trisaccharide is faster than in the disaccharides when a fixed RH/water
activity is considered. Indeed, this trend in the diffusion coefficient of water in the limit of a pure
dry organic matrix is consistent with a previous assessment of the diffusion coefficients at the glass
transition temperature for a subset of the compounds studied here [289].

3.3 The relationship between diffusion and viscosity in mono-, di- and

tri-saccharide particles

The diffusion coefficient measurements presented in figure 3.1 and our measurements of solution
droplet viscosities [285] allow us to examine their correlation over wide ranges spanning more
than 12 orders of magnitude in viscosity and 7 orders of magnitude in diffusion coefficient. The
correlations for these systems are compared with predictions from the S–E equation in figure 3.2,
assuming a molecular diameter for water of 0.2 nm. Typical error estimates in diffusion coefficient
and viscosity are indicated by the representative error bars for each system. The diffusion coefficients
for water in all organic-aqueous solutions increasingly deviate from the S–E equation with decreasing
water activity and increasing viscosity. Even at the threshold of semi-solid behaviour (104 Pas), the
diffusion coefficient of water in aqueous-raffinose aerosol droplets is ∼ 5 orders of magnitude larger
than estimated by S–E. This is a consequence of the inapplicability of the S–E assumptions to
estimations of the diffusion coefficient of a small molecule moving within a matrix of large molecules,
i.e. the translation of water is not characterized by simple Brownian motion [272, 290].
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Figure 3.2: Correlation of the diffusion coefficient of water with the
viscosity of the aqueous-organic matrix. A prediction from the S–E equa-
tion is shown by the grey line. The relationship between the diffusion constant and
viscosity of α-pinene SOA (orange markers) has been inferred by us from the literature,
and has previously been discussed.[123, 291] The colour scale is the same as in figure
3.1.

Comparing the relative divergence of water diffusion coefficients from S–E predictions for the
mono-, di- and tri-saccharides, the discrepancy increases systematically across this series. Water
transport is fastest in solutions with the tri-saccharide raffinose and slowest in solutions with the
mono-saccharide glucose at a certain solution viscosity; the di-saccharides (sucrose, trehalose and
maltose) fall in the intermediate range. These results suggest that the disparity in size between
water and the organic molecule forming the matrix is key to determining the diffusion rate of water.
It also explains why the particle size relaxation times and limiting D values (in dry air) did not
directly scale with molecular weight: the particles exhibit different viscosities at the same water
activity. Therefore, an independent viscosity axis, in this case produced using the aerosol particle
coalescence technique, is crucial to separating the two effects.

It can be postulated that when forming a matrix from raffinose, a much larger molecule than
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water, the packing density of raffinose leaves sufficient free volume for water to move more readily
through the network of organic molecules. When the organic molecule is closer in size to water, as
in the case of the mono-saccharide glucose, the tighter relative packing of glucose leads to a fewer
adequately sized cavities. In this sense, the mechanism of impaired water transport more closely
resembles percolation rather than diffusion [292, 293], a process that is sensitive to the free volume
of the medium [294].

Figure 3.2 is instructive when considering the diffusion of water through the complex organic
matrices found in atmospheric secondary organic aerosol (SOA), one particular motivation for the
current study. For example, water transport in α-pinene SOA (orange bars) is more rapid than would
be expected based on measurements of viscosity and estimates from the S–E equation [120, 122,
123], most closely resembling the di- and tri-saccharides. However, it should be recognised that the
properties of SOA constituent molecules are considerably different. The average molecular weight of
organic components identified in α-pinene SOA is 150 gmol−1 to 200 gmol−1 [291], albeit with a
lower degree of oxygenation: typically the O:C ratio has been reported as 0.45 to 0.55 [295]. The
O:C ratios for trehalose and raffinose are 0.92 and 0.89, respectively. The faster diffusion of water in
SOA than expected from the S–E equation may be attributed to the heterogeneity in composition
at the molecular scale, leading to a porous network of channels through which water transport is
more facile than expected.

3.4 The microscopic mechanism from molecular dynamics simulations

To better understand the microscopic mechanism of water transport, atomistic molecular dynamics
(MD) simulations of water in sucrose (with ‘concentrations’ of one water molecule per 35 sucrose
molecules) were carried out which were designed to mimic experimental water activities close to
zero. See appendix 8 for further information on the MD simulations. The initial placement of the
organic molecules is intended to replicate the amorphous packing structure that is expected to
occur near the surface of a glassy sucrose droplet [261]. These MD simulations were analysed to
provide an independent estimate for the value of the intercept Dw,org. Figure 3.1 panel (c) shows the
MD-derived value of 4.64×10−17 m2 s−1 is in good agreement with the experimental measurements,
and indicates that our computational approach captures the physics of water diffusion in sucrose at
low activities.

Inspection of our MD results reveals that the mechanism of water diffusion through the sucrose
matrix proceeds by a hopping between cavities (figure 3.3). In general, a ‘cavity’ is defined as a
sucrose interstitial domain where water has a significant lifetime based on Markov analysis. Our
analysis has enabled us to identify both reversible and irreversible examples of intercavity dynamics.
Figure 3.4 and much of the analysis described in this article focuses on clusters of ‘cavities’ between
which water molecules make reversible kinetic hops, because this local equilibrium is amenable to
analysis using standard tools in statistical mechanics.
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Figure 3.3: Sucrose matrix cavities. (a) Snapshots in the yz plane of the trajectory
of a water molecule ‘jumping’ between interstices in an amorphous sucrose lattice.
The red arrow indicated the direction of the observed hop. The periodic box is shown
in grey. Sequential calculated potentials of mean force that the water experiences are
shown in panels (b) to (d), separated in time by 1 ns.

Our analysis shows that water remains in a cavity (or cluster of cavities) until either (1) it
achieves sufficient kinetic energy to escape the local environment, or (2) the slower dynamics of
the sucrose matrix opens a pathway that allows access to a new cavity. This appears similar to the
‘micropore diffusion’ mechanism, which has been proposed to describe the uptake and transport of
small molecules through porous zeolite structures [296].

In order to determine the time-dependent dynamics of the cavities, a 3 ns timeslice of a 1 ns

trajectory was identified, where a water molecule jumping between two distinct cavities was observed,
as illustrated in figure 3.3 panel (a). Over the course of the 3 ns timeslices, three different equilibrium
configurations were extracted, and a 50 ns MD simulation beginning from each of these points
was run, freezing the sucrose but not the water. The purpose of these simulations was to use the
water molecular as a “probe” of the cavity structure and dynamics, in order to understand cavity
persistence on the timescale of a typical water hop. The potential of mean force within each cavity
(PMF), without the entropic degrees of freedom of the organic matrix included, was determined by
Boltzmann weighting the resultant probability distribution, P :

(3.2) PMF =−kBT ln(P )
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Figure 3.4: The water hopping mechanism. (a and b) The water hopping mech-
anism showing 2 and 3 metastable states (panels (a) & (b) respectively) arising
from one of the nine trajectories. Subplots (i) show zy, (-z)x projections of water
molecule’s position throughout the trajectory with different colours indicating different
metastable states. Subplots (ii) shows a hidden Markov state model representation
of the hopping behaviour. Each circle represents a metastable state, with the size
related to its stability, the arrows show the hopping timescale in picoseconds from one
state to another (same colour scheme as (i) subplots). Subplots (iii) show Bayesian
estimates of the relaxation timescales associated with hopping between the states
(thick line is mean, coloured region is a 95 % credibility interval).

Figure 3.3 panels (b) to (d) shows that there is a small but noticeable change in the cavity PMF
landscape (the region around y = 0.1, z =0.5–1) as the sucrose reorients over 3 ns. This observation
is consistent with analysis showing that the position–position autocorrelation function of a single
sucrose molecule decorrelates after approximately 1 ns, as presented in figure 3.5. Having determined
an approximate upper limit on the sucrose re-organisation timescale, each trajectory was split up
into 1 ns slices and the kinetic parameters for water-hopping between cavities were determined using
a Bayesian Hidden Markov (HM) modelling approach.

The sucrose reorganisation time of 1 ns defines a time scale over which the molecular environment,
which defines the free energy surface over which the water moves, remains stationary. Over this time
scale the rates of water diffusion can be assumed to be independent of time, which admits a Markov
analysis (where the transition rates do not vary with time). Within these stationary time-slices, the
water molecule was typically observed to remain trapped within a small region made up of one or
more cavities as shown in figure 3.3. The dynamics of the water molecule can be classified as either
reversible or irreversible with respect to these small regions. If the dynamics were reversible then the
absolute probability of observing hops from one part, A, of the region to another part B , of the
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Figure 3.5: Position-position autocorrelation function of a single su-
crose molecule within the simulation. The plot shows very little motion in
the region 0.1 ps to 1000 ps.This plot suggests that it is reasonable cluster the data
(to determine cavities, as in figure 3.4) in increments of 1 ns. It is also reasonable
to initialise frozen sucrose simulations after intervals of 1 ns (figure 3.3, panels (b) -
(d))

region (between two cavities within the region, or within a single cavity) is the same A → B and
B → A. In other words, detailed balance is observed when concentrating on only one time-slice. If
this criteria is not fulfilled, the dynamics were said to be irreversible.

The goal of the Markov modelling was to identify regions of the MD simulations in local
equilibrium,to identify cavities,and calculate their associated hopping and relaxation timescales.
Eight MD simulations were partitioned into 1 ns time-slices and the position of the water center of
mass was clustered into 100 discrete states using the k-means [244] clustering algorithm. A Markov
lag time of τM = 10ps was used based on the implied timescales of 10 randomly selected time-slices
from trajectory 3. The k-means clustering and all subsequent calculations were performed using the
open source software, PyEMMA (version 2.5) [253].

The discrete trajectories were screened to see whether they were in local equilibrium with the
following procedure:

1. A Markov state model (MSM) with a lag time (τM) of 10 ps was constructed for each
time-slice. The lag time was chosen so as to reveal details of potential metastability [64]. To
determine the value of τM a sensitivity analysis was carried out, varying τM until convergence
was observed in the timescales. See figure 3.6 panel (b) & (f).
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Figure 3.6: Classification of two time-slices from trajectory 3: 0 ns to
1 ns (panels (a) - (d), non-equilibrium time-slice) and 22 ns to 23 ns (panels (e) - (h),
local equilibrium time-slice). Panel (a) and (e) show the x, y , and z coordinates of the
center of mass of the water molecule. Panel (b) and (f) show the sensitivity analysis
to determine the lag time τM : the implied timescales, (t vertical axis) vs the MSM
lag, (τM horizontal axis). The black vertical line is placed at 10 ps is the minimum
time at which the implied timescales show convergence. Panels (c) and (g) show
the stationary distribution. In panel (c) state 1 has negligible probability classifying
this time-slice as not being in equilibrium. Panels (d) and (h) show the attempted
assignment of the discrete trajectory into metastable states. The non-equilibrium
time-slice in panel (d) shows the large portion of unclassified states.
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Figure 3.7: Histogram of barrier heights for eight trajectories. Barrier
heights were calculated in 1 ns intervals. Free energies are calculated by converting
the hopping timescales (t) of the hidden Markov models to free energies (∆G)
using the transition-state theory expression for the hopping rate k = 1/t : ∆GTS =
RT ln(kbT · t/h).

2. This MSM was coarse grained into a k-state Hidden Markov Model (HMM) if the largest gap
in successive implied timescales of the MSM (tk /tk+1) was greater than 1.5.

3. If the HMM had:

a) an absorbing state (a 1 on the diagonal of the transition matrix);
b) an metastable state, i , with stationary distribution (πi ) probability approximately zero(

πi < 10−8
)

c) negative eigenvalues;

it was classified as not being in local equilibrium.The conditions (a) – (c) are indicative of
not being in equilibrium because of the enforcement of the detailed balance conditions when
estimating the HMM transition matrix [169].

4. The time-slices identified as being in local equilibrium were used to construct a Bayesian
HMM in order to estimate errors of the hopping timescales.

Out of the 8000 time-slices analysed 947 (11.8 %) were positively identified as being in local
equilibrium. Figure 3.6 demonstrates this classification algorithm for two time-slices of trajectory 3.
The first time-slice (0 ns to 1 ns, panels (a) to (d)) was classified as not being in local equilibrium,
the second time-slice (22 ns to 23 ns, panels (e) - (h)) was classified as being in local equilibrium.

For each of the 947 1 ns slices in local equilibrium, a HM model was constructed to determine
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the number of metastable states (cavities), the relative population of water within each cavity,
transition probabilities for hopping between cavities, and the timescales for inter-cavity transport.
The HM analysis shows that the cavities have a distribution of free energies (figure 3.7), and a
corresponding distribution of lifetimes for water within any given cavity. Figure 3.4, panels (a) and
(b) show representative examples from three 1 ns slices throughout one MD simulation where water
hops between clusters of two and three cavities, along with information regarding the hopping
timescales in subplots (ii). Subplots (iii) show the timescales of interstate rearrangement processes.
These timescales do not correspond to pairwise hopping between cavities but rather joint relaxation
processes over all states.

Extended periods of cavity hopping behaviour are found in all our 300 K MD simulations: water
repeatedly moves back and forth between adjacent cavities that do not fully collapse once they
are vacated. The characteristic barriers for hopping between cavities have been calculated using
transition state theory and are found to be on average 6.42±1.29kbT (3.83±0.77kcalmol−1). The
distribution across all trajectories (figure 3.7) corresponds to a hop frequency of between 1 and 50

per nanosecond per water molecule, although not all hops will lead to productive diffusion against a
concentration gradient. In fact, ‘return trips’ may be a common feature of water transport in these
matrices. Our analysis suggests that the magnitude of the S–E deviation depends on the transient
packing efficiency of the organic molecules. For instance, raffinose self-diffuses slower than sucrose
(hence the observed particle viscosity is higher), but if the average volume of cavity space within the
lattice is larger and more highly connected, then the net water flux will be higher at a given particle
viscosity. To evaluate this, a series of MD simulations were carried out, which were post-analyzed to
assess the cavity volume within glucose, sucrose and raffinose matrices. The final coordinates of the
three matrices are presented in figure 3.8, showing increasing cavity size and density within the van
der Waals surfaces. This quantity is also expressed as a fraction of the simulation volume in figure
3.8.

Thus, the trend in viscosity data (figure 3.2) can be rationalised at a molecular level: the ‘hopping’
mechanism of water transport will become more efficient as the size of the organic constituent
increases. Therefore, the frictional forces experienced by water molecules will deviate further from
those assumed by equation 3.1, and the observed D will be under-predicted to a greater extent
for larger organics. With reference to atmospheric organic aerosol, this effect may be significant in
particles containing large numbers of oligomeric or ‘humic-like’ molecules. Such constituents are
frequently found in aerosol formed under low RH [297], low temperature [298] or high precursor
concentration [299] conditions.

3.5 Conclusions

In conclusion, this work has shown that the diffusion constant of water in viscous aerosol particles
departs increasingly from the S-E equation as the size of the saccharide molecule forming the matrix
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Figure 3.8: Packing efficiency of organic molecules. Occupied volumes of
(a) glucose (67.1 %), (c) sucrose (66.0 %) and (e) raffinose (62.4 %) matrices are
shown (same colour scheme as figure 3.1 again) showing the van der Waals radii of
the saccharides within one snapshot of the short simulations. Fractional free volume
are shown for (b) glucose, (d) sucrose, and (f) raffinose calculated by GROMACS
throughout 10 ns simulations.
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increases. Atomistic simulations suggest that larger molecules will pack less efficiently, facilitating a
mechanism of activated hopping through the porous network: at high saccharide fraction, a water
molecule executes discrete jumps between cavities at a rate governed by the collective motion of
the saccharide matrix. These observations also are consistent with the slower diffusion of molecules
larger than water, whose motion more closely resembles that described by Stokes flow [273].

The Markov modelling approach adopted here facilitated both the i) decomposition of a large
amount of simulation data into tractable time-slices with an approximately stationary potential
induced by the sucrose matrix; and ii) the quantitative description of kinetic processes involved in
each slice. The results of applying the equilibrium assumptions to classify the time-slices resulted in
only 11.8 % being positively identified as being in local equilibrium.

A number of assumptions and approximations were made in order to facilitate this analysis. The
first assumption was that the water dynamics could be approximated by considering a water molecule
traversing a free energy surface arising from an static sucrose environment. This was was justified on
the separation of timescales between the sucrose and water molecules. The estimated reorganisation
time of 1 ns, over which this assumption was assumed to hold, pertains to the average movement of
the sucrose molecule. However, fluctuations in parts of the sucrose molecule on the same timescale
of the water motion were not ruled out. If present, these motions break the assumption that the
kinetic rates of the water molecule were independent of time. These interactions were also left out
of the variables used to describe kinetic states of the water molecule which limits the accuracy of
eigenvectors of the Markov state model, i.e., some “essential” degrees of freedom were missing from
the kinetic description.

The second assumption was that, even if more rapid fluctuations of the sucrose molecule could
be ruled out, the assumption of a universal reorganisation timescale of 1 ns was likely inaccurate.
This results from two factors. First, this timescale was an average and thus deviation from this
value are expected. Second, even if deviations from an average reorganisation timescale are minimal,
this particular figure is likely inaccurate because the sucrose reorganisation time was measured on a
single sucrose molecule from a single trajectory by inspection of the autocorrelation function. As
a result, the proportion of time-slices described as being in equilibrium underestimates the true
proportion of local equilibria. This is because it does not rule out local equilibria on time-slices
shorter than 1 ns which may have then been incorrectly classified as out of equilibrium. Similarly,
local equilibria may have lasted longer than 1 ns which would have allowed combining observations
to produce a more precise estimate of the hopping timescales.

The third assumption concerns the equilibration of the simulations. Each trajectory was equili-
brated for 500 ps and measurement of the diffusion constant of water in the subsequent microsecond
of simulation produced a value in agreement with the experimental measurements. However, by
their nature substances near the glass transition state have long equilibration times [129]. It is
possible that the rate of cavity formation and their size and shape could have changed over the
course of the trajectories as the simulations continued to equilibrate after the initial 500 ps. Previous
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assumptions notwithstanding, this would not affect the validity of the Markov analysis because the
trajectories were partitioned into stationary time-slices. However it may affect the distribution of
hopping barriers and the measurement of diffusion constant.

In addition, the modelling approach misses certain dynamical processes. First, it does not say
anything about the non-equilibrium processes which form the majority of the water transport. Second,
the analysis of the equilibrium time-slices focused only on the slowest timescale processes in each
time-slice. Multiple gaps in the eigenvalue spectrum were not identified which could have revealed
further, faster timescale processes. A plan to address these limitations in future work is laid out in
the conclusions, chapter 7.

Despite this, the simplified Markov modelling approach used here, provided an insightful explana-
tion of the diffusion of water within the saccharide matrix, in-line with experimental measurements
and other simulation analysis. The models produced were successfully validated and visualisation
of models from individual time-slices appeared consistent with the simulation data. The simplified
approach used intuition, visualisation and heuristics from the literature to guide the modelling
process. The “essential degrees of freedom” - the Cartesian coordinates of the water molecule -
were suggested by inspection of the molecular dynamics trajectories. The number of microstates
followed a simple heuristic related to the volume of data, while the number of metastable states
was determined from the eigenvalue spectrum.
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4
MARKOV STATE MODEL OPTIMIZATION

4.1 Introduction

In chapter 2 the theory of modelling biomolecular dynamics as a Markov process using a Markov state
models (MSMs) was laid out. Central to the method is defining a series of basis sets, si , i = 1, ...,n,
which map atomic coordinates to n discrete microstates. These basis sets allow the molecular
dynamics trajectories to be represented as an approximate one-dimensional Markov chain from
which the MSM can be estimated. The choice of basis set are crucial for accurately capturing the
dynamics of system and must therefore be chosen with care [92]. In section 2.3 the process of
creating basis sets was described as using four (although many more are possible) modelling choices,
or hyperparameters, collectively denoted by x = (χ,τ,m,n). Even within reasonable ranges of these
hyperparameters, trying each distinct value of x is computationally intractable. A systematic method
is needed to choose appropriate hyperparameters which is reproducible, makes maximum use of the
available information, and with the least amount of computational effort. This chapter addresses this
need by applying ideas and techniques from the machine learning literature, Bayesian optimisation
and response surface methods, and applying them to the test system alanine dipeptide.

Choosing hyperparameters can be thought of as an optimisation problem [132, 300], where the
task is to find vectors from hyperparameter configuration space, X =χ×τ×m ×n which maximise
an objective function, f :

(4.1) f : X → VAMP-2

Within the MM community, efficiently finding the optimum set has recently gained attention [130],
however nine out of ten recent studies from a non-random sample1 performed no hyperparameter
optimisation at all.

110 papers published in 2020 which cite PyEMMA [253] and apply MMs to understand a simulated data set.
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Symbol Definition

x vector of MSM hyperparameters
χ MSM hyperparameter: a protein/peptide feature e.g., backbone torsion
τ MSM hyperparameter: the TICA lag time
m MSM hyperparameter: the number of TICA components retained
n MSM hyperparameter: the number cluster centers.
y the response of an MSM, y = VAMP-2
Ψi (z) the right eigenfunction of an MSM
δi the discretisation error of the MSM eigenfunctionΨi

f (x) response surface function, a statistical estimation the objective function
which is easy to optimise. In the context of Bayesia optimisation called the
surrogate function.

DN a hyperparameter trial data set. A set of N hyperparameter/response pairs:
(xi , yi ). Used to estimate the response surface.

τM the MSM lag time.
µ(x) the mean function of a Gaussian Process.
k(x,x′) the covariance kernel of a Gaussian Process. Defines the covariance between

the response at x and x′.
K the covariance matrix of the Gaussian Process. Ki j = k(xi ,x j ).
θ the collection of kernel hyperparameters.
η Kernel hyperparameter: determines the scale of fluctuations of the response.
σn Kernel hyperparameter: determines the noise associated with a single trial.
li Kernel hyperparameter: the characteristic length-scale of the Gaussian

process along the i th predictor (MSM hyper-hyperparameter).
Ri Kernel hyperparameter: the relevance of the i th predictor, R = 1

l .
σ(x) the width of the Gaussian process at the point x. These values are the

diagonal elements of K. Depending on context this may or may not include
the contribution from σn .

αE I (x) the expected improvement acquisition function used to determine the next
hyperparameter trial.

(φ,ψ) peptide feature: the backbone torsional angles of an amino acid.
(φ,ψ,χ) peptide feature: the backbone and residue torsional angles of an amino acid.
|r1 − r2| peptide feature: all heavy atom interatomic distances.
(x, y, z) peptide feature: Cartesian coordinates
Cα−Cα peptide feature: the alpha carbon contact distances
X −X peptide feature: the heavy atom contact distances

Table 4.1: Important symbols used throughout this chapter.
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Within the larger machine learning community, however, finding the optimum set of hyperpa-
rameters for a given model and data set is a common task and has received a lot of attention, as
discussed in section 1.6 of the introduction. Much of the focus has been on creating algorithms
which automatically optimise hyperparameters rather than a domain expert choosing the values
“by hand” [132]. Automated methods of selecting hyperparameters are beneficial for a number of
reasons as they [132]:

1. reduce the human and energy resources needed for creating an accurate model,
2. improve the performance of model in general,
3. improve reproducibility and transparency in the model estimation process.

There are two general approaches to hyperparameter optimisation: i) model-free and ii) model-based
optimisation [132].

Model-free optimisation techniques include [132]: grid search (or full-factorial design [301],
i.e., placing a regular grid over the hyperparameter search space and evaluating each point),
random search (i.e., randomly sampling hyperparameters from the search space) and population
techniques. The latter include evolutionary algorithms [302], particle swarm optimisation [303, 304]
and covariance matrix adaption [305]. When hyperparameter optimisation is performed within the
MM community, the former two methods are popular. For example, in reference [92] the authors
use random search to determine trends and heuristics for creating MSMs of fast folding proteins,
while the authors of reference [257] used grid search over different protein features, various TICA
hyperparameters, and number of microstates to optimise a MSM to describe the conformational
landscape of the methyltransferase, SETD8. Random search has a number of advantages over grid
search. First, when only a small proportion of the hyperparameters are relevant for determining the
model score, random search has been shown to be more efficient than than grid search [306]. The
reason is that grid search places equal importance on each hyperparameter and effectively wastes
the computational budget on combinations of hyperparameters which will score similarly. Second, it
is easily adapted to parallel computer architectures and third, increasing the optimisation ‘budget’
(the number of optimisation steps available) or the size of the search space is easily incorporated
into the workflow [132].

Model-based search techniques involve estimating a statistical approximation to the objective
function, known as the response surface (or surrogate function) and using the response function to
choose the next hyperparameter to evaluate [133]. The evaluated hyperparameter is then used to
augment the data used to estimate the response surface [133]. The alternating sequence of response
surface estimation and hyperparameter evaluation is continued until a satisfactory convergence in the
maximum of the response surface is reached [133]. An example response surface for a model with a
single hyperparameter is shown in figure 4.1. Evaluating the fictitious model with a hyperparameter
value of x leads to a model score of y . The pair (x, y) will be referred to as a hyperparameter trial.
Repeating trials with different values of x gives a (hyperparameter) trial data set D = {(xi , yi )}. In
the figure the elements of D are shown as black crosses. The score is a random variable, Y , which
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Figure 4.1: Response surface and acquisition functions. Panel (a) shows the
elements of the hyperparameter trial data set, D, as black crosses, the objective
function f (x) (black dashed line), and the estimated response surface f̂ (x) (solid
blue line) with uncertainty (shaded blue area). The dotted line shows the incumbent,
max

(
f (x)

)
x ∈ D. Panel (b) shows a two acquisition functions: the probability of

improvement P(I > 0) (orange line) and the expected improvement E[I ] (green line).
For reference the improvement function, I (x) (blue line) is also shown. The maximum
of the acquisition functions are denoted with a star.

can be modelled by: Y ∼ f (x)+ ε where ε is an error term. The estimated function, f̂ (x), is the
response function and is shown as a blue line, while the uncertainty (as captured by ε) is shown as
a blue shaded area. The uncertainty arises from any random element in evaluating the score (e.g.,
from cross-validation) or from the model itself.

Bayesian optimisation is a popular model-based technique for optimising hyperparameters
[132–136]. The key components of Bayesian optimisation are: i) the acquisition function, α,
which determines the utility of choosing a particular hyperparameter value, and ii) the response
function, which encapsulates all current knowledge of the objective function. The next candidate
hyperparameter in the optimisation sequence is chosen by maximizing the acquisition function
[138]. Acquisition functions trade-off exploration of the search space with exploitation of areas more
likely to optimise the objective function. Each does this in their own way, with their own particular
strengths and weaknesses, but they come in three main categories i) improvement-based policies, ii)
optimistic policies, and iii) information-based policies [138].

Improvement based policies use the improvement function, I (x), (shown in figure 4.1 panel (b)
as the blue line), which is defined as the difference between the value of the response surface, f (x),
and incumbent, µ∗ [138]:

(4.2) I (x) := (
f (x)−µ∗)

I f (x)>µ∗ .

The incumbent [137] is defined as µ∗ = max
(

f (x)
)
, s.t. x ∈D, and I is an indicator function which
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ensures that I ≥ 0. In other words, the incumbent is optimum of the response surface but restricted
to values of x which occur in the data used to estimate the response surface. Examples of such
policies include probability of improvement [307] αPI(x) =P [I (x) > 0] (orange line figure 4.1 panel
(b)) and the expected improvement [308] αEI(x) = E [I (x)] (green line in figure 4.1 panel (b)). The
probability of improvement tends to exploit known regions of the response surface and so can fail
to explore sufficiently to find the global optimum [309]. This is because, as can be seen from the
definition, it treats all improvements the same no matter how small (although the incumbent can
be altered to modify the explore/exploit trade-off) [309]. The expected improvement corrects this
by taking into account both the probability of improvement and the size of improvement. The
difference between the two acquisition functions is demonstrated in figure 4.1. The improvement
(blue line, panel (b)) has two peaks, a smaller peak at x ' 2.6 and a larger peak at x ' 4.6. The
response function at x ' 2.6 has smaller uncertainty because of the larger number of observations
surrounding it. The probability of improvement (orange line, panel (b)) measures the amount of
uncertainty above the incumbent line (dotted line, panel (a)) and is greatest here as the majority
of the blue shaded area is above the incumbent line. At x ' 4.6 and beyond, the uncertainty is
large but more evenly distributed above and below the incumbent line, hence the probability of
improvement peaks and then decreases. However, the expected improvement (green line) is large
because the uncertainty in the response extends to high values of y and the expectation is taken
from above the incumbent line. The expected improvement is a popular choice [132] and is the
default option in some well-known packages such as Spearmint [134] and BayesOpt [140].

Optimistic policies, such as the upper confidence bound [310], choose the candidate to maximize
a particular quantile of the uncertainty in the response surface. They have been shown to minimize
the ‘regret’ accumulated over all iterations of the optimisation procedure [310]. The ‘regret’ being the
difference between the true maximum of the objective function and the objective function measured
on the candidate hyperparameter trial [311]. More detail on the performance of improvement and
optimistic acquisition functions can be found in reference [309]. Information based policies are based
on the distribution over the potential hyperparameters, p(x|D), which describe the probability of
optimising the objective function and are induced by the uncertainty in the response surface [138].
Examples include entropy search [312], predictive entropy search [313], and entropy search portfolio
[314].

The second component of Bayesian optimisation is the functional form of the response function.
Stochastic processes such as Gaussian processes (GPs) or T-student processes (TPs) [149] are
common and are implemented in a number of packages [134, 140, 145–148]. Gaussian processes
in particular have many useful properties for Bayesian optimisation [132, 137, 300]. First, the
improvement and optimistic acquisition functions discusses previously have simple analytic forms
[137]. Second, they do not specify a particular form of mean response (unlike for example, general
linear models which are linear functions of their predictors [315]). Rather, they specify the structure
of the covariance between values of the response through a kernel function k(x,x′) [149]. This
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allows easy fitting of arbitrarily shaped response functions (the response function in figure 4.1 was
a Gaussian process model). Third, with recent work in sparse estimation methods they are also
able to handle large data sets [316]. Despite their many advantages, GPs do suffer some minor
drawbacks and technical hurdles for hyperparameter optimisation. First, they perform poorly with
large numbers of categorical hyperparameters [317] compared to tree based response surface models
such as tree Parzen estimators, TPEs [135], and random forests, RFs [133, 318]. Second, they come
with their own modeling choices which must also be determined [149]. These are the functional
form of the covariance kernel, k(x,x′), and transformations of the predictors, or input warping [143].

Estimating the response function of a statistical model is not only beneficial as part of Bayesian
optimisation but it also facilitates understanding the effect of hyperparameters on a model, which
has lead to important insight for model optimisation [149]. The authors of reference [306] used GPs
to demonstrate the important result discussed earlier that random search is more efficient than grid
search. They did this by randomly selecting hyperparameters of a deep learning image classifier
and for each selection determined the classification accuracy of the model. A Gaussian process
was used to model the classification accuracy as a function of the model hyperparameters and the
learned parameters of the GP were used to calculate the hyperparameter relevance. Hyperparameters
with large relevance are important for determining the model score (accuracy in this case). They
were able to show that the learning rate (the rate at which the deep learning algorithm updates its
parameters in light of new information) was the most relevant hyperparameter. This explained why
exploring sets of hyperparameters with the same value of the learning rate, which happens in grid
search, differed only slightly in their accuracy. However, they also noted that some hyperparameters
were more relevant depending on the nature of the data used to train the model. Similar ideas can
be used with other types of surrogate model for the response surface. For example in reference
[319] and [320] the authors used random forests to assess the importance of variables for optimising
compiler options and machine learning models respectively.

The preceding discussion has highlighted the range of different optimisation techniques available
for hyperparameter optimisation: from well established Bayesian optimisation with improvement
based policies (which date back to the 1960s) to approaches from in the last 10 years using
information theory, such as entropy search. The population technique of covariance matrix adaption,
in particular, has performed well in recent benchmarking exercises [321–323]. However, the focus
of this chapter will be Bayesian optimisation using improvement based policies, given its long
established nature and the fact that no similar techniques have yet been applied to MSMs.

The overall aim of this chapter is develop methods which can help create Markov state models
in a more efficient and robust way. That is, given a set of simulation data how can an optimum set
of hyperparameters be discovered with as little computational effort as possible? Additionally, how
sensitive is this optimum to slight changes in the hyperparameters? To accomplish this aim, the use
of Bayesian optimisation and Gaussian processes regression to optimise an MSM from a given set of
simulation data will be investigated. Bayesian optimisation is used to optimise machine learning
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models, but can it be used optimise Markov state models of biomolecular dynamics? There are a
wide range of policies and surrogate functions that have been used for Bayesian optimisation, so to
answer this question, empirical tests of promising combinations must be performed. This chapter
performs such a test on a popular combination: a policy of optimising the expected improvement
using a Gaussian process surrogate function. It would also be beneficial to quantitatively understand
which hyperparameters are important for optimising MSMs: if only one or two modelling choices are
actually important, this significantly reduces the effort required choose optimal hyperparameters.
Gaussian processes regression has also been shown to be useful in this regard and will be used to
quantify the relevance of MSM hyperparameters. This also opens up the possibility of performing
systematic sensitivity tests, although this will be deferred to chapter 6. Conclusions drawn along the
way will be used to suggest practical steps to improve estimating optimal MSMs.

This chapter will investigate the utility of Bayesian optimisation and modelling the MSM response
surface, using Gaussian processes regression, of the benchmark system alanine dipeptide (see for
example any number of MSM method papers e.g., [91, 168, 324]). This system is well known and
the free energy surface is accurately described by just two features: the two backbone dihedral
angles [325]. This provides an ideal testing ground for MSM optimisation techniques as at least one
optimum hyperparameter is already known (the optimum protein features). This is in contrast to
more complex systems such as larger peptides and proteins where the optimum hyperparameters are
not in general known, they may involve linear or non-linear combinations of many dihedral angles, for
example. This fact, along with the the small hyperparameter space (only two hyperparameters, the
protein feature and the number of microstates, are necessary), limits the conclusions of this chapter:
more complex free energy surfaces may benefit from different optimisation techniques. However, the
purpose of this chapter is to i) practically demonstrate and explain how to use a Gaussian process to
model response surfaces, ii) comment on the interpretation of Gaussian processes in understanding
the relevance of MSM hyperparameters, and iii) demonstrate and comment on a simple Bayesian
optimisation method for optimising hyperparameters. This will lay the ground work necessary for
tackling the more complex system of aromatic amine dehydrogenase (AADH) in chapter 6. The
chapter is structured as follows: section 4.2 discusses the methods of Gaussian process regression
modelling and Bayesian optimisation in detail, section 4.3 presents and discusses the results and
section 4.4 discusses conclusions and limitations of this work.

4.2 Methods

4.2.1 Overview

The workflow and methods of this chapter will now be summarised. The data for this chapter is
publicly available molecular dynamics (MD) data set used for benchmarking molecular kinetics
methods and is described in section 4.2.2. Using this MD data a new hyperparameter trial data set
was created by estimating Markov state models with different hyperparameters and scoring them
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Figure 4.2: Structure of alanine dipeptide and definition of dihedral
angles. Grey, blue, red and white colors represent carbon, nitrogen, oxygen and
hydrogen atoms respectively. The atoms involved in the φ,ψ dihedral angles are
labeled and highlighted as spheres. The φ angle is formed from the intersection of
the planes formed by the atoms (C1, N, CA) and (N, CA, C2). The ψ angle is formed
from the planes formed by the atoms (N, CA, C2) and (CA, C2, O).

using the VAMP-2 score. This was performed using both original code and adaptions of open-source
packages. A description of these codes and their development is presented in section 4.2.3. The
response of an MSM with respect to its hyperparameters was estimated by fitting a Gaussian process
(GP) regression model to observations in the hyperparameter trial data set. The theory of GPs is
described in section 4.2.4. GPs specify the functional form of the covariance between the dependent
variable at different values of the independent variable, this function is called a covariance kernel.
The kernel affects how well the regression model fits the data and so models with different kernels
were fit and compared using specific goodness-of-fit metrics which are described in section 4.2.5.
Parameters of the GP estimated from the hyperparameter trial data set describe how sensitive
the VAMP-2 scores are to MSM hyperparameters. A specific measure of this sensitivity called
the relevance is used in this work and is described in section 4.2.7. Bayesian optimisation (BO)
was applied to see if more optimal hyperparameters for an MSM could be found. BO requires an
regression model of the response surface and an acquisition function which estimates the expected
utility in trying new hyperparameters. The BO algorithm and acquisition function used in this work
are described in section 4.2.8.

4.2.2 Molecular dynamics

A molecular dynamics (MD) data set of alanine dipeptide was taken from reference [326]. This data
set has been used a benchmark for a number of molecular kinetic methods [98, 324, 326–332]. It
consists of 3×250ns trajectories sampled from a constant volume, constant temperature ensemble
at T = 300K controlled using a Langevin thermostat in explicit (TIP3P [333]) water [326]. The total
simulation time is approximately 577 times the longest relaxation timescale of alanine dipeptide
(approximately 1.3 ns [325]) and so all dynamic processes were assumed to be well sampled. The
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sampling was performed using the ACEMD [334] package, with the AMBER ff-99SB-ILDN [335]
force field and a 2 fs time-step [326]. Electrostatic forces were computed using the particle-mesh
Ewald (PME) [336] summation method every two time-steps with real-space cutoff 9 Å and grid
spacing 9 Å, and all bonds to hydrogen atoms were constrained [326]. The atomic coordinates were
saved every 1 ps and the three trajectories were split into 750×1ns smaller trajectories of 1000

frames each.

4.2.3 MSM fitting and scoring

In order to model the response surface of an MSM, a hyperparameter trial data set D = {
(xi , yi )

}
was created. This was created by randomly sampling hyperparameters, x, building an MSM using x,
and then measuring the MSM response, y , using the VAMP-2 score.

The VAMP-2 score is a suitable measurement of the quality of the model hyperparameters and
can be compared between different models. This fact has formed the basis of a number of studies
[92, 130, 246] looking at the effect of different modelling choices on Markov state models (see
sections 2.3.2 and 2.3.6 for discussions of these references). Each set of hyperparameters defines
a different set of basis states which are used to represent the same underlying MD data. The
definition of the basis states directly affects the definition of the eigenvectors of the transition matrix.
These eigenvectors are the optimal set of reaction coordinates for representing the slow dynamics
present in the MD data [91]. VAMP-2 measures how well a restricted number of eigenvectors, the
slow eigenvectors, describe the underlying dynamics of the simulation data. These eigenvectors are
affected by the definition of the basis states and therefor the hyperparameters used to create the
basis states. Maximizing the VAMP-2 score can be thought as minimizing two different types of
error (although they are related, see reference [97]). The first is the error arising from describing the
dynamics using only the slow dynamical processes. In other words: if we truncate our description
to just a handful of eigenvectors how different is this to the true description? If this truncation
error is small then the slow eigenvectors provide a satisfactory description, which in turn validates
the microstate basis used to estimate these eigenvectors. Maximizing the VAMP-2 score minimizes
this error [97]. The second error can be seen by considering the the space spanned by the MSM
eigenvectors after scaling by their eigenvalues (kinetic mapping, see section 2.3.2). Distances in this
new space, the kinetic distance, define how slowly two conformations interconvert [90]. Using only
the slow eigenvectors will reduce the accuracy of this kinetic distance (compared to using all of
the eigenvectors). However, maximizing the VAMP-2 score by changing the definition of the basis
states, decreases this error and maximizes the proportion of the kinetic variance captured by the
slow eigenvectors.

To put the preceding discussion in more salient terms. Consider the same MD data projected
onto the same continuous feature, e.g., φ dihedral angle, and then onto five (model 1) and 10
(model 2) discrete microstates. In principle the continuous feature could be different as well. There
are two slow dynamical processes that need to be described well by the model. Thus, the VAMP-2
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score is defined with three eigenvectors (the first one describes the equilibrium distribution and
contributes only a constant to the overall score, but is nevertheless included). The VAMP-2 score for
model 1 is 2.5, while for model 2 it is 2.9, thus model 2 is preferred. The 10 basis states in model 2
represent a smaller area of the feature space and can capture variations in the eigenvectors more
accurately than with just five basis states. The dynamics described by just three eigenvectors from
model 2, would be more similar to the true dynamics than the three eigenvectors from model 1.

The hyperparameter search space of alanine dipeptide is shown in table 4.2. It consists of only
two hyperparameters, the peptide feature, χ, and the number of cluster centres, n. The structure
of alanine dipeptide is shown in figure 4.2 where the two dihedral angles used as features are also
labelled. For each value of χ, 100 values of n were randomly sampled and scored. This number was
chosen to ensure variation in the response with respect to n was captured. A similar study [92]
used between 33 and 100 randomly sampled values per hyperparameter. This meant D contained
N = 500 hyperparameter trials.

The response of each trial was measured by building an MSM with a lag time of τM = 9ps and
evaluated using VAMP-2 scored with the first r = 5 eigenvalues, in line with reference [168]. 20

iterations of 50:50 shuffle-split cross-validation, described in algorithm 1, was used when estimating
the VAMP-2 score.

The calculations for this chapter were performed in two stages:

1. Creation of hyperparameter trial data set: Markov state models with randomly sampled
hyperparameters were estimated and scored. To manage this process the open-source software
packages Osprey [148] and PyEMMA [253] were adapted by the author of this thesis. This
data was used to estimate the response surface of MSMs of alanine dipeptide.

2. Response surface estimation and Bayesian optimisation: The response surface was
estimated and Bayesian optimisation was performed also using code developed by the author
of this thesis.

These two sets of calculations are described below.

Creation of hyperparameter trial data set

The sampling of hyperparameters and fitting of MSMs was managed by a development version of
Osprey (version 1.2.0dev) [148] adapted by the author of this thesis and made available on the code
sharing platform GitHub (link to code repository: https://github.com/RobertArbon/osprey). The
main changes made were: fixing programming bugs and addition of code to allow compatibility with
the package PyEMMA. The fitting and scoring of the MSMs was performed with a development
version of PyEMMA (version 2.4) [253] adapted by the author of this thesis to be compatible with Os-
prey, also available on GitHub (link to code repository: https://github.com/RobertArbon/PyEMMA).
The main changes made were to make all the programming classes used in PyEMMA compatible
with the application programming interface used by Osprey. Python version 3.5 was used throughout.
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1 estimator :
2 eval: Pipeline ([(’ cluster ’,
3 KmeansClustering ( n_clusters =1,
4 max_iter =1000 ,
5 stride =10)),
6 (’msm ’, MaximumLikelihoodMSM (lag =9,
7 score_k =5,
8 score_method =’VAMP2 ’))])
9 eval_scope : pyemma

10

11 strategy :
12 name: random
13

14 search_space :
15 cluster__n_clusters :
16 min: 10
17 max: 1000
18 type: int
19

20 cv:
21 name: shufflesplit
22 params :
23 n_splits : 20
24 test_size : 0.5
25

26 dataset_loader :
27 name: numpy
28 params :
29 filenames : *. npy
30

31 trials :
32 uri: sqlite :/// osprey - trials .db
33 project_name : psi
34

Figure 4.3: Example Osprey configuration file for sampling and scoring
hyperparameters. This specifies randomly sampling the number of cluster centers,
clustering feature trajectories using k-means, estimating an MSM, scoring using the
VAMP-2 score with 50:50 shuffle split cross-validation.

The combination of Osprey and PyEMMA code developed here allows the user to score maximum
likelihood Markov state models using the following workflow:

1. Extract features from molecular dynamics trajectories (for example using MDTraj [337]) and
store in NumPy arrays [338].

2. In an Osprey configuration file specify:

a) a trajectory preprocessing (e.g., TICA and clustering) and MSM estimation pipeline
using the PyEMMA syntax;

b) the method for hyperparameter sampling: random sampling, grid search, or Bayesian
optimisation;

c) the hyperparameter search space;
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Hyper-parameter Type Range Dim. Details

Feature, χ Categorical (1) (φ,ψ) 2 Torsions
(2) (x, y, z) 30 Heavy atoms only
(3) φ 1 Torsion
(4) ψ 1 Torsion
(5) RMSD 1 Heavy atoms only

Cluster centres, n Integer 10, 11 ... 1000 Clustered using
k-means clustering

Table 4.2: Hyperparameter search space of alanine dipeptide. Prior to fea-
ture selection the Cartesian coordinates of the MD trajectories were first aligned to a
single, randomly chosen, trajectory frame so that features (2) and (5) did not include
spurious rotational or translational motion. The number of dimensions, ‘Dim.’, refers
to the number of individual feature variables created by χ.

d) the type of cross-validation (e.g., shuffle-split) along with the number of cross-validation
iterations.

3. Osprey can then be used to sample hyperparameters, score Markov state models and store
the results.

An example Osprey configuration file is shown in figure 4.3. This configuration file loads
trajectories of a protein feature stored in NumPy [338] arrays (with npy file extension). K-means
clustering is performed using the PyEMMA KmeansClustering class. A maximum likelihood Markov
state model is estimated using the PyEMMA class MaximumLikelihoodMSM, with a Markov lag time
of lag=9 frames. Model scoring is performed using the VAMP-2 score (score_method=’VAMP2’)
with 5 eigenvalues (score_k=5). Hyperparameters are selected at random (name: random) by
selecting the number of cluster centers (cluster__n_clusters) from the interval [10,1000].
Cross-validation (cv) using the shuffle split algorithm (name: shufflesplit) with 20 iterations
(n_splits: 20) and a test-train data split of 50 % (test_size: 0.5) is used to score the models.
Information on how to run Osprey can be found in the accompanying documentation, see reference
[148].

Bayesian optimisation and analysis

Although the Osprey code can perform Bayesian optimisation, the Bayesian optimisation and
estimation of MSM response surfaces were performed separately using code developed the by
author of this thesis. All code for this chapter can be found on Github (link to code repository:
https://github.com/RobertArbon/alanine_dipeptide). This was written in Python 3.7 using the
packages PyEMMA (version 2.5) [253], MDTraj (version 1.9) [337], NumPy (version 1.19) [338],
Pandas (version 0.23) [339], Matplotlib (version 3.3) [340], Seaborn (version 0.10) [341] and the
Jupyter Project (version 4.6) [342].
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4.2.4 Gaussian process regression

A Gaussian process is a distribution over functions [149]. In other words, drawing a sample from
a GP returns a mapping from x, an, in general, multidimensional input variable, to a continuous
output variable f (x). Considering this function at a set of discrete points, x1,x1, . . . ,xN , will give a
set of random variables, which together form a multivariate normal distribution:

(4.3)


f (x1)
...

f (xN )

∼N



µ (x1)
...

µ (xN )

 ,


k(x1,x1) · · · k(x1,xN )

... . . . ...
k(xN ,x1) · · · k(xN ,xN )




Equation 4.3 is a realisation of a Gaussian process at a set of discrete input points. At each input
value, x, there is an associated Gaussian random variable, f (x), with a mean µ(x), a variance k(x,x),
and a covariance between f at x and x′ given by k(x,x′). The function k is called the covariance
function or kernel. Equation 4.3 can be written succinctly as f ∼N (µ,K) [149]. A salient example2

is that of daily atmospheric carbon dioxide levels at the Mauna Loa observatory. x = x is a variable
representing time (measurements are daily) while f (x) are the daily carbon dioxide levels. The levels
rise and fall over the course of the year meaning daily measurements are correlated and this is
captured in the function k(x, x ′). A GP can be subject to some random additive noise, ε, and this
is written y = f (x)+ε, or succinctly as y ∼N (f,σ2

nI), where I is the identity matrix and σ2
n is the

variance of the noise [149] (the mean of the noise is assumed to be zero). Continuing the example,
ε, would represent random errors in the measurement of carbon dioxide levels.

In order to make the link between the theoretical construct of a GP (equation 4.3) and modelling
data, two ingredients are needed: a kernel function k(x,x′) and method of incorporating observations,
(xi , yi ), i = 1−N , where N is the number of observations. To center this discussion consider the
Gaussian kernel [149]:

(4.4) k(x,x′) = exp

(
−

∣∣x−x′
∣∣2

l 2

)

This states that values of the GP will be highly correlated between values of x which are close
together and less correlated when they are separated, relative to the value of l , the characteristic
length-scale of the GP [149]. In other words, it determines how rapidly y changes for changes in
x. Continuing the previous example, if l = 10 days, then carbon dioxide levels measured less than
10 days apart would be, on average, highly similar. In contract, two measurements separated by a
month would, on average, show little or no correlation with each other.

The process of fitting a GP model, y ∼N (f,σ2
nI), using a Gaussian kernel in the definition of f

(equation 4.4), can be thought of as:
2this example is used in reference [149] and is the ‘hello world’ example of GP regression modelling, frequently used in

other texts and probabilistic programming tutorials e.g., reference [343]
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1. choosing values of µ(xi ),
2. a value of l , which in turn completely defines k(x,x′) (this is a kernel hyperparameter), and
3. and a value the variance of σn ,

which are consistent with the training data D = {
(xi , yi )

} = (y,X) and all prior knowledge of the
system. In order to do this, Bayes’ rule is used [149]:

(4.5) P(f|y,X) = P(y|f,X)P(f)

P(y|x)
.

The posterior distribution P(f|y,X) is the distribution over all possible GPs, f, which are consistent
with the training data (y,X). In other words, draws from this distribution will now (hopefully)
resemble the data. The posterior takes into account the training data through the likelihood function
P(y|f,X) =N (f,σ2

nI). This is the probability of observing the outputs, given the inputs and a specific
GP, X and f. The term P(f) is a probability distribution over all possible functions f, it incorporates
all previous knowledge of the system being studied and is known as the prior [252]. In practice this
amounts to specifying a value of µ(x) and in the current example, a distribution of different values
of l . If nothing is known about the system, a value of µ(x) = 0 and a wide distribution of values over
l would be appropriate. In effect this would mean both highly correlated and weakly correlated GPs
are both a priori, likely [252]. The term P(y|x) a factor for normalizing the posterior distribution.

The posterior distribution, like the likelihood function, is also a GP and can be written as follows.
Let f̄∗ be the mean of the posterior GP at some arbitrary point x∗ (which may or may not be in the
training data), and let V

[
f
]
be the covariance between value of the GP at this point and all other

points in the training data, then [149]:

f̄∗ = k>
∗

(
K+σ2

nI
)−1

y(4.6)

V
[

f∗
]= k (x∗x∗)−k>

∗
(
K+σ2

nI
)−1

k∗.(4.7)

Here k∗ is a vector of covariances between x∗ and the training observations, X. As the point x∗ is
arbitrary, these equations define the posterior GP over the entire domain.

Equations 4.6 and 4.7 only determine how the posterior GP should be defined in terms of the
training data and the hyperparameters3 of the kernel function, e.g., l in equation 4.4. How can
an appropriate value of l be estimated? General kernel hyperparameters (kernels can involve many
more parameters) can be estimated from the data using Bayesian estimation or by maximizing the
log marginal likelihood [149]:

(4.8) log
(
P(y|X)

)=−1

2
y>

(
K+σ2I

)−1
y− 1

2
log

∣∣K+σ2I
∣∣− N

2
log2π.

The values of the kernel hyperparameters estimated by maximizing the log marginal likelihood,
equation 4.8, are known as maximum a posteriori (MAP) estimates [149]. These are single point
estimates of the kernel hyperparameters. When estimates of variability of kernel hyperparameters are

3not to be confused with the hyperparameters of the MSM which are the predictors of the GP.
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required, Bayesian estimation can be used [252]. In this case Markov chain Monte Carlo (MCMC)
is used to sample the posterior distribution of l . The same considerations for Bayesian MSMs in
section 2.3.4.3 apply in this case.

The process of fitting a GP to data can be summarised as follows:

1. collect training data D,
2. specify a prior mean function,
3. specify a functional form of covariance kernel k(x,x′), e.g., equation 4.4,
4. specify priors over the kernel hyperparameters,
5. fit the GP by maximizing the log marginal likelihood, equation 4.8 or using Bayesian estimation.

4.2.5 Evaluating model fit

There is considerable flexibility when using GPs to model data. First, there is a wide variety of kernels
that can be used, see for example reference [344] which presents a ‘cook-book’ for constructing
complex kernels from other, simpler, kernels. The input variables may also be transformed, a process
known as input warping [143], e.g., a logarithmic warping would be to make the replacement
x → log(x).

A method for comparing GPs constructed with different kernels and input warpings is needed.
For models fit by maximizing the log marginal likelihood the predictive value of the GP can be
measured through the standardized mean square error (SMSE) and the mean standardized log loss
(MSLL) [149]. These play the same rôle as, for example, the R2 or deviance play in generalized
linear models [315]. The SMSE is defined by [149]:

(4.9) SMSE =
(

1

N

) N∑
i=1

(
f (x)− yi

)2

σ2
obs

,

and the mean standardized log loss (MSLL) by [149]:

(4.10) MSLL =
(

1

N

) N∑
i=1

[(
1

2
log

(
2πσ2

i

)+ (
f (x)− yi

)2

2σ2
i

)
−

(
1

2
log

(
2πσ2

obs

)+ (
ȳ − yi

)2

2σ2
obs

)]
.

Here σ2
obs is the observed variance of the training data response, E

[
(yi − ȳ)2

]
, and σ2

i refers
to the GP predicted variance at the observation i including the noise term (i.e., V

[
f∗

]+σ2
n , from

equation ??). The ‘standardization’ in each case defines a baseline model with which to compare
the fitted GP model. This baseline, or null, model predicts the mean and variance of the observed
yi at each value of xi i.e., [149]:

f̄ Null
∗ = E[

yi
]

(4.11)

VNull [ f∗
]=V[

yi
]

.(4.12)
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Figure 4.4: Mean standardized log-loss (MSLL) and standardized mean
square error (SMSE). Panels (a) - (c) show three different GPs fit to the same
data after 3, 6, 9 steps, respectively, of marginal likelihood maximization. The MSLL
and SMSE is for each GP is labelled. The blue line and shaded blue area are the
mean and uncertainty of the GP, the black crosses are the observations, and the
dashed and dotted lines are the mean and uncertainty of the null model (i.e., mean
and uncertainty of yi ).

In other words, the SMSE and MSLL both answer the question: how much better is the GP
model at making predictions than just fitting a single Gaussian distribution to the response? To
gain intuition of the SMSE and MSLL consider figure 4.4. Panels (a), (b) and (c) show a GP fit to
the same data as figure 4.1 after 3, 6, and 9 iterations of marginal likelihood maximization. This
would not be done in practice but serves as an example of three models which differ in how well
they fit the data. In practice these differences would arise from different kernels etc. The null model
is denoted by the dashed and dotted lines (mean and uncertainty respectively), while the mean and
the uncertainty in the fitted GP are denoted by the blue line and shaded blue area respectively. In
panel (a) the fitted GP is clearly worse than predicting the mean of the observations, so SMSE > 1

and MSLL > 0. In panel (b) the GP fits the data well so SMSE < 1 but the variance of the GP is
still much larger than the variance of the observations so MSLL > 0. In panel (c) the GP fits the
observations almost exactly so SMSE ' 0, and the variance of the GP at each observed xi is smaller
than variance of the observations so MSLL < 0.

In this thesis, the MSLL and SMSE were estimated using K-fold cross-validation [150] to
avoid choosing a kernel or input warping which may over-fit to a particular data set. The K-fold
cross-validation procedure is as follows [150]: first split the hyperparameter trial data set, D, into
a K equally sized, disjoint, sets or ‘folds’. Second, fit the GP using K −1 folds and then calculate
the SMSE and MSLL on the remaining 1 fold. Third, repeat this process K times, training the GP
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and calculating the SMSE and MSLL with a different held out fold each time. The cross-validated
MSLL and SMSE is the weighted mean of the SMSE and MSLL on each fold.

4.2.6 Response surface modelling

The VAMP-2 response of the MSM with respect to its hyperparameters, x = (χ,n), was modelled as
a GP with additive noise. A variety of combinations of input warping (e.g., log-transformation of
x) and covariance kernels, k(x,x′), were tried and the best combinations for each response surface
determined using the cross-validated SMSE and MSLL.

To reduce the computational effort required to fit each GP model, a sparse approximation to
the full covariance matrix of the GP, called the fully independent training conditional (FITC) was
used [316]. In this approximation a number of observations must be designated as ‘inducing points’.
Larger numbers of inducing points increases the accuracy of the approximation at the expense of
increased computational effort. The number of inducing points was set to 10% of the total number
of observations and their location determined by k-means clustering as suggested in the probabilistic
programming package PyMC3 (version 3.5) [343]. This fraction was chosen by fitting a single GP
model with the number of inducing points ranging from 10 % to 100 % of the total observations.
The number of inducing points was not found to change the posterior distribution of any kernel
hyperparameters significantly and so the smallest value was used.

As described in the previous section, in order to fit a GP model, a number of modelling choices
need to be specified, these are:

1. the prior of the mean function, µ(x);
2. the kernel function, k(x,x′);
3. the prior distributions of kernel hyperparameters;
4. the warpings of the predictors.

The kernel function and input warping will be chosen by fitting models and selecting the
combination which best fits the data. The mean function and prior distributions over kernel
hyperparameters will be set based on other consideration.

Mean function and kernel function

The prior of mean function was set to zero everywhere: µ(x) = 0, in practice this does not have
much impact on the final model [137].

The kernel functions considered were restricted to stationary kernels, i.e., those where k(x,x′) =
k(|x−x′|). Stationary kernels are advantageous because they admit a useful interpretation of the
kernel hyperparameters which will be described in section 4.3.2. Mathematically they mean that the
correlations between values of y do not depend on the absolute values of x only on the distance
between x and x′. The form of kernel used in this work is the same as the one used by authors of
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reference [306] in their work on the relevance of hyperparameters discussed in the introduction:

(4.13) k
(∣∣x−x′

∣∣ ;θ
)= η2

∏
i

kM
(∣∣xi −x ′

i

∣∣ ;ν, li
)+σ2

nδx,x′ .

The η terms controls the total variation in the response function, the larger the value of η the more
the response is able vary over the whole predictor space [149]. The σ2

n term is the noise [149] term
which allows the GP to account for variation in the response due to measurement error, which
in this case amounts to variation due to the cross validation procedure. The index, i , runs over
each component of x so that xi refers to a single hyperparameter, e.g., the number of microstates,
n, or the peptide feature, χ. The total kernel is the product of kernels over each hyperparameter.
The M in kM denotes a Matérn kernel parameterized by ν - this will be discussed below. li is the
characteristic length-scale of kM . η, σn and the li ’s are the kernel hyperparameters (collectively
denoted by θ) and estimated from the data. The multiplicative form of this kernel means that
VAMP-2 responses are correlated only when the values of the predictors are simultaneously similar,
where the similarity is set by the value of li .

The kernels over the individual predictors were kernels in the Matérn class with values of
ν= 1/2, 3/2, 5/2, ∞. These are alternatively known as an exponential, Matérn 3-2, Matérn 5-2 and
Gaussian (Radial Basis Function, RBF) kernels. These kernels were chosen based on their common
usage [138] and range from ‘rough’ exponential kernel, where correlation in the response drops off
rapidly with changes in the predictors, to smooth processes with the Gaussian kernel. They are
defined as follows [149]:

kExp (r ; 1/2) = exp(−r )(4.14)

kM3-2 (r ; 3/2) = exp(−p3 r )(1+p
3 r )(4.15)

kM5-2 (r ; 5/2) = exp(−p5 r )

(
1+p

5 r + 5

3
r 2

)
(4.16)

kRBF (r ;∞) = exp

(
−1

2
r 2

)
(4.17)

where r = |x−x ′|
l . See chapter 5 of reference [149] for a full description of the Matérn kernels and

their properties.

4.2.6.1 Prior distributions of kernel hyperparameters

Prior distributions of kernel hyperparameters affect the range of possible values which can be
estimated from the data. They serve the purpose of ensuring that the learned hyperparameters fit
with prior expectations about their true values [252].

The GP hyperparameters estimated from the data are the mean function, µ(x) and the kernel
hyperparameters, θ = (η,σn , l1, l2, ...). These were estimated differently depending on the application.
When the GP was used for visualisation (e.g., figure 4.9) or for Bayesian optimisation (section
4.3.3) the hyperparameters were estimated by maximizing the log marginal likelihood. When error
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Figure 4.5: Kernel hyperparameter priors and representative GPs. Panel
(a) shows the prior used for the variance parameters, η, σn: the half-Cauchy with
β= 2. Panel (b) shows the prior used for the length-scale parameters li : the Gamma
distribution with α= 1,β= 0.05. Panel (c) shows 10 draws from a Gaussian process
with an RBF kernel (equation 4.17) with values of l drawn from the distribution in
panel (b) and values of η drawn from distribution in panel (a).

estimates of the GP hyperparameters were needed for discussing the relevance (section 4.3.2)
Bayesian estimation was used.

The prior distributions for the variance terms, η and σn , were half−Cauchy(β= 2) and the priors
for the length-scale parameters, li , were Gamma(α= 1,β= 0.05). These distributions are shown in
figure 4.5 panels (a) and (b) respectively. To get a sense of the effect of these priors on a GP, 10
draws from a 1D Gaussian process with an RBF kernel are shown in 4.5 panel (c). The values of the
η and l hyperparameters in this GP are drawn the distributions in panels (a) and (b) respectively.

The rôle of weakly informative priors is to exclude unrealistic or disallowed values of the parameters
without imposing strong prior beliefs on the true values [252]. The half-Cauchy distribution was
used for η and σn based on its recommended use in other settings [345]. It was only necessary for
the scale of this distribution to give significant density in the range 0−5 as the VAMP-2 score will
lie in the range [1,5] for alanine dipeptide thus limiting the possible values of η and σn . The prior
for l was justified on the basis that, after scaling the predictors to lie in [0,1], values of l À 1 imply
a flat response, meaning significant density for l À 1 is not necessary.
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Figure 4.6: Input warping. Panel (a) shows a non-stationary function y as a function
of a predictor x. The characteristic length-scale decreases as x increases. Panel (b)
shows a warping function which transforms x to xW. Applying this warping results
in the new function in panel (c) which is approximately stationary. This figure is an
adaption of figure 1 in reference [143].

4.2.6.2 Preprocessing

The values of the MSM hyperparameters, the inputs or independent variables of the GP, were
preprocessed in three ways: scaling, input warping, and coding (for categorical predictors only).

All inputs were scaled to lie in the range [0,1]. This was to make the kernel length-scale
parameters, l , comparable across different hyperparameters. This effectively makes the units of l

the same for each input.
Input warping is used to mitigate the problems of modelling non-stationary functions using

stationary GP kernels [143]. Assuming stationarity i.e., that the GP characteristic length-scale does
not vary with the input x, simplifies both estimation and interpretation of the GP [143]. Thus,
warping predictors to make the stationarity assumption more plausible is important, especially when
it comes to discussing hyperparameter relevance in section 4.2.7. Coding is used to transform
non-numerical predictors (i.e., the protein feature) into numerical variables.

To aide understanding of input warping, a dramatic example is shown in figure 4.6 (which is an
adaption of figure 1 in reference [143]). Panel (a) shows a non-stationary function - the characteristic
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χ n

(φ,ψ) 10
(x, y, z) 500
ψ 1000

−→
χ1 χ2 χ3 χ4 χ5 ns

1 0 0 0 0 0.00
0 1 0 0 0 0.49
0 0 0 1 0 1.00

Figure 4.7: Example predictor transformation. The left hand table shows the
raw values of the hyperparameters, χ and n, as a data matrix. The right hand table
shows same values after dummy coding χ→χ1,χ2, . . . and scaling n → ns to lie in the
range [0,1]. No warping was applied. The dummy coding and scaling is performed
with reference to the hyperparameter search space in table 4.2.

length-scale decreases with increasing x. In other words, the kernel function, k(x, x ′) could not be
written as a function of |x−x ′|. Panel (b) shows a warping function which transforms x to xw. Panel
(c) applies this warping and the resultant function is more plausibly stationary. With respect to this
work, two input warpings, T (x), were considered: the identity I (x), and a logarithmic transformation,
log(x).

The categorical predictor, χ, was dummy coded [346] to give a five dimensional vector of 1s and
0s. A example of the transformations of two hyperparameters, χ and n, in preparation for modelling
with a GP are shown in figure 4.7.

In order to select the best combination of kernel functions and predictor warping each possible
combination was used to estimate a GP which was then evaluated using the cross-validated MSLL
and SMSE. So, for the response surface of alanine dipeptide eight different models were estimated:
four different types of kernel (equations 4.14 - 4.17) were used in equation 4.13 and two predictor
warpings for n. For each model both metrics were calculated using 10-fold cross validation. Any model
with MSLL> 0 or SMSE> 1 was discarded. The remaining models were ranked separately according
to MSLL and SMSE (RMSLL, RSMSE) and the ranks combined according to

√
R2

MSLL +R2
SMSE . This

ranking method was used to ensure a balance between the two selection metrics compared to, say,
the mean of the two ranks.

All GPR modelling was performed with the Python package PyMC3 (verion 3.5) [343] with
some visualisation performed using package GPy (version 1.5) [347].

4.2.7 Hyperparameter relevance

The sensitivity of the outcome y to changes in the predictors is measured by a function of its
characteristic length scale called the relevance. The characteristic length-scales in equation 4.13,
l , each correspond to a different predictor, or level of categorical predictor. They determine the
covariance of the response between points with different values of that predictor. For example, for an
exponential kernel with l = 1 then inputs separated by |x −x ′| = 1 will on average have a covariance
of exp−0.1 ' 0.9. This means for large values of l the response with respect to changes in x will
be flat, or in other words, x is irrelevant to determining the response. This prompts the definition
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of relevance, R = 1
l [306, 348]: when R is large, the small changes in x result in larger changes in

the response, meaning it is relevant to determining the response. Hereafter the kernel functions
(equations 4.14 - 4.16) will be parameterized interchangeably with R and l where convenient.

The relevance of the MSM hyperparameters is important for understanding and visualising the
response surface and so to calculate the uncertainty in R a fully Bayesian approach was used. After
model selection using the maximum marginal likelihood models described in section 4.2.6, the GP
model hyperparameters were re-estimated by sampling the posterior distribution using Markov Chain
Monte Carlo. A No U-Turn sampling algorithm, using two independent chains with 500 tuning steps
and 1000 sampling steps. Convergence was checked using the R-hat statistic [254].

4.2.8 Bayesian optimization

The response surface of an MSM can be optimised using Bayesian optimisation. As discussed in the
introduction to this chapter Bayesian optimisation requires two ingredients: i) a response function
which models the response of the MSM to its hyperparameters, and ii) an acquisition function. The
response function was chosen using the methods outlined in the previous section.

Bayesian optimisation and the acquisition function, α, can be understood by considering two
values of the predictor, x1 and x2. The goal of Bayesian optimisation is to maximize the function
f (x). The values of f (x1) and f (x2) are unknown. A choice must be made as to which value of x

to use to evaluate next, given that evaluating f (x) is costly and it is not possible to simply try all
possible values of x. If the values of the acquisition function are α(x1) >α(x2) then f (x1) is expected
to be greater than f (x2). Acquisition functions are functions of the expected value of f (x) and the
variance in this estimate. This is precisely the information provided by the response surface modelled
as a Gaussian process (although many different response surface models are possible [149]).

The acquisition function used is the expected improvement, E [I ] where the improvement, I , is
defined as [138]:

(4.18) I (x,µ∗) := ( f (x)−µ∗)I f (x)>µ∗ .

The improvement at x (the true response at which is unknown) is how much the estimated value
f (x) exceeds some threshold. This threshold is taken to be the highest value the function which is
currently known, this is the incumbent, µ∗. Taking the expectation of this for a Gaussian process
gives [138]:

αE I (x) :=E[
I (x, f (x),µ∗)

]
(4.19)

=(µ(x)−µ∗)Φ

(
µ(x)−µ∗

σ(x)

)
+σ(x)φ

(
µ(x)−µ∗

σ(x)

)
(4.20)

Here Φ, φ are the normal cumulative and probability distribution functions respectively, and σ(x)2

is the variance of the GP at the point x. The expected improvement answers the question: for each
value of the inputs (x), which value would be expected to give the highest average response ( f (x)),
over and above what is currently the best value (the incumbent, µ∗)?
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It is possible to take the expectation over both the distribution of f and of the GP hyperparameters
θ. This has been suggested and shown to be effective [134]. However, this was not done in this
work because of the extra computational cost involved.

The Bayesian optimisation algorithm [138] starts with a hyperparameter trial data set of
size Nseed which was used to estimate an initial response surface f (x;DNseed ) and the incumbent
calculated, µ∗ = max

[
f (x)

]
, x ∈DNseed . Using the response surface and the incumbent, the candidate

hyperparameter x1 was chosen by finding the maximum of the acquisition function. The maximum
was found first setting up a grid of points over the hyperparameter search space, XM , with M points
per hyperparameter. α(x) was estimated for every x ∈ XM and the next candidate hyperparameter
chosen as the value which maximized the acquisition function: x1 = argmaxx [αEI(x)]. The response,
y1, of the MSM to this candidate was calculated, and the trial (x1, y1) added to the trial data set,
which becomes DNseed+1. This process is repeated for p steps and is summarised in in algorithm 3.

Algorithm 3: Bayesian Optimisation.

Data: Trial data: DN = {(y1,x1), ..., (yN ,xN )}
Data: Search space grid: XM = {(χ1,τ1,m1,n1), ..., (χM ,τM ,mM ,nM )}
Result: x∗ = argmaxx f (x;DN+p )

for i ← N to N +p do
estimate GP response f (x;Di );
calculate incumbent: µ∗ = argmax f (x;Di ) s.t. (y,x) ∈Di ;
estimate acquisition function: αEI(x;Di ) x ∈ X;
select candidate: xi+1 = argmaxxαEI(x;Di ) s.t. (x ∈ X) & (x ∉Di );
query objective function to obtain: yi+1;
augment data: Di+1 ← {Di , (yi+1,xi+1)}

It was observed during these experiments that the same candidate hyperparameters were
being proposed by the algorithm. This was deemed due to the granularity of the grid used in the
maximisation of the acquisition function. To ensure that each candidate hyperparameter is unique,
the Bayesian optimisation algorithm was modified so that only hyperparameters sets not already in
the trial data set were considered as candidates. This is reflected in the conditions on the ‘select
candidate’ step of algorithm 3.

Although not extensively discussed in the theoretical literature, software packages seed the
process with randomly selected hyperparameter trials so that the initial response surface contains
some information, rather than just a random draw from the prior function distribution. For example,
the default in BayesOpt [140] is Nseed = 10. Conventional advice for parametric models (e.g., multi-
variable linear regression) puts the required number of observations for estimating parameters as at
least 15 observations per parameter [349]. An appropriate number was explored in this work.

4.3 Results and discussion
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4.3.1 Response surface of alanine dipeptide

4.3.1.1 Hyperparameter trial data set

Alanine dipeptide undergoes three relaxation processes which are resolvable with the lag time of
τ= 9ps used here, with implied timescales of approximately 1300ps, 66ps and 30ps. These values
were estimated using a Markov state model using the (φ,ψ) torsion feature and n = 100 microstates
and are inline with other studies using this data e.g., [98, 330]. As the eigenvalue associate with
each relaxation timescale can be at most 1, there is an upper-bound on the VAMP-2 score of 4 (this
includes the eigenvalue of exactly one corresponding to the stationary distribution, see chapter 2
section 2.3.6). The maximum values of the VAMP-2 score (' 3.25) are below this bound and similar
to the values estimated in reference [98].

The response of a Markov state model to the type of protein feature (χ) and number of cluster
centers (n) was measured by the cross-validated VAMP-2 score ( f ) using the first five eigenvalues of
the transition matrix. The hyperparameter trial data set consisted of 500 observations of f and (χ,n)

and is shown in figure 4.8. The test response ( f test = f
(
χ,n;Xtest

)
, blue points) and the difference

between train and test response, (∆ f = f train − f test, orange) are both shown as functions of n. The
features are ordered according to the mean of the test response. As expected from previous work
[325] the (φ,ψ) feature has the highest average response but figure 4.8 also shows that the heavy
atom (x, y, z) coordinates feature performs just as well.

The difference between the train and test response, the over-fitting, reflects the consistency
between the eigenvectors estimated on the training data and those implied from the time-lagged
covariance and overlap matrices (C and Π in 2.15) estimated on the test data [94]. So a small
∆ f implies that the picture of the relaxation processes are represented equally well, with the given
hyperparameters, in both the training and test data (even if they are both inaccurate). This is likely
due to the large volume of data used to train the MSMs.

4.3.1.2 Gaussian process regression

The response surface (figure 4.9) was modelled as a Gaussian process with χ and n as predictors.
A Matérn 5-2 kernel and logarithmic input warping of n were chosen using a combination of the
MSLL and SMSE model selection criteria. The SMSE and MSLL of the response surface was 0.0007

and −4.2369 respectively, see table 9.1 for the selection metrics of all the models. The choice of
logarithmic warping of n is unsurprising given that the response for the (φ,ψ) and (x, y, z) features
(panels (a) and (c) in figure 4.8) is a clearly non-stationary process: the covariance of the response
with respect to changes in n is much lower for n ≤ 100 than for n ≥ 100 where the response reaches a
plateau. The log transformation smooths the response with respect to n and makes the assumption
of a stationarity more plausible.

The categorical inputs (the protein feature, χ) posed no problems for GP model, the response
surface fits the observed data well across each feature, both in terms of the mean response and its
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Figure 4.8: VAMP-2 scores of the hyperparameter trials for MSMs of
alanine dipeptide. The test response, f test = f (χ,n;Xtest) is shown in blue, panels:
(a), (c), (e), (g), (i), while the degree of over-fitting, f train− f test, is shown in orange,
panels: (b), (d), (f), (h), (j). Each row represents a different value of the feature, χ,
and the horizontal axis represent the number of clusters, n. Each trial was scored
with 20 iterations of 50:50 shuffle split cross validation. The error bars represent
the 25th and 75th quantiles of the cross-validation folds. The features are ordered
according to the mean of the their test scores.

77



CHAPTER 4. MARKOV STATE MODEL OPTIMIZATION

101 102 103

2

3

4
VA

M
P-

2

(a) ( , ) torsions

101 102 103

2

3

4
(b) (x, y, z) coords.

101 102 103

Number of clusters

2

3

4
(c)  torsion

101 102 103

Number of clusters

2

3

4

VA
M

P-
2

(d)  torsion

101 102 103

Number of clusters

2

3

4
(e) RMSD

f( , n)
±2
Trials

Figure 4.9: Response surface of alanine dipeptide. The response is shown as
a function of the feature, χ (panels (a) - (e)) and number of clusters, n (horizontal
axis). The features are ordered according to their average response. A Matérn 5-2
kernel and logarithmic warping of the predictor n was used. The blue line is the mean
of the surface, the blue shaded bands represent the uncertainty (±2σ excluding the
noise term σn), and the black crosses are the observed values (the cross validated
mean of VAMP-2).

uncertainty.

4.3.1.3 Response surface features

The three aims of this chapter are to demonstrate the ability of GPs to model the response surface of
an MSM, use this response surface to understand the sensitivity of MSMs to their hyperparameters,
and optimise the response surface with respect to its hyperparameters. The previous section showed
the success of the GP model for modelling the alanine dipeptide response surface. Before moving
on to the next two aims, there are a number of features of the response surface that are worth
discussing. It should be noted that although this simulation data has been used in a variety of
molecular kinetics studies [98, 324, 326–332], this is the first explicit estimation of an MSM response
surface which means only qualitative comparisons can be to other studies.

First, there is a decrease in response as n → 10 for the (φ,ψ) and (x, y, z) coordinate features.
Qualitatively this decrease with n is in agreement with previous studies on other systems [94, 97]
and is due to increasing eigenfunction discretization error, δ [64] as a n decreases. The discretization
error measures the difference between the true eigenfunction and the eigenfunction approximated

78



4.3. RESULTS AND DISCUSSION

Figure 4.10: Discretization error of the second right eigenfunction of
alanine dipeptide as a function of the number of microstates. The
feature used is the φ backbone torsion. Panel (a) shows the free energy along this
feature. Panels (b), (c) and (d) show the normalized MSM right eigenfunction
(blue line) estimated n = 2,10 and 50 cluster centers respectively. This is compared
with the same eigenfunction estimated with n = 500 cluster centers (black line).
The red shaded area represents the difference between the two eigenfunctions. The
discretization error, labelled δ is the integral of the red area. The V AMP −2 score
is also labelled for comparison.
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using discrete microstates and is given by [64]:

(4.21) δi ≡
∥∥Ψi (z)− Ψ̂i (z)

∥∥
π,2 =

(∫
Ω

dzπ(z)(Ψi (z)− Ψ̂i (z))2
)1/2

Here z are the coordinates of state space (in this case the φ dihedral angle), π is the stationary
distribution and the integral runs over all of the state space, Ω. The integrand is the difference
between the true normalized eigenfunction Ψ and approximate eigenfunction Ψ̂. As the number
of microstates decreases, Ψ̂i is not fine-grained enough to capture variations in Ψi , resulting in
large values of δi . In the language of statistical learning theory [150], a model with errors due to
insufficient flexibility in the model definition, in this case too few microstates, is in the high “bias”
regime of the “bias-variance” trade-off.

In contrast, the response is flat for the φ and ψ and the RMSD features, which is not expected.
This could be because the values of n sampled were not low enough to show discretization error,
because of some feature of the simulation data, or due to some error of calculation. In order to
understand this, a more detailed investigation of of the relationship between the number of cluster
centers, n, the eigenvalue discretization error, δ, and the VAMP-2 response was carried out. This is
shown for the φ torsion feature in figure 4.10. Panel (a) shows the empirical free energy along the
φ torsion in order to provide a point of reference for the remaining panels. The truncation of the
free energy around the values of φ' 0, 2 radians is due to the low temporal resolution of the MD
trajectories (each frame is separated by 1 ps). This truncation is shown in the figures of references
[98, 327–331] which also use this data.

Panels (b) - (d) show the difference between the ‘true’ (black solid line) and approximate
eigenfunctions (blue solid line) for the slowest relaxation process, Ψ2. This is the processes which
takes the system from the free energy basin on the left-hand side (centered around φ'−2 radians),
to the minima on the right hand side (φ'+1 radians). The ‘true’ eigenfunction was taken as Ψ2

estimated with n = 1000 basis states using the φ feature (the shape of the eigenvector changed only
slightly over the range [100,1000]). Although the true dominant eigenfunction requires both the
φ and ψ torsion angles to be described exactly, for the purposes of seeing the effect of n on the
discretization error, this definition suffices. As n increases from 2 to 10 to 50, δ decreases from
85.1 to 74.1 to 26.7 (this is the sum of the red shaded area) while the VAMP-2 response increases
from 1.25 to 1.98 to 1.99. For this feature, and likely for the other one-dimensional features (ψ,
RMSD), the largest decrease in VAMP-2 occurs below n = 10 which explains why a drop in VAMP-2
response with decreasing n is not observed.

Second, the response for all features for n > 100 is constant. This due to a number of possible
factors. First is the large volume of MD simulation data used to train the MSMs. The discretization
error will eventually become negligible for all of the slow eigenvectors used in the VAMP-2 score as
n increases. As already mentioned, this explains the rapid increase in the response for n < 100. As n

increases the statistical uncertainty in the elements of the estimated transition matrix will increase
and the model enters the high variance regime of the “Bias-variance” trade-off. However, with the
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large volume simulation data the number of observations (750×(1000−9) = 743250 pairs of observed
transitions) is comparable to the degrees of freedom for a reversible MSM (1/2n(n−1)+n−1 = 500499

for n = 1000), and so the high-variance regime might be at n > 1000. In other words, to see the
expected decrease in model quality with n, values much larger than 1000 would need to be used.
Second, the temporal resolution of the trajectories was not high enough to resolve all the slow
relaxation processes stipulated in the VAMP-2 score and so increasing n did not increase the accuracy
of the eigenvectors. This is demonstrated in panel (a) of figure 4.10 where the truncation in the
free energy surface indicates the upper limit of the resolution.

This flat behaviour is in contrast to other studies [64, 94, 97] where the size of the microstates
is important for optimising the MSM. However, with these studies indicator basis function were used
whose definition are not dependent on the data. This points to the possibility that for measuring
the slow processes, the k-means method which adapts the definition of the state to the data at
hand, may not have a practical upper limit on the number of cluster centers (below the pathological
limit of the total number of observations).

The third feature of the response surface is the large uncertainty of response surface for n ≤ 20

which is a result of the comparatively sparse sampling in this region. This was because all sampling
was done without prior logarithmic warping, which would have placed more important on small
values of n and increased the density of samples in this region.

4.3.1.4 Practical implications

A Gaussian process regression model can be used to model the VAMP-2 response of a Markov state
model to both integer valued hyperparameters (number of microstates) and categorical variables
(the protein feature). A fully multiplicative kernel of the type in equation 4.13 can by used to model
multiple hyperparameters, while different kernel functions can be selected by choosing the model
with the best combination of standardized log loss and mean square error. Although this is not
useful in isolation, this is an important stepping stone to both measuring hyperparameter relevance
and optimising MSMs.

4.3.2 Hyperparameter relevance

Figure 4.11 shows the relevance of the hyperparameters of an MSM of alanine dipeptide. The box
plots show the variability in the estimates. This variability is due to the fact that the hyperparameter
trial observations are not perfectly predicted by the Gaussian process regression model. The color
coding reflects the fact that the levels of the protein feature, χ, which are categorical variables
(shown in blue), are to be interpreted differently from the integer valued, number of microstates, n

(shown in orange). However, overall, the values for each hyperparameter are less than 1, indicating
the shape of the response surface is largely flat. The implications of this are explored below. The
median and 95 % credible intervals of the results in this figure are tabulated in table 4.3.
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Figure 4.11: Relevance of the hyperparameters of alanine dipeptide.
The distribution of the parameters of the response surface (shown in figure 4.9)
were estimated using MCMC. The relevance of the features (levels of χ) are shown
in blue, labelled ‘Feature’. The relevance of the log-transformed number of cluster
centres, n is shown in orange (labelled ‘Other’).

Hyper-parameter Median 95% C.I.

R(φ,ψ) torsion 0.321 0.020-4.456
R(x,y,z) coords. 0.344 0.024-5.572
Rφ torsion 0.068 0.015-1.176
Rψ torsion 0.056 0.013-1.327
RRMSD 0.081 0.016-1.406
Rlog(n) 0.029 0.013-0.063
η 2.518 1.141-5.530
σn 0.006 0.006-0.007

Table 4.3: Posterior distribution of GP hyperparameters. Median and 95%
credible intervals for the kernel hyperparameters of the alanine dipeptide response
surface estimated using MCMC. The length-scale parameters in 4.13 are re-written
here as relevances.
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Figure 4.11 clearly shows the low relevance of the number of microstates (shown in orange,
median value 0.029, 95% C.I. [0.013–0.064], table 4.3). The relevance of continuous hyperparameters
determines how sensitive the model response is to changes in that hyperparameter. The more relevant
a hyperparameter, the greater the change in model response is to a change its value. Such a low
value indicates that the number of microstates only has a negligible effect on the VAMP-2 response
of the MSM. This is also evident from looking at the response surface itself, figure 4.9 which shows
the response flat with respect to changes in n. The practical implication is that it is not necessary
to optimize the number of microstates in an MSM when using k-means clustering (the method
used to create the microstates for the models fit here). However, for very small values, the value of
n does determine the VAMP-2 score, as was discussed in the previous section. This means that
the assumption of stationarity does not hold as correlation in the response for low values of n is
different to that for large values of n.

Previous work [306] calculated the relevance of continuous hyperparameters only. This work
extends the idea by considering categorical hyperparameters, namely the protein feature χ. The
levels of χ are the various protein features of the hyperparameter search space, listed in table 4.2.
The φ and ψ angle features are shown in figure 4.2. The (x, y, z) coordinates feature is the atomic
coordinates of the non-hydrogen atoms, also shown in this figure. The RMSD feature is the root
mean square deviation of the non-hydrogen atoms relative to an reference structure.

The relevance of χ determines the amount of information sharing between the parts of the
response surface with different values of χ. In order to understand this, it will be useful to contrast it
with the relevance of a continuous or integer-valued hyperparameters. The relevance of n determines
the covariance of the response to changes in n within the same feature. This can be seen from
the equation 4.13 and making use of the fact that all stationary kernel functions, k(x, x ′) = 1 for
x −x ′ = 0:

k tot (x,x′) = k
(
(1,0,0,0,0,n), (1,0,0,0,0,n′)

)
= η2 ·1 ·1 ·1 ·1 ·1 ·kM (n,n′;Rn)

= η2 ·k(n,n′)

Here the kernel functions have been re-written with the relevance, R, instead of the length-scale
l as a hyperparameter. The median relevance of log(n) is equal to 0.029 which implies that for
change n = 10 and n = 1000 (a change of 1 on the normalized scale) the covariance will be
η2kM−52(0,1;0.029) ' 0.99η2. In other words, the response will be independent of the n as already
noted. In contrast, the relevance of the dummy coded categorical variable determines the amount of
information sharing between different levels of that variable [350]. Between a high relevance protein
feature and all other features, there is little information sharing; between low relevance protein
features there is a large amount of information sharing. To see this, consider the covariance between
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points at n and n′ on two different features, χ1 and χ2:

k tot (x,x′) = k
(
(1,0,0,0,0,n), (0,1,0,0,0,n′)

)
= η2 ·kM

(
1,0;Rχ1

) ·kM
(
0,1;Rχ2

) ·1 ·1 ·1 ·kM (n,n′;Rn)

= η2 ·k1 ·k2 ·k(n,n′)

If either Rχ1 or Rχ2 is large then k1 ·k2 ' 0 and there will be no correlation between n on feature χ1

and n′ on feature χ2. If both Rχ1 and Rχ2 are small then k1 ·k2 ' 1 and covariance between n on
feature χ1 and n′ on χ2 will be similar to the covariance between n and n′ on the same feature.

Figure 4.11 clearly shows that features for alanine dipeptide are all low relevance. This means
the model response to n will be similar for the different values of χ. Even between the two highest
relevance features (φ,ψ) (median relevance = 0.321, 95% C.I. [0.020–4.456]) and (x, y, z) (median
relevance = 0.344, 95% C.I. [0.024–5.572]) the covariance between n and n′ on these two features
is only altered by k1 ·k2 = 0.91 ·0.92 ' 0.83.

4.3.2.1 Practical implications

Using an estimated response surface, the relevance of hyperparameters of an MSM can be estimated.
Time should be spent optimising high relevance continuous or integer-valued hyperparameters
as small changes in their value imply large changes in model response. Similarly, high relevance
hyperparameters should be chosen for sensitivity tests, which test the robustness of scientific
conclusions to modelling choices (this will be explored in chapter 6). For categorical hyperparameters
such as the protein feature, χ, the story is subtly different. A group of low relevance values of a
categorical hyperparameter can all be treated similarly with respect to the other hyperparameters.
With respect to work here - the optimum value of n is then similar for all values of protein feature.
The relevance also provides a useful guide for visualising multidimensional response surfaces, although
this was not investigated here: plotting high relevance hyperparameters can take priority over low
relevance hyperparameters, without sacrificing important features in the response surface. This idea
will be taken up in chapter 6.

4.3.3 Optimization

The maximum of the response surface of alanine dipeptide, estimated using the N = 500 randomly
sampled hyperparameters with a GP regression model, is µ= 3.318±0.004 which corresponds to
using the (x, y, z) coordinates feature with n = 762 cluster centers. The maximum of the response
surface at the trial values gives the optimum hyperparameters incorporating uncertainty and making
full use of all the trial information. Given the simplicity of the response surface, visual inspection
of figure 4.9 was deemed sufficient to confirm that no more sampling was necessary to locate the
maximum.

However given this large amount of sampling may not be practical in settings where estimating
an MSM is more intensive due to larger amounts of data, a useful question to ask is then:
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Figure 4.12: Bayesian optimisation. Each column shows the response surface at
three sequential points in the Bayesian optimisation procedure and each row cor-
responds to a different feature. The vertical axis is the MSM response, and the
horizontal axis the number of microstates on a logarithmic scale. The blue line
and shaded area show the response surface (mean and uncertainty respectively)
estimated using the hyperparameter trial data set, shown as small black crosses.
The white star shows the incumbent and the black dashed line shows the expected
improvement (right hand scale - note different vertical scales for each row). The
white cross shows the candidate hyperparameter, i.e., the maximum of the acquisi-
tion function. The large black cross show the actual value of the hyperparameter
trial that was suggested in the previous column.
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Ntot al µ σ χ n
Nseed # Pre Post Pre Post Pre Post Pre Post Pre Post

0 1 500 3.318 0.002 (x, y, z) 762

30 1 30 40 3.302 3.338 0.004 0.192 (φ,ψ) (x, y, z) 577 969
2 30 40 3.318 3.233 0.005 0.086 (φ,ψ) (x, y, z) 540 133
3 30 40 3.076 2.947 0.557 0.420 (φ,ψ) (φ,ψ) 88 10
4 30 40 3.065 3.315 0.553 0.132 (x, y, z) (x, y, z) 627 1000
5 30 40 3.313 3.258 0.005 0.194 (x, y, z) (φ,ψ) 968 684

50 1 50 60 3.330 3.337 0.012 0.032 (x, y, z) (x, y, z) 251 333
2 50 60 3.306 3.338 0.022 0.040 (φ,ψ) (φ,ψ) 540 540
3 50 60 3.309 3.327 0.013 0.013 (x, y, z) (x, y, z) 176 670
4 50 60 3.307 3.318 0.005 0.004 (φ,ψ) (x, y, z) 634 1000
5 50 60 3.308 3.327 0.004 0.058 (x, y, z) (x, y, z) 390 314

Table 4.4: MSM hyperparameters for alanine dipeptide pre- and post-
Bayesian optimisation. Each row represents a BO experiment, seeded with Nseed

randomly sampled hyperparameters trials. Five iterations of optimisation were run
with Nseed = 30, 50 (labelled #1,2 etc.). The number of optimisation steps is equal to
the difference in the pre/post value of Ntotal. The optimum of the response surface
estimated with all the trial data (Ntotal = 500) is included even though it was not
optimised using BO. Each column is a variable or outcome with values associated with
the optimum value of µ, before and after BO.

“Can the optimum of the response surface be discovered with less hyperparameter trials using
Bayesian optimisation?”. Before answering this question it is worth explaining how the Bayesian
optimisation process works in practice. The Bayesian optimisation process for three consecutive
steps is demonstrated in figure 4.12. The first column (panels (a), (d), etc.) shows the response
surface estimated using the hyperparameter trial data set with N = 50 trials. The blue line and
shaded area in panel (d) are the response surface with χ= (x, y, z). The white star is the incumbent
- the maximum of the response surface, across all features but only evaluated for x ∈ D50. The
expected improvement is shown as a dashed line and its maximum corresponds to the point on the
response surface denoted by the white cross. This value, x50 =

(
χ= (x, y, z),n = 10

)
is the candidate

and is evaluated in the next step. In the second column (panels (b), (e) etc.) x50 has been evaluated
and the result is shown as a filled black cross. Its value is much smaller than expected, although the
new response surface adapts poorly to this information - the mean response does not pass through
this new point. This process is repeated in the next column (panels (c), (f) etc.). The white cross in
panel (e) is evaluated and shown as a black cross in panel (f) (the candidate in panel (e) is not at
the maximum of the acquisition function because the maximum was the same as the previous step).

Bayesian optimisation was performed starting with a small set of randomly sampled hyperparam-
eter trials (pairs of hyperparameters and VAMP-2 responses) to initiate the process. This simulates
the more realistic situation of large amounts of simulation data prohibiting exhaustive searches of
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(a) Nseed = 30

(b) Nseed = 50

Figure 4.13: Bayesian optimisation trajectories of alanine dipeptide.
Shown are five different random subsets (‘iterations’) of the total hyperparam-
eter trial data, each separately optimised, seeded with 30 hyperparameter trials or
15 observations per predictor (panel (a)), and 50 hyperparameter trials or 25 obser-
vations per predictor (panel (b)). The orange values are the trajectories calculated
from random sampling, the blue values are the Bayesian optimisation trajectories.
The first row (sub-panels (i) - (v)) are the VAMP-2 response, the second row
(sub-panels (vi) - (x)) show the accompanying number of cluster centres, and the
third row (sub-panels (xi) - (v)) are the accompanying feature.
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the hyperparameter space. Specifically ten steps of Bayesian optimisation was performed on five,
randomly sampled, subsets of the full hyperparameter trial data set with sizes Nseed = 30 & 50. The
input warping and kernel function used in the response surfaces for all of the Bayesian optimisation
experiments were the same as those used on the full trial data set, discussed in the previous two
sections. In principle, these modelling choices should be determined independently for each data set
but, given the simplicity of the response surface, it was deemed unnecessary.

The results of the optimisation are shown Figure 4.13 by plotting the optimisation trajectories.
Figure 4.13(a) shows the optimisation trajectories after seeding with Nseed = 30 trials and figure
4.13(b) after seeding with Nseed = 30 trials. The 10 steps of Bayesian optimisation are shown in
blue (horizontal axis values: Nseed → Nseed+10) and for comparison the figure also shows, in orange,
the trajectory calculated using randomly sampled trials (horizontal axis values: Nseed −10 → Nseed).
Sub-panels (i) - (v) show how the value of the incumbent varies with the number trials in the
trail data set, the orange values contain only randomly selected hyperparameters, the blue values
contains a mix of BO selected and randomly selected trials. Panels (vi) - (x) show the values of n

and panels (xi) - (xv) show the values of the χ associated with the incumbent.

With Nseed = 30 the incumbent trajectories of iterations 2, 3, & 5 decreased after starting BO.
For all iterations seeded with Nseed = 50 trials the incumbent trajectories remained constant or
increased. In both cases the optimal values of χ oscillated between (φ,ψ) and (x, y, z), while the
optimal value of n did not converge to a single value across separate iterations. A value of Nseed = 50

or 25 observations per predictor were therefore deemed tentatively appropriate.

There are a number of observations of the optimisation trajectories which reflect on the alanine
dipeptide response surface described in section 4.3.1 and the usefulness of Bayesian optimisation
for this system. First, the incumbent trajectories clearly show that Bayesian optimisation does not
increase the value of the incumbent by a significant amount. This is a reflection of the simple nature
of the response surface and the irrelevance of the number of cluster centres. Second, the response
surface (in the search space domain tested) is bimodal with peaks at χ= (φ,ψ) torsions and (x, y, z)

coordinates. This is reflected in the clear lack of substantive difference between the final values of
µ listed in table 4.4 for these two values of χ. Third, the almost complete irrelevance of n as a
hyperparameter is clearly shown in figure 4.13(b) sub-panels (vi) to (x) in which the final values
of n, n ' 1000, 500 & 100 show no clear difference in the value of the incumbent. Fourth, it is
possible that with more optimisation steps it could be possible to arrive at the maximum of the
response surface with fewer seed trial observations. While this is a possibility, the fact that Bayesian
optimisation is an inherently serial algorithm, while random sampling is embarrassingly parallel,
it was considered more wall-time efficient (if not CPU-time efficient) to err on the side of more
random seed trial data and fewer optimisation steps.
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4.3.3.1 Practical implications

Bayesian optimisation may not be necessary for optimising MSMs. The nature of the response surface
of alanine dipeptide is such that no improvements could be made over after randomly sampling,
and in some cases made the measured response worse. However, Bayesian optimisation does provide
a useful check of convergence of the response surface: the Bayesian optimisation algorithm explored
the hyperparameter space in the regions most likely to show improvement (χ= (φ,ψ) torsions and
(x, y, z) coordinates) but could not improve on the VAMP-2 score.

4.4 Conclusions

This chapter introduced the use of response surfaces and Bayesian optimisation for understanding
and optimizing the hyperparameters of MSMs. A GP model proved a satisfactory statistical model
for estimating the response surface of alanine dipeptide with two predictors χ and n. Using the
MSLL and SMSE metrics, a Matérn 5-2 kernel and logarithmic warping of the hyperparameter n

produced the best fit to the data. The logarithmic warping was necessary to make the stationary
assumption of the GP more plausible. While GPs are usually used with continuous predictors, the
use of dummy coding was demonstrated to be effective in incorporating the peptide feature, χ, as a
categorical predictor. The hyperparameter relevance, the inverse of the characteristic length-scale
of the kernel, was shown to reflect the importance of each MSM hyperparameter in determining
the MSM response. For the non-categorical hyperparameter, n, the low relevance was a reflection
of the near flat response of the MSM to changes in n. For the categorical predictor, the protein
feature χ, the low relevances of each feature was a reflection of how similar the response surfaces
were conditional on the value of χ. Two BO experiments, each consisting of five iterations of the
Bayesian optimisation procedure were performed. It was found that seeding the algorithm procedure
with 30 hyperparameter trials led to the Bayesian optimisation procedure deteriorating rather than
optimising the hyperparameter surface. Seeding with 50 trial observations prevented the deterioration
in the incumbent, however, it did not improve the incumbent either. The hyperparameters selected
by Bayesian optimisation over each iteration were not consistent.

The main limitation of this work is that the response surface of alanine dipeptide was too simple
to provide an adequate test of the methods investigated here. The response surface could be easily
visualised in its entirety and could be approximated as a constant value for each feature, with the
two best performing features having equal response values. Thus the hyperparameter relevance
calculations did not provide any more insight beyond what could be gathered from visual inspection
of figure 4.9.

Bayesian optimisation did not provide any useful reduction in computational effort when
optimising this response surface because of the shape of the response surface. Thus random
sampling was easily able to pick out the optimum hyperparameters. The possible reasons for the flat
response with respect to n is the large volume and low temporal resolution of the trajectories. In
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addition, the type of clustering algorithm is known to have a large effect on the quality of an MSM
[246] and the effect of this has not been investigated in this work. As a result, Bayesian optimisation
was only shown to be as good as randomly selecting hyperparameters and fitting a response surface
but not better. However, it did provide a convergence check on the randomly selected variables,
so in that limited sense it did provide an reduction in computational effort. In addition, the model
selection criteria for selecting the kernel and input warpings was simple and easily implemented but
ultimately ad-hoc. A plan to address these limitations in future work is laid out in the conclusions,
chapter 7.

However, as the majority of these limitations were dependent on the system studied, they do
not rule out their practical benefits for other systems. First, a Gaussian process was able to be
fit to estimate the response surface, despite the fact that the data did not meet the stationarity
assumption, required by the kernel. Second, the hyperparameter relevance was consistent with the
data. This work demonstrated an interpretive extension of hyperparameter relevance for categorical
features. This has benefits when deciding on how to further optimise or visualise the response
surface, or when designing sensitivity tests. Third, while Bayesian optimisation was not able to
optimize the response surface, it did provide a useful check of convergence of the optimum of the
response surface. A further test of these methods will be presented in chapter 6, where in addition
the use of hyperparameter relevance for visualising multidimensional response surfaces and designing
sensitivity tests will be explored further.
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5
METASTABLE STATE SELECTION FOR HIDDEN MARKOV MODELS

Symbol Definition

g Number of hidden states in a HMM.
n Number of observed states in a HMM.
T̃ g × g HMM transition matrix.
E g ×n emission matrix. Ei j is the probability of observing a state j

given an hidden state i .
π̃ Stationary distribution of hidden states
{st } Trajectory of observed states
{ht } Trajectory of hidden states
P({st }|M) Integrated or marginal observed likelihood: the probability of

observing {st } given the model M .
P({(st ,ht )}|M) Integrated or marginal complete-data likelihood: the probability of

observing both {st } and {ht } given the model M .
L

(
T̃,E|{st }

)
HMM likelihood.

θ The HMM parameters, T̃ and E
θ̂ Maximum likelihood estimates of θ
M Membership matrix. Mi j is the probability that a given observed state

i is a member of hidden state j .
H(st ;M) The information entropy associated with observed state st .
E N (M) Classification entropy - the sum of the H(st ;M) over a whole trajectory

data set.

Table 5.1: Important symbols used throughout this chapter.
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5.1 Introduction

Chapter 4 demonstrated using response surface methods and Bayesian optimisation to arrive at
an optimal MSM. Typically MSMs are created with 100s of basis states, or microstates, which
are geometrically similar so that they describe with a high degree of precision the eigenvectors
of T. These eigenvectors describe dynamic processes such as loop opening and closing (e.g., in
triosephosphate isomerase [6] described in chapter 1) or rotations about dihedral angles (e.g., in
alanine dipeptide, chapter 4). While the microstate basis can provide quantitative agreement with
experimental lifetimes and rates [351], descriptions in terms of 100s of states, which only differ by
small changes in atomic configuration, are cumbersome and difficult to interpret. It is common
practice to instead group “similar” (this will be made precise below) microstates into a small
number of meaningful and interpretable macrostates. To continue the loop opening example of
triosephosphate isomerase (TIM), the authors of reference [6] created an MSM with 100 microstates,
each one of which differed slightly along 120 different interatomic distances. Rather than stop at this
description, they showed that these microstates could be grouped into just two or three macrostates
which provided a more meaningful description in terms of the loop being open or closed.

When grouping or coarse-graining microstates into macrostates there are three questions that
need to be answered:

1. How are the microstates mapped to the macrostates? i.e., for each microstate which macrostate
does it get assigned to?

2. Given a mapping, what are lifetimes of, and transition rates between, the macrostates? In
other words, what is the transition matrix T̃ in this new basis?

3. Model selection: How can competing models be compared and selected? This includes selecting
among different coarse-graining methods and selecting the number of macrostates.

It may also be useful to ask what is the purpose of the performing the coarse-graining? Is it to
classify states crisply into disjoint macrostates? Or is it to produce the most accurate description
the kinetics in a coarse-grained basis? These two purposes require different model selection criteria
and may affect the optimum coarse-graining scheme.

5.1.1 Assigning microstates to macrostates

There are two main approaches to coarse-graining and clustering in general, which have already
been briefly discussed in section 1.7 of the introduction to this thesis. First, geometric clustering
can be used to assign snapshots from molecular dynamics (MD) trajectories to microstates based
on their geometric similarity, for example the root mean square deviation from a reference structure.
The second approach is kinetic clustering where clustering is performed by explicitly grouping frames
into states based on their kinetic properties. Kinetic properties of a particular atomic configuration
are determined by its location on the free energy landscape. In order to transition from one region
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to another a barrier, which combines enthalpic (potential energy) and entropic terms, must be
surmounted [102]. Thus kinetic clustering amounts to grouping molecular configuration which lie in
the same minima on the free energy surface into the same state (defining clusters which lie near
or on transition states is also important and will be described below). Discrete path sampling is
a method of kinetically clustering atomic configurations [101]. To do this the free energy surface
is estimated by first finding minima and saddle points (transition states) in the potential energy
surface and then adding an estimate of the entropic contribution. However, this does not scale
to large systems because finding potential energy minima results in large energy fluctuations with
systems with large numbers of degrees of freedom (for example with explicitly solvated systems) [63].
For larger systems, the MSM approach is to approximate kinetic similarity with geometric similarity.
The preprocessing steps of projecting onto relevant molecular features and time-lagged independent
component analysis (described in chapter 2), is to create a set of variables which allow identification
of geometric distance with the kinetic distance [90]. So if the distance between frames as measured
in these new variables is small, then they can be assumed to have similar kinetic properties.

Coarse-graining microstates into macrostates is conceptually similar to clustering MD frames or
atomic configurations into microstates, except that the time or distance scale has been enlarged
because of the questions being asked. Understanding loop motions, which occur nanosecond and
microsecond timescale, does not require resolution of the rotameric states of individual methyl
groups, which transition on the picosecond timescale [352].

There have been a wide variety of methods developed for coarse-graining microstates into
macrostates. The majority of these methods create macrostates corresponding to the same free
energy minima. This means that two microstates, ai and a j , in the same macrostate, A, interconvert
more rapidly than to microstates bk in a different macrostate, B . This is possible when there are
differences in the timescales of the processes that cause transitions between A and B versus the
transitions within A (or B ,C , . . .). Under these circumstances the macrostates are said to exhibit
metastable dynamics [169]. Coarse-graining can also be used to find macrostates which lie on
transition regions between metastable states, known as transition macrostates [157].

The most straight-forward method of coarse-graining into metastable macrostates is when the
slow processes can be easily identified with a protein feature. In reference [71] a 200 state MSM
was constructed to model allosteric modulation in the enzyme cyclophilin A. The slow process
was identified with a change in the χ1 angle of the Phe113 residue. Coarse-graining could then be
done ‘by hand’ by assigning microstates into either of two macrostates based on whether χ1 =±60°.
When the number of relevant degrees of freedom makes this infeasible, algorithmic methods are
necessary. The first method for explicitly coarse-graining the microstates of an MSM was Perron
cluster cluster analysis (PCCA) [158] and its subsequent ‘robust’ alternative PCCA+ [159] (which
improved the method under low-data conditions). Each eigenvector of the transition matrix T

represents a dynamic process (e.g., loop opening) and the associated eigenvalue is related to its
timescale. The relative sign of microstates in this eigenvector denotes how the process evolves over
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time: microstates with a negative sign transition to states with positive sign and vice versa. PCCA
uses this sign structure to coarse-grain states: microstates with the same sign get grouped into the
same macrostate (see the description of PCCA+ in section 2.4.2). Some recent examples include
using PCCA+ to coarse-grain: the 100 microstates of loop 6 into ‘open’ and ‘shut’ macrostates in
TIM [6]; 237 microstates of the protease trypsin into seven macrostates each of which exhibited
different binding affinities to the inhibitor benzamidine [160]; 500 microstates of DNA quadruplexes
into five metastable states in order to test the accuracy of different molecular mechanics force-fields
compared to X-ray crystallography experiments [161].

PCCA+ is also used in the hierarchical Nyström exstension graph method (HNEG) [162]. In the
HNEG method, instead of the whole microstate basis, the transition matrix T is approximated with
a subset of only the most well sampled states (the Nyström method is a method for approximating
matrices with an appropriate submatrix). PCCA+ is used to coarse-grain the submatrix and the
remaining microstates are grouped based on their transition probabilities to each macrostate. HNEG
has been used to understand the binding interface of the calcium sensor calmodulin [240]. The
Bayesian agglomerative cluster engine (BACE) [163] uses Bayesian hypothesis testing to test
whether a given microstate belongs in a given macrostate. BACE has been applied to modelling
the loop dynamics of MDM2 (mouse double minute 2 homologue - a cancer drug target), coarse-
graining a 2000 state MSM into 150 macrostates. HNEG and BACE are similar because they first
assign well-sampled microstates, resulting in coarse-grainings which are more robust when including
poorly sampled microstates. The most probable path (MPP) [164] assigns microstates to the same
macrostate if they occur on the sequence of microstates. This sequence is constructed by starting
with a microstate i , the next state has the highest transition probability from i (i.e., argmax j Ti , j )
and so on. MPP has been used to assign a 12000 microstate description of the villin headpiece
protein into five macrostates representing one unfolded, two intermediate and two folded states
[353]. The renormalisation group is a technique for making links between phenomena at different
scales e.g., the link between microscopic atomic interactions and macroscopic phase transitions [354].
This technique has been applied to MSMs [165] to derive a coarse-graining method which was used
by the authors to reduce a 100 microstate description of the bovine pancreatic trypsin inhibitor to
three metastable folded states. A conceptually different approach was taken with minimum variance
cluster analysis (MVCA) [166]. Row i of the transition matrix Ti , j defines a probability distribution
over all other microstates j . Two microstates i and k are similar if they have similar distributions
Ti , j and Ti ,k . MVCA hierarchically clusters microstates based on a measure of the similarity of the
two distributions. The authors used this to compare the number of metastable states of the fast
folding protein chignolin with two different molecular mechanics force-fields. They also extended this
approach to cluster not just rows of a single transition matrix but also whole transition matrices.
They used this technique to highlight the differences and similarities between MSMs of simulations
of chignolin using different combinations of force-fields and water models.

Projected Markov models include observer operator models (OOMs) [167] and hidden Markov
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models (HMMs) [169]. These are dynamical models which directly incorporate a microstate-
macrostate structure into their definition. PMMs assume Markovian dynamics in an unobserved
state space and then specify a projection onto observable variables. OOMs and HMMs are different
approximations to this process. HMMs have been described in chapter 2 but to summarise: HMMs
specify a Markov process in hidden states (macrostates), while in each hidden state the system
‘emits’ an observed microstate. Each macrostate emits with a different set of probabilities to each
microstate. This emission distribution defines the coarse-graining. HMMs are accurate representations
of PMMs assuming the unobserved dynamics are metastable and the emission distributions do not
overlap. OOMs on the other hand do not require non-overlapping emission distributions and are
therefore considered the more general model [167]. HMMs have proved the more popular model and
have been used to model protein-protein association dynamics [174], ligand binding [173, 182–184,
186], enzyme-substrate dynamics [175, 177, 180], nucleic acid folding dynamics [178, 179], ion
channels [181], allosteric effects [185] and to aid in enzyme design [176]. This is likely due to their
attractive properties for understanding conformational dynamics. First, there is a clear one-to-one
relationship between the elements of the model and the intuition about the conformational dynamics
of biomolecules: the rapidly inter-converting configurations correspond to the observed states of
the HMM, while the metastable states correspond to the hidden states of the HMM [169]. Second,
unlike MSMs, the dynamics of the observed states (or microstates in the language of MSMs) are
not required to be Markovian in order to recover accurate relaxation timescales. Third, they have
been shown to be robust to poor microstate definitions [169].

The previous techniques all focused on creating definitions of macrostates which were metastable,
i.e., correspond to minima in the free energy surface. However, transition states are crucial to
describing the rates of conformational transitions and increasing the number of microstates around
the barrier separating free energy minima increases the accuracy of Markov models [64]. In reference
[157] the authors coarse-grain microstates to find both metastable and transition-state macrostates.
The central idea is to select macrostates which maximize the slowest implied timescale in the
macrostate model. This requires a variational bound on the slowest timescale in the coarse-grained
picture, which was later proved in reference [355]. The authors went on to apply this to a wide
variety of systems: quantum-mechanics/molecular mechanics multiscale simulations of hydrogen
abstraction in lipoxygenase, the model helix forming alanine pentapeptide, and two different helix
dimers.

5.1.2 Coarse-grained description of kinetics

In order to make the link between the coarse-grained description and observable dynamical properties
of the system and new coarse-grained transition matrix is required. In general, defining a new
macrostate transition matrix by simply merging microstates will result in a non-Markovian description
which fails to correctly propagate the dynamics (i.e., the elements of p in the master equation
equations 1.1 and 1.2) [169, 236]. The authors of reference [236] attempted to define a coarse-
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grained transition matrix by minimizing the error between the predicted populations of states in
macrostate and microstate basis. As their numerical example illustrated however, their method
could result in unrealistic negative transition probabilities. A more successful approach was proposed
by Hummer and Szabo [155]. Their method enforced consistency between the microstate and
macrostate descriptions of the relaxation times between macrostates. This result was used in
the method of reference [157] to identify transition-state macrostates described previously. The
Hummer-Szabo method was used in reference [356] to calculate the macrostate transition matrix
describing the helix-coil transition in an α-helical peptide. The macrostate transition matrix was
derived from a 199 microstate transition matrix after coarse-graining with PCCA+. Later work also
showed [156] their method to be equivalent preserving mean first passage times (the average time
taken to transition between states) between the microstate and macrostate basis.

For some coarse-graining techniques the construction of a consistent macrostate transition
matrix is more straightforward. The renormalization group technique [165] defines simultaneously the
micro-macrostate mapping and the macrostate rate matrix and so no further work is necessary. For
projected Markov models (HMMs and OOMs) the transition matrix is estimated directly from the
data. For HMMs this is done by maximizing the likelihood of the model parameters (the transition
matrix elements and the emission distribution parameters) or through Bayesian estimation. In both
types of estimation the likelihood function makes the link between the observed trajectories of
microstates, the coarse-grained transition matrix, and the assignment of microstates to macrostates.
Each observed microstate in a trajectory can be thought of as arising from two processes: emission
and transition. At time t the system is in a given macrostate ht ; this macrostate ‘emits’ a microstate
st with a given probability Eht ,st . The macrostate itself arose because of a transition from an
earlier macrostate ht−1 with a probability of T̃ht−1,ht . The likelihood function relates the observed
microstates to elements of the matrices E and T̃. The optimal macrostate basis is defined by finding
E and T̃ which maximize the likelihood. This is covered in detail in chapter 2 and later in section
5.2.

5.1.3 Model selection

The number of macrostates, g , must be stipulated when coarse-graining a MSM but choosing
an appropriate value of g is complicated by two factors. First, the nature of complex systems is
that there is a hierarchy of timescales [107, 352] which define multiple different metastable and
transition-state coarse-graining. The number of macrostates must therefore be set in relation to a
timescale. Even after setting this timescale, none of the methods so far give a definitive answer as
to how many macrostates should be specified, however, some give more information to guide the
user than others. For example, the Bayesian agglomerative clustering engine [163] hierarchically
assigns microstates, initially to a large number of macrostates, which are in turn assigned into larger
macrostates until only two macrostates remain. Thus the user can see how states agglomerate
and choose the number of macrostates according to their specific analysis objective. The ‘distance’
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between the macrostates (i.e., the number of iterations before two distinct states are merged)
is measured by the Bayesian weight of evidence for merging two states (this is the Bayes factor,
discussed below). By requiring stronger evidence for merging two states a more fine grained picture
with more macrostates is produced. In the transition-state coarse-graining method of reference
[157] the algorithm can by stopped after identification of a single transition-state macrostate or can
be repeated, finding more transition-state macrostates, which again produces a more fine-grained
picture. A more general method for determining the number of metastable macrostates is to inspect
the eigenvalue spectrum of the MSM in the microstate basis. Gaps in the eigenvalues or the implied
timescales [169] denote regions where there is a separation in timescales. A large gap between the g

and the g +1’th timescale supports coarse-graining into g metastable macrostates.
The second complicating factor is the finite amount of data which often leads to gaps in the

implied timescale which are statistically indistinguishable from one another [168], making it difficult
to determine g . In practice this means that noise in the data could be interpreted as a separate
metastable state, a phenomena known as over-fitting [150, chapter 6]. This observation drove the
the development of PCCA+ over the original PCCA method [159] and many of the other methods
described previously [168].

Deciding on the number of macrostates a given set of simulation data supports is an example of
the problem of model selection [150, chapter 6][357]. Chapter 4 was an example of model selection
where the choices being decided upon related to the creation of optimum microstates. This focus of
this chapter is on the number of metastable macrostates in a coarse-grained Markov model. One
approach to determining the number of macrostates is through Bayes factors [189]. The Bayes
factor, BF, of two models, M1 and M2 relates the posterior odds of two models, given the data, D,
to the prior odds of the models [189]:

Posterior odds=Bayes Factor×Prior odds(5.1)

P(M1|D)

P(M2|D)
= P(D|M1)

P(D|M2)
× P(M1)

P(M2)
(5.2)

=
∫
P (D|θ1)P(θ1|M1)dθ∫
P (D|θ2)P(θ2|M2)dθ

× P(M1)

P(M2)
(5.3)

The integral in the definition of the BF runs over all the potential values of the model parameters,
θ, weighted by their prior probability P (θ). If the prior odds are one, i.e., there is no prior reason to
favour one model over another, then the BF is equal to the posterior odds of the two models. If BF > 1

then model 1 is favoured and vice versa. The Bayes factor measures the relative evidence of two
models provided by the data [189]. In the case of coarse-graining Markov models for conformational
dynamics, the data are the discrete microstate trajectories D = {s1, s2, ...} = {st }, and the model is,
for example a HMM, represented by its parameters θ = (T̃,E) [188]. Practical use of the Bayes
factor amounts to calculating the integrated likelihood for each model Mi and selecting the model
with the largest value. Using this method, quantitative comparisons of several of the lumping
schemes previously cited (excluding HMMs) were compared for a number of benchmark systems
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[168]. Bayes factors are attractive as they naturally penalise overly complex models, i.e. models
with high-dimensional parameter vectors θ. The reason is that while the likelihood P(D|θ) may
increase with the dimension θ due to the increased flexibility of the model, the prior probability of
any particular θ decreases as it occupies a smaller fraction of this higher dimensional parameter
space [189, 358]. However, the main drawback of Bayes factors is the computational effort required
to estimate integrals of the type in equation 5.3, which limits the number of models that can be
compared.

5.1.4 Hidden Markov models

The proceeding discussion has shown that there exist many different methods for coarse-graining
microstates to macrostates (PCCA+, BACE, HNEG etc.). In order to describe the kinetics of
the system in the macrostate basis a method for calculating the macrostate transition matrix is
required. The method of Hummer and Szabo [155] is one such method which can be applied to
different coarse-graining scheme and maintains important properties from the microstate description.
Recent work showed that the optimum coarse-grained description can then be derived by maximizing
the slowest timescale in macrostate transition matrix [156, 355]. For other methods such the the
renormalization group [165] and hidden Markov models [169] the macrostate transition matrix arises
directly from application of the method. Choosing the number of macrostates is a problem common
to all coarse-graining methods and must take into account the timescale of the problem being
investigated and the finite amount of data used to estimate models. Bayes factors are a solution to
this problem but require a separate, computationally intensive calculation.

The remaining discussion and the focus of this chapter will be on the use of hidden Markov
models for coarse-graining Markov state models. In particular the problem of hidden Markov model
selection will be discussed and investigated. The choice of HMMs is motivated because of their
established popularity for coarse-graining MSMs. In addition, because of their long-standing use in
other fields, there are a wide range of techniques available for model selection which are simpler than
the Bayes factor approach. These other techniques and the link to the Bayes factor will constitute
the remainder of this introductory discussion.

5.1.5 Classification versus density estimation

Hidden Markov models are a type of finite mixture model [190]. Finite mixture models are used for two
purposes (a) modelling the density of observations and (b) classifying observations into meaningful
groups [359] both of which can be related to the purposes of coarse-graining MSMs. A coarse-
graining is designed to classify observations or microstates into meaningful groups, namely metastable
macrostates. Modelling the ‘density of observations’ in this case means that the macrostate picture
should be consistent with equilibrium distribution of microstates and their propagation through time.
There is a natural tension between these two purposes. On the one hand more macrostates can model
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Figure 5.1: Classification and density estimation with mixture models.
Panels (a) and (b) show the classification picture for a two and three component
Gaussian mixture model estimated on the same data. The generating (true) densities
are shown as black dashed lines, and the generated data shown underneath as
coloured discs. The estimated densities are shown as coloured lines. The data have
been coloured according to their maximum a posteriori assignment to each estimated
component, the transparency of the colour is proportional to the classification entropy
- the more uncertain the assignment the more transparent. The label shows the log
classification likelihood (LLc) and entropy (E N). Panels (c) and (d) show the same
two models but the densities have been added so as to reproduce the total density of
the data. The label shows the log likelihood (LL). The data generating distributions
are N (1, (1/2)2), N (5, (2/3)2), N (6.6, (2/3)2), mixed in proportions π= (0.34,0.34,0.32).

the dynamic processes more accurately but at the expense of losing meaning and interpretability of
the macrostates.

Model selection techniques exist which take into account the diverging purposes of classification
and density estimation. To understand them a simplified example using a Gaussian mixture model
(GMM) [360] will be used. The reason for using this model as an example is that GMMs share
essential features with HMMs, while dispensing with the complicating factor of dynamics, and are
easy to visualise.

A GMM groups observations as though they arose from draws from a Gaussian distribution. This
is demonstrated in figure 5.1 which shows N = 87 random draws (coloured discs) from three normal
distributions (black dashed lines). In panel (a) a two component Gaussian mixture model (GMM)
has been estimated. To do this, the data {s1, . . . , sN} were modelled as arising from the weighted
sum of two normal distributions: s ∼ π1N

(
µ1,σ2

1

)+π2N
(
µ2,σ2

2

)
. The values of the parameters

θ = (µ1,µ2,σ1,σ2,π1,π2) were chosen to maximise the log likelihood logL (θ|{si }) =P({si }|θ). The
coloured lines show the estimated normal distributions and the observations have been classified
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and coloured as arising from either one of the normal distributions. To classify the observations, the
posterior probability of an observation, si , arising from component j (the distribution with parameters
µ j ,σ j ), was calculated: Mi j = P(si ∈ component j |si ) for each value of j . The observations were
assigned to the component with the highest value of Mi j . This is known as the maximum a posteriori
(MAP) assignment. In panel (c) the same model is shown but the total probability density (the
sum of the probability density functions) is shown along with the log likelihood (LL). The same
thing is repeated for a three component model in panels (b) and (d). So panels (a) and (b) reflect
on GMMs as a method of classification, while panels (c) and (d) reflect on GMMs as a method of
density estimation.

How can the two models be evaluated? For the purposes of density estimation, the estimated
density of the three component model (panel (d) blue line) captures the bimodal distribution
of the cluster of observations x ∈ [4,8] better than the two component model. This is to be
expected as the data were generated from a three component mixture and the log likelihood
reflects this: LL =−164 vs. LL =−160 for the two and three component models respectively. From a
classification perspective the situation is reversed. For both models, the cluster of data around x ' 1

is unambiguously classified as belonging to a single component. For the two component model this
is also true of the observations x ∈ [4,8]. However, for the three component model, the distributions
of the second and third components overlap in the small region around x ' 5.8. This means the
posterior probabilities for belonging to either component, Mi ,2, Mi ,3, for the observations in this
region will be similar. Therefore, it is not possible to unambiguously assign observations to either
component j = 2 or j = 3. This is reflected in the log classification likelihood, LLc which for the
three component model is smaller than the two component model: LLc = −170 vs. LLc = −165.
The log classification likelihood and the log likelihood are related by LL = LLc −E N , where E N

is the classification entropy [361]. The entropy of an observation, si , is the information entropy
Hi =∑g

j Mi j log Mi j and measures the uncertainty with which the observation can be assigned to
a given component [358]. The classification entropy is the sum of the individual entropies over
the observations [190]. So although the three component model has a higher likelihood than the
two component model, it has a lower classification likelihood because it cannot assign all the
observations with certainty to each component.

The relationship between the Gaussian mixture model described above and a hidden Markov
model is straightforward [190]. The observations in a continuous state space of the GMM si ∈R
map to the discrete microstate trajectories of a HMM, st ∈ Z; the GMM components are the
hidden states of the HMM ht ; the distribution parameters µi , σi are the rows of the emission
matrix, Ei ,·; and the mixing proportions of the GMM are are stationary distribution π of the HMM.
Considering HMMs as a coarse-graining procedure means they are aligned to the second purpose of
mixture models: classifying observations into meaningful groups, where the ‘meaningful groups’ are
the system’s metastable states. The classification likelihood is also known as the complete-data
likelihood because the classification procedure adds in a new variable, the identity of the component
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associated with each observation [190]. The complete-data likelihood takes both the observation
and the component variable into account [359]. To emphasise the difference between the likelihood
and the complete-data likelihood, the former will be referred to as the observed likelihood.

As shown above, a low value of the classification entropy indicates that the emission distributions
do not overlap - one of the assumptions under which HMMs are valid representations of PMMs.
However, although the relative values of LL and LLc for the two models in the above example
demonstrate the difference between the classification and density estimation paradigms for mixture
models, using them to assess the number of components, using for example a likelihood ratio test
[249] is difficult. For a thorough discussion on the reasons for this see section 6.4 of reference
[190] but briefly it arises from the fact that one can always estimate a model where the stationary
distribution of one hidden states is zero thus making a smaller model (with fewer hidden states)
potentially indistinguishable from the larger model. The Bayes factor approach is to integrate
out all potential values of θ from the likelihood as described above. This is also possible with
classification likelihood [362] although to the best knowledge of the author of this thesis, this has not
been done for reversible hidden Markov models. The two likelihood approaches for HMMs may be
concisely compared as follows. The integrated observed likelihood (Bayes factor approach) measures
the evidence for the HMM provided by the observed microstate trajectories, while the integrated
complete-data likelihood measures the evidence for the model given by the observed microstates
and the given hidden states [193, 195].

5.1.6 Model selection criteria

Although the integrated observed and complete-data likelihoods are Bayesian quantities which
generally require numerical approximation [252], analytic approximations exist which extend their
use to models estimated using maximum likelihood [189, 190]. The most widely used approximation
to the integrated observed likelihood is the Schwarz criterion [192], which up to an arbitrary factor
is the Bayesian information criterion, BIC. The BIC was derived in the context of linear models
and the approximations used are not valid in the finite mixture context, however, there are other
theoretical and practical reasons in favour of their use [363]. The analogue of the BIC for the
integrated classification likelihood is the integrated complete-data likelihood criterion, ICL [195].
The derivation of the ICL makes use of the same approximations as the BIC and so shares its
drawbacks, however, in simulation experiments (for both HMMs and mixture models in general) it
has performed well [190, 193, 195].

Another type of approach to selecting the number of hidden states in maximum likelihood HMMs
is via minimization of the Kullback-Liebler (KL) divergence [364]. The KL divergence measures the
difference between the modelled distribution and the true distribution. Two criteria which minimize
this value are the Akaike-information criterion, AIC [191], and the cross-validated log-likelihood,
CVLL [193].

As will be seen in this chapter, the benefits of the information criteria, BIC, ICL, and AIC, are
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that they require very little extra calculation once a maximum likelihood HMM has been estimated.
This is important as the search space of different models and number of hidden states may be large,
rendering a more detailed Bayesian analysis for every potential model infeasible. However, these
methods have drawbacks both practical and inferential. One potentially unrealistic assumption is
that model selection using the AIC and BIC (and by analogy, the ICL) requires that the model
representing the true data generating process must be in the model under consideration [365].
As HMMs are by design an approximation to the true dynamics, this may be an unreasonable
assumption. The reasons for this differ between the AIC and BIC, however - for the Bayesian
argument for the BIC see chapter 6 of reference [366]. In addition, the BIC and ICL criteria use
approximations that are only valid under certain technical regularity conditions [190]. These are
the same difficulties which arise for model selection using LL and LLc . The benefit of the CVLL
is that it is conceptually simple but practically one must estimate many HMMs to evaluate the
number of hidden [193]. Other criteria exist for selecting the number of hidden states, for example
the Penalised Marginal Likelihood criterion, PML [367] for MLE HMMs which circumvents some of
the issues alluded to for the BIC, as well as a range of Bayesian model selection techniques [252,
366], however, these are not considered here.

Previous work [194] evaluated the use of the AIC, BIC and CVLL for selecting the number of
microstates in Markov state models. However, choosing MSM parameters has since been superseded
by the variational approach to learning Markov process (see chapter 4). This aim of this chapter
is to builds on this work and investigates the use of the BIC, ICL, AIC, and CVLL to identify the
number of hidden states in a HMM used for coarse-graining a MSM. It is similar to the investigation
of these criteria in reference [193] but uses data simulated from the four well Prinz potential. This
is an interesting extension of typical simulation benchmarks because the dynamics of the Prinz
potential (a) already approximately Markovian in the observed states [64] and (b) the dynamics
does not derive from an existing HMM (unlike most simulation studies which use data derived from
an HMM process). The results of this chapter will be applied to the case of coarse-graining MSMs
of AADH in chapter 6. The structure of this chapter is as follows: in section 5.2 the Prinz potential
and the model selection criteria will be explained; section 5.3 discusses the results and section 5.4
discusses the conclusions and limitations.

5.2 Methods

5.2.1 Prinz potential

The Prinz potential [64] is shown in figure 5.2. Panel (a) shows the four well potential, V (x), in
blue and the stationary distribution, π(x), showing the four metastable states, in orange. Panel (b)
show the ratio of successive eigenvalues resolvable by a MSM with τ= 5. The large gap between the
fourth and fifth eigenvalues implies four metastable states. Panel (c) shows the exact ratio of implied
timescales. The implied timescales show a large gap between the second and third implied timescale.
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Figure 5.2: The Prinz potential [64]. Panel (a) shows the potential V (x), in blue
and the stationary distribution, π(x) in orange. Panel (b) shows the exact ratio of
successive eigenvalues resolvable with a MSM with τ= 5. Panel (c) shows the exact
ratio of successive timescales. Panel (d) shows the estimated implied timescales, t̂i ,
as coloured dashed lines with 95 % credible intervals estimated using trajectories
sampled from the potential using a Bayesian HMM with 1000 draws from the
posterior. The exact values, ti , are shown as similarly coloured solid lines. The values
of τ= 5,8,15,65,130 used in the model selection experiments are shown as vertical
black lines.
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From this potential 100 independent trajectories were sampled, initialized from random draws from
the stationary distribution, discretised into 410 microstates and used as data for estimating the
HMMs in this work. Each trajectory was twice the length of the longest timescale. The number of
microstates was chosen as the square root of the number of observations, inline with the heuristic in
reference [246]. See appendix 10 for full details of the Prinz potential and simulation details. Panel
(d) shows the mean implied timescales and 95 % credible intervals as a function of the Markov lag
time estimated with a Bayesian HMM. The exact timescales are also shown as solid lines. The
estimated HMMs capture the exact times to within statistical uncertainty for all values of τ except
for t4 for τ< 8. The number of hidden states used in these HMMs was determined by the lag time
and the exact timescales of the full Prinz transfer operator (see table 10.1). For example for τ= 130

only t2 = 844 is resolvable so a two hidden state HMM was used. The time and rate units used
throughout this chapter are in terms of the time-step used to integrate the equations of motion,
∆t = 0.001, and the distance units are arbitrary, see appendix 10.

5.2.2 Model selection criteria

In the following sections, the likelihood, L , of the HMM parameters will feature heavily and so is
repeated here for convenience [169]:

L
(
T̃,E|{st }

)=P(
{st }|T̃,E

)
= ∑

{ht }∈
all paths

π̃h0 Eh0,s0

tmax∏
t=1

T̃ht−1,ht Eht ,st

(5.4)

This is the likelihood of the parameters of the transition matrix and emission matrix (T̃,E respectively)
given the trajectory of observed states {st }. The multiplicand represents the probability of observing
Markovian transition between hidden states (the T̃ht−1,ht term) and then observing the observed
states (the Eht ,st term) [80, 171]. The summand represents summing the probability over all
possible combinations (paths) of hidden states, while π̃h0 Eh0,s0 is the probability of the initial hidden
state/observed state pair [80, 171]. This summation is infeasible for even small numbers of hidden
states and trajectory lengths (e.g. for 2 hidden states and a trajectory of 100 frames, there are
approximately 1030 potential paths). The Baum-Welch algorithm [171] was developed to maximize
the likelihood through expectation maximisation. An outline of the Baum-Welch algorithm can be
found in algorithm 2, while the full details for maximum likelihood HMMs can be found in reference
[169]. The maximum likelihood estimates of the parameters will be denoted θ̂, so the maximum of
the observed likelihood function will be denoted L

(
θ̂|{st }

)
.

Selecting the number of hidden states using CVLL and the AIC both minimize the Kullback-
Leibler divergence, DKL(p||q) [190]. This is a measure of the difference between a given probability
distribution, p(s) and a reference distribution, q(s) [358, 364]:
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DKL
(
p | |q)= ∫

q(s) log

(
q(s)

p(s)

)
ds

=
∫

q(s) log
(
q(s)

)
ds −

∫
q(s) log

(
p(s)

)
ds

(5.5)

When the two distributions are the same DKL = 0. The first term is the average information of
q(s), also known as the information entropy [358]. This is continuous analogue of the information
entropy discussed in the introduction, albeit for a different distribution. The second term is average
information of p(s) but averaged over reference distribution [358]. In the context of model selection,
p(s), is taken to be the modelled distribution P({st }|θ̂) and q(s) is the unknown true distribution
[190]. As only the latter term is dependent on the modelling choices and DKL ≥ 0 (Jensen’s inequality
[358]) maximizing this term will lead to the model closest to the true distribution [190].

The AIC approximates the second term in equation 5.5 and is defined as [191]:

(5.6) AIC =−2log
(
L

(
θ̂|{st }

))+2d

where d is the number of degrees of freedom of the model. For a reversible Markov transition matrix
with g states this is: d = 1/2g (g −1)+ (g −1) [248]. The emission distribution adds g (n −1), as for
every hidden state g there are n probabilities which must sum to 1 [169, 171] giving n −1 degrees
of freedom per hidden state. So the total degrees of freedom for a reversible HMM is:

(5.7) d = 1/2g (g −1)+ (g −1)+ g (n −1).

The derivation of the AIC starts by approximating the true distribution, q(s), with the distribution
over s estimated from the data, which gives rise to the logL

(
θ̂|{st }

)
term [190]. This will naturally

over-fit to the data and the d term attempts to account for this. d is only equal to the degrees of
freedom of the model under the assumption that the true model is under consideration in the model
selection procedure [365]. The factor of −2 is there to make an equivalence with Mallows Cp [150]
although this does not affect the final results. The selected model is the one which has the smallest
AIC [150].

Instead of approximating q(s) with L
(
θ̂|{st }

)
and making a bias correction, cross-validation can

be used to approximate the second term of equation 5.5 [193]. In this work, the CVLL was calculated
in the following way (note method was derived by the author of this thesis as the procedure in [193]
deals with a different type of CV procedure):

1. The observed trajectories were split into N = 10 training {st }i and test {st }−i , i = 1, ..., N sets
using 50:50 shuffle-split (algorithm 1).

2. For each i , an HMM was estimated using the training data {st }i .
3. Calculate the log-likelihood of the training parameters using the test data, log

(
L

(
θ̂i

∣∣{st }−i
))
,

with the forward part of the Baum-Welch algorithm (algorithm 2). This was achieved by
taking the parameters calculated in step 2, θ̂i , then using the forward function from the
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Python package BHMM (version 0.6.3) using these parameters and the test data {st }−i as
arguments.

4. The CVLL is the average over the splits:

(5.8) CVLL = 1

N

N∑
i

log
(
L

(
θ̂i

∣∣∣{s}−i
))

There are two potential points of failure in this procedure. First, the HMM may fail to converge
on a given fold. Second, the ‘forward’ part of the Baum-Welch algorithm may fail to give a finite
estimate for the log-likelihood. If either of these failures occurred, the CVLL value for that number
of hidden states was considered invalid.

The BIC comes from consideration of the integrated observed likelihood, P ({st }) used in the
definition of the Bayes factor [189]:

(5.9) P ({st }|M) =
∫
P ({st }|θ)P (θ|M)dθ,

where P(θ|M) is the prior distribution over the HMM parameters for a given model specification.
The integrated likelihood selects the model with the greatest evidence for the observed states, i.e.,
the model with the highest posterior probability, given the observed states and taking into account
the increased flexibility of more complex models [189, 358]. The BIC is an approximation to the
logarithm of equation 5.9 and is given by [192]:

(5.10) BIC =−2log
(
L

(
θ̂
∣∣{st }

))+d log(Nobs)

where d is the degrees of freedom and Nobs is the number of observations. The difference in BIC
between two models, BIC1 −BIC2 is an approximation to the log of the Bayes factor, the selected
model is then the one with the smallest BIC [150]. The derivation of the BIC proceeds by expanding
the log of the integrand in equation 5.9, log(P ({st }|θ)) in a Taylor series about θ̂ up to second order
[150, 190]. The regularity conditions alluded to in the introduction amount to the ability to safely
ignore the higher order terms in this expansion [190].

The derivation of the ICL follows an analogous path to the BIC but takes as its starting point
the integrated complete-data likelihood [195]:

(5.11) P ({(st ,ht )}|M) =
∫
P ({(st ,ht )}|θ)P (θ|M)dθ

The integrated complete likelihood selects the model with the greatest evidence for the observed
states and the hidden states [195]. As the hidden states are not observed they are taken to be MAP
assigned values: ht = argmax j Mst , j . The ICL is an approximation to log

(
P({(st , ĥt )}

∣∣M)
and is given

by [195]:

ICL =−2log
(
L

(
θ̂
∣∣{st }

))+d log(Nobs)+2 ·E N (M)

= BIC+2 ·E N (M)
(5.12)
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The E N term is classification entropy given by [195]:

E N (M) =
NT∑
t

(−1)
g∑
j

Mst , j log
(
Mst , j

)
=

NT∑
t

H (st ;M)

(5.13)

Here M is the membership matrix Mi j =P(h = j |s = i ) and H is the information entropy H (st ;M) =
−∑

j Mst , j log
(
Mst , j

)
. This entropy quantifies the uncertainty with which the model assigns the given

observed state to a hidden state [358]. For example in a two hidden state system, given an observed
state which could belong in hidden state 1 with probability 50 % or in hidden state 2 with probability
50 %, then the entropy for that observation is:

H (s;M) =−∑
j

Mst , j log
(
Mst , j

)
=−1/2 log(1/2)− 1/2 log(1/2)

= log(2)

(5.14)

5.2.3 Criteria calculation details

There are a number of practical details in calculating the information criteria which need to be
addressed.

The number of observations, Nobs, needed for the BIC and ICL, was calculated as the number of
pairs of observations which go into the count matrix. Using the sliding window count method this is:

(5.15) Nobs = Ntraj · (NT −τ)

∆t

where Ntraj is the number of trajectories, NT is the length of each trajectory, τ is the Markov lag
time and ∆t is the trajectory time-step. The total number of frames is Nframes = Ntraj ·NT/∆t

The classification entropy was calculated using the hidden state probabilities calculated in the
final iteration of the Baum-Welch (B-W) algorithm (algorithm 2):

1. For each observed state in a trajectory, st , the conditional probability, γi (t ) =P (ht = i | st ,θ),
was extracted from the final iteration of ‘update’ part of the B-W algorithm.

2. The entropy was calculated for each frame of the trajectory, H(t) = −∑
i γi (t) log

(
γi (t )

)
and then summed over the NT frames of a trajectory and then over the Ntraj trajectories:
E N =∑Ntraj

∑NT
t H(t ).

3. N was scaled by a factor of Nobs/Nframes to account for the fact that an observation is a pair
of states (st , st+τ).

A second method was available, which in principle should give the same answer but which in practice
diverged by up to a factor of three from the above method. The entropy was calculated using the
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membership matrix, itself calculated from the emission matrix, E, and the stationary distributions of
the hidden π̃ and observed π states:

(5.16) M j i = Ei j
π̃i

π j

where i labels the g hidden states and j labels the n observed states. The entropy was calculated
using M as:

(5.17) EN(M) = Nobs

n∑
j

(−1)π j

g∑
i

M j i log
(
M j i

)
The reason for the difference was due to error accumulated in the values of M from equation 5.16.
This was due to noise in the poorly sampled observed states, see section 10.2 and figure 10.1.
However, in situations when the largest reversible connected set of hidden states is smaller than
total number of hidden states, the values of γ would need re-normalizing. In this case (in particular
in chapter 6) the second method will be more convenient.

All HMM and MSM fitting was performed in Python 3.7 using the packages PyEMMA (version
2.5) [253], NumPy (version 1.19) [338], Pandas (version 0.23) [339], Matplotlib (version 3.3) [340],
Seaborn (version 0.10) [341] and the Jupyter Project (version 4.6) [342]. The calculation of the
cross-validated log-likelihood used the Python package Bayesian hidden Markov model toolkit
(BHMM, version 0.6.3). All scripts to calculate the AIC, BIC and ICL were written by the author of
this thesis.

5.2.4 Model selection

The model selection criteria were used to select the optimum number of hidden states in a maximum
likelihood HMM, using the discrete trajectories sampled from the Prinz potential. Five different
values of the Markov lag time were used: τ= 5, 8, 15, 65, 130. These values were chosen because
they resolve, respectively 7, 5, 3, 2, 1 implied timescales in the full MSM state space and as the top
three of these timescales are dominant (figure 5.2 panel (b)), these values of τ resolve 4, 4, 4, 3, 2

metastable states respectively [169].
For each value of τ maximum likelihood HMMs were estimated with g = 2−10 hidden states.

For each of the 45 model specifications (different values of τ and g) the model selection criteria
were calculated and the number of hidden states selected by each was compared to the true value.

5.3 Results and discussion

The selected number of hidden states using each criterion are shown in table 5.2 where the asterisk
denotes when a criterion selects the correct number of hidden states. The relative values of the
selection criteria are shown in figure 5.3. Each row, (a) - (e), corresponds to models estimated with
a different value of the Markov lag time τ= 5, 8, 15, 65, 130. Each column, (i) - (iv), corresponds

108



5.3. RESULTS AND DISCUSSION

Figure 5.3: Hidden state selection criteria. Rows (a) - (e) show the selection
criteria for HMMs with τ= 5,8,15,65,130 respectively. The best performing number
of hidden states is indicated by an arrow. Column (i) shows the CVLL. Column (ii)
shows the AIC. The log-likelihood term is shown in blue and the degrees of freedom
penalty (2d) is shown in orange. Column (iii) shows the BIC. The penalty term
d · log Nobs is shown in green. Column (iv) shows ICL. The classification entropy
penalty term 2 ·E N is shown in red. Missing values indicate the failure of the HMM
to converge. All values have been scaled so the minimum value in each panel is 1.
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τ g true CVLL AIC BIC ICL

5 4 4∗(0) 10(6) 10(6) 5(1)
8 4 4∗(0) 10(6) 8(4) 4∗(0)
15 4 4∗(0) 9(5) 6(2) 4∗(0)
65 3 4(1) 5(2) 4(1) 3∗(0)
130 2 4(2) 4(2) 3(1) 3(1)

Table 5.2: Hidden state selection results. The selected number of hidden states,
ĝ , by the CVLL, AIC, BIC and ICL for each value of τ. The true values, g true are
also shown. The asterisk highlights where ĝ = g true. The number in parentheses shows
ĝ − g true.

to the different model selection criteria, CVLL, AIC, BIC, and ICL. The minimum value of each
criterion for each model is highlighted with an arrow indicating the selected number of hidden states,
ĝ . The values are scaled so the value at the selected number of states the value of the criterion is
equal to 1. The coloured bars show the contributions of the different parts of each score. The blue
bars shows the log-likelihood terms of equations 5.6, 5.10 and 5.12 i.e. −2× log

(
L

(
θ̂
∣∣{st }

))
. In the

case of CVLL, the blue bars are the cross-validated equivalent. The various penalty terms are shown
in orange (2d , the AIC penalty), green (d log N , the BIC penalty) and red (2 ·E N , the classification
entropy).

The ICL performs best by correctly identifying the number of hidden states for τ= 8, 15, 65.
It fails at τ= 5 where the hidden state dynamics are not quite Markovian (figure 5.2 panel (d)).
Although the selected value of 5 is close to the true value of 4, the ICL does not discriminate
between g = 4−7: their ICL values vary by less than 1 %, as shown in figure 5.3 panel (a)(iv). The
ICL also fails at τ= 130, however, the minimum value of the ICL is similar to the value for the true
number of hidden states, g = 2, and is significantly different to the values for g ≥ 4, as shown in
panel (e)(iv). In this case the ICL does distinguish between two sets of values of g , which include
the true value on the one-hand, and the remaining values on the other. This behaviour is in contrast
to the results in reference [193] in which the ICL correctly identified the number of hidden states for
well separated emission distributions, and with large numbers of observations for less well separated
distributions. However, for smaller numbers of observations and less well separated clusters, the ICL
under-estimated the number of hidden states. The ICL also under-estimated the number of clusters
in the finite mixture context when the clusters are not well separated [195].

The CVLL correctly selects four states for τ = 5, 8, 15, however, this was due failure of the
cross-validation to produce a finite answer on some of the cross-validation folds. For example, for
τ= 5, at least one cross-validation fold did not estimate the out-of-sample log-likelihood for g ≥ 4.
The remaining values are shown in figure 5.3 column (i). This causes problems with interpretation
as is it is not clear whether failure is due to the inefficiency of the cross-validation procedure or
whether the given number of hidden states really has zero out-of-sample likelihood. The former is
more likely given that models estimated on 100 % of the data do converge and give interpretable
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answers. Given the lack of convergence for many of the values of g comparison with the literature is
difficult. The results in reference [193] show that the CVLL behaves similarly to the ICL but with
less discrimination between values of g i.e., in repeated experiments the distribution of selected
values of g was wider for the CVLL. In contrast, the results for τ= 130 in figure 5.3 panel (e)(i)
show the CVLL over-estimates the number of hidden states. Given the poor performance of the
CVLL in this experiment it will not be discussed further here.

The AIC overestimates for every value of τ and as τ increases the values of the AIC discriminate
less between each value of g : for τ= 130 the AIC for all g are within 2 % of each other. This is in
contrast to the results in reference [193] in which the AIC selected the correct or underestimated
the value of g . However, in simulation studies for finite mixtures (without the Markovian dynamics
of the hidden states) the AIC frequently over-estimated the number components [368, 369]. The
BIC also overestimates the number of hidden states for all values of τ but only by 1 for τ= 65 and
130. This is in contrast to the results in reference [193] for which the BIC behaved similarly to the
ICL and either estimated correctly or under-estimated the number of hidden states. In addition, for
finite mixtures the BIC has also been shown to under-estimate the number of components [195].

Although the AIC, BIC and ICL are derived from different starting points, they all take the form
of the log-likelihood plus a penalty term, b:

(5.18) −2log
(
L

(
θ̂
∣∣{st }

))+b

The b term in each case penalises the complexity of each model. The behaviour of these criteria can
be understood in terms of the interplay between the likelihood and penalty terms. The log-likelihood,
the blue bars in columns (ii)-(iv) of figure 5.3, monotonically increases with g for all values of τ
(this is shown as a decrease due to the −2 in the definition of the criteria). This is most pronounced
for small values of τ (compare panel (a)(ii) to (e)(ii)), and demonstrates both over-fitting and the
HMMs ability to capture the fast relaxation processes of the Prinz dynamics. Consider the g = 10

model selected by the AIC for τ= 8, figure 5.4 (the results are similar for τ= 5). This figure shows the
sign structure of the exact relaxation processes (panels (a) - (c)) and those estimated from the HMM
(panels (d) - (f)). The HMM captures the sign structure of the second and fifth relaxation process,
panels (d) and (e), as they have associated timescales larger than τ, (t2 = 844.4, t5 = 11.9 > τ= 8)
and are thus resolvable. The 10th estimated relaxation process (panel (f)) only approximate the true
relaxation process (panel (c)) as the estimated timescale t̂10 = 4.0 is less than the lag time, τ= 8. For
larger values of τ and τ= 130 in particular (figure 5.3 panel (e)(ii)), the likelihood remains constant.
This is because many of the estimated HMM relaxation processes over-fit to noisy fluctuations in
the data.

For the AIC the penalty term, b = 2d (orange bars in figure 5.3, column (ii)), is there to correct
the approximation of the KL divergence by log-likelihood. It increases proportional to g 2 (equation
5.7) but only affects the selected g for τ= 15, 65, 130 (figure 5.3 panels (c)(ii), (d)(ii) and (e)(ii)).
The origin of the BIC penalty term, b = d log Nobs (green bars, column (iii)) is to correct the
approximation of the integrated likelihood by the maximum log-likelihood. The BIC over-estimates
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Figure 5.4: Comparison of estimated and true Prinz potential dynamics.
The true Prinz potential are compared with a HMM with τ= 8 and g = 10 hidden
states. Panels (a) - (c) shows the sign structure of the 2nd, 5th and 10th right
eigenvector of the Prinz potential (sgn[Ψ(x)], shaded area). The Prinz potential
(V (x), blue solid line) is shown for reference. The exact timescales are labelled on
the top right as t2/5/10. Panels (d) - (f) show the sign structure of the hidden state
relaxation processes, projected onto the observed states. The eigenvectors projected
onto the observed state basis, q2/5/10(x) =∑

i Ei ,x · Ψ̃2/5/10(i ) , are shown as dotted
lines, the summands are shown as coloured lines. The shaded areas are sgn[q2/5/10(x)].
The estimated timescales are labelled on the top right as t̂2/5/10.

the number of hidden states albeit by a smaller number than the AIC, due to the penalty term
rising faster with g by a factor log Nobs/2. As pointed out in reference [194] when using the sliding
window method for calculating the count matrix the value of Nobs will be overestimated. However,
as the dynamics is approximately Markovian for τ> 5 the difference between the sliding window and
sample count methods will be negligible.

The ICL penalty term b = d log N +2 ·E N corrects the approximation to the integrated complete-
data likelihood by the log-likelihood. It is comprised of the BIC penalty term (green bars in figure
5.3) and the entropy term (red bars). This is associated with increasing g directly through the
BIC penalty term, ' g 2 log Nobs , and indirectly due the overlap of emission distributions. This is
demonstrated in figure 5.5. Panel (a) shows the emission distribution for a two state HMM. These
two distributions only overlap around x = 0. Panel (d) shows the information entropy at each value of
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Figure 5.5: The classification entropy of HMMs. Panels (a)-(c) show the
emission distributions of HMMs with τ= 8 and g = 2,4,10 respectively. Each coloured
line represents the emission distribution, Ei ,x , of the hidden states, i . Panels (d) -
(f) show the information entropy for observed state at x, weighted by the stationary
distribution over the observed states: π(x)H(x). The label shows the average classifi-
cation entropy per observation E Nave =∑

x π(x)H(x).

x, weighted by the stationary distribution over the observed states, π(x)1. The information entropy
is zero almost everywhere as each observed state can be assigned unambiguously to a hidden state.
The exception is around x = 0 where the entropy reaches its highest possible value of log2. However,
the average classification entropy per observation, ∑

x π(x)H (x) is low as the fraction of observations
at x = 0, π(0), is negligible. As the number of hidden states increases, panels (b) and (c), the
entropy increases because the emission distributions overlap more, and the average entropy increases
because they overlap in regions which are visited more often i.e. where π(x) has significant density
(panels (e) and (f)). As column (iv) of figure 5.3 shows, the entropy penalty is the source of the
success of the ICL in selecting the correct number of hidden states.

Minimizing the entropy penalty alone is similar to maximizing the crispness/scaling condition in
PCCA+ (equation 4.19 in reference [159]) in that it maximizes the number of observed states that
are unambiguously assigned to one hidden state. However, the minimum entropy solution by itself
(ignoring the other terms) will always favour two hidden states separated by the slowest relaxation
process, which for small τ does not capture the potential other metastable states. The ICL balances
the need for a ‘crisp’ assignment with the need for hidden states needed to accurately model the
transition matrix.

1the information entropy here the same calculation which determined the transparency of the observations in figure
5.1 panel (b).
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5.4 Conclusions

Four model selection criteria have been compared for identifying the number of hidden states in
HMMs of dynamics simulated from the four-well Prinz potential. The four criteria fall into two
categories - those that aim to minimize the Kullback-Liebler divergence, the CVLL and the AIC,
and the those that maximize a type of integrated likelihood, the BIC and ICL. The CVLL was
of limited usefulness because it was unable to produce results for a significant proportion of the
models tested and because of its relatively large computational requirement. The AIC and BIC both
overestimated the number of hidden states although the BIC by fewer states than the AIC. These
results do not match the results from previous studies on selecting the number of components in
mixture models and in HMMs which tend to underestimate the number of hidden states. The ICL,
which maximizes the integrated complete-data likelihood performed best by correctly identifying
three out of five hidden states and where it failed it only overestimated by one extra hidden state.
The main limitations of this work is that it did produce a statistical estimate of the selected number
of hidden states. In other studies [195] the criteria are judged on an ensemble of models with similar
characteristics and also on a range models with different characteristics.

The data from the four state model used to test these criteria limits the conclusions that can
be drawn. The dynamics used to generate the trajectories was Markovian by construction meaning
observations were independent of one another. This ensured that the underlying assumption of
independent and identically distributed (i.i.d.) observations, which is required of all criteria tested
here, was met. However, in molecular dynamics simulations more commonly use for biomolecular
simulations, frames are correlated at short times which violates these assumptions. Separate testing
with molecular dynamics simulations is required to see how this lack of independence affects these
criteria. The sampling of the data was also unrealistic in other ways: first, the trajectories were
sampled from equilibrium distribution; second, the total length of simulation data was 200 times
the longest relaxation timescale. Neither of these conditions is met in typical simulations. A second
limitation is the nature of the Prinz potential which is smooth, with none of the hierarchical structure
arising from the many degrees of freedom typical of biochemical systems. One potential remedy for
this deficiency is to introduce some randomness to the potential to simulate a more rugged potential
energy landscape and re-test these criteria. The effect of a more complex energy landscape would
be to increase the number of potential energy minima and dynamical processes. It is unclear exactly
how the BIC, AIC and ICL would perform under these more realistic conditions. The likelihood
function would likely increase more rapidly with the number of hidden states as the model tries
to fit to more noisy fluctutions (in the case of a fewer, shorter trajectories) or to more complex
free energy surface. This would increase the probability of models being selected with too many
hidden states. However, it is not clear how the data dependent penalties of the BIC and ICL (i.e.,
the number of observations and the classification entropy) would compensate for this increase and
requires further testing.

Potential avenues for testing the ICL further with model potentials would be to both increase
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the “roughness” of the four-well potential and to decrease the amount of data used to estimate the
HMMs. This would allow a more realistic assessment of its applicability while still having a definitive
number of metastable states, which is not always easy to ensure with real systems.

However, under the idealised conditions of the model the ICL is a promising candidate for HMM
state selection. The integrated complete-data likelihood is a natural criterion for the purpose of
coarse-graining MSMs of conformational dynamics. The penalisation term in the ICL is aligned with
assumptions that make metastable Markov processes amenable to coarse-graining with a HMM.
The purpose of coarse-graining is to provide an interpretable model of dynamics which means
balancing simplicity and accuracy. Part of the simplicity of a coarse-grained model is being able to
interpret given structures (microstates) as belonging, unambiguously, to a particular metastable state.
Considering the integrated classification likelihood naturally penalises less interpretable solutions
by considering the models’ evidence for both the observed states and the classification into hidden
states.
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AROMATIC AMINE DEHYDROGENASE

Contributions

All work in this chapter was performed by the author of this thesis with the following exception.
Dr Kara Ranaghan prepared the PDB file of the crystal structure of AADH in Schiff base form
after reaction with tryptamine, PDB accession code 2AGY [197]. They added the missing hydrogen
atoms, determined the protonation states of titratable residues, created the disulphide bridges and
parameterized the tryptophan tryptophylquinone (TTQ)/tryptamine Schiff base (structure A in
figure 6.2, custom residue name TTW) for use with the CHARMM-22 forcefield [370] as part of
the computational part of references [197, 371, 372]. The first 23 residues of the D and H chains,
which were unobserved in the crystal structure, were not modelled.

6.1 Introduction

Aromatic amine dehydrogenase (AADH) catalyses the oxidation of primary aromatic amines, such
as tryptamine, to the corresponding aldehyde and ammonia [197]. Amines are natural by-products
of human activity and and their degradation is an is an important part of the natural cycle
which maintains their balance within organisms and the environment [373]. AADH containing
soil bacteria utilise aromatic amines as a source of energy and carbon [374] and thus play an
important part in maintaining this balance. The importance of AADH as an enzyme from a chemists’
point of view derives in large part from its large kinetic isotope effect and its purported link to
controversy surrounding the role of protein dynamics in enzyme catalysis. This link and the role that
conformational dynamics can play to resolving this controversy will be explored in the this chapter.
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Figure 6.1: Crystal structure of AADH. PDB accession code: 2AGY [197]. The
α chains, A and B, are shown in blue, the β chains, D and H, are in green. The
tryptophan tryptophyl quinone (TTQ) prosthetic groups after reaction with the
substrate tryptamine are shown in orange.

6.1.1 Structure, reaction mechanism and kinetics

AADH was first isolated from a soil bacterium of the genus pseudomonous where its molecular
weight and amino acid composition determined, and a catalytic chromophore identified [375] (in the
references cited below however, AADH from the soil bacterium alcaligenses faecalis is used). The
chromophore was later identified as a tryptophan tryptophylquinone (TTQ) group using resonance
Raman spectroscopy and by comparison with methylamine dehydrogenase (MADH), which also
contains a TTQ group [374]. The reaction proceeds in two stages: the first step is the reductive
half-reaction where the substrate is oxidized by the TTQ group; the second stage is the oxidative
half-reaction whereby two electrons are transferred to the copper containing protein Azurin. A c-type
cytochrome then transfers the electrons into the respiratory chain [197].

The structures of the substrate-free enzyme and of several enzyme-substrate intermediates
were solved to determine the mechanism of the first stage, the oxidation of tryptamine [197]
(this mechanism will be discussed further below). In particular, the structure of the Schiff-base
intermediate was solved (PDB accession code 2AGY) and is the basis for the work in this chapter.
Other structures have been solved for a variety of purposes. The structures after reaction with
a number different substrates were solved in order to explore the role of conformational changes
required for the second stage, the transfer of electrons to the Azurin protein [376]. An AADH-azurin
complex structure was solved in order to explore the electron transfer mechanism and to compare it
to MADH [377]. The kinetic isotope effect was studied for a range of benzyl amine substrates and
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for this type of substrate, revealed that structural rearrangements prior to hydrogen transfer are
rate limiting, rather than the hydrogen transfer itself [378].

AADH has an α2β2 structure and is shown in figure 6.1. The larger α chains have a mass of
' 39kDa (shown in green and labelled A and B) while the smaller β chains (shown in blue, labelled
D and H) have a mass of ' 18kDa. The D and H chains contain the TTQ prosthetic group that
forms part of the active site (shown in orange, after reaction with tryptamine).

The reaction mechanism of AADH was proposed in reference [379] and more fully elucidated by
a combination X-ray crystallography, experimental and QM/MM studies in references [197, 371], all
using tryptamine as a substrate. The reaction mechanism is shown in figure 6.2 which has been
adapted from figure 2 of reference [197]. The following description is also taken from reference
[197]. The TTQ prosthetic group, attached to the β sub-unit, is shown in purple, the protonated
tryptamine substrate is shown in blue and the Asp128 residue is shown in red. The mechanism
starts with the enzyme substrate complex of the protonated tryptamine situated next to the TTQ
group and Asp128 residue. The tryptamine is deprotonated by oxygen 1 of the Asp128 residue
via a bridging water molecule (step 1). The nitrogen atom on the tryptamine attacks one of the
carbonyl groups of the TTQ residue to form a carbinol-amine intermediate (step 2) that then goes
on to form the iminoquinone intermediate labelled ‘A’ (step 3). Intermediate A was not observed
directly but was inferred from the crystal structure of an analogous complex using phenylhydrazine
in place of tryptamine. Step 4, shown boxed, is the rate limiting step and involves the tunnelling
of a proton from the tryptamine carbon atom adjacent to the nitrogen, to an oxygen atom of the
Asp128 residue. The proton is shown here accepted by oxygen 2 of the Asp128 carboxylate group,
but in principle oxygen 1 could also serve as an acceptor. The oxyanion on the TTQ/substrate group
(hereafter referred to as TTW) is then neutralized by protonation from Asp128 via the hydrogen
atom on the protonated Schiff base (step 5). Water is introduced which in step 6 attacks the Schiff
base to form a carbinolamine intermediate that is then oxidized in step 7. The carbinolamine is then
hydrolysed in step 8 and releases the aldehyde.

The experimental free energy barrier for this reaction is approximately1 12.7kcalmol−1 at
T = 300K. The rate limiting proton abstraction can proceed to either OD1 or OD2 of the Asp128.
These two atoms are distinguished by the hydrogen bonding network: OD2 is hydrogen bonded to
Trp160, and OD1 to Thr172 as shown in figure 6.7. These two pathways were first elucidated using
semiemperical QM/MM methods [197]. Ab-initio QM/MM methods were later used to calculate the
potential energy surface of the reaction along these two paths using local coupled cluster theory with
a large basis set (LCCSD(T)/(aug)-cc-pVTZ) [372] and found barrier heights of approximately 16.8

and 14.1 kcalmol−1 to OD1 and OD2 respectively. Combining these barrier heights with estimates
of the zero-point energy and tunneling effects, the authors of reference [372] estimated effective
barriers of 10.6 and 8.3 kcalmol−1. With an entropic contribution to the free energy estimated to be
between 0.4 kcalmol−1–4 kcalmol−1 [380, 381], the two pathway reaction mechanism is compatible

1No error estimate was given in reference [197].
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Figure 6.2: Reaction mechanism of AADH. This reaction mechanism was pro-
posed by reference [197]. The detailed reaction mechanism is taken from figure 2
of that reference, alterations were made to improve legibility of the arrows denoting
movement of electrons. The TTQ prosthetic group is shown in purple, the Asp128β
group in red and the tryptamine substrate in blue. The boxed step 4 is the rate limiting
tunnelling step. In step 1, a water molecule in the active site is used to transfer a
hydrogen atom from the protonated tryptamine to the deprotonated Asp128. In step
5 a water molecule is transferred from the bulk solution to form the carbinolamine
intermediate after step 6. Step 7 represents the introduction of water from bulk
solvent used in step 8 and two consecutive long-range electron transfers to the
electron carrier Azurin. 120
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with the observed reaction free energy of 12.7 kcalmol−1.
Note: in previous AADH simulation studies [197, 371, 372], the authors labelled OD1 as O2 and

OD2 as O1, this convention is not adopted here as the accessible conformations in the simulations
later show, both OD1 and OD2 can hydrogen bond to both Trp160 and Thr172, so the force-field
atoms names will be retained.

6.1.2 Kinetic isotope effect

The primary deuterium KIE (1◦ KIE) is defined as the ratio of microscopic rate constants, kH
kD

for
the following reactions [382]:

(6.1) C H + A
kH

C + A H

(6.2) C D + A
kD

C + A D

where the ‘A’ species is a generic hydrogen acceptor, the carbon atom is the donor atom, and ‘H’
and ‘D’ are hydrogen and deuterium atoms or ions. For AADH the donor is C1 (the carbon α to
the substrate amine group), the acceptor is OD1 or OD2 of the carboxylate ion in Asp128, and the
transferred proton comes from HI-2 shown in figure 6.7 for tryptamine substrate.

Treating the C—H bond as a harmonic oscillator with fundamental frequency ωH ' 3000cm−1

and at low temperatures ( ω
kBT À 1), the semi-classical extension of transition state theory (TST)

gives the following expression for the KIE [198]:

(6.3) ln
kH

kD
= 1

2kBT

(
1−

√
mH

mD

)
ωH

where kB is the Boltzmann constant and mH/D is the mass of the hydrogen and deuterium atoms.
The KIE in this model arises exclusively from the difference in zero-point energy of the two bonds
which results in two features:

1. at room temperature the maximum KIE will not exceed kH
kD

' 8, and
2. the KIE is dependent on temperature.

KIEs for AADH have been observed which are both above this semi-classical limit: 8.6–12.9 with
dopamine [200, 383], 55± 6.0 with tryptamine [197] and independent of temperature over the
range 281 K–294 K [197]. AADH is not alone in exhibiting large and temperature independent KIEs.
Methylamine dehydrogenase (MADH), like AADH, also contains a TTQ co-factor, but instead
catalyses aliphatic primary amines. The MADH KIE with methylamine has been reported as 17.2

[201] and 16.8 [202] and both independent of temperature. Soybean-lipoxygenase (SLO) catalyses
the oxidation of linoleic acid with a weakly temperature dependent KIE of approximately 80 [203,
204]; dihydrofolate reductase (DHFR) catalyses the reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-
tetrahydrofolate with a temperature independent KIE, albeit with a KIE of 2 [205, 206]; other
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systems have also been investigated, see the reviews in references [207, 208]. Observed KIEs elevated
above the semi-classical limit, along with observations of the temperature dependence of the KIEs,
as well as the relationship between deuterium and tritium secondary KIEs (where the substituted
hydrogen is α to the reacting bond) provided evidence that tunneling was occurring, see reference
[199] for a history of the evidence.

6.1.3 Reaction rate theories incorporating tunneling

A number of theories have been developed to explain enzymatic reaction rates incorporating tunneling.
The two central theories are: corrections to the semi-classical TST theory (from which equation 6.3
was derived) [384] and full-tunneling models [198, 204, 214, 385]. Tunneling is a quantum mechanical
processes whereby a particle (in the case of AADH, a proton) can be transferred through a potential
energy barrier without the required amount of kinetic energy [215, chapter 3, 5]. Alternatively
[386], the de-Broglie wavelenth of a proton at biological temperatures is approximately 1 Å, meaning
uncertainty in its position is of the order of distance travelled during the course of the reaction,
implying that quantum mechanical effects will be important.

The tunneling correction to semi-classical TST amounts to a pre-factor in the expression for the
rate [209]:

(6.4) k(T ) = γ(T )

(
kBT

h

)(
C 0)1−n

exp

[−∆GTS,0(T )

RT

]
where GTS,0(T ) is the activation free energy (including the effect of zero point energy), RT the
average thermal energy per mole, (kBT /h) is the frequency of crossing the transition state due to
thermal motion (h is Plank’s constant), and C 0 and n are the standard state concentration and the
order of the reaction respectively. γ(T ) is a term which accounts for barrier re-crossings, tunneling
and any deviations from equilibrium. The physical picture from this expression is that the zero-point
energy lowers an otherwise fixed free energy barrier with tunneling occurring at the top of the barrier
to enhance the rate [209]. This expression extends the semi-classical treatment embodied in equation
6.3 and has been applied to AADH [197, 371] using semi-empirical quantum-mechanics/molecular
mechanics (QM/MM) methods to calculate the tunneling correction with tryptamine substrate.
Using this method a KIE of 30 in reference [371] which agreed, in magnitude if not precisely, with
the experimental 55. The distance travelled by the tunneling proton was also found to be 0.59 Å (i.e.,
well below its de Broglie wavelength). The temperature dependence of the KIE was not explored
however, and it has been suggested [199, 207, 208, 216] that full-tunneling models are needed to
explain the KIE and its temperature dependence.

The rate expression in full-tunneling models of Kuznetsov and Ulstrup [204, 214, 387] can be
written as follows:

(6.5) k =C (T )
[V ]2

~

√
π

λkB T
e−(∆G◦+λ)2/(4λkB T )

∫ ∞

0
P (m,r )exp

[−E(r )

kBT

]
dr
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(The following description of this equation is taken from reference [208].) The term outside of
the integral represents a temperature dependent factor which accounts for the enzyme achieving
a ‘tunneling ready state’ and is broken down as follows: C (T ) is a term representing the fraction
of enzyme conformations that are able to go on to react; V is the coupling between the reactant
and product wave-functions; λ is an energy associated with reorganising the active site ready for
reaction; ∆G◦ is the free-energy difference between the reactant and product states; ~ is Plank’s
constant divided by 2π; kB is Boltzmann’s constant, and T is the thermodynamic temperature. This
expression is the non-adiabatic rate expression where the first excited state (which are mixtures of
vibrational and electronic states) play an important role, which is measured by V . Calculations have
shown inclusion of these states important for the AADH reaction [216]. The difference between the
effects captured by C (T ) and λ is a matter of scale: C (T ) corresponds to the metastable dynamics
which brings the substrate-enzyme complex into a reaction ready state, while λ corresponds to
sub-nanosecond rearrangement of bonds and the charge distribution into a tunnelling ready state.
In this tunneling ready state the reactant and product states become degenerate and tunneling
can occur with a probability described by the term inside the integral. P (m,r ) is the probability of
tunneling occurring for a particle with a mass m, travelling over a distance r - the donor-acceptor
distance (DAD). In the case of AADH, this is the difference between the reactant C—H bond and
product O—H bond lengths. exp(− [E(r )/(kBT )]) is the Boltzmann weight of each value of r . The
physical picture is that thermal fluctuations of the enzyme align the reacting atoms into positions for
which the reactant proton wave-function can overlap with the product wave-function and tunneling
can take place [208, 387]. Fluctuations along the reaction coordinate sample values of the DAD
which tunnel with a probability P (m,r ). As deuterium or tritium atoms have larger mass and shorter
de Broglie wavelengths than hydrogen, P (m,r ) is peaked at smaller values of r , meaning the enzyme
has to achieve smaller values of the DAD in order for the reaction to proceed [208, 387].

The advantage of the full-tunneling model (equation 6.5) over the tunneling correction (equation
6.4) picture is that it can account for both temperature dependent and independent KIEs [199,
208]. For temperature independent KIEs the enzyme/substrate complex achieves a tunneling ready
state such that the DAD is small enough for tunneling to occur without the need for thermal
fluctuations along r (or that those fluctuations do not have an appreciable energetic barrier, E (r )). For
temperature dependent KIEs, the tunneling ready state does not have significant reactant/product
wave-function overlap and significant fluctuations along the DAD are required, introducing a
temperature dependence in the KIE.

Full-tunneling models have been used to explain the rates and KIEs in a variety enzymatic
reactions. In their investigation of AADH, the authors of [216, 217] fit kinetic data with a tryptamine
substrate to equation 6.5, along with analysis of short MD data, to identify a sub-picosecond long
vibration which causes fluctuations in the DAD, allowing tunneling to occur. This vibration was
identified as the rotation of the methylene group containing the donating carbon and transferring
proton (C1, HI-2, HI-3 in figure 6.7). The energy barrier to this fluctuation, which in principle
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E+S
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Figure 6.3: Two conformer transition state theory model [221]. Two en-
zyme substrate conformers, ES and ES′, rapidly interconvert with rates k f and kr .
Each conformer can react via distinct chemical pathways with rates given by k1 and
k2.

should give rise to a temperature dependent KIE, was so low as to make the temperature effect
indistinguishable from experimental results. Full-tunneling models have been used to rationalise
the KIEs of the flavoenzymes morphinione reductase (MR), pentaerythritol tetranitrate (PETN)
reductase (both reducing flavin the presence of nicotinamide coenzyme), as well as methylamine
dehydrogenase (MADH) [218]. PETN, reductase like AADH, displays strongly temperature dependent
reaction rates but negligible KIE temperature dependence, which the authors of suggest is due to
the rigid and highly geometrically optimised active site of PETN reductase. This active site attains
an optimal value of the DAD for tunneling (i.e., P (m,r ) is peaked at the configuration of the active
site). MR by contrast (which is a close PETN reductase homologue), shows a KIE which is strongly
temperature dependent. The authors rationalise this in terms of MR’s more flexible structure which
facilitates fluctuations in the DAD. This in turn allows the reaction in the less rigidly optimised
active site of MR to proceed via tunneling. MADH in its reaction with methylamine shows similar
behaviour to AADH, however, this was found to be substrate dependent, with ethylamine showing
temperature dependent KIE. The authors suggest this was due the fact that MADH is highly specific
for methylamine, hence the complex with ethylamine would be not optimised for tunneling to occur,
requiring a thermal fluctuations to sample appropriate values of DAD. A similar picture arises in
the study of mutants of isoleucine-14 (I14) in the active site dihydrofolate reductate (DHFR) [219].
The temperature dependence of the KIE for the wild type and three active site mutations were
measured and were found to correlate inversely with the size of the replacement residue, i.e., the
smaller the residue the larger the temperature depedence of the KIE. The smaller residues allowed a
broader distribution of DADs to be sampled, which in turn required thermal activation to achieve
tunneling of hydride in the rate determining step. Full-tunneling models have been applied in many
other systems, see the reviews of reference [207, 208, 388] for more applications.

In contrast to the full-tunneling model, the authors of references [220, 221] showed that the
temperature independence of the KIEs of AADH, MADH, DHFR and SLO enzymes could be explained
using tunneling corrected TST by considering two reactive enzyme/substrate conformations as
shown in figure 6.3. The two conformers ES and ES′ are in equilibrium and both are able to react.
The rates of reaction from both conformers are k1 and k2, which are modelled using TST, equation
6.4. Assuming fast (compared k1 and k2) equilibration between the two conformer, an expression
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for the KIE in terms of the various parameters of equation 6.4 was derived (i.e., ∆GT S,0 etc.). After
fitting this expression to experimental data, they showed the fitted parameters were consistent with
reasonable values for the parameters in k1 and k2, however, this has been disputed in reference
[208]. The kinetic scheme in figure 6.3 has some similarity with the mechanism of AADH. As already
mentioned, the rate limiting proton transfer can occur to either one of the aspartate oxyanions
(OD1 or OD2, see figure 6.2) which provides a rational for identifying conformations which promote
transfer to either one. However, it should be noted that in the most recent modelling [372] the
reaction pathways to OD1 and OD2 both start with very similar conformations. In addition, previous
simulations of AADH [197, 371] have not found any evidence for conformations favouring one
pathway or the other.

6.1.4 Catalysis and protein dynamics

Conformational changes accompany the catalytic cycle of an enzyme as has been discussed in the
introduction to this thesis and elsewhere [389, chapter 10][3, 225]; fast protein motions, such as
the fast bond rotation in AADH discussed above (and other examples [208, 388]) are implicated in
facilitating enzymatic reactions. The question of whether protein dynamics, broadly defined (i.e., not
just long timescale conformational changes), provide the source of the enzyme’s catalytic ability is a
long-standing controversy [225, 387, 390–392]. To quantify enzyme catalysis a suitable reference
reaction, without the enzyme present, must be defined and its rate, kref, compared to the rate of
the enzymatic reaction kcat. The role of enzyme dynamics to catalysis can then be quantified as
its contribution to the ratio kref/kcat. No measurement or calculation of kref for AADH has been
performed and so a strict delineation of enzyme effects on catalysis cannot be made in this case.
However, numerous definitions of ‘dynamics’ have been suggested and their potential role in catalysis
explored [392] in other systems which can be a useful comparison for AADH. While the definitions
differ slightly in their particulars, they all describe situations in which important motions are not
well described by Boltzmann probabilities, i.e., non-equilibrium dynamics.

The principle definition of dynamical effects is through the transmission coefficient, the part of the
pre-factor γ(T ) in equation 6.4 which accounts for non-equilibrium dynamics [390, 392]. Transmission
coefficients less than 1 reflect motions of the protein not due to thermal fluctuations of the kind
considered so far, coupling to the reaction coordinate and causing the system to re-cross the transition
state back to the product state. However,no difference in the transmission coefficients between the
solvated and enzymatic reactions have been found in, for example, haloalkane dehalogenase[228],
thymidylate synthase [393] or catechol O-methyltransferase [394]. Another definition of dynamical
effect is the ‘intertial memory’ proposal [392] which has been applied to adenylate kinase [226–228].
The authors of [390, 392] define this proposal as follows: excess kinetic energy upon transition from
a non-reactive into the reactant conformation, is not dissipated but is rather channeled into the
reaction coordinate, pushing the system into the product state. However, a follow up computational
study using a multiscale modelling approach [229] allowing simualtions on the millisecond timescale
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(the timescale of the reaction) found no coupling of the conformational transitions to the reaction
coordinate [224]. It should be noted that the full-tunneling models described earlier have been
described as promoting dynamical effects [392], however, as stated by Klinman and Kohen in
reference [208] “... Marcus-like models neither require nor assume nonequilibrium dynamics".

6.1.5 Aims and objectives

The above discussion has shown that the conformational dynamics plays an important role in the
reaction rate models which attempt to explain tunneling and the kinetic isotope effects in AADH
and other enzymes with large tunneling components. In addition, multiple conformers have been
implicated (although the evidence is far from conclusive) in non-equilibrium rate theories. It is
clear then that building a model of the conformational dynamics of AADH will be an important
contribution to these debates. Chapters 4 and 5 have demonstrated a framework for choosing an
optimal set of hyperparameters (protein features, number of microstates, number of coarse-grained
metastable states) for Markov state models. The aims of this chapter are thus two fold:

1. to arrive at a description of the conformational dynamics of AADH in its reactive state using
Markov state models and the methods demonstrated in chapters 4 and 5.

2. to critically assess those methods using the ‘real-world’ example of AADH.

This chapter is structured as follows: section 6.2 describes the creation of a molecular dynamics
data set and compares it to the most accurate computational study of the reaction mechanism.
Section 6.3 uses the optimisation techniques from chapter 4 to create an optimal discretization of
the MD data set. This is then coarse-grained in section 6.4 using an hidden Markov model with
the number of metastable states determined using the ICL, as described in chapter 5. A summary
and discussion of the implications of the final set of models is given in section 6.5, and section 6.7
concludes with a critical assessment of the modelling approach and discusses limitations.

6.2 Molecular dynamics

6.2.1 Simulation protocol

A PDB file of AADH was prepared by Dr Kara Ranaghan as described in section 6 at the start of
this chapter. The atom types in TTW were changed to be compatible with the CHARMM-36 [395]
force-field although the TTW parameters remained the same. The CHARMM package, version 42a2
[396] was used to create a protein structure file (PSF).

A solvation shell tracking the surface of the protein was created using the package Solvate
(version 1.0) [397] which was modified by the author of this thesis to take into account the
CHARMM extended PSF format for large systems. The water shell was 12.0 Å thick, the maximum
boundary curvature radius of the solvent surface was 100 Å, and 10 Gaussian functions were used
to determine the solvent surface. This structure was further solvated to create a cubic simulation
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cell of size 130 Å using the package Visual Molecular Dynamics (VMD) (version 1.9.3) [398] with a
boundary parameter equal to 1.2 Å. The size of the box was chosen so that the minimum distance
between the enzyme and the edge of the simulation cell was 14 Å. The system was neutralized
with VMD using sodium chloride to attain a concentration of 0.15 moldm−3. The minimization,
heating and equilibration steps were performed in CHARMM with the OpenMM [399] plug-in using
the CHARMM-36m [395] force-field. The electronic non-bonded forces in all steps were treated
with partial mesh Ewald summation [336] with a cut-off of 14 Å, all other parameters were set to
their default values. The SHAKE [400] algorithm was used throughout to constrain the bonds to
hydrogen atoms. The minimization proceeded by first restraining all heavy atoms using a root mean
square deviation (RMSD) restraint with a mass weighted force constant of 5 kcalmol−1 Å−2 and
then minimizing with 100 steps using the steepest descent algorithm and 3000 steps of adopted
basis Newton-Raphson (ABNR) minimization. This was repeated three times, first limiting the
restraint to all the heavy protein atoms, then the heavy protein backbone atoms, and finally with no
restraint. The final unrestrained minimization proceeded with 5000 instead of 3000 steps of ABNR
minimization.

The system was heated from 10 K to 310 K in steps of 25 K, with a harmonic restraint on the
heavy protein backbone atoms with mass weighted force constant of 5 kcalmol−1 Å−2. At each
heating step 10 ps of Langevin dynamics [231, 232] in a constant volume, constant temperature
ensemble were run with a time-step of 2 fs and collision frequency of γ= 5ps−1.

The system underwent equilibration in two stages: i) restrained equilibration and ii) unrestrained
equilibration. In the restrained equilibration stage 11×20ps iterations of Langevin dynamics were
run in an constant pressure, constant temperature ensemble (P=1atm, T=310 K), with a collision
frequency γ = 1ps−1, a Monte Carlo barostat with volume moves performed every 50 fs, and a
time-step of 2 fs. On the first iteration the backbone atoms had a harmonic restraint with a mass
weighted force constant of 10 kcalmol−1 Å−2. On each subsequent iteration the force constant was
reduced by 1 kcalmol−1 Å−2 until the last iteration had no harmonic restraint. The unrestrained
equilibration consisted of 200 ps of equilibration run under the same conditions as before but with
no restraints.

The simulation system was transferred from CHARMM to AMBER (version 16) [401] to make
use of the improved user interface and post-simulation analysis tools. A single 100 ns trajectory was
produced in a constant volume, constant temperature (T = 310K) ensemble, using Langevin dynamics
with a collision frequency of γ= 5ps−1, and a time step of 2 fs. The non-bonded cut-off distance
was reduced to 12 Å and SHAKE [400] was used to constrain the hydrogen atoms. Coordinates and
velocities were written to disk every 100 ps.

The coordinates and velocities at every 1 ns, 2 ns ... 100 ns were used to seed 100× 100ns

new trajectories, run under the same conditions. These 100 trajectories constituted the AADH
“production” data set.

127



CHAPTER 6. AROMATIC AMINE DEHYDROGENASE

Figure 6.4: Structural similarity of seed trajectory. A 100 ns trajectory,
with coordinates saved every 1 ns was used to seed 100 production trajectories. Panel
(a) shows the α-carbon RMSD of the seed trajectory relative to the crystal structure,
(b) shows the distribution of all pairwise α-Carbon RMSD within the seed trajectory.

6.2.2 Modelling disulphide bridges

A missing disulphide bridge was found in the preparation of the initial structure after completion of
the simulations. The disulphide bridge between Cys81 and Cys113 on the H chain (but not on the
D chain) had not been created, instead the two thiol groups were left unoxidized. This introduced
differences in the structures of the active sites which are described in full in section 6.2.6. The
conclusions of this analysis are given in section 6.2.8.

6.2.3 Correlation between seeding conformations

In order to check the degree of correlation between the structures used to seed the 100 production
simulations, the structural similarity between the seed frames was calculated and is shown in figure
6.4. Panel (a) shows the α-carbon RMSD, relative to the crystal structure, which shows a persistent,
large deviation from the crystal structure and serial correlation between initial frames for t > 60ns.
Panel (b) shows the distribution of α-Carbon RMSD values between each pair of initial frames
(i.e., there are 1/2 ·100 ·99 = 4950 values in the histogram). This demonstrates a range of differences
between the initial conformations: 50 % of the initial structures have an RMSD of 3.0 Å or larger.
While there is a degree of correlation between the seed conformations, this was deemed small enough
to keep all sampled trajectories in the remaining analysis.
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6.2.4 Structural stability

Each trajectory was checked for structural stability over the course of the simulations by calculating
the RMSD of the α-carbons atoms relative to the crystal structure, this is shown in figure 11.1. The
majority of the trajectories showed a stable RMSD as a function of time, with 95 % of the frames
remaining within 4.5 Å to 6.4 Å of the crystal structure. However, seven of the trajectories (24, 27,
30, 42, 78, 87 and 97) had an RMSD trajectory which increased over time, leaving the upper 95 %

bound by at least the final frame, shown in figure 11.1. The source of the increase in RMSD was
not due to changing secondary structure (figure 11.2) but rather due to the high fluctuations in the
tail residues, see figure 11.3. The production trajectories thus demonstrated adequate structural
stability.

6.2.5 Enzyme flexibility

In order to understand the origin of the large values of RMSD seen in figure 6.4, a breakdown of the
RMSD on the seed trajectory at 95 ns was performed (this frame was chosen as it had the highest
RMSD of 6.2 Å). The deviation of α-carbon positions of each residue for frame 95 ns relative to the
crystal structure was calculated (the values are plotted in figure 11.4). The contributions to this
large value of RMSD arise primarily from the residues at the tails of chains D and A, as well as
from loop residues 92–108 in chain D. Removing these tail residues reduced the RMSD to 5.2 Å.

The loop residues 92–108 in chain D (and to a lesser extent chain H) show a large deviation
due to a significant conformational change, shown in figure 6.5. This figure shows the backbone
of the D chain only, with loop 92–108 coloured green, the two active site residues (Asp128 and
TTW109) shown in orange, and the remaining protein in blue. On the left hand side is the crystal
structure, on the right hand side is the snapshot at 95 ns, while view 1 and view 2 correspond to
two different camera angles. The diameter of the backbone in all images corresponds to the size of
the deviation from the crystal structure of the snapshot at 95 ns. As can be seen, the loop moves
across the protein, away from the Asp128 residue. Removing these loop residues the calculation, the
RMSD is reduced further to 4.9 Å, indicating that the rest of the protein in moderately aligned to
the crystal structure.

To understand the flexibility of the enzyme over the whole of the simulation data set (rather
than the snapshot presented in figure 6.5), the root mean square fluctuation (RMSF) per residue
was calculated and shown in figure 6.6. The picture presented here does not differ significantly from
the that implied in the preceding analysis. There residues at the tails of each chain, particularly in
chain A, exhibit extreme flexibility. The loop 92–108, in both chain H and chain D shows the next
highest degree of conformational flexibility. Residues 110–126 correspond to a β-hairpin structure
which also shows a higher than average degree of flexibility, especially in chain D. However, the tip
of this hairpin, which is the most flexible, is greater than 12 Å from the active site in the crystal
structure.
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Figure 6.5: Conformational change in loop residues 92–108 of chain D.
The crystal structure (left) and the seed trajectory at 95 ns (right) are shown from
two different camera orientations (view 1 and view 2). The diameter of the backbone
is proportional to the deviation of the α-carbon from the crystal structure. The chart
inset shows the deviation by residue of chain D, taken from figure 11.4. The loop
residues 92 to 108 are highlighted in green, two active site residues TTW109 and
Asp128 are shown in orange (the colour coding is consistent between the inset and the
depicted conformations, except that four of the active site residues are not shown).
The N-terminus (Glu71) and C-terminus (Lys181) are labelled. The 22 tail residues,
unresolved by the crystal structure, are missing from the N-terminus.
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Figure 6.6: Root mean square fluctuation per residue of AADH. Each
panel shows the root mean square fluctuation of (clockwise from top left) chains D,
H, B and A. Residues in loop 92–108 are shown in green, residues in the β-hairpin
110–126 are shown pink, the active site residues are in orange.

6.2.6 Definition and comparison of active sites

The active site of the enzyme was defined in the same way as references [197, 371, 372] in chains
D and H: Ala82, Asp84, TTW109, Asp128, Trp160 and Thr172. The TTW residue is the TTQ
prosthetic group after reaction with the tryptamine substrate to form the Schiff base intermediate.
Hereafter any reference to TTQ will refer to the portion of TTW coming from TTQ originally and
not the unreacted prosthetic group. The crystal structure of the active site is shown in figure 6.7.

The structures of the two active sites were also compared to the crystal structure. The distribution
of the heavy atom RMSD, relative to the crystal structure, is shown in figure 6.8. This shows that
the H active site is more structurally similar to the crystal structure than the D active site. This
could be associated with the difference in the conformations of the loop residues 92–108 between
chain D and H in figure 11.4 and with the missing disulphide bond in chain H. However, this link
has not been investigated.

To understand this difference between the active sites further and to explore the similarities
between these simulations and previous work [372], the distribution of important interatomic
distances were calculated and compared. Figure 6.9 shows these bond distributions in blue for the D
active site and in orange for the H active site. The black vertical lines with labels are the QM/MM
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Figure 6.7: Crystal structure of the active site of AADH. This definition
is taken from reference [372] and consists of the following residues: Ala82, Asp84,
TTW109, Asp128, Trp160 and Thr172. The yellow dashed lines show the important
stabilizing hydrogen bonds as well as the H—O distances involved in the rate limiting
step. The reactive hydrogen atoms are labelled HI-2 and HI-3. The acceptor oxygen
atoms are labelled OD2 and OD1 which correspond to O1 and O2 in reference [197]
respectively. All other hydrogen atoms are hidden. Backbone carbonyl bonds may
appear as single bonds due to the camera angle.

Figure 6.8: Comparison of the active site in chains D and H. The distribution
of heavy atom RMSD, relative to the crystal structure of the active sites in chain D
(blue) and H (orange).
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Figure 6.9: Distribution of important bond distances in the active site.
Panels (a) - (d) show the four combinations of acceptor ion (O1, O2) - proton
(H1-2, H1-3) distances; panels (e) and (f) are the two donor (C1) acceptor (O1, O2)
distances; the remaining panels are the hydrogen bonds in the active site.

interatomic distances in the reactant state2, taken from table 3 of reference [372]. Where possible
the atom labels have been kept the same as those in reference [372], the exceptions are the atoms
directly involved in bond breaking and formation. The correspondence between the interatomic
distances in reference [372] and figure 6.9, and their description are as follows:

1. OD1/OD2—H1: The bond being formed. These correspond to all four combinations of
distances between OD2/OD1 (respectively) and H1-2, H1-3. Shown in panels (a) through (d).

2. OD1/OD2—C1: The donor/acceptor distance. These are the two combinations of distances
between OD2/OD1 (respectively) and C1. Shown in panels (e) and (f).

3. HE1—A82-O: inter-residue hydrogen bond between HE1 of the TTQ prosthetic group and
the Ala82 backbone oxygen atom, shown in panel (g).

2An average over the pathways to OD1 and OD2 are taken where appropriate.
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4. HNT—O7: intra-residue hydrogen bond in the TTW residue. Shown in panel (h).
5. HNT—D84-O: inter-residue hydrogen bond between the TTW residue and the backbone

oxygen atom of the Asp84 residue. Shown in panel (i)
6. HNT—T172-O: inter-residue hydrogen bond between TTW and the backbone oxygen atom

in Thr172. This is not described in reference [372] but is included because of its potential to
form a hydrogen bond in certain conformations. Shown in panel (j).

7. O7—D84-H: inter-residue hydrogen bond between the TTW residue and the backbone amide
hydrogen atom of the Asp84 residue. Shown in panel (k).

8. OD1—T172-HG1/W160-H: The inter-residue hydrogen bond between the acceptor oxygen
atom OD1 of D128 and hydrogen atoms on the Thr172 and Trp160 residues respectively.
Shown in panels (l) and (m).

9. OD2—T172-HG1/W160-H: The inter-residue hydrogen bond between the acceptor oxygen
atom OD2 of D128 and hydrogen atoms on the Thr172 and Trp160 residues respectively.
Shown in panels (n) and (o).

10. C81-S—C113-S: The sulphur-sulphur distance corresponding to the missing disulphide bond
in the H chain. Shown in panel (p).

In general, the bond lengths in the D active site show greater variance and do not overlap with
those in the H active site. The main exception to this are the from the Cysteine residues 81 and
113. These have clearly drifted apart due to the lack of disulphide bond: the distribution of the
S—S distances in the H active site, shown in panel (p) varies between 3 Å to 20 Å compared to the
effectively fixed distance of ' 2Å in the D active site.

The O—H distances are smaller, closer to the QM/MM values, and show less variation in the H
active site compared to the D active site by a significant margin (panels (a) - (d)). The distances in
the H site are almost all less than 5 Å (within ' 3Å of the QM/MM values), where almost all the D
active site values are between 5 Å to 10 Å. The donor/acceptor distances, C—O (panels (e) and (f))
show a similar story. The closest hydrogen atom to both acceptor oxygen anions in the H active site
is H1-2, the differences in the D active site are less obvious. These differences are due to the crystal
structure preparation, missing disulphide bond, and potentially due to conformational changes in
loop residues 92–108, as: i) there is no difference between the active sites in the crystal structure
(the difference in heavy atom RMSD < 0.01Å); and ii) the broken disulphide bond is incompatible
with the pathways determined in references [371, 372].

There is no conclusive similarity between the QM/MM results and these simulations with respect
to the stabilization of OD1 and OD2 by Thr172 and Trp160 by hydrogen bonds. This is important
as it is these hydrogen bonds which help define the difference in between the hydrogen abstraction
pathways. The orientation of Trp160-H, OD2, OD1 and Thr172-HG1 in the crystal structure and
QM/MM is approximately linear. For OD1 to be hydrogen bonded with Thr172, the bond lengths
would be ordered OD1—Thr172-HG1 < OD1—Trp160-H, i.e. panel (l) < panel (m). This is true for
D but not for H. While for OD2 to be hydrogen bonded with Trp160, the bond lengths would be
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ordered OD2—Thr172-HG1 > OD2—Trp160-H, i.e. panel (n) > panel (o). This is true for H but
not for D. In the D active site, Asp128 has moved away from Trp160 entirely but remained close
to Thr172 as seen by comparing the distributions in panels (m) and (o) with panels (l) and (n).
Noting that TTW is covalently bonded to Trp160, this is then consistent with the picture in panels
(a) through (f) where OD1 and OD2 are between 5 Å to 15 Å from the relevant atoms on TTW.

The TTW intra-residue hydrogen bond, HNT—O7, shows good agreement with the QM/MM
value in the H active site, while in the D active site it is larger by almost 2 Å. The two distinct
HNT—O7 bond lengths define whether the NT—C1 bond is either syn or anti the C—O7 carbonyl
bond in the tryptophan ring system of TTQ. The anti conformation, with has the shorter HNT—O7
distance, is adopted in active site H and in the crystal structure as shown in figure 6.7. Here the
NT—HNT bond points in the same direction as the C—O7 bond and forcing the NT—C1 bond
into the anti-conformation. The syn conformation has the has the NT—HNT bond pointing in the
opposite direction, forcing the NT—C1 bond to eclipse the the C—O7 carbonyl bond.

The syn and anti conformations allow radically different conformational states to be accessed
as demonstrated in figure 6.10. Each panel shows 500 configurations, selected evenly across all
trajectories, for the D (panel (a)) and H (panel (b)) active sites. The entire TTW residue and
carbonyl group of Asp128 is shown and the conformations have been aligned to the tryptophan part
of the TTW residue. The only two hydrogen atoms shown are H1-2 & H1-3 and are coloured white.
The syn conformation of the D active site clearly demonstrates a ‘looser’ set of conformations with
the C1-H1 bond pointing away from the acceptor Asp128 residue, although whether this is due to
missing disulphide bond or loop 92–108 has not been determined. The anti conformation of the H
active site shows a ‘tighter’ set of conformations with the C1-H1 bond pointing towards the Asp128
residue.

In summary, the two active sites show distinct differences in their accessible conformations.
The two sites are differentiated in three main ways. First, the relevant interatomic distances and
hydrogen bonds between TTW and Asp128 are more consistent with the QM/MM results in the H
than in the D active site. Second, the orientation of the NT—C1 bond is syn the C—O7 carbonyl
bond in the D active site, and anti in the H active site and QM/MM results. Third, the H site is
more constrained with less variation in the available conformations compared to the D active site.
The apparent greater compatibility of the H active site with QM/MM results is surprising given the
missing disulphide bridge occurs in the H active site.

6.2.7 Donor-acceptor distance

A modified definition of the donor-acceptor distance (DAD) will be utilised throughout this chapter
to discuss the degree of ‘reactivity’ of different conformations. The modified DAD is defined as the
distance between C1 of the tryptamine in TTW109, which donates the proton, and either OD1
or OD2 of Asp128 which accepts the proton during the course of reaction, C1—OD1/2 (these
distances are in panels (e) and (f) of figure 6.9). This is related but different to the definition in
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(a) Active site D (b) Active site H

Figure 6.10: Conformations of the TTW residue in the D and H active
sites. Five conformations were taken from each trajectory at intervals of 20 ns and
aligned along the heavy atoms of the trypotophan part of the TTW residue. The
hydrogen atom shown is the donor atom, all other hydrogen atoms are hidden.
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Figure 6.11: Approximate free energy over the donor-carbon–acceptor-
oxygen distance. The free energy was estimated by from a histogram (hi ) of
bond distances with i = 1, . . . ,50 equally spaced bins over the range 2 Å to 16 Å with
the formula ∆Fi =− log(hi ). 95 % confidence intervals were estimated from 1000
bootstrap samples. Panel (a) shows the distance to acceptor OD1 and panel (b)
shows the distance to OD2. Blue and green lines show the distances in chain D and
chain H respectively. The grey shaded area shows the range of these distances as
simulated in reference [372]. Black crosses and labels mark the distance corresponding
to the free energy minima.
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previous work [216] which is the distance travelled by the proton over the course of the reaction. As
the reaction is not modelled in these simulations, this definition is not appropriate.

In the QM/MM modelling of reference [372] the value of the C1—OD1/2 distances in the
reactant state are 2.96 Å and 2.88 Å; in the transition state are 2.64 Å and 2.59 Å; and in the product
state are 3.04 Å and 2.94 Å. Thus, over the course of the reaction pathway estimated in reference
[372] these distances remain approximately constant (similar results are found in reference [197],
figure 3).

In the simulations presented in this chapter, conformations will be considered reactive if they
achieve a DAD of ∼ 3Å. This ignores the both the orientation of the hydrogen atom and the role
of other stabilising interactions in creating a potential energy surface conducive to tunneling. It
may be, therefore, that defining reactivity just in terms of these values of the DAD will falsely
identify conformations as reactive when, in reality, they are not. However, focusing on this definition
of reactivity in terms of the DAD alone, is justified for the following reasons. First, including the
hydrogen atom position in the definition of reactivity in a molecular mechanics force-field simulation
is problematic because the bond distance is frozen in the SHAKE algorithm employed here and so not
modelled accurately. Second, an appropriate value of C—OD1/OD1 distance is a necessary (albeit
not sufficient) condition for achieving a reactive state. Third, to validate any reactive conformations
found in this work, further QM/MM modelling will be necessary which will likely change many of
the interactions and forces on atoms in active site (in particular the orientation of hydrogen atoms).
Identification of reaction conformations can only be an approximate classification and thus focusing
on a liberal definition of reactivity is justified. Fourth, the goal of the analysis here is to explore the
possibility of other conformations which may be reactive. While the many interactions observed in
reference [372] may be sufficient for the reaction to occur, they may not be necessary.

The approximate free energy pathways over the DAD are shown in figure ?? to both OD1 (panel
(a)) and OD2 (panel (b)) for chain D (blue) and chain H (orange). For comparison, the ranges of
these distances over the reaction pathway from the QM/MM modelling of reference [372] are shown
as shaded areas. The distances sampled in chain H show a free energy minima just outside the
reactive range (3.3 Å and 3.0 Å to OD1 and OD2 respectively). Chain D show free energy minima
more than double the reactive distance. This is in line with the analysis of the previous section
which showed the conformations in the H chain are more inline with the crystal structure and the
QM/MM modelling of reference [372].

6.2.8 Summary of molecular dynamics data

10 µs of molecular dynamics trajectories, seeded from 100 different conformations, has been simulated.
Some of the seed conformations show similarity in their structures as measured by their RMSD
from the crystal structure (figure 6.4 panel (a)) and their RMSD from one-another (figure 6.4 panel
(b)). There are two regions of high flexibility (aside from the tail residues) next to the active site,
loop 92–108 and a β-hairpin 110–126 (figure 6.6). The loop undergoes a significant conformational
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change, an example of which is shown in figure 6.5, while the β-hairpin also shows flexibility at its
tip, albeit at a distance of approximately 12 Å from the active site. The active site residues do not
show higher than average flexibility.

There are significant differences between the two active sites both in terms of their RMSD
relative to the crystal structure (figure 6.8) and along key interactions (figure 6.9). This is due to
the missing disulphide bridge between residues Cys81 and Cys113 in chain H. The active site in
chain H surprisingly shows more similarity to the crystal structure but the missing disulphide bridge
invalidates this data. Given this, the models of conformational dynamics estimated in this chapter
will only use data from the active site in the D chain.

6.3 MSM optimisation

The aim of this section is to create an optimised Markov state model of the active site of AADH
using Bayesian optimisation and response surface methods developed in chapter 4. In addition, to
test the robustness of the modelling procedure a sensitivity analysis based on the response surface of
the MSM will be produced. This section proceeds in four steps: first in subsection 6.3.1, a suitable
value of the Markov lag time τM, and number of slow relaxation processes, r will be estimated
using a reference MSM. These will be used to specify the MSM and the VAMP-2 score so that
in the second step, subsection 6.3.2, the MSM response surface can be modelled as a Gaussian
process (GP). Third, using this model of the response surface Bayesian optimisation will be used to
determine the optimal set of hyperparameters, these will constitute the base case model. In the
fourth step, subsection 6.3.4, a number of alternate models will be proposed (‘sensitivity 1, 2’ etc.)
using knowledge of MSM response surface and eigenvalue spectrum. All calculations were performed
using the packages cited in chapter 4.

6.3.1 Estimating the Markov lag-time and number of metastable states

Suitable values of the Markov lag-time, τM, and the number of dominant relaxation processes, r ,
were estimated by inspection of the eigenvalue spectrum of a reference MSM. The following results
are for the D active site only as the missing disulphide bond in the H active site rendered these
trajectories invalid.

The trajectories were discretized by first projecting the cartesian coordinates onto a set of
features, applying TICA to reduce the dimension of the feature space and then clustering the frames
into a small set of discrete states. The features used were the bond lengths identified in reference
[372] i.e., those whose histograms are depicted in panels (a) - (g), (i), (k), (l), (o) of figure 6.9.
The intramolecular hydrogen bond in panel (h), originally included in reference [372], was excluded
due to its small variance. The trajectories were strided to give a trajectory time-step 0.1 ns. TICA
was applied with a lag time of τ= 1ns and the number of components set so as to retain 95 % of
the kinetic variance. This equated to retaining m = 10 components. k-means clustering was used to
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cluster the trajectories into n = 316 microstates states. The number of microstates was chosen as
the square root of the number of observations, inline with the heuristic in reference [246].

The Markov lag time must be chosen large enough so that the Markov assumption holds. This
equates to the implied timescales:

ti =− τM

ln |λi |
,

being independent of τM. However, the eigenvalue spectrum will be heavily influenced by choice of
hyperparameters, in particular the protein feature. So a suitable lag time for this particular set of
hyperparameters may not prove suitable for another set. In other words, a suitable lag time cannot be
chosen independent of the hyperparameters, but the hyperparameters cannot be optimised without
specifying a lag time. The same reasoning also applies to the number of dominant eigenvalues used
in the VAMP-2 score.

A way out of this circular reasoning problem can be found by noting the following. First, the
purpose of specifying the lag time and number of dominant processes is to provide a starting
point from which the hyperparameters of the MSM can be optimised. It is therefore only necessary
that the choice of τM do not affect the optimisation, rather than provide a strictly valid MSM
specification. The lag time and number of dominant relaxation processes has only a small effect on
the value of the VAMP-2 score as demonstrated by figure 6.12. The first five implied timescales are
shown in panel (a) for τM in the range 0.1 ns to 5 ns and panel (b) for τM in the range 0.1 ns to
50 ns. Underneath, in panels (c) and (d) are shown the VAMP-2 scores with r ranging from 2 to 5,
which correspond to successively including the implied timescales shown in panels (a) and (b). The
timescale t2 (shown in blue) appears to become independent of the lag time from approximately
12 ns. however, as panels (c) and (d) show, the lag time has little effect on the VAMP-2 scores
which vary by less than ±4% from their initial values over all lag times. The value of r also has little
effect on VAMP-2 scores, at least up to τM = 15ns where their relative values start to diverge. Third,
a value of τM and r used for inference can be determined after optimisation through appropriate
sensitivity analysis. A value of τM = 2ns was chosen based on the relatively small variation of the
VAMP-2 score (panel (c) of figure 6.12) and the larger number of observations that a small value
affords.

There were no significant gaps in eigenvalues at τM = 2ns shown figure 6.13 panel (a). So the
number of dominant processes was determined by inspection of the relative gaps in the timescale
spectrum shown in panel (b). The largest timescale separation was between the fourth and fifth
relaxation process, suggesting a value of r = 4.

An alternative analysis was performed using a TICA lag time of τ = 10ns with 95 % of the
variance (m = 8 components) retained with same number of cluster centres, n = 316. The implied
timescale plots are shown in figure 11.6 and do not change the Markov lag time suggestion of
2 ns. The ratio of eigenvalues and implied timescales are shown in figure 11.5. There was no clear
separation in either the eigenvalues or the implied timescales and so the value of r = 4 from reference
MSM was retained.
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Figure 6.12: Implied timescales and VAMP-2 scores of the reference
MSM. Panels (a) and (b) show the implied timescales, and panels (c) and (d) shows
the relative VAMP-2 scores for the reference MSM with: τM = 2ns, TICA lag time of
τ= 1ns, 95 % of the kinetic variance/m = 10 TICA components retained, and n = 316
microstates. Panel (a) shows the first five implied timescales for τM =0.1 ns–5 ns,
panel (b) shows the first five implied timescales for τM =0.1 ns–50 ns. The solid lines
and coloured shaded areas are the mean and 95 % credible intervals respectively,
estimated using MCMC with 500 posterior samples. The grey shaded area is the
region for which the implied timescales are smaller than the lag time. Panel (c) and
(d) show the VAMP-2 scores, scored on the first 2 to 5 eigenvalues for the same
ranges. The VAMP-2 scores are indexed to their value at τM = 0.1ns. The colour
coding is consistent between the implied timescale plots ((a) and (b)) and VAMP-2
plots ((c) and (d)). e.g. the blue line in (c) and (d) is the VAMP-2 score with two
eigenvalues (r = 2) while in (a) and (b) blue is the second implied timescale, t2.
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Figure 6.13: Ratio of successive eigenvalues and implied timescales of
the reference MSM. Panel (a) shows the ratio of eigenvalues and panel (b)
the implied timescales for the reference MSM with: τM = 2ns, TICA lag time of
τ = 1ns, 95 % of the kinetic variance/m = 10 TICA components retained, and
n = 316 microstates. Parameters were estimated using MCMC with 1000 posterior
samples. The blue dots and error bars are the mean and 95 % credible intervals
respectively.

6.3.2 Response surface

The response surface of an MSM for the active site of AADH was estimated using the same method
as alanine dipeptide in chapter 4. A summary of this method applied to AADH is as follows. The
MD data used were the 100 coordinate trajectories of the six residues of the D active site of AADH
defined in figure 6.7. These trajectories were pre-processed into discrete states by first projecting
onto a continuous feature χ; applying TICA with a lag time of τ and retaining m independent
components (IC1, . . . , ICm); then clustering into n discrete microstates using k-means clustering.
Collectively these are the MSM hyperparameters x = (χ,τ,m,n). The range of possible values of
x, the hyperparameter search space, are shown in table 6.1. The (φ,ψ,χ) feature was the usual
backbone and residue dihedral angles but augmented with the six dihedral angles joining the two
9-membered rings in the TTW residue. 500 different sets of hyperparameters were sampled from the
search space (100 per feature). To each value of x an MSM was fitted with a lag time of τM = 2ns

and the response, y, measured with VAMP-2 with r = 4 eigenvalues using 20 iterations of 50:50
shuffle split (algorithm 1). The 500 pairs of hyperparameter/response measurements constituted
the hyperparameter trial data set, D500 = {(xi , yi ), i = 1, . . . ,500}. The response surface f (x;D500),
was modelled as a Gaussian process (GP), with covariance kernel and input warping selected using
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Hyperparameter Type Range Dim. Details

Feature, χ Categorical (1) (φ,ψ,χ) 116
(2) |r1 − r2| 2346 Heavy atom

interatomic
distances

(3) Cα−Cα 15 α-carbon contacts
(4) X −X 15 Heavy atom

contacts
(5) RMSD 1 Heavy atoms only

TICA lag time, τ Integer 1 ns, 1.1 ns ...
100 ns

TICA components, m Integer 1, 2 ... 20

Cluster centres, n Integer 10, 11 ... 1000 Clustered using
k-means clustering

Table 6.1: Hyperparameter search space for AADH. TICA was applied to
every feature except RMSD. Dihedral angles, θ, were given (sin(θ),cos(θ)) representa-
tions to account for their periodicity. The Cartesian coordinates were first aligned to a
single, randomly chosen, trajectory frame so that feature (5) did not include spurious
rotational or translational motion. The number of dimensions, ‘Dim.’, refers to the
number of individual feature variables created by χ.

a combination of the mean standardized log-loss (MSLL) and the standardized mean square error
(SMSE).

The hyperparameter trial data set, D500, is shown in figure 6.14. The mean test response is
shown in blue and the difference between the training and test response shown in orange. Not all
trials were successful (for example, if the number of TICA dimensions retained, m, exceeded the
number of dimensions of the feature, χ) and these trials were ignored in the following analysis,
this resulted in a final trial data set of size N = 461. The panels correspond to the values of χ
and are ordered according to their average of the test responses. The horizontal axis is the rank
of the trial determined by their test response. There is clear range of response values in the range
2 < VAMP-2 < 4 with the (φ,ψ,χ) dihedral angles (panel (a)) and the interatomic distances feature
(|r1 − r2|) (panel (c)) both performing the best out of the five features.

In contrast to the case of alanine dipeptide, all features show a marked degree of over-fitting
∆ f . However, within each feature there are combinations of the remaining hyperparameters for
which ∆ f = 0 implying that it is possible to create a consistent picture of relaxation processes which
generalize well for each feature. The response of the (φ,ψ,χ) feature approaches the maximum
response of VAMP−2 = 4 for the highest ranked trials, indicating the possibility of at least three
slow relaxation processes.

The response surface as a function of the feature, χ, TICA lag time, τ, number of TICA
components retains m, and the number of cluster centres, n was estimated with a GP. The RMSD
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Figure 6.14: VAMP-2 scores of the hyperparameter trials for MSMs
of AADH. The test response, f test(x;Xtest), is shown in blue, for (a) the (φ,ψ,χ)
dihedral angles, (c) heavy atom interatomic distances, (e) α-carbon contact distances,
(g) heavy atom contact distances, (i) root mean square deviation of heavy atoms.
The difference between f train and f test is shown in orange for (b) the the (φ,ψ,χ)
dihedral angles and so on. The horizontal axis is the rank of the trial according
to the test score. Each trial was scored with 20 iterations of 50:50 shuffle split
cross-validation. The error bars represent the 25th and 75th quantiles of the cross-
validation folds. The features are ordered according to the mean of the their test
scores.
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Figure 6.15: goodness-of-fit for the GP modelled response surface of
AADH. Panels (a) - (d) shows the goodness-of-fit conditional on each feature. The
GP uses an exponential kernel with linear input warping on τ,m and n. The MSLL
and SMSE were −0.01298 and 0.3087 respectively. The horizontal axis (y) are the
observed trial values and the vertical axis is the mean response ( f (x)). The error
bars are ±2σ where σ is the standard deviation of the response surface including
the noise term σn .
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Figure 6.16: Relevance of the hyperparameters of AADH. The distribution
of the parameters of the response surface were estimated using MCMC with 1000
posterior samples. The relevance of the features (levels of χ) are shown in blue,
labelled ‘Feature’. The relevance of the the other hyperparameters are shown in
orange, labelled ‘Other’.

feature trials were removed from the data set because the τ and m hyperparameters do not apply,
which would have created a conditional search space [135] which ca not easily be modelled by GPs
(however, there are attempts to mitigate this [402]). While this is a problem in general for this
method, the poor performance of RMSD as a feature both here and with alanine dipeptide means
that this will not affect finding the optimum hyperparameters. There were also a number of trials
which failed to converge an MSM, these were also removed. The final hyperparameter trial data set
had N = 361 observations, D361. The covariance kernel was chosen from amongst the same set as
for alanine dipeptide: exponential, Matérn 3-2, Matérn 5-2 and Gaussian (equations 4.14 - 4.17). In
addition, the choice of logarithmic input warping was optionally applied to τ, m and n. The best
combination, based on their combined rank using the MSLL and SMSE metrics, was an exponential
kernel and a linear input transformation for τ,m and n. See table ?? for all the models’ selection
metrics. A more intuitive assessment of the fit of the can be found in figure 6.15 which shows the
correlation between observed and predicted values for each feature. There is clearly a good fit for all
the features except for (φ,ψ,χ) where the predicted values are slightly under and over estimated for
the highest and lowest values with this feature respectively. This creates the possibility of a false
bimodal response surface which must be checked when determining the optimal hyperparameters.
The relatively poor fit on this feature is likely due to the fully multiplicative nature of the kernel.
More flexible kernels (as discussed in e.g., reference [350]) which model lower order interactions
may be able to overcome this problem in future work.
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Hyperparameter Median (95 %C.I.)

R(φ,ψ,χ) 0.073 (0.021-0.248)
R|r1−r2| 0.032 (0.012-0.098)
RCα−Cα

0.025 (0.009-0.084)
RX−X 0.030 (0.012-0.083)
Rτ 0.246 (0.126-0.474)
Rm 0.044 (0.022-0.095)
Rn 0.009 (0.005-0.018)
η 1.540 (1.117-2.154)
σn 0.011 (0.001-0.035)

Table 6.2: Posterior distributions of GP parameters. Shown are the median
and 95% credible intervals for the kernel hyperparameters of the AADH response surface
estimated using MCMC with 1000 posterior samples. The length-scale parameters in
equation 4.13 are re-written here as relevances.

The multidimensional nature of the response surface poses problems for visualisation and for
understanding the interaction between the hyperparameters in determining the response. However,
calculating the hyperparameter relevance can help by suggesting the displayed granularity of the
inputs. Figure 6.16 shows the posterior distribution of relevance for the features (blue) and the
remaining hyperparameters (orange). The median and 95% credible intervals are tabulated in table
6.2.

Figure 6.17 shows a projection of the response surface, f (x), informed by the relevance. τ and m

are the two highest relevance hyperparameters (Rτ = 0.246 [0.126–0.474)], Rm = 0.044 [0.022–0.095])
so the response surface is shown as a 2D heat map with τ on the vertical and m on the horizontal
axis. Only odd values of m are shown given the slightly lower relevance of this feature. The
number of cluster features is, like the case of alanine dipeptide, the lowest relevance hyperparameter
(Rn = 0.009 [0.005–0.018] and so heat maps for only two value of n are shown: the value at the
maximum of the response surface (n = 207 although the value displayed is rounded to 210) and
n = 1000. With only four features, it is simple to show the response surface for each of them.
With a larger number of features, displaying the high relevance features and only one of the low
relevance features would be sufficient. This is because low relevance features are similar. Note,
that this does not mean they have a low absolute value but rather that their values are highly
correlated. This is clearly borne out with this surface - the two lower relevance features, the contact
distances, are very similar and including both in the visualisation is redundant. However, as all
features have absolutely low relevance (R < 1) then their response surfaces are expected to be
similar. The maximum of the response surface, shown highlighted with a white star, occurs at
x = (

χ= (φ,ψ,χ),τ= 12.5ns,m = 1,n = 207
)
with a value of µ = 3.543(396). The features of this

response surface will be discussed in the context of sensitivity analysis in section 6.3.4.
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Figure 6.17: Unoptimized response surface of AADH, f (x;D361). For each
feature two heat maps are shown with τ on the vertical axis and m on the horizontal
axis. Panel (a) shows the (φ,ψ,χ) feature with n = 210, panel (b) for n = 1000, and
similarly for the remaining features. The white star denotes the approximate location
of the maximum of the surface, the true maximum occurs at τ= 12.5ns,m = 1,n =
207 The value of the response surface denoted by the color (lighter implies higher
values) and with the text annotations.
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(Hyper)parameter Nseed 100 361
# 1 2 3 4 5 1

Ntotal Pre 100 100 100 100 100 361
Post 150 150 150 150 150 410

µ Pre 3.487 3.355 3.599 3.473 3.478 3.543
Post 3.500 3.558 3.545 3.581 3.569 3.558

σ Pre 0.152 0.135 0.306 0.234 0.126 0.198
Post 0.202 0.117 0.101 0.084 0.072 0.091

χ Pre (φ,ψ,χ) |ri − rj| (φ,ψ,χ) (φ,ψ,χ) |ri − rj| (φ,ψ,χ)
Post (φ,ψ,χ) (φ,ψ,χ) (φ,ψ,χ) (φ,ψ,χ) (φ,ψ,χ) (φ,ψ,χ)

τ Pre 51.0 57.8 12.5 12.5 18.0 12.5
Post 1.0 4.0 3.0 1.0 1.0 10.0

m Pre 1 3 1 1 1 1
Post 2 1 2 1 1 2

n Pre 396 234 207 207 79 207
Post 10 180 10 230 540 310

Table 6.3: MSM hyperparameters for AADH pre- and post-Bayesian op-
timisation. Each column represents a Bayesian optimisation experiment, seeded with
Nseed randomly sampled hyperparameter trials. Five iterations of optimisation were
run with Nseed = 100 (labelled #1,2 etc.) and a single iteration optimising the response
surface using all the trial data (Nseed = 361). Each row is a variable or outcome with
values associated with the optimum value of µ before and after Bayesian optimisation.

6.3.3 Optimisation

In order to test the convergence of the maximum of f (x;D361), 50 steps of Bayesian optimisation
was performed. The optimisation was seeded with all the hyperparameter trial observations using
the GP model determined in section 6.3.2. At each step of the optimisation, candidate MSM
hyperparameters were determined as those which had the highest expected improvement. The grid of
points, XM , used to maximize the acquisition function was a 4×100×20×100 (χ×τ×m×n) evenly
spaced grid. The values of the response and associated hyperparameters pre- and post-optimisation
(i.e. f (x;D361) and f (x;D410)) are tabulated in the final column of table 6.3. The optimisation
resulted in a small improvement in the response from µ = 3.543±0.396 → 3.558±0.182 (a 0.4%

improvement) with no change in the optimum feature (φ,ψ,χ) and only small changes in the other
hyperparameters. The final optimised hyperparameters were: χ= (φ,ψ,χ), τ= 10ns, m = 2, n = 310.

In order to see whether this maximum could be reached with a fewer number of trials, five
response surfaces fit on random subsets of the trial data with 100 observations, f i (x;D100) , i = 1−5,
were optimized with 50 steps of Bayesian optimisation. The kernel and input warping for f i (x;D100)

were determined for each i separately. The model selection metrics for each combination of kernel
and input warping are tabulated in tables 11.2 - 11.6. The results of the optimisation trials are
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shown in table 6.3 and the incumbent trajectories are shown in are shown in figure 6.18. Also shown,
for comparison, in figure 6.18 are the maximum of the response surface f (x;D361) as orange lines,
and the maximum of f (x;D410) as blue lines.

From table 6.3 it can be seen that after Bayesian optimisation each subset had maxima
indistinguishable from the maxima after seeding with the full data set f (x;D461): each had the same
optimal feature ((φ,ψ,χ) dihedral angles), slightly smaller values of τ (1 ns to 4 ns cf. 10 ns), similar
values of m (1–2 cf. 2) but with a range of different values of n (10–540 cf. 310). The extent to
which these differences in response surface maxima make a significant difference the final MSM,
will be discussed in section 6.3.4, in the context of the sensitivity analyses.

It is clear that Bayesian optimisation only had a small effect on the value of the incumbent
and on the optimum hyperparameters. The value of incumbent throughout the procedure (figure
6.18 panels (a) - (e)) remained relatively constant. The largest increase came from iteration 4, with
∆µ= 0.108 and there was even a slight decrease in iteration 3 with ∆µ=−0.054 although when
including uncertainty they were statistically indistinguishable from each other. The optimisation
procedure also had negligible effects on the value of χ, m and n. It did however, explore large values
of τ before settling on its final optimum value in most of the iterations.

The optimisation procedure did not strongly increase the incumbent of each iteration, however,
the incumbent and optimum hyperparameters of f i (x;D150) are almost indistinguishable from
f (x;D461). This suggests that the Bayesian optimisation procedure could be seeded with fewer than
100 trials if a GP model of the response surface could be estimated reliably.

6.3.4 Sensitivity analysis

So far the response surface for AADH has been modelled and optimised with a combination of
random hyperparameter sampling and Bayesian optimisation under two assumptions about the
model specification: that τM = 2ns and r = 4 are reasonable assumptions about the lag time and
number of slow relaxation processes. As these were established on the basis of the reference MSM
it is important to test these assumptions are still reasonable with the final optimized MSM.

To test the suitability of τM the implied timescales of a series of MSMs fit with the optimum
hyperparameters but different lag times are shown in figure 6.19. Panel (a) shows shows the implied
timescales for τM = 0.1ns–5ns which clearly shows there is a slight increase in the top two implied
timescales t2 and t3 suggesting that τM may be too small. Looking at the implied timescales over a
larger range, τM = 0.1ns–50ns (panel (b)), shows that there is a small plateau in t2 and t3 around
15 ns to 20 ns. It is therefore not possible on this evidence alone to say definitively whether τM

should be 2 or 20ns or whether it makes a difference to non-quantitative aspects of the final model.
At τ= 2ns there is no clear separation of timescales between the first four relaxation processes

(taking into account the uncertainty in t2 and t3), however, there is a gap between t5 and t6

suggesting r = 5 would be more appropriate than the r = 4 previously chosen. This means the
fourth relaxation process (t5, shown in red in figure 6.19) has not been factored into the response.
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Figure 6.18: Bayesian optimisation trajectories. Each column shows the tra-
jectories of the incumbent µ∗±2σ (panels (a) - (e)), and the accompanying value
of: χ (panels (f) - (j)), m (panels (k) - (o)), τ (panels (p) - (t)) and n (panels (u) -
(y)). The location of the final value of the trajectory is highlighted with a black
star. For reference the corresponding values determined from the response surface
using all the hyperparameter trials are shown as solid horizontal lines: the response
surface before optimisation ( f (x;D361)) are shown in orange and after Bayesian
optimisation ( f (x;D410)) in blue.
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Figure 6.19: Implied timescales of the base case MSM. Timescales were es-
timated using MCMC with 500 posterior samples. Panel (a) shows the implied
timescales for τM = 0.1ns–5ns and panel (b) for τM = 0.1ns–50ns. The solid lines
are the mean of the posteriors, the shaded areas are the 95 % credible intervals. The
grey shaded area is the region for which the implied timescales are smaller than τM.

In principle this means that there may be different hyperparameters which maximize VAMP-2,
however, given the similarity between t4 and t5 this may not be very plausible or significant, if
true. At τM = 20ns there is a clear separation between t2 and t3 suggesting r = 2 is appropriate.
In this case we have included potentially too many fast processes. While changing the value of r

will certainly change the value of the optimal hyperparameters, given the mixed evidence in the
eigenvalue spectrum there is no reason to reject this optimized MSM. The associated question of
how many metastable states and dominant relaxation processes actually matter for explaining the
observed data will be investigated in section 6.4.

Knowledge of the response surface and of the eigenvalue spectrum suggests sensitivity analyses
to understand the validity and robustness of the optimum MSM. The goal of sensitivity analyses
is to have faith that reasonable changes in model choices and hyperparameters do not materially
affect inferences from the model. Typically we are concerned with inferring relaxation timescales (ti ),
the character of the relaxation process (Ψi ) and the lumping of the microstates into metastable
states. The VAMP-2 score has served as a proxy for the quality of the inferences required from the
model but this is not sufficient for a number of reasons. First, in general it may be sensitive to both
the MSM lag time and the number of eigenfunctions used in the definition. Second, as figure 4.10
has demonstrated, VAMP-2 is not sensitive to the discretisation error. This is also evident in the
fact that in both iteration 1 and 3 (table 6.3) the optimal value of n = 10 with only a very small
difference in response at these values µ= 3.500 and µ= 3.545 cf. µ= 3.558). Third, the phenomenon
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of the Rashomon effect [318] in statistical modelling, where multiple different statistical models
result in the performance metric, could be at play here.

The standard validation check of MSMs, the Chapman-Kolmogorov test (section 2.5), relies on
coarse graining a transition matrix, which will be discussed in section 6.4. The current discussion
will center on the eigenvalue spectrum and qualitative aspects of the free energy surface and
eigenfunctions. For the optimal MSM (hereafter labelled ‘base case’), these are all shown in figure
6.21: panels (a) - (c) show the eigenvectors of the first three relaxation processes (Ψ2 −Ψ4) in the
space of the first two TICA components. Panel (d) shows the implied timescales for the first 10

relaxation processes (coloured according to whether they were included in the VAMP-2 score), and
panel (e) shows the free energy surface in the space of the first two TICA components.

Figure 6.21 will serve as a base case for a number of sensitivity analyses, informed by the
optimised response surface (figure 6.20) and eigenvalue spectrum (figure 6.19). A summary of the
hyperparameters for the base case and sensitivity cases are shown at the end of this section in table
6.4.

Sensitivity 1 changed the MSM lag time from 2ns to 20ns and is shown in figure 6.22. As
expected, the absolute values of the implied timescales have increased, as has the relative separation
between t2 and t3. This sensitivity case is included as, while the sign structure is the same for the
first and third relaxation process, it has changed for the second relaxation process. Therefore the
first, definitely slow, relaxation process is robust with respect to its sign structure. The second
relaxation process which may or may not be dominant, changes its character as a function of the
MSM lag time and will need to be further investigated.

Sensitivity 2 changed the hyperparameters to the best performing set with the interatomic
distances feature (χ = |r1 − r2|, τ = 1ns, m = 2, n = 110) and is shown in figure 6.23. This was
justified because of the similarity in the maximum response values (base case: µ = 3.56± 0.18,
sensitivity 2: µ= 3.44±0.35). There is a clear similarity between sensitivity 2 and the base case in
both the free energy surface and the first relaxation processes’ timescale (t2 = 2.7µs cf.t2 = 2.2µs in
the base case) and sign structure of Ψ2 and Ψ3. There is also a greater separation in timescales
between t2 and t3 (t2/t3 ' 6) than the base case (t2/t3 ' 2). Taken together these two observations
suggest that the interatomic distances potentially resolve the first relaxation processes similarly.

Sensitivity 3, changed the value of τ to 85ns from τ= 10ns in the base case and is shown in
figure 6.24. This value of τ was chosen because the response at this point had the smallest overlap
with the incumbent (base case: µ= 3.56±0.18, sensitivity 3: µ= 3.30±0.24), in other words it was
the least similar of the values with overlapping distributions. Here there is a distinct difference
in the absolute values of the timescales and the free energy surface compared to the base case.
To further delineate the difference between the two TICA representations, figure 6.25 shows the
difference between the first two TICA components. The TICA components of the base case are
shown in blue with the magnitude of the individual elements (corresponding to the 116 dihedral
angle features) ordered in decreasing value. The corresponding elements for sensitivity 3 are shown
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Figure 6.20: Optimised response surface of AADH, f (x;D410). The response
surface was estimated using both the randomly sampled and optimised hyperpa-
rameters. For each feature a single heat map is shown for n = 310, with τ on the
vertical axis and m on the horizontal axis. All values of m in the range 1 ≤ m ≤ 10
are shown. The white star denotes the approximate location of the maximum of
the surface, the true maximum occurs at τ= 10ns,m = 2,n = 310. The value of the
response surface is denoted by the color (lighter implies higher values) and with the
text annotations.
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Figure 6.21: Base case MSM. The MSM was estimated with the optimum hyper-
parameters: χ = (φ,ψ,χ), τ = 10ns, m = 2 and n = 310. Panels (a), (b) and (c)
show the non-trivial eigenvectors used in the VAMP-2 score, the horizontal and
vertical axes are the first two TICA components. Panel (d) are the first ten implied
timescales, colored according to whether they were used in the VAMP-2 score. The
error bars are the 95% credible intervals. Panel (e) is the free energy with the same
axes as panels (a) - (c). The MSM was estimated using MCMC with 1000 posterior
samples.

in orange with the sign flipped. The normalized overlap between the two TICA components of the
base case and sensitivity 3 are 0.63 and 0.56 for the first and second TICA components respectively.
This is due to the different weights attached to each dihedral angle features. This suggest that
the two TICA eigenvectors represent a qualitatively and quantitatively different model. Where this
change comes in the response surface and and what the corresponding values of the response will
determine whether this an example of the Roshomon effect.

6.4 Coarse grained model

The aim of this section is to produce a coarse-grained picture of the conformational dynamics
using a hidden Markov model. For each of the Markov state models defined in table 6.4, maximum
likelihood HMMs with between 2−20 hidden states were estimated and the ICL calculated for each
one. No striding of the data was performed. The number of hidden states was determined by the
smallest value of the ICL (g ICL). A Bayesian HMM was estimated with the selected number of
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Figure 6.22: Sensitivity 1 MSM. The MSM has the same hyperparameters as the
base case but with τM = 20ns. See caption of figure 6.21 for details.

Figure 6.23: Sensitivity 2 MSM. This sensitivity used the best performing hyperpa-
rameters with a different value of χ to the base case. The hyperparameters were
chosen to be χ= |r1 −r2|, τ= 1ns,m = 2,n = 110) and τM2ns. See caption of figure
6.21 for details.
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Figure 6.24: Sensitivity 3 MSM. The hyperparameters were the same as the base
case but with a longer TICA lag time τ= 85ns. See caption of figure 6.21 for details.

Parameter Base case Sensitivity 1 Sensitivity 2 Sensitivity 3

Markov lag time, τ(MSM) 2 ns 20 ns 2 ns 2 ns
Feature, χ (φ,ψ,χ) (φ,ψ,χ) |r1 − r2| (φ,ψ,χ)
TICA lag time, τ 10 ns 10 ns 1 ns 85 ns
TICA components, m 2 2 2 2
Cluster centres, n 310 310 110 310

Table 6.4: Markov lag time and hyperparameters of selected models.
These models are the base case and sensitivity models to be coarse grained in section
6.4.
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Figure 6.25: Comparison of the base case and sensitivity 3 TICA eigen-
vectors. The TICA lag time for the base case was τ = 10ns (blue) and for
sensitivity 3 was τ = 85ns (orange). The individual elements correspond to the
weights associated with each of the 116 dihedral angle features. Only the absolute
values are shown. The elements were ordered according to the absolute value of the
elements in the base case for each TICA component to highlight the differences.
The normalized overlap between the base case (v1) and sensitivity three (v2) is
calculated as v1 ·v2/|v1||v2|.

hidden states with four independent chains each with 4000 posterior samples, collected after 1000

burn-in steps. The trajectories were strided according to equation 2.31 to avoid optimistic bias in the
error estimates [248]. Convergence of the samples was checked using the rank-normalized R̂ statistic
[254] of the non-zero hidden transition matrix elements. If a converged Bayesian HMM could be
estimated then a CK test was performed. All calculations were performed using the packages cited
in chapter 5.

Values of the ICL for each case are shown in figure 6.26 which have been scaled for clarity. For
reference the unscaled ICL values and the contribution due to the classification entropy are tabulated
in table 11.7. The ICL behaves differently for AADH compared to the Prinz potential and selects
large numbers of hidden states. As expected the log-likelihood increases with g for each case, as
does the BIC penalty term (d · log(Nobs)), however, unlike the results for the Prinz potential (figure
5.3) the entropy term increases only negligibly. In addition, as the maximum likelihood HMMs were
calculated using the sliding window counting method, the value of Nobs is an over-estimate. The
number of selected states for each case is large (18, 8, 19, 18 for the base case and sensitivities 1 - 3
respectively) and in each case the number of strongly connected hidden states, g s, was less than the
stipulated number of hidden states, g (table 11.7 also shows g and g s for all models). For example,
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Figure 6.26: Hidden state selection of AADH with the ICL. The base case
is shown in panel (a), and the three sensitivity cases in panels (b) - (c). The coloured
bars show the components of the ICL: the log-likelihood (−2LL) term is in blue,
the BIC penalty term, d · log Nobs, is shown in green, and the classification entropy
penalty term, 2 ·E N , is shown in red. The values are scaled so the minimum for
each case is 1, this value is denoted with an arrow and labelled with number of
hidden states. Models which failed to converge are missing.
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the ICL selected g ICL = 18 hidden states for the base case, figure 6.26 panel (a). However, after
re-estimating as a Bayesian HMM the largest strongly connected set within this model had g s = 15

hidden states. This was because, as described in section 2.4, the trajectories were first strided so
that the observations were approximately independent. The striding interval was estimated from
the data using equation 2.31 which for the base case was ∆t = 2ns. Increasing the value of τM will
also decrease the connectivity of the count matrix if the hidden states are separated by timescales
comparable to the new larger τM. This explains the failure to converge models 15 of the models at
the longer lag time of sensitivity 1, figure 6.26 panel (b).

The base case with g = 18 hidden states was re-estimated using Bayesian estimation so that the
errors could be determined. There was moderate convergence of the posterior chains with 63 % of
the transition matrix elements under the recommended threshold of R̂ < 1.01 while the remaining
elements had R̂ < 1.1 (the full R̂ statistics are tabulated in table 11.8). The final model is shown in
figure 6.27. Panel (a) shows the observed states assigned to the 15 strongly connected hidden states
in the space of the two TICA components (IC 1 and IC 2). 267 out of 310 observed states are used
in the model which constitute just under 95 % of the observed states found in the trajectories; the
missing states are shown as unfilled black circles. However, the striding of the trajectories meant
that only 5 % of the total observations were used. All metastable states have short lifetimes in the
range 20 ns to 60 ns with two exceptions: state h2 (223 ns [61.7 ns–4430 ns]) and state h15: (275 ns

[53.4 ns–7400 ns]). These two states are the two predominantly involved in the dominant relaxation
process shown in panel (c) with a timescale of 1180 ns [373 ns–8180 ns]. This and the remaining
timescales, for comparison, are shown in panel (d). There are two limitations to the base case hidden
Markov model. First, the HMM could not be validated using the Chapman-Kolmogorov test because
models with longer lag times resulted in further disconnections in the hidden state count matrix i.e.,
at lags of τM > 2ns the number of strongly connected hidden states was smaller than 15. Second,
missing observed states around (IC1 = 0.9, IC2 = 2.3) (which collectively will be called h−1) in figure
6.27 panel (a) are involved in the the dominant relaxation process in the base case MSM, shown in
figure 6.21 panel (a). This process, with an implied timescale of 2.21 µs [1.03 µs–5.21 µs] is therefore
not captured in the HMM.

No Bayesian HMM with ICL selected number of hidden states could be estimated for either
sensitivity 1 (the base case with τM = 20ns) or for sensitivity 3 (the base case with τ= 85ns) because
the trajectory striding required for accurate error estimation resulted in disconnected count matrix.

A Bayesian HMM was estimated for sensitivity 2 which, after striding by 2ns according to
equation 2.31, resulted in only 13 hidden states forming a strongly connected set. Convergence
of the model was mixed, 60 % of the transition matrix elements were under the recommended
threshold of R̂ < 1.01, however, the remaining elements were unconverged with values up to 1.3.
The full list of R̂ statistics can be found in table 11.11. The final model is shown in figure 6.28.
Panel (a) shows the assignment of the observed states to the 13 hidden states. Only 89 of the 110

observed states were used in the model (the missing states are shown as unfilled circles) constituting
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Figure 6.27: Base case HMM. Panel (a) shows the observed states (colour circles)
in the space of the first two TICA components, IC 1 and IC 2. Each observed state,
j is assigned to the hidden state with the maximum a posteriori probability, i.e.
argmaxi P(h = i |s = j ). Each colour corresponds to a hidden state, labelled 1–15.
Panel (b) shows the median lifetimes of each state with 95 % credible intervals.
The horizontal width of the error bars and sizes of the markers are proportional
to the stationary distribution of each hidden state. The Markov lag time is shown
as a black horizontal line for comparison. Panel (c) shows the dominant hidden
state relaxation process, Ψ2(h). Each observed state assigned to a hidden state i
is coloured according to the value of Ψ2(i ) . Panel (d) shows the median implied
timescales of the hidden state relaxation processes with 95 % credible intervals. The
Markov lag time is shown as a black horizontal line for comparison.
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Figure 6.28: Sensitivity 2 HMM. Panel (a) shows the observed states (colour circles)
in the space of the first two TICA components, IC 1 and IC 2. Each observed state,
j is assigned to the hidden state with the maximum a posteriori probability, i.e.
argmaxi P(h = i |s = j ). Each colour corresponds to a hidden state, labelled 1 to 13.
Panel (b) shows the median lifetimes of each state with 95 % credible intervals.
The horizontal width of the error bars and sizes of the markers are proportional
to the stationary distribution of each hidden state. The Markov lag time is shown
as a black horizontal line for comparison. Panel (c) shows the dominant hidden
state relaxation process, Ψ2(i ). Each observed state assigned to a hidden state i
is coloured according to the value of Ψ2(i ) . Panel (d) shows the median implied
timescales of the hidden state relaxation processes with 95 % credible intervals. The
Markov lag time is shown as a black horizontal line for comparison.
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Figure 6.29: Donor-acceptor distances of the hidden states. The mean and
95 % quantiles of the distribution for the OD1—C1 and OD2—C1 for each hidden
state in the base case (panels (a) and (c) respectively) and sensitivity 2 (panels (b)
and (d) respectively) HMMs. The colour scheme matches the colours in figures 6.27
and 6.28. In addition, the missing states h−1 are shown in black. The horizontal
blue line is distance estimated using QM/MM in reference [372].

over 92 % of the observed states. However, due to the striding only 4 % of the observations were
used. The hidden state lifetimes are shown in panel (b). All hidden states were short-lived with
median lifetimes between 8 ns to 64 ns except for state h5, the most populous state, which has a
lifetime of 961 ns [416 ns–3310 ns]. The dominant relaxation process, panel (c), involves population
transfer between state h5 and the four short-lived states h1−h4 with an implied timescale of 1210 ns

[533 ns–6590 ns]. This and the remaining implied timescales are shown in panel (d).
The sensitivity 2 HMM suffers from the same drawbacks as the the base case model and for the

same reasons: the model could not be validated by the CK test and it is missing observed states
important in the dominant relaxation process identified in the corresponding MSM, shown in figure
6.23. The collection of observed states in the region (IC1 = 0.8, IC2 = 1.9) (which collectively will be
called h−1) in figure 6.28 panel (a) are involved in the the dominant process in the base case MSM,
shown in figure 6.23 panel (a). This process, with an implied timescale of 2.69 µs [1.35 µs–4.61 µs is
therefore not captured in the HMM.

6.5 Conformational landscape of AADH

Although the validity of the base case and sensitivity 2 models as a description of the dynamics
has not been established, understanding their implications for the conformational dynamics will
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complete their description and help guide further work in this area.
As already established in section 6.2.6 the sampled conformations in the D active site do not

correspond to reactive conformations established in QM/MM studies. However, within the sampled
conformations the base case HMM resolves hidden states with variable degrees of reactive character
as determined by their acceptor-donor bond lengths (TTW-C1—Asp128-OD1/OD2 bond length)
as shown in figure 6.29. The base case h3 has a smaller donor-acceptor bond length to both both
acceptors (OD1 and OD2), 5.5 Å and 4.3 Å respectively than the other hidden states. These other
states (including the ‘missing’ state h−1) have donor-acceptor lengths between 7.7 Å to 9.7 Å to
OD1 and 6.0 Å to 7.8 Å to OD2.

The dominant relaxation process (figure 6.27 panel (a)) transfers population between the
relatively populous h2 (π̃2 = 10.3% [0.1%–73.4%]) to state h15 (π̃15 = 23.4% [1.6%–91.3%]). From
h2 to h15 the donor-acceptor distance increases from approximately 7.7 Å & 6.1 Å to 9.3 Å & 7.5 Å

to OD1 & OD2 respectively. However, this process proceeds through the ‘reactive’ state h3 with
the smallest pair donor-acceptor distances, 5.5 Å & 4.3 Å.

This mechanism is shown in the network plot, figure 6.30. In this figure the hidden states i

and j are only shown connected if the flux between them, π̃i T̃i , j , is greater than 0.01 %. This is to
simplify the picture - the full rate matrix is tabulated in table 11.9. The ‘missing’ state h−1 is also
shown as a disconnected, dashed circle, for reference. Representative structures for a selection of
the important states are also shown. In each of these structures bond to OD1, OD2, HI-2, HI-3, are
highlighted in yellow and the three most important dihedral angles an highlighted in blue. These
angles correspond to the top two largest TICA components in both IC 1 (χ1-X109 and φ-G85,
where X109 is the abbreviation of TTW109) and IC 2 (χ1-X109 and ψ-V83).

In order to understand the slowest relaxation process in the base case HMM, consider the
pathway h2 → h3 → h13 → h15. This is the highest flux pathway i.e. the pathway which at each
point selects the highest flux connection. The change in the dihedral angles can be seen in the
accompanying structures in figure 6.30 and in the distributions plotted in figure 6.31. The first
step, h2 → h3, proceed primarily through an increase in both φ-G85 (figure 6.31 panels (i) and (j))
and ψ-V83 (panels (e) and (f)). The second step, h3 → h13, proceeds at a relatively slow rate of
0.8 µs−1 [0.0 µs−1–4.2 µs−1] with a large increase in the χ1-X109 angle (6.31 panels (b) and (c))
from approximately 70◦ to 190◦. The final step h13 to h15 proceeds with a decrease in the variance
of the φ-G85 and ψ-V83 distributions.

The picture arising from the coarse graining sensitivity 2 is very different to the base case,
even though the difference in the estimated VAMP-2 score for the MSM was small, (base case:
µ= 3.56±0.18, sensitivity 2: µ= 3.44±0.35). First, the hidden states of sensitivity 2 show no large
differences in their donor-acceptor lengths which all lie between 7.6 Å–9.1 Å to OD1 and 5.9 Å–7.3 Å

to OD2 as shown in figure 6.29 panels (b) and (d). The stationary distribution is distributed
primarily in a single state, h5 (π̃5 = 30.12% [5.27%–68.33%]) which is an order of magnitude
more long lived (961ns [416ns–3310ns]) than either base case h2 (223ns [61.7ns–4430ns]) or h15
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Figure 6.30: Base case HMM as a network. Each orange circle is a hidden
state with area proportional to its stationary distribution. Arrows connect states i
and i where the flux, π̃i T̃i j , is greater than 0.01%. The orientation of the states
mirrors their position in the TICA plane. Representative structures are shown for
h−1,h2,h3,h4,h13,h15. The most important TICA dihedrals are shown in blue. The
yellow bonds are the C—OD1/OD2 on the Asp 128 residue (D128) and the CI—
HI2/3 bonds on TTW 109 (X109). Rates of interconversion are shown for those
states connected to h3.
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Figure 6.31: Distribution of important dihedral angles in the base case
HMM. The χ1 dihedral angle of TTW 109 for hidden state 2, 3, 13, and 15 are
shown in panels (a) - (d); the ψ backbone dihedral of Val83 in panels (e)-(h); and
the φ backbone dihedral of Gly85 in panels (i) - (l). Angles are shown in degrees
and have been shifted so that they lie in the range 0° to 360°.

(275ns [53.4ns–7400ns]).

Sensitivity 2 state h5 is structurally most similar to the base case state h6. This was determined
by looking at the distributions of RMSDs shown in figure 11.7. The RMSD distribution within
each base case hidden state (‘BC-BC’) and between the base case and sensitivity 2 h5 (‘BC-S2’)
were compared to the distribution of RMSD within sensitivity 2 h5 (‘S2-S2’). For base case h6 the
three distributions were similar and the two states were determined to be the same. However, base
case h6 has a much shorter lifetime (30.4ns [13.2ns–110ns]) and smaller stationary distribution
(1.6% [0.1ns–5.8ns]). Despite these differences, the dominant timescale process in both base case
and sensitivity two are similar (1210ns [533ns–6590ns] for sensitivity 2 and 1180ns [373ns–8180ns]

for the base case). The difference in the VAMP-2 scores for the MSMs are small, but the coarse
grained models of the base case and sensitivity 2 result in very different models. While this is
expected of different features, the similar implied timescales and the similar VAMP-2 scores suggest
that the being able to distinguish between these models will require further analysis and potentially
more data collection.
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6.6 Alternative analyses

An alternative to using the ICL to select the number of hidden states in a HMM model is to simply
stipulate a two state model. This can be justified by the fact that this is the simplest model involving
more than one conformational metastable states, and, that there is a separation in timescales
between the dominant timescale and the remaining timescales shown in figure 6.21, panel (c). It
is also the model stipulated in the extended transition state theory model of reference [220, 221],
discussed in the introduction.

Some likely features of such a two state model can be inferred from the 15 state base case
model shown in figure 6.27. First, the two new states (A and B) will be made up of unions of the
existing 15 states. The sign of the dominant eigenvector (Ψ2, panel (c)) gives an indication of how
these states would be assigned to A and B , using a similar approach to PCCA+ for coarse-graining
(see section 2.4.2). Ψ2 is negative for state 2 (in orange, panel (a)) and positive for the remaining
states. This indicates that the slowest dynamic process involves interconversion of state 2 and the
remaining states. As a consequence, state A would consist of the state 2 and state B would consist
of states 1 and 3 to 15. However, this results in a model which loses some important details, which
the 15 state model brings out. Primarily, the DAD to OD2 (and to a lesser extent to OD1) for
state 3 clearly shows that it is a distinct conformations which could be important for understanding
reactivity (figure 6.29, panels (a) and (c)). For example, new molecular mechanics or QM/MM
simulations could be seeded from this state to investigate other reactive paths and conformations.
If this was subsumed into the larger state B, this detail would have been lost. Additionally, the
TTW109 χ1 dihedral angle is the dominant feature making up the first TICA component (i.e., its
value changes left to right on figure 6.30). States 2 and 3 are clearly similar with respect to their
values of this feature (figure 6.31 panels (a) and (b)) suggesting that they should should be grouped
together, rather than separately in A and B . However, it is possible that the sign of Ψ2 splitting
states 2 and 3 is an artifact of the noise in the data, as evidenced from the large error bars in
the implied timescales (see figure 6.27 panel (d) and figure 6.19). A two state model, while not
immediately preferred, would be a clear cut candidate for further study.

The main drawback of the analysis thus far presented is that the final coarse-grained HMMs
could not be validated. The reason for this is because of data removal as part of the Bayesian
estimation algorithm used to estimate the HMMs. To summarise the method used to arrive at the
base case Bayesian HMM discussed in section 6.4 (although this applies to all HMMs estimated):
maximum likelihood HMMs with different numbers of hidden states were estimated and the ICL
calculated for each one. The ICL selected an 18 state maximum likelihood HMM. The analysis
method was then switched to Bayesian estimation, using PyEMMA, in order to accurately estimate
the errors, or credible intervals, of the various HMM observables (e.g., implied timescales). The
Bayesian estimation algorithm first removes frames from each trajectory which it estimates are
highly correlated, in order to remove bias in the estimated HMM parameters. As a result, 95 % of
the simulation data was removed. This data removal process is discussed in full in section 2.3.4.3
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and is a standard technique in Bayesian analysis [252]. Because of this data removal, the new
transition matrix in the Bayesian HMM had only 15 ergodic, or strongly connected, hidden states.
The remaining three hidden states were effectively disconnected because transitions between the
two groups of hidden states were observed only in the frames that were removed. This phenomena
is discussed in section 2.3.4.2. The effect of data removal on the number of ergodic hidden states
was dependent on the Markov lag time, meaning the definition of the HMM changed with τ. This
meant the HMMs presented here could not be validated by the Chapman-Kolmogorov test.

An alternative to this process would have been to bootstrap maximum likelihood HMMs, thus
mitigating the need to remove MD frames from the analysis. This would have kept the definition
of the HMMs consistent at different values of τ and allowed these models to be validated using
the Chapman-Kolmogorov test. To perform a bootstrap analysis, the discretized MD trajectories,
used to estimate the MSM and HMMs, would be sampled with replacement N times, to create N

different data sets. N would be chosen large enough that the resulting confidence intervals in model
observables converged (N is typically ∼ 100–1000 [256]). For each of the N data sets a maximum
likelihood HMM would be estimated and the implied timescales (and other observables) calculated.
From the resulting distribution of implied timescales, 95 % confidence intervals could be calculated.
The Chapman-Kolmogorov test would also be applied to these models to check the models for
consistency with data. This avoids the need to remove frames from MD trajectories because the
maximum likelihood estimate of the transition matrix elements is is not affected by correlations in
the data.

6.7 Conclusions

AADH is an important system for studying the effects of enzyme conformational dynamics on
catalysis due to the large and temperature independent kinetic isotope effect. Previous computational
and experimental work determined the mechanism and estimated the free energy barriers using
tryptamine as a substrate. Interpreted in the light of the full-tunneling models, the temperature
dependence of the rate limiting step is due to the heavy atom reorganisation to achieve a tunneling
ready state. The picosecond vibration that samples the donor acceptor distance in the tunneling
ready state identified in reference [216] only introduces a negligible temperature dependence. The
role of conformational dynamics in the full-tunneling models, the two-state transition state theory
of [220] or other non-equilibrium proposals has still not been resolved.

The first aim of this work was to estimate the conformational landscape of AADH in its reactive
(Schiff-base) state. The picture arising from the base case model shows the active site has a ensemble
of short lived (20 ns to 300 ns) metastable states, with one state (state 3) with a significantly
shorter donor-acceptor distance (approximately 4Å) than the other states. This state is a flux bottle
neck state between two long lived states which interconvert on a timescale of approximately 1.2µs,
primarily as the result of a rotation in the χ1 dihedral angle on the TTW residue. The reason why
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this process proceeds through bottle neck state has not been elucidated. Sensitivity 2 is a model with
a similar, but smaller, value of VAMP-2 score for the corresponding MSM, but the picture arising
does not back up that from the base case model. This either sheds doubt on the robustness of the
conclusions from base case model, or on the ability of VAMP-2 score to differentiate between models
with the amount of data collected here. The models presented here did not show any metastable
states which could correspond to reactive or tunneling ready states. Therefore this work is of limited
immediate use in resolving the role of conformational dynamics the reactivity of AADH.

The limitations of this work stem from issues in the simulation data. An error in the preparation
of the simulation resulted in a missing an disulphide bond adjacent to the active site in the H chain.
The conformations of the H and D chains were radically different, although surprisingly the H active
site was more similar to the reactive conformations found in previous QM/MM studies. The effect
of the large conformational change in the loop 92–108 in chain D and its effect on the dynamics
of the active site was not investigated. If interactions from this loop with the active site change,
the the assumption of stationarity when estimating the transition matrix is not valid. In addition, a
number of unobserved residues were not modelled and there was moderate correlation between each
trajectory’s initial configuration, further limiting the generalizability of the simulations.

The second aim of this work was to critically assess the optimisation and model selection methods
built up in chapters 4 and 5. The MSM building process was initialized by building an exploratory
Markov state model and estimating a Markov lag time of τ= 2ns and the number of dominant
eigenvalues, r = 4. The response surface of an MSM of the active site, with four hyperparameters
(χ, τ, m and n), was modelled with a Gaussian process. This highlighted some of the weaknesses of
GPs for modelling these types of response surface. First, the conditional structure of the predictor
space meant that the RMSD feature was not able to be incorporated into the response surface - a
known problem for for GPs in this setting. Second, although standard model selection techniques
were used to select the most appropriate GP kernel and input warping, the selected GP model fit
the hyperparameter trial data set with varying success across each value of the protein feature.
For three out of the four features the model fit the data well, however, the fit of the response
surface for the best performing feature, the (φ,ψ,χ) dihedral angles, was less satisfactory. Third, the
hyperparameters which failed to produce a converged MSM were ignored in the response surface
modelling. This is ignoring valuable information and in future work this should be incorporated,
although it is not clear how this may be achieved effectively without resorting to a different type of
response surface model.

However, modelling the hyperparameter response as a GP had a number of practical benefits on
top of those mentioned in chapter 4. First, the definition of the incumbent - best performing set of
hyperparameters - uses information from all the other sampled trials through their influence on the
mean and uncertainty of the GP. This is important as it decreases the influence of chance fluctuations
in the measured response and increases the reproducibility of the result. Second, it allowed the
relevance of hyperparameters to be rigorously defined and interpreted for both quasi-continuous
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(i.e. τ,m and n) as well as categorical (i.e. χ) hyperparameters. This led to the conclusion that
the the TICA lag time, τ, is more important in determining the VAMP-2 score than the number of
microstates, n, in line with the findings from chapter 4. This will increase efficiency hyperparameter
selection in follow up work on this system, and may generalize to other systems. Third, the relevance
of the hyperparameters was able to guide efficient visualisation of the five-dimensional response
surface, enabling suitable sensitivity analysis to be suggested. Making use of the relevance in this
way will be useful for not only MSMs but for understanding and optimising other complex statistical
and machine learning models.

Bayesian optimisation was used to optimise the MSM response, although this did not affect
the final set of hyperparameters appreciably. Despite this, the optimisation step was important to
confirm the convergence of the MSM response surface. By seeding the optimisation algorithm with
fewer observations, Bayesian optimisation was able to find the maximum of the response surface
with a smaller overall number of MSM evaluations. Although not conclusive, this work will hopefully
encourage further research in this area to further reduce the amount of computational resources
necessary for optimising MSMs.

The ICL was used to select the number of hidden states used to coarse grain the four MSM
models (base case and three sensitivity tests), using a HMM approach. The selected HMMs were
re-estimated using a Bayesian analysis in order to quantify the uncertainty in the model observables.
This method is attractive because maximum likelihood models are relatively quick to estimate and
the ICL requires negligible extra calculations. The more laborious Bayesian fitting procedure can
then be reserved for models with higher probability of being useful. This meant that a large number
of models could be quickly assessed for goodness-of-fit. However, this approach was not satisfactory
for a number of reasons. First, the difference in the way the maximum likelihood and Bayesian
HMMs are estimated means that the number of reversibly connected hidden states differed between
the maximum likelihood and Bayesian approaches. This renders the interpretation of the ICL (as
the model with the greatest evidence for observed and hidden state structure) less meaningful.
Second, in the case of sensitivity models 1 and 3, the selected Bayesian models could not be
estimated at all. Additionally, the base case and sensitivity 2 models could not be validated via a
Chapman-Kolmogorov test. This is the result of the data removal process in the Bayesian estimation
algorithm. An alternative analysis method using the Bootstrap procedure was suggested which
mitigates this data removal process. Lastly, an two state model was considered and its properties
inferred from the base case model already presented. While a two state model would be justified, it
may be too coarse-grained to capture some of the potentially important features of the 15 state
base case model.

A program of future work to address the limitations of both the simulation data and MSM
construction issues (beyond that already addressed in section 6.6), as well as to extend this work is
presented in chapter 7.
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7
CONCLUSIONS AND OUTLOOK

7.1 Summary of main findings and improvements

Chapter 3 demonstrated the use of Markov models to explain deviations to the Stoke-Einstein
(S-E) equation of water diffusion in a sucrose matrix. Compared to the workflow presented in later
chapters, a simplified modelling approach was taken. After inspection of the simulation data, the
natural MSM basis set used to model the water dynamics was microstates clustered in the space
of the Cartesian coordinates of the water molecule. Heuristics from the from the literature guided
the other modelling choices and no variational optimisation of basis sets, of the kind described in
chapter 4, was performed. This meant that the modelling could be done at scale - 8000 different
MSMs were estimated and used to partition, classify and analyse the MD data. The results showed
that 11.8 % of the time the water was trapped in cavities defined by the sucrose matrix undergoing
reversible hopping dynamics with an average barrier height of 6.42kB T .

To develop this work further a number of improvements can be made. First, the proportion of
time spent in local equilibria could be refined by more accurately partitioning each MD trajectory
into reversible/non-reversible sections. Instead of a single sucrose position decorrelation time (which
determined the 1 ns time-slices used in chapter 3), a local estimate can be used by averaging the
autocorrelation function over small range of values t −∆t < t < t +∆t :

(7.1) RX ,X (t ′) = Et∈[t±∆t ]
[

X t X̄ t+t ′
]

and choosing the longest time such that RX ,X (t ′) > 0.8 (or some other threshold). By repeating this
process along the whole trajectory an ‘adaptive’ partition of trajectories into stationary would be
achieved. Second, using this more accurate partition, the irreversible timescales could be estimated
using Koopman models [96]. With both sets of timescales estimated a more mathematically precise
comparison of the S-E and cavity dynamics model can be made. Third, using more complex basis
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sets involving water-sucrose interactions could be variationally optimised using the methods of
chapter 4, potentially shedding more detailed light on the microscopic mechanism of transport
between the cavities.

Chapter 4 demonstrated how to use Bayesian optimisation of model hyperparameters, a technique
common in machine learning, for an MSM of alanine dipeptide. Specifically, Gaussian processes
regression was used to model the response surface of an MSM with respect to its hyperparameters
and Bayesian optimisation used to optimise the number of microstates, n and the continuous
feature, χ. Gaussian processes regression modelled the response surface well. Calculation of the
hyperparameter relevance, quantified what was already apparent from visualisation of the response
surface, namely: that the VAMP-2 score was insensitive to the number of microstates, and, for
different protein features, the shape of the response surface was similar. An interpretation of the
hyperparameter relevance for categorical variables which extended the usual definition [306]) was
presented. Both the (φ,ψ) dihedral angles and the heavy atom positions captured the slow relaxation
processes equally well. Bayesian optimisation was then used to optimise the hyperparameters and it
was shown that 50 seed observations was needed to initialise the Bayesian optimisation algorithm.
However, this did not improve the VAMP-2 score, but did provide a useful convergence check on
the hyperparameters already selected.

The main limitation of this study is that the response surface was too simple and did provide
adequate complexity to test the Bayesian optimisation algorithm (proven in other machine learning
model studies [135, 306]). In addition, the irrelevance of the number of microstates, n, was not
in line with other MM studies [94, 97, 194]. This counter-intuitive result needs to be verified.
To do this, the search space of n should be shifted from [10,1000] to [2,100]; MD data with a
higher temporal resolution data used; and the search space expanded to include different clustering
algorithms. In addition, this should be replicated on different benchmark systems, e.g., the Villin
headpiece and β-lactamase used in reference [168] or the twelve fast folding proteins [93] used
in other studies [92, 246, 253]. Using these extended benchmark systems, the demonstration of
Bayesian optimisation (BO) and the test of the number of required seed observations could be
improved by: i) increasing the number of Bayesian optimisation steps from 10 to 100, or until
convergence in the response surface, and ii) repeating the optimisation a larger number of times to
gain a statistical insight into its efficacy, and a more generalizable estimate of the number of seed
observations. Working with a set of well-converged simulations of larger proteins, would increase
the generalizability of the conclusions about hyperparameter relevance, and provide a more robust
test of Bayesian optimisation than just alanine dipeptide. To extend this work even futher and bring
statistical modelling of biomolecular systems ever closer to machine learning best practice, the use
of response surface models which take into account conditional hyperparameter search spaces such
as tree Parzen estimators or Random forests could by tested.

Chapter 5 drew on ideas from the mixture model community to demonstrate the use of the
integrated classification likelihood (ICL) and other information criteria in determining the appropriate
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number of hidden states in a HMM. The benefits of these type of model selection metrics are that
they are easy to calculate and do not rely on being able to resolve clear gaps in the eigenvalue
spectrum. The ICL was able to correctly determine the number of metastable states in an HMM of
the four well Prinz potential for 3 out of 5 lag times tested, while selecting only one extra state
for the remaining 2 lag times. The remaining criteria overestimated the number hidden states by a
considerable margin. The main limitation of this work is the limited amount of benchmarking. A
number of further steps are needed to gain a better estimate of the generalizability of the ICL. First,
bootstrap the simulation data and calculate the selected number of hidden states on each bootstrap
sample. This would give probabilities of the each criteria selecting the correct number of states,
rather than the current single point estimates. Second, and still using the Prinz potential simulation
data, calculate performance of each criteria with differing amounts of data. This would allow the
performance of each criteria under the more realistic condition of limited data to be assessed. Third,
more benchmark systems are needed, both ‘toy’ models with well defined numbers of metastable
states e.g. the 2D triple well from reference [169], the model 2D potential in reference [188] used
to benchmark Bayes factors for MSMs, and Müller potential in the AIC and BIC benchmarking
in reference [194]. Other, more realistic, benchmark systems should also be used, such alanine
dipeptide, the Villin headpiece and β-lactamase (used in reference [168]) and the Fip35WW (used
in reference [194]). Lastly, the results of the ICL could be compared the full Bayes factor method
from reference [188].

Chapter 6 used the response surface and Bayesian optimisation methods from chapter 4 and the
model selection techniques of chapter 5 to create a HMM of the active site of AADH. A simulation
data set of AADH was created and the response surface using an expanded set of hyperparameters
was estimated and optimised. A number of sensitivity models were suggested from inspection of the
optimised response surface. HMMs were estimated using the number of hidden states suggested
by the ICL. The most relevant parameters for determining the VAMP-2 score were the TICA lag
time and the least relevant the number of microstates. The optimal continuous feature was the
backbone and residue dihedral angles. Coarse graining the optimal MSM using a Bayesian HMM and
choosing the number of hidden states with the ICL revealed a complex network of states. The slowest
relaxation process of approximately 1 µs involved transport between two unreactive states through a
flux bottleneck state. This bottle neck state had the shortest average donor-acceptor distance and
was thus deemed the most ‘reactive’. The second sensitivity test (and the only sensitivity test to
converge a HMM) did not confirm these results and showed a qualitatively different story albeit with
similar relaxation timescales. Due to the effective lack of data and the Bayesian estimation algorithm,
neither of the HMMs could be validated. This work failed to find evidence for the hypothesis from
reference [221] that there are two distinct, reactive conformational states.

The main drawback of this work is the AADH data set which must be corrected and expanded
before any inferences can be drawn. First, the missing disulphide bridges must modelled correctly
and the simulation cell re-equilibrated. Second, the sampling trajectories must be initialized from
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independent starting structures by minimizing and re-equilibrating structures taken from a seeding
trajectory. Third, the source of the large conformational changes both in the loop structure adjacent
to the active site and the tail residues must be investigated. This will ensure that the sampling is
taking place in conformations relevant for the rate determining reaction. The amount of simulation
data should be determined by monitoring the convergence of implied timescale for optimized MSMs
(using the methods of chapter 4), or through an adaptive sampling method [403].

7.2 Lessons learned

The objectives of this thesis were to investigate whether model selection and optimisation methods,
common in the machine learning and statistic community, could be used to create robust MSMs in
a more transparent and efficient way. Two systems were studied utilising two different workflows.
The first was water diffusion in secondary organic aerosol particles which were modelled using using
a simplified Markov model construction workflow. MSM and HMM parameters (number of basis
states, hidden states, essential degrees of freedom) were selected using heuristics from existing
literature and visualisation of the simulation data. The second was the conformational dynamics
of AADH, an important enzyme in the debate surrounding tunneling and the role of dynamics
in enzyme catalysis. The workflow used here was more complex and consisted of modelling and
optimising the response surface of an Markov state model, creating sensitivity tests, and using
statistical model selection to select a final coarse-grained description with a hidden Markov model.
A number of lessons and themes can be drawn from comparing these two approaches.

Lesson one. The more complex Markov modelling workflow, involving modelling and optimising
response surfaces, is not necessary to produce scientific insight. The results of the simplified Markov
model workflow produced interpretable and novel insights into the mechanism of water diffusion
in organic aerosol particles. However, this does not rule out the possibility that a more complex
optimisation procedure would bring benefits. To test this, a range of different features describing
the water-sucrose system could be optimised using the methods in chapters 4 and 5.

Lesson two. The choice of feature is important but the VAMP-2 scores of MSMs are largely
insensitive to other hyperparameters. Visual inspection of the response surface of alanine dipeptide,
and the calculation of the hyperparameter relevance for AADH, showed that the VAMP-2 score was
insensitive to the values of the number of microstates and TICA parameters. The choice of feature
was important, but in both alanine dipeptide and AADH, more than one feature was identified as
being optimal.

Lesson three. Bayesian optimisation is not necessary for optimising low relevance hyperparameters.
Bayesian optimisation was applied to the response surface of both alanine dipeptide and AADH
and failed to improve the VAMP-2 scores in both cases. However, when seeded with an appropriate
amount of data, the Bayesian optimisation algorithm provided a convergence check on the optimum
value of the VAMP-2 score.
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Lesson four. Modelling and visualising the response surface of a model allows the creation of
principled sensitivity tests. In order to test the conclusions of a statistical analysis, results should be
compared after changing key modelling choices. Sensitivity tests 2 and 3 for AADH were devised
after inspection of response surface showed how different features and TICA lag times affected the
VAMP-2 scores.

Lesson five. MSMs with similar VAMP-2 scores produce different results. Three models with
different hyperparameters were produced based on their similar VAMP-2 scores for AADH1. However,
the results from two of them did not produce similar descriptions of conformational dynamics.
However, this could be the result of inadequate simulation data.

Lesson six. The integrated complete data likelihood criterion is a promising model selection
criterion for selecting the number of metastable macrostates. It selected the appropriate number of
metastable macrostates in the model system used, but the test was not thorough and it should be
tested further. However, it is simple to calculate, and its interpretation is in line with the goals of a
hidden Markov model analysis, namely that coarse-graining is a trade-off between crisp partitioning
of microstates into macrostates and modelling the dynamics accurately. However, it should be noted
that this only applies to data in which the dynamics are metastable. When it is important to model
transition regions, the HMM approach to coarse-graining is not appropriate.

7.3 Outlook and further work

The outlook for further work builds on these lessons and the specific findings of chapters 3 and 6 in
three areas.

First, Markov models can and should be used for areas outside of large biomolecule simulations.
The mechanism of water diffusion suggested by this work is not proven generally and needs
investigation in both the other saccharide systems experimentally studied here, as well as through
other amorphous materials such as those found in pharmaceutical delivery systems [404].

Second, the classification likelihood used in the ICL selection metric, could be used to extend the
work of reference [188] to create a classification Bayes factor. This would provide an alternative to the
current Bayes factor for judging the quality of a coarse-graining method and number of metastable
states. The information gained from this type of Bayes factor would be to more accurately (than
the approximate ICL) determine how well a given coarse-graining crisply partitions microstates into
macrostates, while both preserving Markovian dynamics and taking into account over-fitting. Like the
full Bayes factor method of reference [188], however, this would require much more computational
effort than the ICL. However, Bayesian variational inference methods [405], which replace the
expensive sampling of traditional Bayesian estimation with approximations of the Bayesian posterior
distribution, could be used as an approximate method for calculating both types of Bayes factor.

1Sensitivity test 1 changed the Markov lag-time which is not a hyperparameter.
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Third, the metrics used to score Markov state models need further investigation. Lesson five
suggests that the VAMP-2 score may hide important differences between MSMs built with different
hyperparameters. If this is accurate and holds generally, this would be an example of the Rashomon
effect: where models which perform similarly according to some metric (e.g., predictive performance,
VAMP-2 score), differ in interpretation [318]. If MSMs do exhibit the Rashomon effect then this
would have important consequences for the interpretation of simulation data. For example, if two
models with similar VAMP-2 scores describe different dynamical processes then this needs to be
taken into account when reporting results. This would also call for further tests (experimental or
computational) to determine which picture is correct. A test for the Rashomon effect would be
to estimate models using different protein features and compare the results, using well converged
simulation data, e.g., the benchmark twelve fast-folding proteins [93].

Fourth, response surface methods and Bayesian optimisation can be used to facilitate a robust
Markov modelling workflow. The users of Markov models for understanding biomolecular systems
are not necessarily experts in statistical model development. This has motivated the publication of
user friendly packages for creating arbitrary Markov models [253, 406]. These packages facilitate a
workflow where only a handful of different sets of hyperparameters are used, such as the simplified
workflow from chapter 3. The next stage of Markov model development could be to create not a
handful of MSMs, but the entire MSM response surface for a given set of simulation data. This
would allow the creation of sensitivity tests for testing the robustness of statistical inferences. While
the lessons learned from this thesis suggest that only the protein feature is important for determining
the VAMP-2 score, the response surface methodology could incorporate other metrics, which may be
more sensitive to other hyperparameters. If the response surface is sensitive to the hyperparameters,
Bayesian optimisation could be used to optimise this surface. Steps towards this have been taken
with the creation of Osprey [148]. In addition, the author of this thesis is currently engaged in a
code re-factoring of this package to accommodate the work of chapter 4. In future this may allow
automatic optimisation of hyperparameters as well as understanding counter-intuitive features via
their response surface. For example, solvent degrees of freedom are important but often ignored
[407]. The distance metric for incorporating solvent degrees of freedom in reference [407] does not
have the salience of, say, a dihedral angle. However estimating and optimising the response surface
with respect to its hyperparameters (the number of number of solvent molecules incorporated and
the width of its distance kernel, σ) can give an intuitive understanding of its effect on explaining
the kinetic variance. Beyond the realm of Markov models, understanding machine learning models
through their response surface could help in breaking down technical barrier between non-expert
users and the ever increasing set of methods for understanding molecular simulations [408].
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8
CAVITY DYNAMICS OF WATER IN A SUCROSE MATRIX

Appendix 8 reproduces the supplementary information of reference [109]. See chapter 3 for a
statement on the contributions to this work.

8.1 The experimental procedure for determining timescales of water

transport

In order to determine evaporation and condensation timescales for binary systems that are mixtures
of water and organic compounds, they were subjected to a single transition step of relative humidity
(RH) across different particle size and between different pair of target RH.

An individual binary solution aerosol droplet (3 µm–10 µm radius) is captured at high RH/dilute
saccharide concentration in a gradient-force optical trap (optical tweezers) formed by a tightly
focused laser beam (wavelength 532 nm) [285, 409]. After a period of conditioning at an elevated
RH (typically 70 %–80 %), the mixing ratios of humidified and dry nitrogen are altered to drive
a change in RH in the trapping cell. Measurements proceed either through small downward (or
upward) steps in RH of 10 % or following large changes of 30 % or more. The moisture content of
the droplet responds accordingly, attempting to remain at a water activity equal to the surrounding
RH, driving a change in particle size through the evaporation or condensation of water.

The time-dependence in the particle size and refractive index (hence composition and moisture
content) are inferred (with sub-nm precision for size) from the shifts in the wavelengths of whispering
gallery modes apparent on the Raman O-H stretching band of water [410–412].

Figure 8.1 shows one example of KWW fitting for the aqueous-sucrose system. The response in
particle size is inferred from the wavelength shift indicated by the red line, starting at a particle size
of 3650 nm and a wavelength of 655.4 nm following an initial period of 3 h conditioning at 30 % RH.
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From this point, the KWW equation was applied to fit the evaporation step (RH 30 % to 5 %) as
shown by the blue line. The fitting of the condensation step (RH 5 % to 30 %) is shown by the green
line. The timescales of water transport for each process were 1841 s and 2566 s, respectively. As the
fitting results demonstrate, the KWW equation is a suitable method to determine the relaxation
process.

It has previously been shown that stretched exponential relaxation reflects the departure from a
single-exponential relaxation in size as the particle becomes increasingly viscous [287],

(8.1) F (t ) = r (t )− r (t =∞)

r (t = 0)− r (t =∞)
= exp

[
−

(
t

τ

)β]
where t is the experimental time, τ is the timescale of relaxation and β characterizes the shape of
the multi-exponential time-dependence. The response function, F (t), characterizes the fractional
relaxation from the initial particle radius r at t = 0s through to the final equilibrated radius at t =∞
following the change in RH.

This KWW fitting process has been carried out using customized LabVIEW software.

8.2 The effect of particle size on equilibration time for six binary organic

systems

Before moving on to fit the compositional dependence of diffusion constants, we consider first
the qualitative dependence on droplet size. The experiment conditions are divided into two main
categories for evaporation and condensation in this study: a low viscosity transition (RH 50 % to 30 %

and RH 30 % to 50 %) and a high viscosity transition (RH 30 % to 5 % and RH 5 % to 30 %). The six
panels in figure 8.2 show measurements for six binary systems of aqueous-glucose, aqueous-sucrose,
aqueous-trehalose, aqueous-raffinose, aqueous-maltose, and aqueous-levoglucosan. All measurements
for the six binary organic mixtures clearly show different trends with respect to initial or final RH,
but the characteristic timescale of water transport (τ) clearly also shows a particle size dependence
during evaporation or condensation.

In the high relative humidity region, transitions RH 50 % - 30 % - 50 % (i.e., the evaporation
step of RH 50 % to 30 % and condensation step of RH 30 % to 50 %), the droplets of maltose
showed the largest value of timescale of water transport (τ) over the other organic particles, see
figure 8.3. Moreover, the characteristic timescale increases with increasing particle size for every
binary organic system. For example, the characteristic timescale of raffinose is 188 s for 3332 nm,
265 s for 4110 nm, and 313 s for 4924 ns. Comparing similarly sized particles of ∼ 4µm during
an evaporation step, the organic particles show 514s±31s for maltose (4114 nm), 250s±23s for
raffinose (3967 nm), 157s±13ns for trehalose (4101 nm), 59ns±19s for sucrose (4016 nm), 29s±3s

for glucose (3871 nm), and 32s±4s for levoglucosan (3746 nm). The ordering of the timescales
for all particles sizes in the range of 3 µm–6 µm show the same tendency: maltose > raffinose >
trehalose > sucrose > glucose ≥ levoglucosan, as shown in figure 8.3. In this region, raffinose and

178



8.2. THE EFFECT OF PARTICLE SIZE ON EQUILIBRATION TIME FOR SIX BINARY ORGANIC

SYSTEMS

Figure 8.1: KWW fitting for the aqueous-sucrose system. On the binary-
sucrose system, RH transition is from 30 % to 5 % for the evaporation step, and 5 % to
30 % for the condensation step. The black line is RH profile and the red line is one of
WGMs change. The blue and green lines are fitted by KWW equation (equation 8.1).
The timescales of evaporation and condensation are 1841 s and 2566 s, respectively.

maltose particles have experienced the glass transition at RH ∼ 53% and RH ∼ 32% in the ambient
temperature [285, 288]. However, trehalose, sucrose, glucose and levoglucosan do not pass through
the glass transition RH until a much lower value. The molecular diffusivity of water in each organic
system will be treated in the next section.

For transitions at low relative humidity, notably for RH 30 % to 5 % and 5 % to 30 %, which is the
high viscosity region for all compounds, the characteristic timescales of water transport of maltose
particles have the longest water transport timescales in the low humidity region. Comparing similar
sized particles of ∼ 4µm during an evaporation step, the organic particles showed the timescales
as follows: 4062s± 55s for maltose (3745 nm), 2035s± 23s for sucrose (3809 nm), 1447s± 19s

for raffinose (3952 nm), 1342s±17s for trehalose (4040 nm), and 1009s±10second for glucose
(3871 nm). Levoglucosan cannot be measured in this RH region with particles crystallising at higher
RH. The ordering of the timescales for all particles sized in the range of 3 µm–6 µm show the same
tendency; maltose > sucrose > raffinose > trehalose > glucose, as shown in figure 8.2. In this
low RH region, raffinose (RH ∼ 53%) [285, 288], sucrose (RH ∼ 23%) [285, 288], trehalose (RH

179



CHAPTER 8. CAVITY DYNAMICS OF WATER IN A SUCROSE MATRIX

Figure 8.2: Binary mixture response functions. Examples of the response func-
tions for size changes of six binary mixtures particles following a step change in RH
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Figure 8.3: Timescale of water transport (τ) for evaporation step and
condensation steps. The values are also reported numerically in table 8.1. The
evaporation and condensation timescales are determined by KWW function, and
particle size is calculated from the droplet Raman signal by the proprietary LARA
software. Compositions are: (a) binary aqueous-glucose (b) binary aqueous-sucrose
(c) binary aqueous-trehalose (d) binary aqueous-raffinose (e) binary aqueous-maltose
(f) binary aqueous-levoglucosan
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∼ 22%) [285, 413], and maltose (RH ∼ 32%) [285, 414] pass through the glass transition RH at
ambient temperature except glucose, and glucose shows the smallest timescale for water transport.
The characteristic timescale of water transport can be explained by water diffusion in the organic
particles. All water transport experimental data go into Fi-PaD diffusion simulation.
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8.3. EQUILIBRATION TIME VARIATION WITH “WAIT TIME” EFFECT

Figure 8.4: Timescales of water transport. Timescale of water transport (τ)
for each condensation step of sucrose, RH change from 30 % to 5 % then back to 30 %
after drying. Particles of black squares experienced 6 hours drying time at RH 5 %,
particles of red circles experienced 12 hours drying time at RH 5 %, and particles of
blue triangles experienced 24 hours drying time at RH 5 %. Error bars were calculated
a variation of β±0.1.

8.3 Equilibration time variation with “wait time” Effect

The relaxation dynamics for condensation processes are dependent on the “wait time” (i.e., also
referred to the aging of the particle). Figure 8.4 shows the impact of “wait time” on the relaxation
timescale of water transport in a binary water-sucrose system. In this case the relaxation timescale is
the timescale for the re-condensation of water following a period of drying of varying time (the “wait
time”). Three different experimental conditions were studied. Sucrose particles that are indicated in
black squares were dried for 5 hours at RH 30 %, and then the particles were held at RH 5 % for 6

hours. For comparison with this data set, sucrose droplets, indicated by red circles and blue triangles,
were held at 12 and 24 hours at RH 5 %. After 6, 12, and 24 hours at 5 % RH, the RH is restored
to the initial level 30 % RH. Several sucrose particles across a range of particle size (3 µm–5 µm)
were studied at each RH transition. Figure 8.4 shows that when the particles experienced a long
wait time, the relaxation timescale of water transport (τ) increased during re-condensation following
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the increase in RH to the initial level. Depending on wait time under dry conditions, the water
content varies both in magnitude and spatially before the RH is increased [287]. When increasing RH
again, water vapor immediately condenses onto the particle surface, and leads to a unique level of
heterogeneity which varies with the timescale over which moisture has been removed and the particle
dried [287, 415]. The KWW equation was used to determine the timescales for the re-condensation
step and the dependence on particle size is shown in the figure. When the particle size is larger,
the timescale for re-condensation is also greater. The three trend lines in the figure, fitted by a
linear equation, clearly indicate the relation between drying time, particle size and re-condensation
timescale. The significance of the wait time is that when particle returned to the initial state from
dry condition, the condensation time to return the particle to equilibrium with the surroundings
increases as the wait time increases.

8.4 Fickian diffusion modelling (Fi-PaD model) for determining

diffusivity of water in aerosol particles

In order to determine diffusivity of water in organic mixtures, a recently developed Fi-PaD model is
applied to experimental data in this work. This was achieved using the same WGMs as were selected
to fit KWW functions to.

O’Meara et al. developed a partial differential model, called Fi-PaD model, comparing it with
two other diffusion models referred to as the ETH model and KM-GAP model (kinetic multi-layer
model of gas-particle interactions in aerosol and clouds) [416]. The Fi-PaD model is established
using Fick’s second law. The Fi-PaD model uses three initial assumptions below:

1. An aerosol particle is spherical.
2. A spherical particle is divided into inner concentric shells.
3. A surface shell immediately reaches an equilibrium state with gas phase RH.

According to these assumptions, an aerosol particle consists of a number of concentric shells within
the particle bulk in the Fi-PaD model. In this thesis, the number of shells is 400 and the resolution
of a shell is around 10 nm for 4 µm radii of particle.

The Fi-PaD model is used to provide a forward simulation of the time-dependent size and
response function following the step change in the gas phase RH change [111, 416]. A first guess
for the water activity dependence of the diffusion coefficient is assumed. The diffusion coefficient of
water in the mixture, Dw , is assumed to follow a Vignes form [111, 416]:

(8.2) Dw(x,α) = Dxα
w,w ×D (1−xα)

w,org

where x is the mole fraction of water, Dw,w is the known and limiting value of the diffusion coefficient
of water in pure water, Dw,org is diffusion coefficient of water in pure solute at infinite dilution of
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water. α is often viewed as analogous to an activity coefficient, given by:

(8.3) lnα= A(1−x)3,

where A is a temperature dependent parameter. Using Fick’s second law, the model simulates the
concentration change of every shell in the particle by calculating the approximate diffusional mass
flux.

All measurements are performed at room temperature (20◦C). Thus, two fit parameters (A and
Dw,org) are varied independently to achieve the best fit to the time-dependent size. For the example
shown in figure 3.1 panel (a), the best-fit water activity dependence of the diffusion coefficient of
water in the mixture is shown in figure 3.1 panel (b).

8.5 Holographic optical tweezers

Holographic optical tweezers (HOT) are used to initiate the coalescence process between two aerosol
particles and to, thereby, infer the particle viscosity at a particular gas phase RH/particle moisture
content [285]. In order to catch multiple droplets, the optical additional components are required
and are shown in figure 8.5. The most significant is the inclusion of a Spatial Light Modulator
(Holoeye SLM LC-R 2500, twisted nematic, liquid crystal on silicon) on the right side and a high
bit-rate oscilloscope (LeCroy Wavesurfer 454) with photo detector (Thorlabs DET 110) on the left
side, as shown in figure 8.5. The trapping beam is a continuous wave Nd:YVO4 laser at 532 nm

(maximum output is 3 W, Opus, Laser Quantum). After the laser output, the trapping beam is a
vertically polarised by a half-wave plate, and it directly passes through a telescope which adjusts
beam size. The SLM is used to split the beam. A beam expansion telescope and inverted microscope
objective generate the optical traps to capture aerosol particles. Using the half-wave plate, the
power division between the SLM and a beam dump can be controlled. In the trapping cell, multiple
droplets can be held by the split beam. During experimental measurements, particle images are
recorded by camera, and Raman spectra are recorded by the spectrograph. Light scattering patterns
following the initiation of coalescence event are recorded by the photo detector.

8.6 Viscosity of saccharide solutions aerosol particles

Previously,the procedure for recording the viscosity of aerosols containing saccharides, alcohol, di-
and tri-carboxylic acids has been described, reporting viscosity measurements as a function of RH
[120, 285, 409]. Briefly, pairs of aerosol particles of identical composition are captured in parallel
optical traps formed using an holographic optical tweezers arrangement. The particles are conditioned
at a fixed RH (in the range < 5% to > 90% RH) for a period of time that can extend to hours. It
has been shown that this allows sufficient time for the particles to achieve a moisture content in
equilibrium with the gas phase RH and a uniform homogeneous composition/viscosity [285].
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Figure 8.5: Schematic representation of Holographic Optical Tweezers
(HOT). The camera provides particle images, Raman spectrum is recorded by the
spectrograph, and light scattering pattern is recorded by the photo detector [285].

Coalescence is initiated by beam-steering, merging the pair of optical traps. At low viscosity
(< 10Pas), the particles may merge and relax in shape on a timescale less than 1 ms, a process
that is monitored by measuring the relaxation in the back-scattered light from the optical trap. At
higher viscosities, direct brightfield images can be recorded and the distortion in shape followed by
determining the aspect ratio of the composite particle. The time-dependent decay in the aspect
ratio can extend from milliseconds to À 10000s, extending the viscosity range that can be measured
from 1 Pas up to 108 Pas–109 Pas [285]. The viscosity is then inferred from the relaxation timescale,
τ, assuming over-damped creeping fluid flow, the droplet radius and an estimate of the surface
tension, σ:

(8.4) τ= ηr

σ

A comparison of the viscosity trends for saccharides from mono- to tri- structures is provided in
figure 8.6. There is a clear systematic trend toward higher viscosity as the composition progresses
from a monosaccharide to a trisaccharide, depending on chemical structure, and molecular weight,
with an order: glucose (180.16 gmol−1) < sucrose (342.30 gmol−1) < trehalose (342.296 gmol−1) <
maltose (342.30 gmol−1) < raffinose (504.42 gmol−1).

186



8.7. MOLECULAR DYNAMICS

Figure 8.6: Comparison of viscosity of different systems. Aqueous glucose
(black), aqueous sucrose (red) aqueous trehalose (blue), aqueous maltose (pink), and
aqueous raffinose (orange) [285]. Figure is redrawn from Song et. al. [285]

8.7 Molecular dynamics

8.7.1 Force Fields

Water was represented by the TIP4P/2005 [417] potential, due to its accuracy in reproducing the
experimental phase and self diffusion characteristics. Sucrose was represented by a modified version
of the GROMOS 54a7 force field [418], with an expanded range of atom types. Both the force field
and the initial pdb all-atom coordinates were acquired from the automated topology builder (ATB)
database [419] (further details on the generation [420] and validation [421] of coordinates, partial
charges and force fields by ATB has been detailed extensively in the literature).

Initial coordinates were generated using the Packmol [422] program, which randomly places
set numbers of molecules into three dimensional space, allowing tight control over the solute mole
fractions in the generated simulation boxes, whilst not biasing the simulations to one area of
configuration space. Constraints were inserted such that no two molecules were placed within 3 Å of
each other, and the input random seed was continuously replaced using the bash $RANDOM global
variable.

The Lincs algorithm [423] was used to constrain all bonds, to an order of four in the constraint
coupling matrix, with seven iterations in the final step.Electrostatic forces were calculated using the
particle mesh Ewald summation [424], and Van der Waals interactions were provided by the twin
range cut-offs method, both of which were truncated at 8 Å. The update frequency was every 5
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time-steps. The Verlet scheme [425] was used for neighbour searching across the periodic boundary
conditions in three dimensions. Velocities were generated using a Maxwell-Boltzmann distribution
at 300 K, with the random seed continuously changed.

8.7.2 Equilibration

The starting coordinates produced by Packmol [422] are not suitable for MD simulations immediately.
The configuration must be energy minimised using the steepest descent method to allow bonds
and angles to satisfy the constraints of the topology file. The minimisation was conducted with
an initial step size of 0.001 nm until the maximum force was below 50 kJmol−1 nm−1. After this,
approximately 500 ps of equilibration was conducted with the standard GROMACS MD integrator
and thermodynamic ensemble produced as described in the main text.

8.7.3 Mean squared displacement data collection

Initial coordinates were generated from the output frame of the equilibration trajectory within the
regime where the total energy was stable. During the MD integration, the system was propagated
in the NpT ensemble at 300 K and 101 kPa, using a velocity rescaling thermostat [233] and the
Parrinello-Rahman barostat [426], respectively. Initial velocities were randomly generated to satisfy
a Maxwell-Boltzmann distribution at 300 K in each case. All simulations described were conducted
using GPU acceleration, with the MD package GROMACS (version 5.0.6) [427], running on the
Blue Crystal 3 high performance computing cluster at the University of Bristol.

Due to the extremely kinetically limited state of the aqueous-sucrose system, it is necessary to
simulate dynamics for very long periods of time, relative to, for example, the timescale of molecular
vibration or rotation. This maximises the probability that the initial conditions are overcome, and
that the constituent molecules decorrelated from their initial conditions as the simulation proceeds.
In each of the trajectories of caged water, dynamics were computed for 1 µs, and it was found that,
when averaged over all nine trajectories, the mean squared displacements of the water molecules
converged to a diffusive dependence on simulation time, t (figure 8.7).

(8.5)
〈

r 2〉= 2Dw,orgt

The net displacement achieved by a random walk in three-dimensions will be less than the path
length taken between the initial and final positions, a consequence of the fact that the translational
motion of water through such a lattice is not Brownian. All nine trajectories contain segments during
which the water is travelling perpendicularly, or even backwards, relative to its net displacement.
It may be the case that the decorrelation of the water velocity is limited by the rearrangement of
the sucrose, as well as the thermodynamic barrier that must be overcome to hop to the nearest
available cavity, rather than the dynamics of a more typical solvation shell in an aqueous environment.
Therefore, it is desirable to calculate the magnitude of the displacement to the current position,∣∣〈r 2

〉∣∣, at every time-step, rather than cumulatively sum the path length that takes into account
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Figure 8.7: Single particle mean squared displacement. Shown are the
〈

r 2
〉

of the nine trajectories (purple), along with best fit of the mean path (red) to equation
8.5 (yellow, including constant at t = 0)

every intermediate ‘jump’. Additionally, removal from the calculation of the centre of mass motion
of the water molecule ensures that any atomically resolved vibrational motion does not contribute
to the calculation of net displacement. The value stated in the manuscript and illustrated in figure
3.1 panel (c) was calculated under these conditions.

These MD simulations were not designed to capture diffusion against a chemical potential
gradient, which is what is induced and probed during the optical tweezers measurements reported
above. Instead we wished to treat the water as a tracer particle moving stochastically through the
matrix, subject to a small localization uncertainty arising from motion between adjacent frames
[428]. This is the origin of the offset at t = 0 in the figure. The per simulation D values are presented
in table 8.2.

A literature review was conducted to investigate whether any corrections or different functional
forms of mean squared displacement needed to be fit. A recent publication [429] by Alcazar-Cano
and Delgado-Buscalioni has suggested that in systems where the diffusing ‘tracer’ particles are
trapped in the manner described here, and cannot freely move through channels, it may be more
appropriate to fit

〈
r 2

〉
to a subdiffusive dependence, namely,

(8.6)
〈

r 2〉∼ Dw,orgtα

where α→ 0 as the proportion of particles that are trapped approaches 100 %. Similar physics was
described by Zwanzig [1] earlier, in 1988, although it was incorporated into the mathematics by
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correcting D, rather than t . Specifically, Zwanzig considered a so-called ‘rough potential’ where
the particle under consideration must traverse a landscape of many nearly degenerate local minima.
In that case, the observed D is smaller than the effective D by a factor ε that accounts for the
‘roughness’ of the free energy landscape.

(8.7) Dw,org = Deffective exp
(
− ε

kT

)2

These phenomena are often observed in conjunction with stretched exponential relaxation in
sugar solutions [282, 430], which the radius curves in figure 3.1 panel (a) also exhibit.

8.7.4 Calculation free volume

Three repeat trajectories of 10 ns length were conducted for glucose and raffinose, once again
generated with randomly placed and oriented molecules via packmol and containing a single water.
To determine the sucrose packing efficiency, truncated trajectories 10 ns long were extracted from
the microsecond trajectories and subject to the same analysis, using the GROMACS ‘free-volume’
program, which attempts to insert ‘dummy’ probe particles into the box. The free volume calculated
is the total volume of the successful insertions.

8.8 Markov state modelling

This section of the supplementary material has been incorporated into chapter 3.

8.9 The comparison of diffusion coefficient of aqueous-sucrose system

For diffusivity research, sucrose is a representative organic system because many researches have
used sucrose. The comparison of diffusion curve of sucrose as a function of water activity is shown
in figure 8.8. The diffusion constants of water in aqueous-sucrose system in Figure S11 are measured
and simulated with inferred by different strategies using AOT with Fi-Pad model, EDB with ETH
model, and isotopic exchange. These three lines show good agreement until water activity 0.35. The
diffusion constants of water at 0.2 water activity by Price et al. [121] and this research differ by one
order of magnitude.
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Figure 8.8: The diffusion curve of water in a sucrose system as a func-
tion of water activity. The green line is from Zobrist et al. [431], the blue line
from Price et al. [121], and the red line is the experimental data which is simulated
by Fi-PaD model.
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RH
transition

(%)

Particle size
(nm)

Character-
istic

timescale
(s)

RH
transition

(%)

Particle size
(nm)

Character-
istic

timescale
(s)

Aqueous-Glucose system Aqueous-Maltose system
50-30 3707 27 50-30 368 3721
– 3692 27 – 514 4114
– 3871 29 – 534 4329
– 4861 33 – 549 5131

50-20 3707 49 30-5 3664 3289
– 3692 51 – 2624 3446
– 4861 92 – 4062 3745

30-5 3377 860 – 4845 4197
– 4053 1007 – 3996 4355
– 3871 1009 – 5755 4662
– 4412 1084 – 1641 4130
– 4988 1289 30-50 436 3265
– 5450 1326 – 423 3268

30-50 3707 49 – 441 4101
– 3692 51 – 597 5012
– 4861 63 – 617 5430

20-50 3707 95 5-30 960 3446
5-30 3377 140 – 1490 4197
– 4412 190 – 1250 4662
– 5450 276 – 1230 4145
– – – – 578 4130
Aqueous-Raffinose system Aqueous-Sucrose system

50-30 3332 188 50-10 3052 397
– 3414 221 – 3307 535
– 3967 250 – 4092 883
– 4110 265 – 4013 1019
– 5005 298 – 4954 1076
– 4924 313 50-20 3796 244

50-20 3260 153 – 4189 363
– 3332 254 – 4783 540

Continued on next page
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Table 8.0 – continued from previous page
RH

transition
(%)

Particle size
(nm)

Character-
istic

timescale
(s)

RH
transition

(%)

Particle size
(nm)

Character-
istic

timescale
(s)

– 3410 288 – 4942 559
– 3966 284 50-30 3682 48
– 3606 260 – 4016 59
– 3779 300 – 4894 65
– 4105 320 – 4923 60
– 5008 390 – 5745 85

50-10 3260 178 30-20 3068 668
– 3410 352 – 3123 847
– 3719 700 – 3651 1502
– 5008 1010 – 4382 1748

30-10 3551 1210 – 4758 2274
– 5876 1906 30-10 3297 1243

30-5 3551 895 – 3654 1786
– 3735 995 – 3655 1901
– 3952 1447 – 3652 1924
– 4343 1578 – 4020 2141
– 5895 2101 – 4017 2191

30-50 3332 482 – 4308 2277
– 3414 495 – 3891 2379
– 3967 547 – 5727 3582
– 4110 738 – 4824 4374
– 4924 617 30-5 3246 1321
– 5005 730 – 3657 1804

20-50 3262 432 – 3809 2035
– 3332 351 – 3754 2061
– 3414 440 – 4987 3584
– 3606 476 – 5163 3738
– 3967 399 – 5266 3763
– 5005 516 30-50 3426 57

5-30 3551 610 – 3829 77
– 3735 514 – 4042 79

Continued on next page
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Table 8.0 – continued from previous page
RH

transition
(%)

Particle size
(nm)

Character-
istic

timescale
(s)

RH
transition

(%)

Particle size
(nm)

Character-
istic

timescale
(s)

– 3952 852 – 4962 112
– 4343 646 5-30 3252 1776
– 5895 926 – 3645 2059
– – – – 3563 2395
– – – – 3633 2566
– – – – 3983 2763
– – – – 4716 3056
– – – – 4912 3294
– – – – 5912 4112
Aqueous-Raffinose system Aqueous-Sucrose system

50-30 3265 98 50-30 3590 35
– 3268 101 – 3588 40
– 4101 157 – 3746 32
– 5430 231 – 4432 43
– 5012 204 – 4463 47

50-20 3265 221 – 5448 53
– 3268 194 30-50 3588 81
– 4101 184 – 3746 52
– 5012 244 – 4432 117
– 5430 233 – 4463 86

30-5 3090 1019 – 5448 76
– 3190 1172 – – –
– 3285 1155 – – –
– 3310 1184 – – –
– 4040 1342 – – –
– 4825 1479 – – –
– 5168 1559 – – –
– 5118 1444 – – –

30-50 3265 436 – – –
– 3268 423 – – –
– 4101 441 – – –

Continued on next page
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Table 8.0 – continued from previous page
RH

transition
(%)

Particle size
(nm)

Character-
istic

timescale
(s)

RH
transition

(%)

Particle size
(nm)

Character-
istic

timescale
(s)

– 5430 617 – – –
– 5012 597 – – –

20-50 3265 181 – – –
5-30 4040 726 – – –
– 3190 515 – – –
– 3090 592 – – –
– 5168 846 – – –
– 3853 589 – – –
– 4897 719 – – –
– 5118 981 – – –
– 3310 596 – – –

Table 8.1: The characteristic timescale of water transport determined
experimentally for six binary mixtures. This table provides all data points
for water transport kinetics in figure 8.2. Particle size is direct measurement data in
AOT and fit by LARA. The characteristic timescale is fit by KWW function. Error
representing a variation of β±0.1.
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Trajectory no. D (m2 s−1) Uncertainty (m2 s−1)

1 6.454E-17 9.34E-17
2 4.848E-17 1.755E-16
3 6.075E-17 1.444E-16
4 8.922E-18 3.448E-17
5 1.004E-18 1.88E-16
6 8.775E-17 2.218E-17
7 3.541E-17 8.571E-17
8 3.829E-17 1.61E-17
9 7.269E-17 5.83E-17

Table 8.2: Diffusion constants from MD trajectories. The best fit diffusion
coefficients to the nine 1 µs trajectories (purple lines in figure 8.7) and associated
uncertainties.
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System Paramaterization (Dw(aw) (m2 s−1))

Aqueous-
Levoglucosan

log(Dw (aw)) =−14.091+ (2.192×aw)

+ (−21.269× (aw)2)+ (
81.025× (aw)3)

+ (−84.660× (aw)4)+ (
28.081× (aw)5)

Aqueous-glucose
log(Dw (aw)) =−15.047+ (0.963×aw)

+ (−0.186× (aw)2)+ (
34.825× (aw)3)

+ (−47.724× (aw)4)+ (
18.472× (aw)5)

Aqueous-sucrose
log(Dw (aw)) =−15.613+ (1.262×aw)

+ (−3.476× (aw)2)+ (
46.468× (aw)3)

+ (−60.030× (aw)4)+ (
22.691× (aw)5)

Aqueous-
Trehalose

log(Dw (aw)) =−15.503+ (1.061×aw)

+ (
0.642× (aw)2)+ (

34.712× (aw)3)
+ (−48.590× (aw)4)+ (

18.981× (aw)5)

Aqueous-Maltose
log(Dw (aw)) =−15.857+ (1.269×aw)

+ (−6.922× (aw)2)+ (
58.525× (aw)3)

+ (−72.854× (aw)4)+ (
27.141× (aw)5)

Aqueous-
Raffinose

log(Dw (aw)) =−15.393+ (1.113×aw)

+ (
2.180× (aw)2)+ (

29.194× (aw)3)
+ (−42.838× (aw)4)+ (

17.051× (aw)5)
Table 8.3: Six binary system diffusion coefficients. The best fit diffusion

coefficients of six binary systems in figure 3.1 panel (c).
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MARKOV STATE MODEL OPTIMISATION

T(n) Name SMSE MSLL

log(n) Exponential 0.0012 -3.9963
Matérn 3-2 0.0010 -4.1712
Matérn 5-2 0.0007 -4.2369
Gaussian 0.0011 -4.0892

I (n) Exponential 0.0027 -2.9733
Matérn 3-2 0.0025 -3.4218
Matérn 5-2 0.0023 -3.8172
Gaussian 0.0032 -4.1239

Table 9.1: Gaussian process model selection metrics of the response
surface of alanine dipeptide. Standardised mean square error (SMSE) and
mean standardised log loss (MSLL) for GP models of the response surface of MSMs
for alanine dipeptide, using different transformations of n, T (n), and different kernels.
Each GP model used a mean prior of zero, and all other parameters were estimated
by maximizing the marginal likelihood. All values were calculated using 10-fold cross-
validation.
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METASTABLE STATE SELECTION FOR HIDDEN MARKOV MODELS

10.1 Prinz potential

The Prinz potential is given by:

(10.1) V (x) = 4
(
x8 +0.8exp

(−80x2)+0.2exp
(−80(x −0.5)2)+0.5exp

(−40(x +0.5)2)) .

Exact eigenvalues and trajectories of simulated Brownian motion were calculated using code from
MSMBuilder (version 3.9.0) [406] . The first 7 relaxation processes are given in table 10.1.

100 trajectories of Brownian dynamics were simulated by the following stochastic differential
equation:

(10.2)
dxt

dt
=−dV (x)

dx
+
p

2D ·R(t )

with D = 1000, and R ∼N (0,1), Cov
[
R(t ),R(t ′)

]= δt ,t ′ . The time-step used was ∆t = 0.001. Each
trajectory was initiated from a random draw of the stationary distribution and was twice the longest

Process, i ti

2 844.4
3 125.5
4 64.3
5 11.9
6 10.3
7 7.3
8 6.7

Table 10.1: Relaxation timescales of the Prinz potential. All values are
given in units of the time step ∆t = 0.001
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relaxation process timescale, i.e. 2×844 = 1688 time-steps long. The trajectories were clustered into
n = ⌊p

100×1688
⌋= 410 discrete states using k-means clustering [150]. This number of states was

based on the heuristic described in reference [246].

10.2 Membership matrix errors

The conditional probabilities P(h = j |s = i ) can be calculated via the γ auxiliary variable from the
Baum-Welch algorithm [170, 258], or from the membership matrix after taking into account the
largest strongly connected subset of hidden states. Figure 10.1 shows the difference between these
two methods for a HMM with g = 10 hidden states. The error plotted in panel (a) (blue discs) is
given by:

(10.3) err(si ) =∑
j
γ̄ j (si )−Mi j ,

and is plotted as a function of the stationary distribution of the observed states πsi . The green discs
are the stationary distribution of states with zero error (err < 10−10). γ̄ is the value of γ j (si ) averaged
over all the instances of a si in a trajectory. As the size of the error decreases with frequency of
the observed state, it can be concluded that the difference between the two methods arises from
sampling error. Panel (b) shows the value of the error for just one hidden state (state j = 3) with
the emission distribution for comparison.
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Figure 10.1: Errors in the membership matrix. Panel (a) shows the error from
equation 10.3 (blue discs) as a function of the observed stationary distribution,
πobs. The green discs show the observed states with no difference in value of γ or
M. Panel (b) shows the error for hidden state 3 (blue discs) overlaid on the value of
γ3(s) as a function of s, the observed states.
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Figure 11.1: RMSD of the α-carbon atoms of AADH relative to the
crystal structure. Each panel is a single trajectory, blue lines are the RMSD,
horizontal lines are the 2.5 % and 97.5 % quantiles (4.5 Å and 6.4 Å, respectively)
taken across all trajectories.
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Figure 11.2: Secondary structure composition of trajectories
24, 27, 30, 42, 78, 87 and 97 as a function of time. The number
of residues in each simplified secondary structure class [432] are shown: ‘H’ (green)
refers to alpha helix, 3- and 5-helices; ‘E’ (orange) refers to residues in beta-bridges
or beta ladder; ‘C’ (blue) refers to turns, bends and all irregular elements.
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Figure 11.3: Fluctuations in the deviation of residues of trajectories
24, 27, 30, 42, 78, 87 and 97. Each row corresponds to a different trajectory,
each column to a different chain. 100 regularly spaced snapshots were taken from
each trajectory and aligned to the crystal structure along with α-carbon atoms.
The standard deviation of the deviation of the α-carbon atoms from the crystal
structure, ∆r = r− rcrystal is plotted for each residue.
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Figure 11.4: α-carbon deviation of residues for seed trajectory at 95 ns.
Each panel depicts a separate chain of the structure from a snapshot of the seed
trajectory at 95 ns. The RMSD is 6.2 Å, the highest value reached, see figure 6.4
panel (a). In chains D and H the six residues of the active site are shown in orange
and residues 92–108 are shown in green. The conformational change of loop 92–108
is shown in figure 6.5

209



CHAPTER 11. AROMATIC AMINE DEHYROGENASE

Figure 11.5: The ratio of successive eigenvalues and implied timescales
of the sensitivity reference MSM. Panel (a) shows the ratio of successive
eigenvalues and panel (b) the implied timescales the sensitivity case of the reference
MSM with: τM = 2ns, TICA lag time of τ= 10ns, 95 % of the kinetic variance/m = 8
TICA components retained, and n = 316 microstates. Parameters were estimated
using MCMC with 1000 posterior samples, the blue dots and error bars are the
mean and 95 % credible intervals respectively.
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Figure 11.6: The implied timescales and VAMP-2 scores of the sensitiv-
ity reference MSM. Panels (a) and (b) show the implied timescales, and
panels (c) and (d) shows the relative VAMP-2 scores for the reference MSM with:
τM = 2ns, TICA lag time of τ= 10ns, 95 % of the kinetic variance/m = 10 TICA
components retained, and n = 316 microstates. Panel (a) shows the first five implied
timescales for τM = 0.1ns–5ns, panel (b) shows the first five implied timescales for
τM = 0.1ns50ns. The solid lines and coloured shaded areas are the mean and 95 %
credible intervals respectively, estimated using MCMC with 500 posterior samples.
The grey shaded area is the region for which the implied timescales are smaller than
the lag time. Panel (c) and (d) show the VAMP-2 scores, scored on the first 2 to
5 eigenvalues for the same ranges. The VAMP-2 scores are indexed to their value
at τM = 0.1ns. The colour coding is consistent between the implied timescale plots
((a) and (b)) and VAMP-2 plots ((c) and (d)). e.g. the blue line in (c) and (d)
is the VAMP-2 score with two eigenvalues (r = 2) while in (a) and (b) blue is the
second implied timescale, t2.
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T (τ) T (m) T (n) Kernel MSLL SMSE Rank
(MSLL)

Rank
(SMSE)

Rank
(Total)

I (τ) I (m) I (n) Exponential -0.1298 0.3087 1.0 1.0 1.0
log(n) Exponential 0.0050 0.2964 - - -

log(m) I (n) Exponential 0.0521 0.3118 - - -
log(n) Exponential 0.5633 0.3815 - - -

log(τ) I (m) I (n) Exponential 0.1967 0.3436 - - -
log(n) Exponential 0.4959 0.3231 - - -

log(m) I (n) Exponential 0.5128 0.4365 - - -
log(n) Exponential 1.0267 0.4201 - - -

I (τ) I (m) I (n) Matérn 3-2 1.5680 0.2893 - - -
log(n) Matérn 3-2 1.9193 0.2960 - - -

log(m) I (n) Matérn 3-2 3.1385 0.2775 - - -
log(n) Matérn 3-2 2.0358 0.2818 - - -

log(τ) I (m) I (n) Matérn 3-2 6.9015 0.3203 - - -
log(n) Matérn 3-2 7.7182 0.3406 - - -

log(m) I (n) Matérn 3-2 7.9209 0.3257 - - -
log(n) Matérn 3-2 3.0002 0.3472 - - -

I (τ) I (m) I (n) Matérn 5-2 3.6517 0.3029 - - -
log(n) Matérn 5-2 3.8316 0.3090 - - -

log(m) I (n) Matérn 5-2 8.6574 0.2991 - - -
log(n) Matérn 5-2 3.7354 0.3238 - - -

log(τ) I (m) I (n) Matérn 5-2 8.9207 0.3679 - - -
log(n) Matérn 5-2 11.8753 0.4064 - - -

log(m) I (n) Matérn 5-2 12.7637 0.3722 - - -
log(n) Matérn 5-2 13.6735 0.3475 - - -

I (τ) I (m) I (n) Gaussian inf inf - - -
log(n) Gaussian 9.3618 0.3256 - - -

log(m) I (n) Gaussian 5.9123 0.3022 - - -
log(n) Gaussian inf inf - - -

log(τ) I (m) I (n) Gaussian 17.4786 0.4551 - - -
log(n) Gaussian 16.7568 0.3556 - - -

log(m) I (n) Gaussian 16.7412 0.5026 - - -
log(n) Gaussian 24.3199 0.4986 - - -

Table 11.1: Gaussian process model selection metrics for the response
surface of AADH using all randomly sampled hyperparameter tri-
als, D361. The mean standardised log loss (MSLL) and standardised mean square
error (SMSE) where calculated using 10 fold cross validation. Only those models
which had both MSLL < 0 and SMSE < 1 were ranked. The total rank is calculated as
rank of

(
R2

MSLL +R2
SMSE

)1/2. Where the overall rank was tied, the first model appearing
in the table was ranked higher.
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T (τ) T (m) T (n) Kernel MSLL SMSE Rank
(MSLL)

Rank
(SMSE)

Rank
(Total)

I (τ) I (m) I (n) Exponential -0.3928 0.3412 10.0 14.0 13.0
log(n) Exponential -0.2456 0.3443 15.0 15.0 16.0

log(m) I (n) Exponential -0.6484 0.3169 6.0 12.0 7.0
log(n) Exponential -0.5585 0.3487 7.0 17.0 14.0

log(τ) I (m) I (n) Exponential 0.0598 0.3483 - - -
log(n) Exponential -0.2195 0.3450 16.0 16.0 17.0

log(m) I (n) Exponential -0.3524 0.3084 13.0 9.0 10.0
log(n) Exponential -0.3944 0.3379 9.0 13.0 11.0

I (τ) I (m) I (n) Matérn 3-2 -0.3807 0.3167 12.0 11.0 12.0
log(n) Matérn 3-2 -0.2744 0.3053 14.0 7.0 9.0

log(m) I (n) Matérn 3-2 -0.8769 0.2779 1.0 4.0 3.0
log(n) Matérn 3-2 -0.7438 0.2785 5.0 5.0 5.0

log(τ) I (m) I (n) Matérn 3-2 0.3415 0.3721 - - -
log(n) Matérn 3-2 -0.2023 0.3892 17.0 18.0 18.0

log(m) I (n) Matérn 3-2 -0.4758 0.3033 8.0 6.0 6.0
log(n) Matérn 3-2 -0.3892 0.3086 11.0 10.0 8.0

I (τ) I (m) I (n) Matérn 5-2 0.3362 0.3149 - - -
log(n) Matérn 5-2 0.9964 0.2712 - - -

log(m) I (n) Matérn 5-2 -0.8713 0.2685 2.0 2.0 1.0
log(n) Matérn 5-2 -0.7508 0.2700 4.0 3.0 4.0

log(τ) I (m) I (n) Matérn 5-2 6.4201 0.3503 - - -
log(n) Matérn 5-2 5.7695 0.3250 - - -

log(m) I (n) Matérn 5-2 3.9718 0.3153 - - -
log(n) Matérn 5-2 inf inf - - -

I (τ) I (m) I (n) Gaussian -0.1677 0.3074 18.0 8.0 15.0
log(n) Gaussian 1.3068 0.2747 - - -

log(m) I (n) Gaussian -0.7884 0.2675 3.0 1.0 2.0
log(n) Gaussian inf inf - - -

log(τ) I (m) I (n) Gaussian 6.8541 0.3472 - - -
log(n) Gaussian 6.2984 0.3074 - - -

log(m) I (n) Gaussian 4.8742 0.4157 - - -
log(n) Gaussian 7.6739 0.5531 - - -

Table 11.2: Gaussian process model selection metrics for the response
surface of AADH using hyperparameter trial data subset 1, D1

100.
The mean standardised log loss (MSLL) and standardised mean square error (SMSE)
where calculated using 10 fold cross validation. Only those models which had both
MSLL < 0 and SMSE < 1 were ranked. The total rank is calculated as rank of(
R2

MSLL +R2
SMSE

)1/2. Where the overall rank was tied, the first model appearing in the
table was ranked higher.
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T (τ) T (m) T (n) Kernel MSLL SMSE Rank
(MSLL)

Rank
(SMSE)

Rank
(Total)

I (τ) I (m) I (n) Exponential -0.3293 0.4262 13.0 9.0 11.0
log(n) Exponential -0.5222 0.4330 6.0 13.0 8.0

log(m) I (n) Exponential -0.6612 0.3890 1.0 2.0 1.0
log(n) Exponential -0.5843 0.4170 3.0 5.0 3.0

log(τ) I (m) I (n) Exponential -0.3737 0.4590 11.0 15.0 15.0
log(n) Exponential -0.4162 0.4445 8.0 14.0 12.0

log(m) I (n) Exponential -0.3702 0.4281 12.0 10.0 10.0
log(n) Exponential -0.6242 0.4169 2.0 4.0 2.0

I (τ) I (m) I (n) Matérn 3-2 -0.5737 0.4218 4.0 7.0 5.0
log(n) Matérn 3-2 0.1639 0.4432 - - -

log(m) I (n) Matérn 3-2 -0.5479 0.4282 5.0 11.0 7.0
log(n) Matérn 3-2 -0.4595 0.3844 7.0 1.0 4.0

log(τ) I (m) I (n) Matérn 3-2 -0.4077 0.4301 9.0 12.0 9.0
log(n) Matérn 3-2 inf inf - - -

log(m) I (n) Matérn 3-2 1.0248 0.4609 - - -
log(n) Matérn 3-2 -0.3902 0.3942 10.0 3.0 6.0

I (τ) I (m) I (n) Matérn 5-2 1.3964 0.4033 - - -
log(n) Matérn 5-2 0.3681 0.4475 - - -

log(m) I (n) Matérn 5-2 -0.1968 0.4237 14.0 8.0 13.0
log(n) Matérn 5-2 2.3201 0.4400 - - -

log(τ) I (m) I (n) Matérn 5-2 3.2132 0.4125 - - -
log(n) Matérn 5-2 0.5430 0.4473 - - -

log(m) I (n) Matérn 5-2 1.6455 0.4679 - - -
log(n) Matérn 5-2 0.7421 0.4378 - - -

I (τ) I (m) I (n) Gaussian 2.3960 0.4042 - - -
log(n) Gaussian 1.3825 0.4372 - - -

log(m) I (n) Gaussian -0.1688 0.4197 15.0 6.0 14.0
log(n) Gaussian 3.8725 0.4652 - - -

log(τ) I (m) I (n) Gaussian 4.1994 0.4244 - - -
log(n) Gaussian 2.3169 0.4305 - - -

log(m) I (n) Gaussian 1.7600 0.4764 - - -
log(n) Gaussian 1.6457 0.4517 - - -

Table 11.3: Gaussian process model selection metrics for the response
surface of AADH using hyperparameter trial data subset 2, D2

100.
The mean standardised log loss (MSLL) and standardised mean square error (SMSE)
where calculated using 10 fold cross validation. Only those models which had both
MSLL < 0 and SMSE < 1 were ranked. The total rank is calculated as rank of(
R2

MSLL +R2
SMSE

)1/2. Where the overall rank was tied, the first model appearing in the
table was ranked higher.
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T (τ) T (m) T (n) Kernel MSLL SMSE Rank
(MSLL)

Rank
(SMSE)

Rank
(Total)

I (τ) I (m) I (n) Exponential -0.4461 0.5415 14.0 15.0 13.0
log(n) Exponential -0.4350 0.5234 15.0 9.0 10.0

log(m) I (n) Exponential -0.6123 0.5074 6.0 5.0 3.0
log(n) Exponential -0.5378 0.5145 9.0 7.0 5.0

log(τ) I (m) I (n) Exponential -0.3138 0.6006 21.0 25.0 24.0
log(n) Exponential -0.3559 0.5626 20.0 21.0 22.0

log(m) I (n) Exponential -0.4587 0.5449 13.0 17.0 14.0
log(n) Exponential -0.4276 0.5472 18.0 18.0 20.0

I (τ) I (m) I (n) Matérn 3-2 -0.6003 0.5234 7.0 8.0 4.0
log(n) Matérn 3-2 -0.6400 0.5376 5.0 12.0 8.0

log(m) I (n) Matérn 3-2 -0.8017 0.4885 2.0 1.0 1.0
log(n) Matérn 3-2 -0.8921 0.4892 1.0 2.0 2.0

log(τ) I (m) I (n) Matérn 3-2 -0.1904 0.5933 24.0 24.0 25.0
log(n) Matérn 3-2 -0.4898 0.5711 11.0 22.0 18.0

log(m) I (n) Matérn 3-2 -0.4295 0.5379 17.0 13.0 15.0
log(n) Matérn 3-2 -0.6808 0.5350 4.0 11.0 6.0

I (τ) I (m) I (n) Matérn 5-2 -0.4328 0.5482 16.0 19.0 19.0
log(n) Matérn 5-2 -0.5392 0.5262 8.0 10.0 7.0

log(m) I (n) Matérn 5-2 -0.7498 0.5506 3.0 20.0 12.0
log(n) Matérn 5-2 -0.2438 0.5141 22.0 6.0 16.0

log(τ) I (m) I (n) Matérn 5-2 0.4797 0.6354 - - -
log(n) Matérn 5-2 -0.3604 0.6100 19.0 26.0 23.0

log(m) I (n) Matérn 5-2 -0.1492 0.5818 25.0 23.0 26.0
log(n) Matérn 5-2 0.1426 0.5263 - - -

I (τ) I (m) I (n) Gaussian -0.5234 0.5412 10.0 14.0 9.0
log(n) Gaussian -0.4854 0.5436 12.0 16.0 11.0

log(m) I (n) Gaussian inf inf - - -
log(n) Gaussian -0.1291 0.5002 26.0 3.0 21.0

log(τ) I (m) I (n) Gaussian 1.5339 0.5471 - - -
log(n) Gaussian -0.0794 0.6378 27.0 27.0 27.0

log(m) I (n) Gaussian -0.2000 0.5068 23.0 4.0 17.0
log(n) Gaussian 0.1399 0.4935 - - -

Table 11.4: Gaussian process model selection metrics for the response
surface of AADH using hyperparameter trial data subset 3, D3

100.
The mean standardised log loss (MSLL) and standardised mean square error (SMSE)
where calculated using 10 fold cross validation. Only those models which had both
MSLL < 0 and SMSE < 1 were ranked. The total rank is calculated as rank of(
R2

MSLL +R2
SMSE

)1/2. Where the overall rank was tied, the first model appearing in the
table was ranked higher.
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T (τ) T (m) T (n) Kernel MSLL SMSE Rank
(MSLL)

Rank
(SMSE)

Rank
(Total)

I (τ) I (m) I (n) Exponential -0.7560 0.2203 8.0 16.0 16.0
log(n) Exponential -0.7875 0.2181 7.0 15.0 15.0

log(m) I (n) Exponential -0.9947 0.1510 3.0 10.0 4.0
log(n) Exponential -0.9846 0.1449 4.0 9.0 3.0

log(τ) I (m) I (n) Exponential -0.8015 0.2132 6.0 14.0 12.0
log(n) Exponential -0.8752 0.1825 5.0 13.0 7.0

log(m) I (n) Exponential -1.0363 0.1442 1.0 8.0 2.0
log(n) Exponential -1.0279 0.1327 2.0 6.0 1.0

I (τ) I (m) I (n) Matérn 3-2 inf inf - - -
log(n) Matérn 3-2 -0.5648 0.1809 10.0 12.0 13.0

log(m) I (n) Matérn 3-2 -0.4921 6.5461 - - -
log(n) Matérn 3-2 -0.5509 0.1001 11.0 1.0 5.0

log(τ) I (m) I (n) Matérn 3-2 17.1108 4.4912 - - -
log(n) Matérn 3-2 -0.2896 0.1322 13.0 5.0 8.0

log(m) I (n) Matérn 3-2 0.8341 6.6805 - - -
log(n) Matérn 3-2 -0.6497 0.1530 9.0 11.0 9.0

I (τ) I (m) I (n) Matérn 5-2 0.0998 0.1507 - - -
log(n) Matérn 5-2 0.2457 0.1419 - - -

log(m) I (n) Matérn 5-2 -0.2353 0.1103 15.0 2.0 11.0
log(n) Matérn 5-2 0.1854 0.0885 - - -

log(τ) I (m) I (n) Matérn 5-2 0.1737 0.1471 - - -
log(n) Matérn 5-2 0.1300 0.1468 - - -

log(m) I (n) Matérn 5-2 -0.2515 0.1228 14.0 4.0 10.0
log(n) Matérn 5-2 -0.3690 0.1335 12.0 7.0 6.0

I (τ) I (m) I (n) Gaussian 0.4745 0.1570 - - -
log(n) Gaussian 0.3424 0.1426 - - -

log(m) I (n) Gaussian -0.0644 0.1120 16.0 3.0 14.0
log(n) Gaussian 0.6375 0.0887 - - -

log(τ) I (m) I (n) Gaussian 0.5639 0.1596 - - -
log(n) Gaussian 0.9161 0.1642 - - -

log(m) I (n) Gaussian 0.2483 0.1132 - - -
log(n) Gaussian 0.1566 0.1366 - - -

Table 11.5: Gaussian process model selection metrics for the response
surface of AADH using hyperparameter trial data subset 4, D4

100.
The mean standardised log loss (MSLL) and standardised mean square error (SMSE)
where calculated using 10 fold cross validation. Only those models which had both
MSLL < 0 and SMSE < 1 were ranked. The total rank is calculated as rank of(
R2

MSLL +R2
SMSE

)1/2. Where the overall rank was tied, the first model appearing in the
table was ranked higher.
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T (τ) T (m) T (n) Kernel MSLL SMSE Rank
(MSLL)

Rank
(SMSE)

Rank
(Total)

I (τ) I (m) I (n) Exponential -0.4560 0.3075 4.0 16.0 11.0
log(n) Exponential -0.3903 0.3240 8.0 19.0 18.0

log(m) I (n) Exponential -0.2797 0.3010 13.0 15.0 15.0
log(n) Exponential -0.4260 0.2957 5.0 14.0 8.0

log(τ) I (m) I (n) Exponential -0.3979 0.3182 7.0 18.0 12.0
log(n) Exponential -0.3533 0.3126 10.0 17.0 13.0

log(m) I (n) Exponential -0.2961 0.2828 12.0 11.0 10.0
log(n) Exponential -0.1504 0.2821 17.0 10.0 14.0

I (τ) I (m) I (n) Matérn 3-2 -0.2251 0.2832 16.0 12.0 17.0
log(n) Matérn 3-2 -0.4864 0.2769 3.0 9.0 4.0

log(m) I (n) Matérn 3-2 -0.3340 0.2395 11.0 2.0 5.0
log(n) Matérn 3-2 -0.2605 0.2408 14.0 4.0 7.0

log(τ) I (m) I (n) Matérn 3-2 0.6857 0.2878 - - -
log(n) Matérn 3-2 0.6788 0.2833 - - -

log(m) I (n) Matérn 3-2 -0.0028 0.2589 19.0 6.0 16.0
log(n) Matérn 3-2 2.5955 0.2787 - - -

I (τ) I (m) I (n) Matérn 5-2 -0.0040 0.2865 18.0 13.0 19.0
log(n) Matérn 5-2 -0.3897 0.2747 9.0 8.0 6.0

log(m) I (n) Matérn 5-2 -0.7173 0.2285 1.0 1.0 1.0
log(n) Matérn 5-2 -0.6388 0.2406 2.0 3.0 2.0

log(τ) I (m) I (n) Matérn 5-2 0.3359 0.2922 - - -
log(n) Matérn 5-2 1.9673 0.2817 - - -

log(m) I (n) Matérn 5-2 -0.2367 0.2533 15.0 5.0 9.0
log(n) Matérn 5-2 2.4714 0.2870 - - -

I (τ) I (m) I (n) Gaussian 2.5656 0.2672 - - -
log(n) Gaussian -0.4234 0.2669 6.0 7.0 3.0

log(m) I (n) Gaussian 1.0865 0.2423 - - -
log(n) Gaussian 0.2375 0.2507 - - -

log(τ) I (m) I (n) Gaussian 3.6181 0.2821 - - -
log(n) Gaussian 1.8240 0.2790 - - -

log(m) I (n) Gaussian 0.3803 0.2535 - - -
log(n) Gaussian 6.8263 0.2731 - - -

Table 11.6: Gaussian process model selection metrics for the response
surface of AADH using hyperparameter trial data subset 5, D5

100.
The mean standardised log loss (MSLL) and standardised mean square error (SMSE)
where calculated using 10 fold cross validation. Only those models which had both
MSLL < 0 and SMSE < 1 were ranked. The total rank is calculated as rank of(
R2

MSLL +R2
SMSE

)1/2. Where the overall rank was tied, the first model appearing in the
table was ranked higher.
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Case g d Nobs g s Entropy ICL

Base case 2 620 98,000 1 2.007e+00 1.070e+06
Base case 3 932 98,000 2 5.263e+00 1.009e+06
Base case 4 1,245 98,000 3 8.914e+02 9.375e+05
Base case 5 1,559 98,000 3 2.994e+02 9.036e+05
Base case 6 1,874 98,000 4 9.797e+02 8.715e+05
Base case 7 2,190 98,000 5 2.093e+03 8.491e+05
Base case 8 2,507 98,000 6 2.968e+03 8.342e+05
Base case 9 2,825 98,000 7 3.399e+03 8.312e+05
Base case 10 3,144 98,000 8 3.369e+03 8.083e+05
Base case 11 3,464 98,000 9 4.200e+03 7.966e+05
Base case 12 3,785 98,000 10 5.026e+03 7.847e+05
Base case 13 4,107 98,000 11 4.075e+03 7.936e+05
Base case 14 4,430 98,000 12 5.022e+03 7.891e+05
Base case 15 4,754 98,000 13 5.070e+03 7.854e+05
Base case 16 5,079 98,000 13 5.032e+03 7.870e+05
Base case 17 5,405 98,000 14 5.963e+03 7.801e+05
Base case 18 5,732 98,000 15 6.674e+03 7.785e+05
Base case 19 6,060 98,000 16 6.400e+03 7.786e+05
Base case 20 6,389 98,000 17 9.177e+03 7.806e+05
Sensitivity 1 2 608 80,000 1 2.036e+02 1.040e+06
Sensitivity 1 5 1,529 80,000 1 2.457e+03 9.361e+05
Sensitivity 1 6 1,838 80,000 4 8.101e+03 9.287e+05
Sensitivity 1 8 2,459 80,000 2 9.329e+03 9.233e+05
Sensitivity 2 2 220 98,000 1 2.531e-02 8.224e+05
Sensitivity 2 3 332 98,000 2 7.167e+02 7.139e+05
Sensitivity 2 4 445 98,000 3 1.679e+02 6.509e+05
Sensitivity 2 5 559 98,000 4 1.086e+03 6.165e+05
Sensitivity 2 6 674 98,000 5 1.409e+03 5.951e+05
Sensitivity 2 7 790 98,000 5 1.612e+03 5.874e+05
Sensitivity 2 8 907 98,000 6 1.672e+03 5.776e+05
Sensitivity 2 9 1,025 98,000 6 1.594e+03 5.718e+05
Sensitivity 2 10 1,144 98,000 7 1.873e+03 5.676e+05
Sensitivity 2 11 1,264 98,000 8 2.759e+03 5.637e+05
Sensitivity 2 12 1,385 98,000 8 2.278e+03 5.600e+05
Sensitivity 2 13 1,507 98,000 8 2.382e+03 5.552e+05

Continued on next page
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Case g d Nobs g s Entropy ICL

Sensitivity 2 14 1,630 98,000 9 2.861e+03 5.493e+05
Sensitivity 2 15 1,754 98,000 10 3.087e+03 5.483e+05
Sensitivity 2 16 1,879 98,000 11 3.710e+03 5.451e+05
Sensitivity 2 17 2,005 98,000 11 8.145e+03 5.369e+05
Sensitivity 2 18 2,132 98,000 11 8.196e+03 5.361e+05
Sensitivity 2 19 2,260 98,000 13 8.662e+03 5.294e+05
Sensitivity 2 20 2,389 98,000 12 8.653e+03 5.299e+05
Sensitivity 3 2 620 98,000 2 8.322e+01 9.751e+05
Sensitivity 3 3 932 98,000 3 1.249e+02 9.290e+05
Sensitivity 3 4 1,245 98,000 4 1.479e+03 9.097e+05
Sensitivity 3 5 1,559 98,000 5 4.028e+03 8.949e+05
Sensitivity 3 6 1,874 98,000 6 3.845e+03 8.834e+05
Sensitivity 3 7 2,190 98,000 7 3.899e+03 8.806e+05
Sensitivity 3 8 2,507 98,000 7 5.300e+03 8.774e+05
Sensitivity 3 9 2,825 98,000 6 4.499e+03 8.720e+05
Sensitivity 3 10 3,144 98,000 6 4.837e+03 8.734e+05
Sensitivity 3 11 3,464 98,000 8 1.090e+04 8.636e+05
Sensitivity 3 12 3,785 98,000 10 9.241e+03 8.664e+05
Sensitivity 3 13 4,107 98,000 12 9.855e+03 8.619e+05
Sensitivity 3 14 4,430 98,000 12 9.923e+03 8.622e+05
Sensitivity 3 15 4,754 98,000 13 1.040e+04 8.613e+05
Sensitivity 3 16 5,079 98,000 14 1.201e+04 8.613e+05
Sensitivity 3 17 5,405 98,000 15 1.240e+04 8.641e+05
Sensitivity 3 18 5,732 98,000 16 1.285e+04 8.612e+05
Sensitivity 3 19 6,060 98,000 17 1.385e+04 8.621e+05
Sensitivity 3 20 6,389 98,000 18 1.401e+04 8.655e+05

Table 11.7: Integrated complete-data likelihood for all HMMs. g is the
stipulated number of hidden states, g s is the largest strongly connected set of states,
d is the number of degrees of freedom, Nobs is the number of observations, as given
by equation 5.15, ICL and classification entropy are given by equations 5.12 and 5.13
respectively.
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i j R̂ i j R̂ i j R̂ i j R̂

1 1 1.02 8 11 1.01 5 2 1.01 12 8 1.04
1 4 1.00 8 12 1.06 5 3 1.01 12 9 1.00
1 9 1.00 8 13 1.04 5 4 1.05 12 10 1.01
1 10 1.01 9 1 1.00 5 5 1.00 12 11 1.02
1 13 1.00 9 4 1.10 5 6 1.01 12 12 1.03
1 14 1.00 9 5 1.00 5 7 1.00 12 13 1.02
1 15 1.03 9 7 1.07 5 8 1.00 13 1 1.00
2 2 1.03 9 8 1.00 5 9 1.01 13 2 1.00
2 3 1.05 9 9 1.10 5 12 1.00 13 4 1.00
2 5 1.04 9 10 1.00 5 13 1.00 13 5 1.00
2 6 1.00 9 12 1.00 6 2 1.00 13 7 1.01
2 7 1.00 9 13 1.00 6 3 1.00 13 8 1.03
2 8 1.00 10 1 1.01 6 5 1.03 13 9 1.00
2 12 1.00 10 4 1.00 6 6 1.03 13 10 1.00
2 13 1.00 10 8 1.01 7 2 1.00 13 11 1.00
3 2 1.05 10 9 1.00 7 4 1.00 13 12 1.02
3 3 1.00 10 10 1.04 7 5 1.00 13 13 1.02
3 5 1.01 10 12 1.01 7 7 1.03 13 15 1.00
3 6 1.00 10 13 1.00 7 8 1.02 14 1 1.00
4 1 1.00 10 14 1.02 7 9 1.06 14 4 1.00
4 4 1.02 10 15 1.06 7 11 1.00 14 10 1.02
4 5 1.04 11 7 1.00 7 12 1.00 14 14 1.02
4 7 1.00 11 8 1.01 7 13 1.01 14 15 1.02
4 8 1.00 11 11 1.00 8 2 1.00 15 1 1.04
4 9 1.02 11 12 1.02 8 4 1.00 15 4 1.00
4 10 1.02 11 13 1.00 8 5 1.00 15 10 1.09
4 12 1.00 12 2 1.00 8 7 1.03 15 13 1.00
4 13 1.00 12 4 1.00 8 8 1.08 15 14 1.04
4 14 1.00 12 5 1.00 8 9 1.00 15 15 1.07
4 15 1.00 12 7 1.00 8 10 1.01 – – –

Table 11.8: R̂ statistics for the base case HMM. The model was estimated with
four independent MCMC chains with 4000 posterior samples, taken after removing
1000 burn-in samples. Only the non-zero transition matrix elements are shown.
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i j ki j (µs−1) i j ki j (µs−1) i j ki j (µs−1)

1 2 0.3 (0.0, 1.3) 3 12 0.1 (0.0, 0.2) 7 9 0.0 (0.0, 0.0)
2 1 0.0 (0.0, 0.2) 12 3 0.0 (0.0, 0.1) 9 7 0.0 (0.0, 0.0)
1 3 22.2 (0.5, 83.5) 3 13 3.1 (0.1, 12.6) 7 10 0.5 (0.1, 1.2)
3 1 9.1 (0.8, 28.1) 13 3 0.8 (0.0, 4.2) 10 7 0.4 (0.1, 1.2)
1 4 0.0 (0.0, 0.0) 3 14 0.1 (0.0, 0.4) 7 11 10.5 (5.3, 17.8)
4 1 0.0 (0.0, 0.0) 14 3 0.0 (0.0, 0.1) 11 7 5.6 (2.0, 11.5)
1 5 0.0 (0.0, 0.0) 3 15 0.0 (-0.0, 0.0) 7 12 0.1 (0.0, 0.2)
5 1 0.0 (0.0, 0.0) 15 3 0.0 (-0.0, 0.0) 12 7 0.1 (0.0, 0.2)
1 6 0.0 (0.0, 0.0) 4 5 17.1 (10.7, 25.6) 7 13 0.4 (-0.2, 2.9)
6 1 0.0 (0.0, 0.0) 5 4 12.1 (6.5, 19.8) 13 7 0.3 (-0.2, 2.2)
1 7 0.0 (0.0, 0.0) 4 6 0.1 (0.0, 0.2) 7 14 0.4 (-0.2, 2.4)
7 1 0.0 (0.0, 0.0) 6 4 0.3 (0.0, 0.9) 14 7 0.3 (-0.2, 2.0)
1 8 0.0 (-0.0, 0.1) 4 7 0.0 (-0.3, 1.0) 7 15 0.0 (-0.0, 0.0)
8 1 0.0 (0.0, 0.0) 7 4 0.0 (-0.3, 1.0) 15 7 0.0 (-0.0, 0.0)
1 9 2.6 (-2.1, 22.8) 4 8 0.0 (0.0, 0.0) 8 9 0.0 (-0.0, 0.1)
9 1 1.5 (-1.0, 12.5) 8 4 0.0 (0.0, 0.0) 9 8 0.0 (-0.0, 0.1)
1 10 0.1 (0.0, 0.7) 4 9 0.0 (0.0, 0.0) 8 10 61.1 (22.5, 112.7)
10 1 0.0 (0.0, 0.1) 9 4 0.0 (0.0, 0.0) 10 8 35.6 (8.3, 78.2)
1 11 0.0 (0.0, 0.0) 4 10 0.0 (0.0, 0.0) 8 11 0.2 (0.0, 0.5)
11 1 0.0 (0.0, 0.0) 10 4 0.0 (0.0, 0.0) 11 8 0.1 (0.0, 0.2)
1 12 0.0 (0.0, 0.0) 4 11 0.0 (0.0, 0.0) 8 12 0.5 (-1.0, 1.7)
12 1 0.0 (0.0, 0.0) 11 4 0.0 (0.0, 0.0) 12 8 0.2 (-0.4, 0.8)
1 13 0.1 (0.0, 0.4) 4 12 0.0 (0.0, 0.0) 8 13 0.0 (-0.0, 0.0)
13 1 0.0 (0.0, 0.0) 12 4 0.0 (0.0, 0.0) 13 8 0.0 (-0.0, 0.0)
1 14 0.0 (0.0, 0.0) 4 13 0.0 (0.0, 0.0) 8 14 0.0 (0.0, 0.0)
14 1 0.0 (0.0, 0.0) 13 4 0.0 (0.0, 0.0) 14 8 0.0 (0.0, 0.0)
1 15 0.0 (0.0, 0.0) 4 14 0.0 (0.0, 0.0) 8 15 0.0 (0.0, 0.0)
15 1 0.0 (0.0, 0.0) 14 4 0.0 (0.0, 0.0) 15 8 0.0 (0.0, 0.0)
2 3 5.4 (0.2, 16.8) 4 15 0.0 (0.0, 0.0) 9 10 0.2 (0.0, 0.8)
3 2 12.0 (1.6, 32.2) 15 4 0.0 (0.0, 0.0) 10 9 0.0 (0.0, 0.2)
2 4 0.0 (0.0, 0.0) 5 6 5.3 (1.5, 11.4) 9 11 0.0 (0.0, 0.0)
4 2 0.0 (0.0, 0.0) 6 5 25.8 (4.5, 63.3) 11 9 0.0 (0.0, 0.0)
2 5 0.0 (0.0, 0.0) 5 7 10.9 (5.7, 18.2) 9 12 0.0 (0.0, 0.0)
5 2 0.0 (0.0, 0.0) 7 5 15.0 (6.8, 27.1) 12 9 0.0 (0.0, 0.0)
2 6 0.0 (0.0, 0.0) 5 8 0.1 (0.0, 0.2) 9 13 0.1 (0.0, 0.5)
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Table 11.8 – continued from previous page
i j ki j (µs−1) i j ki j (µs−1) i j ki j (µs−1)

6 2 0.0 (0.0, 0.0) 8 5 0.2 (0.0, 0.5) 13 9 0.0 (0.0, 0.1)
2 7 0.0 (0.0, 0.0) 5 9 0.0 (0.0, 0.0) 9 14 0.0 (0.0, 0.0)
7 2 0.0 (0.0, 0.0) 9 5 0.0 (0.0, 0.0) 14 9 0.0 (0.0, 0.0)
2 8 0.0 (0.0, 0.0) 5 10 0.0 (0.0, 0.0) 9 15 0.0 (0.0, 0.0)
8 2 0.0 (0.0, 0.0) 10 5 0.0 (0.0, 0.0) 15 9 0.0 (0.0, 0.0)
2 9 0.1 (0.0, 0.5) 5 11 0.1 (0.1, 0.3) 10 11 1.0 (-0.1, 4.5)
9 2 0.4 (0.0, 1.3) 11 5 0.1 (0.0, 0.2) 11 10 0.7 (-0.1, 2.9)
2 10 0.0 (0.0, 0.2) 5 12 0.0 (0.0, 0.0) 10 12 10.2 (2.8, 22.5)
10 2 0.0 (0.0, 0.1) 12 5 0.0 (0.0, 0.0) 12 10 7.1 (1.8, 16.7)
2 11 0.0 (0.0, 0.0) 5 13 0.0 (-0.0, 0.0) 10 13 0.0 (-0.0, 0.0)
11 2 0.0 (0.0, 0.0) 13 5 0.0 (-0.0, 0.0) 13 10 0.0 (-0.0, 0.0)
2 12 0.0 (0.0, 0.0) 5 14 0.0 (-0.0, 0.0) 10 14 0.1 (0.0, 0.2)
12 2 0.0 (0.0, 0.0) 14 5 0.0 (-0.0, 0.0) 14 10 0.0 (0.0, 0.2)
2 13 0.0 (0.0, 0.1) 5 15 0.0 (0.0, 0.0) 10 15 0.0 (0.0, 0.0)
13 2 0.0 (0.0, 0.1) 15 5 0.0 (0.0, 0.0) 15 10 0.0 (0.0, 0.0)
2 14 0.0 (0.0, 0.0) 6 7 7.2 (0.1, 23.1) 11 12 10.8 (4.8, 19.5)
14 2 0.0 (0.0, 0.0) 7 6 2.0 (0.0, 6.2) 12 11 11.1 (3.5, 23.6)
2 15 0.0 (0.0, 0.0) 6 8 0.1 (-0.0, 0.2) 11 13 8.2 (3.0, 16.1)
15 2 0.0 (0.0, 0.0) 8 6 0.0 (-0.0, 0.1) 13 11 9.4 (2.3, 21.5)
3 4 0.0 (0.0, 0.0) 6 9 0.0 (0.0, 0.0) 11 14 7.4 (1.9, 16.4)
4 3 0.0 (0.0, 0.0) 9 6 0.0 (0.0, 0.0) 14 11 10.5 (2.1, 25.6)
3 5 0.0 (0.0, 0.0) 6 10 0.0 (-0.0, 0.0) 11 15 0.1 (0.0, 0.2)
5 3 0.0 (0.0, 0.0) 10 6 0.0 (0.0, 0.0) 15 11 0.1 (0.0, 0.2)
3 6 0.0 (0.0, 0.0) 6 11 2.5 (-0.1, 10.9) 12 13 0.2 (0.1, 0.6)
6 3 0.0 (0.0, 0.0) 11 6 0.4 (-0.0, 1.9) 13 12 0.2 (0.1, 0.7)
3 7 0.0 (-0.0, 0.1) 6 12 0.0 (-0.0, 0.1) 12 14 4.3 (0.4, 12.9)
7 3 0.0 (0.0, 0.0) 12 6 0.0 (-0.0, 0.0) 14 12 5.8 (0.6, 16.2)
3 8 0.2 (-0.9, 4.4) 6 13 0.0 (-0.0, 0.1) 12 15 0.0 (0.0, 0.1)
8 3 0.1 (-0.6, 2.4) 13 6 0.0 (-0.0, 0.0) 15 12 0.0 (0.0, 0.1)
3 9 21.8 (6.3, 48.2) 6 14 0.0 (-0.0, 0.1) 13 14 24.8 (7.0, 54.6)
9 3 31.5 (6.5, 72.6) 14 6 0.0 (-0.0, 0.0) 14 13 30.3 (10.6, 64.7)
3 10 5.9 (0.3, 19.7) 6 15 0.0 (0.0, 0.0) 13 15 2.3 (-0.4, 9.4)
10 3 2.0 (0.0, 8.5) 15 6 0.0 (0.0, 0.0) 15 13 1.5 (-0.3, 8.6)
3 11 0.0 (0.0, 0.1) 7 8 7.9 (3.3, 14.4) 14 15 6.4 (0.9, 15.5)
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Table 11.8 – continued from previous page
i j ki j (µs−1) i j ki j (µs−1) i j ki j (µs−1)

11 3 0.0 (0.0, 0.0) 8 7 11.6 (2.8, 27.8) 15 14 3.8 (0.0, 15.4)
Table 11.9: Rate matrix for base case HMM. The model was estimated with

four independent MCMC chains with 4000 posterior samples, taken after removing
1000 burn-in samples. Values reported are the mean and 95 % credible intervals.
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i π̃i (%)

1 3.2 (0.0, 44.3)
2 10.3 (0.1, 73.4)
3 2.5 (0.1, 12.9)
4 4.5 (0.4, 13.3)
5 6.3 (0.5, 16.7)
6 1.6 (0.1, 5.8)
7 4.5 (0.4, 10.6)
8 3.5 (0.3, 10.3)
9 2.3 (0.0, 14.8)
10 6.4 (0.6, 18.2)
11 8.4 (0.8, 17.8)
12 9.0 (0.9, 22.8)
13 7.9 (0.9, 19.9)
14 6.3 (0.7, 15.3)
15 23.4 (1.6, 91.3)

Table 11.10: Stationary distribution of base case HMM. The model was
estimated with four independent MCMC chains with 4000 posterior samples, taken
after removing 1000 burn-in samples. Values reported are the mean and 95 % credible
intervals.
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Figure 11.7: Comparison of sensitivity 2 hidden state h5 and the base
case hidden states. Each distribution is a comparison of two hidden states, if
the distributions all overlap then the hidden states described the same ensemble of
configurations. Each panel compares sensitivity 2 h5 with a different base case hidden
state, hi . The observations which make up the distributions are heavy atom RMSD
between unique pairs of configurations, one from each hidden state. Black dashed
line compares sensitivity 2 h5 with itself (S2-S2), blue solid line compares each base
case hidden state with itself (BC-BC). Yellow solid lines compare sensitivity 2 h5

with each base case hidden state (BC-S2).
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i j R̂ i j R̂ i j R̂

1 1 1.01 4 13 1.00 9 6 1.06
1 2 1.03 5 1 1.01 9 7 1.00
1 3 1.00 5 2 1.01 9 8 1.01
1 4 1.00 5 3 1.02 9 9 1.01
1 5 1.00 5 5 1.13 9 10 1.01
1 6 1.00 5 12 1.14 9 11 1.02
1 7 1.00 6 1 1.01 9 13 1.01
1 8 1.00 6 2 1.00 10 1 1.00
1 9 1.00 6 3 1.01 10 2 1.00
1 10 1.00 6 4 1.02 10 4 1.00
1 11 1.00 6 6 1.07 10 6 1.17
1 12 1.00 6 7 1.03 10 7 1.17
2 1 1.02 6 8 1.01 10 8 1.06
2 2 1.12 6 9 1.07 10 9 1.01
2 3 1.10 6 10 1.04 10 10 1.01
2 4 1.00 6 11 1.19 10 11 1.16
2 5 1.00 6 13 1.01 10 13 1.00
2 6 1.04 7 1 1.00 11 1 1.00
2 7 1.11 7 2 1.10 11 2 1.00
2 8 1.00 7 3 1.00 11 3 1.00
2 9 1.00 7 4 1.00 11 4 1.00
2 10 1.00 7 6 1.21 11 6 1.28
2 11 1.00 7 7 1.04 11 7 1.30
2 12 1.04 7 8 1.00 11 8 1.01
3 1 1.00 7 9 1.00 11 9 1.02
3 2 1.04 7 10 1.16 11 10 1.15
3 3 1.05 7 11 1.28 11 11 1.03
3 5 1.08 7 13 1.00 11 13 1.00
3 6 1.00 8 1 1.00 12 1 1.01
3 7 1.00 8 2 1.00 12 2 1.08
3 11 1.00 8 4 1.00 12 3 1.18
3 12 1.11 8 6 1.00 12 5 1.13
4 1 1.00 8 7 1.00 12 12 1.17
4 2 1.00 8 8 1.03 13 4 1.00
4 4 1.00 8 9 1.03 13 6 1.00
4 6 1.02 8 10 1.05 13 7 1.00
4 7 1.00 8 11 1.02 13 8 1.00
4 8 1.00 8 13 1.00 13 9 1.01
4 9 1.00 9 1 1.00 13 10 1.00
4 10 1.00 9 2 1.00 13 11 1.00
4 11 1.00 9 4 1.00 13 13 1.01

Table 11.11: R̂ statistics for sensitivity 2 HMM. The model was estimated
with four independent MCMC chains with 4000 posterior samples, taken after
removing 1000 burn-in samples. Only the non-zero transition matrix elements are
shown.
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i j ki j (µs−1) i j ki j (µs−1) i j ki j (µs−1)

1 2 40.79 (6.11, 109.70) 7 5 9.15 (1.83, 20.66) 8 10 2.79 (-0.29, 19.49)
2 1 20.65 (3.55, 53.95) 6 8 5.84 (0.12, 23.07) 10 8 0.61 (-0.06, 4.84)
1 4 2.89 (-0.17, 13.81) 8 6 1.86 (0.01, 10.34) 9 10 18.36 (6.40, 35.54)
4 1 6.79 (-0.44, 25.34) 6 10 0.32 (0.03, 1.10) 10 9 12.50 (4.16, 24.47)
2 3 6.44 (0.18, 21.01) 10 6 0.02 (0.00, 0.08) 9 11 2.04 (-0.59, 9.87)
3 2 28.28 (5.97, 65.30) 6 12 12.49 (1.21, 38.17) 11 9 1.72 (-0.49, 8.72)
2 4 1.46 (-1.09, 7.85) 12 6 0.58 (0.01, 2.49) 9 12 1.57 (-0.99, 10.84)
4 2 6.60 (-4.25, 27.34) 7 8 5.07 (0.70, 14.02) 12 9 0.83 (-0.53, 5.58)
3 4 83.47 (16.22, 169.61) 8 7 9.85 (0.98, 30.24) 9 13 0.18 (-0.87, 0.72)
4 3 77.98 (25.08, 149.90) 7 9 18.49 (6.72, 34.04) 13 9 0.24 (-1.15, 0.96)
3 6 11.26 (0.77, 37.39) 9 7 9.53 (2.32, 21.49) 10 12 20.12 (3.23, 49.00)
6 3 10.95 (0.21, 43.49) 7 10 0.14 (-3.21, 1.05) 12 10 16.32 (2.69, 37.19)
3 10 10.27 (0.69, 31.51) 10 7 0.03 (-1.26, 0.41) 10 13 16.03 (6.09, 31.32)
10 3 0.61 (0.00, 3.35) 7 11 26.59 (12.77, 45.31) 13 10 30.40 (8.24, 61.50)
3 13 0.85 (-0.59, 10.02) 11 7 11.17 (2.90, 25.71) 11 12 8.24 (1.37, 21.22)
13 3 0.09 (-0.11, 1.08) 7 12 9.14 (2.53, 19.37) 12 11 5.53 (1.14, 14.25)
4 13 0.06 (-0.07, 0.72) 12 7 2.59 (0.50, 6.34) 12 13 2.31 (-0.27, 7.07)
13 4 0.01 (-0.01, 0.09) 8 9 5.44 (-0.09, 26.09) 13 12 5.46 (-0.55, 17.99)
5 7 1.20 (0.32, 2.58) 9 8 1.73 (-0.02, 8.58) – – –

Table 11.12: Rate matrix for sensitivity 2 HMM. The model was estimated
with four independent MCMC chains with 4000 posterior samples, taken after
removing 1000 burn-in samples. Values reported are the mean and 95 % credible
intervals.

i π̃i (%)

1 3.43 (0.02, 29.98)
2 5.85 (0.04, 43.58)
3 0.73 (0.01, 4.14)
4 0.79 (0.01, 5.19)
5 30.12 (5.27, 68.33)
6 0.84 (0.02, 5.07)
7 3.76 (1.16, 7.50)
8 2.99 (0.31, 14.84)
9 8.07 (2.07, 18.01)
10 11.82 (2.96, 24.86)
11 10.36 (2.82, 25.81)
12 14.33 (4.19, 29.52)
13 6.92 (1.46, 20.01)

Table 11.13: Stationary distribution of sensitivity 2 HMM. The model was
estimated with four independent MCMC chains with 4000 posterior samples, taken
after removing 1000 burn-in samples. Values reported are the mean and 95 % credible
intervals.
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