5 research outputs found

    Augmented Reality with Industrial Process Tomography: To Support Complex Data Analysis in 3D Space

    Get PDF
    Today, in-situ analyzing and monitoring are imperative for ensuring successful and healthy industrial processes in confined environments. With the rapid development of digitization, augmented reality (AR) has been utilized for letting people immersively interact with the necessary information. However, there are still knowledge gaps between AR technique and domain users pertaining to effective analysis of complex data. Hence, new solutions empowering domain users would benefit the whole industry. In this study, we report an initial prototype supporting complex data visualization and analysis in entire 3D surroundings within industrial process tomography (IPT). Microsoft HoloLens 2 is equipped for users to interact with the 3D information characterizing the workflow of the industrial process with high immersion. Our work distinctly improves the performance compared to existing solutions, pointing the way towards how AR should be deployed and developed more efficiently for aiding IPT systems

    Supporting visualization analysis in industrial process tomography by using augmented reality—A case study of an industrial microwave drying system

    Get PDF
    Industrial process tomography (IPT) based process control is an advisable approach in industrial heating processes for improving system efficiency and quality. When using it, appropriate dataflow pipelines and visualizations are key for domain users to implement precise data acquisition and analysis. In this article, we propose a complete data processing and visualizing workflow regarding a specific case—microwave tomography (MWT) controlled industrial microwave drying system. Furthermore, we present the up-to-date augmented reality (AR) technique to support the corresponding data visualization and on-site analysis. As a pioneering study of using AR to benefit IPT systems, the proposed AR module provides straightforward and comprehensible visualizations pertaining to the process data to the related users. Inside the dataflow of the case, a time reversal imaging algorithm, a post-imaging segmentation, and a volumetric visualization module are included. For the time reversal algorithm, we exhaustively introduce each step for MWT image reconstruction and then present the simulated results. For the post-imaging segmentation, an automatic tomographic segmentation algorithm is utilized to reveal the significant information contained in the reconstructed images. For volumetric visualization, the 3D generated information is displayed. Finally, the proposed AR system is integrated with the on-going process data, including reconstructed, segmented, and volumetric images, which are used for facilitating interactive on-site data analysis for domain users. The central part of the AR system is implemented by a mobile app that is currently supported on iOS/Android platforms

    Solid Suspension and Gas Dispersion in Mechanically Agitated Vessels

    Get PDF
    RÉSUMÉ La conception et l’opération réussies de cuves agitées mécaniquement liquide-solide (LS) ou gazliquide- solide (GLS) requièrent la détermination précise du niveau adéquat de suspension solide qui est essentiel pour le procédé. Les ingénieurs et les scientifiques doivent définir des conditions géométriques et opératoires pour un milieu spécifique (propriétés physiques spécifiques) afin de fournir le niveau optimal de suspension solide. Ceci nécessite une connaissance approfondie de comment l’état de la suspension solide peut être influencé par des variations des paramètres physiques, opératoires et géométriques. De même, des corrélations empiriques ou des concepts théoriques précis sont nécessaires pour atteindre cet objectif. Le fait de ne pas concevoir la cuve agitée pour atteindre les conditions optimales et pour maintenir le système dans ces conditions durant l’opération peut amener des inconvénients significatifs concernant la qualité du produit (sélectivité et rendement) et le coût. Cette étude implique un travail expérimental et théorique extensif sur la suspension et la dispersion du solide dans un système de mélange liquide-solide. Le système étudié a été une cuve agitée mécaniquement. En utilisant différentes techniques de mesure, comme la densitométrie aux rayons gamma et les fibres optiques, il a été possible d’obtenir des résultats très intéressants qui permettront d’améliorer la conception et la montée en échelle de systèmes de mélange liquidesolide. Une revue de la littérature approfondie à propos de la suspension de solide en cuves agitées et des discussions détaillées avec des partenaires industriels nous ont menés à nous concentrer sur trois objectifs principaux pour améliorer la connaissance des systèmes de mélange liquide-solide denses : 1. Introduire une méthode prometteuse pour la caractérisation fine de la vitesse de suspension (Njs) dans un système de mélange liquide-solide à haute concentration.----------ABSTRACT The successful design and operation of liquid-solid (LS) and gas-liquid-solid (GLS) mechanically agitated vessels require the accurate determination of the proper level of solid suspension that is essential for the process at hand. Engineers and scientists must define geometrical and operating conditions for a specific medium (specified physical properties) in such a way that provides the optimum level of solid suspension. This requires comprehensive knowledge about how the state of solid suspension may be affected by changing physical, operational, and geometrical parameters. Also, accurate empirical correlations or theoretical concepts are necessary to fulfill that objective. Failure to design the agitated vessel to achieve optimum conditions and maintain the system at these conditions during operation may cause significant drawbacks concerning product quality (selectivity and yield) and cost. This research involves extensive experimental and theoretical work on solid suspension and dispersion in a liquid-solid mixing system. The system under study was a mechanically agitated vessel. By using different measurement methods, i.e., Gamma Ray Densitometry, and Optical Fibre, attention-grabbing results have been obtained, which will help to improve the design and scale-up of liquid-solid mixing systems. A thorough literature survey on solid suspension in agitated tanks and comprehensive discussions with industrial partners led us to focus on three major objectives to improve our knowledge of dense liquid-solid mixing systems: 1. To introduce a promising method for accurate characterizing just off-bottom suspension speed (Njs) in high concentration liquid-solid mixing system

    Ultrasound Tomography for control of Batch Crystallization

    Get PDF
    corecore