4 research outputs found

    Machine learning for prediction models to mitigate the voltage deviation in photovoltaic-rich distributed network

    Get PDF
    The voltage deviation is one of the most crucial power quality issues that occur in electrical power systems. Renewable energy plays a vital role in electrical distribution networks due to the high economic returns. However, the presence of photovoltaic systems changes the nature of the energy flow in the grid and causes many problems such as voltage deviation. In this work, several predictive models are examined for voltage regulation in the Jordanian Sabha distribution network equipped with photovoltaic farms. The augmented grey wolf optimizer is used to train the different predictive models. To evaluate the performance of models, a value of one for regression factor and a low value for root mean square error, mean square error, and mean absolute error are used as standards. In addition, a comparison between nineteen predictive models has been made. The results have proved the capability of linear regression and the gaussian process to restore the bus voltages in the distribution network accurately and quickly and to solve the shortening in the voltage dynamic response caused by the iterative nature of the heuristic algorithm. 

    African vulture optimizer algorithm based vector control induction motor drive system

    Get PDF
    This study describes a new optimization approach for three-phase induction motor speed drive to minimize the integral square error for speed controller and improve the dynamic speed performance. The new proposed algorithm, African vulture optimizer algorithm (AVOA) optimizes internal controller parameters of a fuzzy like proportional differential (PD) speed controller. The AVOA is notable for its ease of implementation, minimal number of design parameters, high convergence speed, and low computing burden. This study compares fuzzy-like PD speed controllers optimized with AVOA to adaptive fuzzy logic speed regulators, fuzzy-like PD optimized with genetic algorithm (GA), and proportional integral (PI) speed regulators optimized with AVOA to provide speed control for an induction motor drive system. The drive system is simulated using MATLAB/Simulink and laboratory prototype is implemented using DSP-DS1104 board. The results demonstrate that the suggested fuzzy-like PD speed controller optimized with AVOA, with a speed steady state error performance of 0.5% compared to the adaptive fuzzy logic speed regulator’s 0.7%, is the optimum alternative for speed controller. The results clarify the effectiveness of the controllers based on fuzzy like PD speed controller optimized with AVOA for each performance index as it provides lower overshoot, lowers rising time, and high dynamic response

    Comparison of Recent Meta-Heuristic Optimization Algorithms Using Different Benchmark Functions

    Get PDF
    Meta-heuristic optimization algorithms are used in many application areas to solve optimization problems. In recent years, meta-heuristic optimization algorithms have gained importance over deterministic search algorithms in solving optimization problems. However, none of the techniques are equally effective in solving all optimization problems. Therefore, researchers have focused on either improving current meta-heuristic optimization techniques or developing new ones. Many alternative meta-heuristic algorithms inspired by nature have been developed to solve complex optimization problems. It is important to compare the performances of the developed algorithms through statistical analysis and determine the better algorithm. This paper compares the performances of sixteen meta-heuristic optimization algorithms (AWDA, MAO, TSA, TSO, ESMA, DOA, LHHO, DSSA, LSMA, AOSMA, AGWOCS, CDDO, GEO, BES, LFD, HHO) presented in the literature between 2021 and 2022. In this context, various test functions, including single-mode, multi-mode, and fixed-size multi-mode benchmark functions, were used to evaluate the efficiency of the algorithms used
    corecore