
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 13, No. 3, June 2023, pp. 2396~2408 

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i3.pp2396-2408      2396  

 

Journal homepage: http://ijece.iaescore.com 

African vulture optimizer algorithm based vector control 

induction motor drive system 

 

 

Reham H. Mohammed1, Ahmed M. Ismaiel2, Basem E. Elnaghi2, Mohamed E. Dessouki3,4 
1Electrical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia, Egypt 

2Electrical Power and Machines Department, Faculty of Engineering, Suez Canal University, Ismailia, Egypt 
3Electrical Engineering Department, Faculty of Engineering, King Abdulaziz University, Rabigh, Saudi Arabia 

4Electrical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt 

 

 

Article Info  ABSTRACT  

Article history: 

Received Jul 30, 2022 

Revised Sep 15, 2022 

Accepted Oct 1, 2022 

 

 This study describes a new optimization approach for three-phase induction 

motor speed drive to minimize the integral square error for speed controller 

and improve the dynamic speed performance. The new proposed algorithm, 

African vulture optimizer algorithm (AVOA) optimizes internal controller 

parameters of a fuzzy like proportional differential (PD) speed controller. 

The AVOA is notable for its ease of implementation, minimal number of 

design parameters, high convergence speed, and low computing burden. This 

study compares fuzzy-like PD speed controllers optimized with AVOA to 

adaptive fuzzy logic speed regulators, fuzzy-like PD optimized with genetic 

algorithm (GA), and proportional integral (PI) speed regulators optimized 

with AVOA to provide speed control for an induction motor drive system. 

The drive system is simulated using MATLAB/Simulink and laboratory 

prototype is implemented using DSP-DS1104 board. The results 

demonstrate that the suggested fuzzy-like PD speed controller optimized 

with AVOA, with a speed steady state error performance of 0.5% compared 

to the adaptive fuzzy logic speed regulator’s 0.7%, is the optimum 

alternative for speed controller. The results clarify the effectiveness of the 

controllers based on fuzzy like PD speed controller optimized with AVOA 

for each performance index as it provides lower overshoot, lowers rising 

time, and high dynamic response. 
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1. INTRODUCTION  

Induction motors are utilized in both residential and business settings. Air conditioners, washers, 

dryers, fans, freezers, pumps, and other similar devices make up the majority of these applications. The 

influence of these types of motors on energy savings is proportional to their efficiency in converting 

electrical energy into mechanical energy. Constant speed drives are used in these motors, resulting in low 

efficiency and increased energy consumption. However, the need for energy savings in electrical equipment 

has resulted in the usage of adjustable speed drives (ASDs) across all motor power ranges. By boosting speed 

rage and decreasing rotor inertia, a combination of changeable speed drives and control techniques may be 

employed to obtain improved performance [1], [2].  

The field-oriented control was initially done for high-performance motor applications that are 

needed to work easily over the maximum speed, create full torque at zero speed, and have a high dynamic 

https://creativecommons.org/licenses/by-sa/4.0/
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response including very rapid deceleration and acceleration. However, because of the field oriented control 

(FOC’s) smaller motor, lower cost, and reduced power consumption, it also becomes more and more 

appealing for lesser performance applications [3]. In field orientation, the motor input currents are specified 

to make a specific angle between fluxes produced in the rotor and stator windings in a way that follows the 

direct current (DC) motor operation. The results are comparable to the dynamic response of a DC machine 

when the dynamic formulas for an induction motor are converted using well-known rotational transformation 

methods into a reference frame that changes with rotor flux. As with a DC machine’s field current and 

armature current, this enables the induction motor stator current to be divided into a flux-producing 

component and a torque-producing component. The way to field-oriented control is information on the rotor 

transition position edge regarding the stator. Given that other motor characteristics are known, it is possible 

to register the edge using shaft position data [4]. Instead of applying three-phase currents to an induction 

motor, two perpendicular currents can be used to control the motor more easily. The motor’s flux component 

and torque component are produced by these two currents, which are known as direct current (𝑖𝑑) and 

quadrature current (𝑖𝑞) respectively. The transition between a stationary reference frame and a reference 

frame, which is rotating synchronously with the stator flux, becomes then the problem. This leads us to the 

concept of reference frames. The concept of a reference frame is to represent an amount that is sinusoidal in 

one reference frame, to a constant value in a reference frame, which is rotating at the same speed as the 

rotating flux. Once a sinusoidal quantity is transformed to a constant value by careful choice of reference 

frame, it ends up conceivable to control that amount with conventional proportional-integral controllers.  

Zeb et al. [5] present a smart control system for induction motors (IM) using an adaptive fuzzy logic 

controller (AFLC) based on the Levenberg-Marquardt algorithm which has an integral square error of  

2.986 and compared the results to a conventional proportional integral (PI) speed controller. Several 

optimization algorithms were proposed for tuning the fuzzy logic controllers in many engineering 

applications, such as the genetic algorithm [6], grey-wolf optimizer [7], whale-optimization algorithm [8], 

and intelligent-based fuzzy methods such as the fuzzy logic controller [9], fuzzy-genetic controller [10], 

swarm-optimization and pattern search-based fuzzy controller [11], and differential-evolution-based fuzzy 

controller [12], which are applied to tune the PI controllers gain used in several power applications. 

Moreover, metaheuristic techniques such as the cuckoo-search algorithm [13], particle swarm optimization 

(PSO) [14], particle swarm optimization-sine-cosine based swarm optimization (PSO-SCSO) [15], and bees 

algorithm [16] are viable options for fine-tuning the settings of fuzzy logic controllers. All of these studies 

have offered novel methods for speed controller optimization, however they do so with relatively high 

integral square errors and slow convergence. 

The African vultures optimization algorithm (AVOA), a brand-new metaheuristic algorithm inspired 

by nature, was put forth by Mirjalili and his associates in August 2021 [17]. It has more inclusive exploration 

and exploitation mechanisms. The usage of a random approach enhances the exploration and exploitation 

abilities of both mechanisms. This approach can ensure that the AVOA will not only skip a local optimum 

and have quick convergence but also guarantee that it is not too divergent [18]. To correctly design the  

fuzzy-like proportional differential (PD) speed controller for stability enhancement of speed performance, 

this paper provides a novel AVOA method. The induction motor is examined under various mechanical 

loading. The control methodology for these Visual Studio codes (VSCs) for PI and fuzzy-like PD speed 

controllers have been suitably adjusted by the AVOA. At a quick convergence speed, the AVOA algorithm 

adjusts the gains of PI and fuzzy-like PD speed controllers used in the system. The speed error is used as the 

objective function in a simulation-based optimization strategy.  

 

 

2. METHOD 

2.1.  Field oriented control  

Field-oriented control describes an induction machine in a dq coordinate system, with the d axis 

aligned with rotor flux and the q axis aligned with electromagnetic torque. The current, voltage, and flux of 

the motor can be analyzed in terms of space vector [19]. 

 

𝑖𝑠 = 𝑖𝑎 + 𝑖𝑏𝑒
𝑗
2𝜋

3 + 𝑖𝑐𝑒
𝑗
4𝜋

3  (1) 

 

where (a, b, c) is the three-phase system domain. It must be transformed into a two-time variant coordinate 

system. Using a transformation matrix, we first transform (a, b, c) into (α, β) and then transform (α, β) into 

(d, q). The transformation matrix for transforming (a, b, c) into (α, β) is given in (2). The transformation 

matrix for (α, β) into (d, q) can be found in (3). Figure 1 shows the relation between the two domains: 
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where, θ is the position of the rotor flux. The flux and torque current components are estimated by (4)-(5): 

 

𝑖𝑠𝑑 = 𝑖𝑠𝛼𝑐𝑜𝑠𝜃 + 𝑖𝑠𝛽𝑠𝑖𝑛𝜃 (4) 

 

𝑖𝑠𝑞 = −𝑖𝑠𝛼𝑠𝑖𝑛𝜃 + 𝑖𝑠𝛽𝑐𝑜𝑠𝜃 (5) 

 

These values rely on the current vector (α, β) components and the flux position in the rotor; if the flux 

position becomes known exactly using position sensor then, by this projection, the (d, q) components can be 

estimated [19]. 

 

 

 
 

Figure 1. Stator current vector and its components in (α, β) and (d, q) domain 

 

 

2.2.  Speed controller 

2.2.1. Proportional integral speed regulator 

The control law for this technique is: 

 

T =  𝐾𝑝 ∗ e + 𝐾𝑖 ∗ ∫ e dt (6) 

 

e = 𝜔∗ − 𝜔 (7) 

 

where 𝜔 and 𝜔∗ are the actual and reference speed respectively. The controller output is controlled by PI 

speed regulator gains (Kp and Ki) that follow a set of principles to provide optimum control performance even 

when parameter volatility and drive nonlinearity are present. The high value of the error is amplified across 

the PI regulator in starting mode, resulting in considerable variances in the required torque. If the Kp and Ki 

values of the PI speed regulator surpass a specific threshold, the required torque fluctuates too much, 

destabilizing the system [20], [21]. To solve this problem, a limiter is used after the PI regulator. This limiter, 

when properly adjusted, keeps the speed error within limits, resulting in smooth variations in the necessary 

torque even when the PI speed regulator gains are relatively significant [22]. Figure 2 shows the block 

diagram for the PI controller. The Kp and Ki values of the PI speed regulator have been estimated using 

AVOA. 
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Figure 2. Block diagram of PI speed regulator 

 

 

2.2.2. Adaptive fuzzy logic regulator 

Adaptive control, as shown in Figure 3, is a fuzzy regulator with adjustable properties that change in 

response to system changes, such as output scaling factor, fuzzy rule, and membership function. It can 

improve the performance of nonlinear and complex speed control systems with variable torque-speed profiles 

[23]. A Sugeno-type fuzzy inference system (FIS) with two inputs (𝑒, ∆𝑒) and one output (𝑇𝑒
∗) is used to 

simulate this regulator model, with the proportional value to change in speed added. As a result of this 

addition, the rising time (tr) will be even shorter. Adaptive fuzzy logic controller parameters are evaluated 

using Levenberg-Marquardt algorithm [5], [24]. 

 

 

 
 

Figure 3. Block diagram of the adaptive fuzzy logic speed regulator 

 

 

2.2.3. Fuzzy like PD regulator 

It is discovered that the fuzzy-like PD technique is substantially more efficient. Non-linearizes with 

the individual’s expertise and expert knowledge of the process to be regulated while constructing the 

regulator. Compared to traditional linear regulators, this method improves the system’s performance, 

dependability, and resilience [25], [26]. Figure 4 depicts the Block diagram model of a fuzzy-like PD 

regulator. The model is built using gain coefficients Kp, Kd, and Ko that are set to 30, 40, and 100 

respectively which have been estimated using AVOA. This regulator model is simulated using a Sugeno-type 

FIS with two inputs the error “e” in (6), the change in error “∆e” in (7) and one output (𝑇𝑒
∗) [27], [28]. 

 

∆𝑒 = 𝑒𝑘 − 𝑒𝑘−1 (7) 

 

 

 
 

Figure 4. Block diagram of fuzzy like PD speed regulator 
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3. PROPOSED ALGORITHMS 

3.1.  African vulture optimizer algorithms 

Costa et al. [16] presented the AVOA, a brand-new metaheuristic algorithm that draws inspiration 

from nature. Based on the aforementioned four criteria, the AVOA technique may be divided into five stages 

to imitate the behavior of different vultures during the foraging stage. 

a) Population grouping: The best solution is identified as the best and the first vulture in this phase, the 

second solution is identified as the second-best vulture using (8), and the remaining vultures are assigned 

to the third group based on the second criteria. This phase follows the formation of the initial population 

[17]. 

 

𝑅(𝑖) = {
𝐵𝑉1 𝑖𝑓 𝑝𝑖 = 𝑍1

𝐵𝑉2 𝑖𝑓 𝑝𝑖 = 𝑍2
 (8) 

 

where, 𝐵𝑉1 represents the best vulture, 𝐵𝑉2 represents the second-best vulture, 𝑍1and 𝑍2 are two random 

values in the range of [0,1], and their total is 1. The (9) is used to determine 𝑝𝑖 , which was achieved with 

the roulette-wheel method.  

 

𝑝𝑖 =
𝐹𝑖

∑ 𝐹𝑖
𝑙
𝑖=1

 (9) 

 

where, 𝐹𝑖 represents the fitness of the first and second two vultures’ groups. 𝑙 is the total vultures 

number in each group. 

b) The rate of starvation of vultures: When a flock of vultures does not need food, they have the stamina to 

go farther in search of it, but when they are, they are unable to keep up their long-distance flight. The 

hungry vultures will act aggressively as a result. Thus, vulture exploration and exploitation stages might 

be designed using this behavior. The 𝐹𝑖 of the 𝑖𝑡ℎ vulture at the iteration is evaluated by (10). 

 

𝐹𝑖 = (2 × 𝑟𝑎𝑛𝑑𝑖 + 1) × 𝑧 × (1 −
𝑖𝑡𝑒𝑟𝑖

𝑖𝑡𝑒𝑟m 
) + 𝑡 (10) 

 

where, 𝐹𝑖 stands for vultures have had their fill, 𝑟𝑎𝑛𝑑𝑖 is variable with a random value between 0 and 1. 𝑧 

stands for random number in the range of [-1, 1] which varies each iteration, 𝑡 is determined by (11): 

 

𝑡 = ℎ × (sin𝑤 (
𝜋

2
×

𝑖𝑡𝑒𝑟𝑖

𝑖𝑡𝑒𝑟m 
) + cos𝑤 (

𝜋

2
×

𝑖𝑡𝑒𝑟𝑖

𝑖𝑡𝑒𝑟m 
) − 1) (11) 

 

where, the chance of the vultures performing the exploration stage is given by the value of 𝑤, which is 

determined in advance. 𝑖𝑡𝑒𝑟𝑖 stands for the current iteration number. 𝑖𝑡𝑒𝑟m is the total iterations, and ℎ is 

random variable between -2 and 2. The (10) states that as the number of repetitions rises, 𝐹𝑖 will steadily 

decrease. When the value of |𝐹𝑖| exceeds 1, the vultures begin the exploration stage and look for fresh 

food in various places. Otherwise, vultures enter the stage of exploitation and start searching the nearby 

area for richer meals. 

c) Exploration stage: Due to their excellent vision in the environment, vultures can swiftly locate food and 

identify dead animals. However, because they spend a lot of time surveying their environment before 

flying great distances in search of food, vultures may have trouble finding food. Vultures in the AVOA 

can inspect various random locations using two distinct strategies, and a parameter named 𝑃1in the range 

of [0, 1] is used to get either strategy. To choose one of the strategies during the exploration phase, a 

random number 𝑟𝑎𝑛𝑑𝑝1 between 0 and 1 is utilized. The (19) is used if the value of 𝑟𝑎𝑛𝑑𝑖 ≤ 𝑃1, 

otherwise (13) is employed: 

 

𝑃(𝑖 + 1) = 𝑅(𝑖) − 𝐷(𝑖) × 𝐹𝑖 (12) 

 

𝑃(𝑖 + 1) =  𝑅(𝑖) − 𝐹𝑖 + 𝑟𝑎𝑛𝑑2 × ((𝑢𝑏 − 𝑙𝑏) × 𝑟𝑎𝑛𝑑3 + 𝑙𝑏) (13) 

 

where, 𝑅(𝑖) stands for one of the best vultures chosen in the current iteration with (8). 𝑟𝑎𝑛𝑑2 is a random 

number between 0 and 1, and 𝑙𝑏 and 𝑢𝑏 are the variables’ lower and upper bounds, respectively. To 

increase the variety and search for different search space areas, 𝑟𝑎𝑛𝑑3 is used to give a high random 

coefficient at the search environment scale. The (14) determines 𝐷(𝑖) which represents the distance 

between the vulture and the current optimum one. 
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𝐷(𝑖) = |𝑋 × 𝑅(𝑖) − 𝑃(𝑖)| (14) 

 

where, 𝑋 is a random value between 0 and 2. 

d) Exploitation: The AVOA’s efficiency stage is now being investigated. The initial phase of exploitation is 

started by the AVOA. If |𝐹𝑖| is less than 1. 𝑃2 in the range of [0,1] is utilized to decide which strategy is 

chosen. 𝑟𝑎𝑛𝑑𝑝2 is a random number between 0 and 1 produced. The siege-fight strategy is applied slowly 

if this 𝑟𝑎𝑛𝑑𝑝2 ≥ 𝑃2. Otherwise, the rotational flying technique is used. The (15) illustrates this procedure. 

 

𝑃(𝑖 + 1) = {
𝐷(𝑖) × (𝐹𝑖 + 𝑟𝑎𝑛𝑑4) − 𝑑(𝑡)     𝑖𝑓 𝑃2 ≥ 𝑟𝑎𝑛𝑑𝑝2

𝑅(𝑖) − 𝑆1 − 𝑆2                             𝑖𝑓 𝑃2 < 𝑟𝑎𝑛𝑑𝑝2
 (15) 

 

The distance 𝑑(𝑡) between the vulture and one of the two groups’ best vultures, as computed by (16). 

 

𝑑(𝑖) = 𝑅(𝑖) − 𝑃(𝑖)   (16) 

 

𝑆1and 𝑆2 are determined with (17) and (18), respectively: 

 

𝑆1 = 𝑅(𝑖) × (
𝑟𝑎𝑛𝑑5×𝑃(𝑖)

2𝜋
) × cos (𝑃(𝑖)) (17) 

 

𝑆1 = 𝑅(𝑖) × (
𝑟𝑎𝑛𝑑6×𝑃(𝑖)

2𝜋
) × 𝑠𝑖𝑛 (𝑃(𝑖)) (18) 

 

where, 𝑟𝑎𝑛𝑑4, 𝑟𝑎𝑛𝑑5 and 𝑟𝑎𝑛𝑑6 are random numbers between 0 and 1. 

e) Exploitation: If |𝐹𝑖| is smaller than 0.5. 𝑟𝑎𝑛𝑑3 is a random number between 0 and 1. So if 𝑃3 ≥ 𝑟𝑎𝑛𝑑3. 

The goal of the method is to get different kinds of vultures to congregate around the food supply and 

engage in competition. The (19) may be used to update the vulture’s location as a result. 

 

𝑃(𝑖 + 1) =
𝐴1+𝐴2

2
 (19) 

 

where, 𝐴1and 𝐴2 are given by  

 

𝐴1 = 𝐵𝑉1(𝑖) −
𝐵𝑉1(𝑖)×𝑃(𝑖)

𝐵𝑉1(𝑖)−(𝑃(𝑖))
2 × 𝐹𝑖 (20) 

 

𝐴2 = 𝐵𝑉1(𝑖) −
𝐵𝑉2(𝑖)×𝑃(𝑖)

𝐵𝑉2(𝑖)−(𝑃(𝑖))
2 × 𝐹𝑖 (21) 

 

The vultures would also congregate around the best vulture to scavenge the remaining food while the 

AVOA is in its second stage. The (22) can be used to update the vultures’ location. 

 

𝑃(𝑖 + 1) = 𝑅(𝑖) − |𝑑(𝑡)| × 𝐹𝑖 × 𝐿𝑒𝑣𝑦(𝑑) (22) 

 

Lévy flight (𝐿𝐹) patterns were used to improve the AVOA’s performance. These patterns were created 

using (23). 

 

𝐿𝐹(𝑥) = 0.001 ×
𝑢×𝜎

|𝑣|
1
𝜌

 (24) 

 

𝜎 = (
Γ(1+𝛽)×sin(

𝜋𝛽

2
)

Γ(1+𝛽2)×𝛽×2×(
𝛽−1

2
)
)

1

𝛽

 (25) 

 

where, 𝑣 and 𝑢 are random numbers between 0 and 1, respectively, and 𝛽 is a constant number of 1.5.  

 

3.2.  Genetic algorithm 

The genetic algorithm (GA) is an effective iterative approach that uses benchmarks to reliably find 

the best solution to a range of engineering problems [29], [30]. The GA is predicated on the notion of 

“survival of the fittest”. The first step is to produce at random a population of chromosomes. Once the 

random population has been reached, it is possible to evaluate the solution that was used for each string. The 
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rank fitness scaling is employed in this work to avoid early convergence. Other evolutionary biology-inspired 

techniques used by the GA include natural selection, reproduction, mutation, and crossover. The method is 

applied using the uniform selection strategy, which has an extremely low spread and no bias [31].  

The convergence of the fitness functions for the AVOA and GA is shown in Figure 5, where a slight 

change is seen after 300 iterations. To ensure that AVOA will work for the majority of runs since it is a 

stochastic optimization, the average optimized fitness function of integral square error (ISE) and the 

corresponding standard deviation for forty independent runs are generated, displayed, and compared as 

illustrated for PI speed regulator using AVOA, and fuzzy like PD speed regulator using both AVOA and GA 

in the Table 1. Fuzzy like PD speed regulator using AVOA achieves improvement by 92.6% in the average 

integral square error as compared to fuzzy-like PD speed regulator using GA and improvement by 71.13% 

when compared to PI under AVOA. It is important to emphasize that the AVOA’s low standard deviations 

demonstrate its stability. Table 2 explains the maximum gains for fuzzy like PDs and PI speed regulators. 

 

 

 
 

Figure 5. Cost convergence over iterations 

 

 

Table 1. Comparison of the statistical results of used algorithms 
Technique Ave. Std. dev. 

Tuning using AVOA for PI speed regulator 0. 814 0.0435 
Tuning using AVOA for Fuzzy like PD speed regulator 0. 235 0.0042 

Tuning using GA for Fuzzy like PD speed regulator 3.174 0.0456 

 

 

Table 2. Optimum parameters for speed regulator 
Technique Parameters 

PI speed regulators optimized with 

AVOA 
Kp=50.679 
Ki=40.250 

Fuzzy like PD speed regulators 
optimized with AVOA 

Kp=30 
Kd=40 

Ko=100 
Fuzzy like PD speed regulators 

optimized with GA 
Kp=27.63 
Kd=36.87 
Ko=105 

 

 

4. RESULTS AND DISCUSSION  

To study the behavior of the studied control techniques, the simulation has been performed on two 

different induction motors (large-scale induction motor and small-scale induction motor). large-scale 

induction motor is examined utilizing MATLAB/Simulink under adaptive fuzzy logic controller, PI using 

AVOA, fuzzy PD-like using AVOA, and fuzzy PD-like using GA. A laboratory prototype of the control 

system is built using the DSPACE-DS1104 control board for a small induction motor, and the results are 

compared to those obtained using MATLAB/Simulink for the same motor in order to validate the suggested 

algorithm. 
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4.1.  Large scale induction motor 

The drive system for a three-phase, 20 HP, 380 V, two pair poles, 50 Hz induction motor is 

simulated using MATLAB/Simulink. We measure the speed for 2 sec for each studied control technique. The 

results of output speed at no load by using an Adaptive fuzzy logic controller, PI speed regulator with 

AVOA, fuzzy PD-like using both AVOA and GA are shown in Figure 6. The dynamic performance analysis 

with different mechanical loads (0, 20, and 30 N.m) is shown in Figure 6 and summarized in Table 3. It is 

noted that, at no load, the overshoot peak value of speed using Adaptive fuzzy logic controller is 7.6 rad/s 

while it is 3.7 rad/s by using PI speed regulator with AVOA, on other hand, it is 3.3 rad/s by employing fuzzy 

PD-like with AVOA and 8.6 rad/s by using fuzzy PD-like with GA. The fuzzy PD-like using AVOA and the 

PI using AVOA have less rising time and settling time than the adaptive fuzzy logic controller. The AVOA 

parameters show a fast dynamic response as compared to GA parameters for the same fuzzy-like PD 

parameters. 

 

 

 
 

Figure 6. Simulation of motor speed for a reference speed of 50 rad/s and no-load 

 

 

Table 3. Performance analysis of different speed controllers at different loads 

Load (N.m) Method Tr (msec) Mp (rad/s) Ts (msec) 

No-load 

Adaptive Fuzzy Logic Controller 

PI speed regulator with AVOA Fuzzy 
PD-like using AVOA 

Fuzzy PD-like using GA 

20.337 

20.807 
20.327 

21.213 

7.6 

3.7 
3.3 

8.6 

530.2 

133.2 
98.6 

825.8 

20 

Adaptive Fuzzy Logic Controller 

PI speed regulator with AVOA Fuzzy  

PD-like using AVOA 
Fuzzy PD-like using GA 

19.161 

20.184 

19.177 
21.051 

5.6 

3.5 

3.3 
7.1 

432.6 

103.6 

89.02 
526.1 

30 

Adaptive Fuzzy Logic Controller 

PI speed regulator with AVOA Fuzzy  

PD-like using AVOA 

Fuzzy PD-like using GA 

19.203 

20.184 

19.100 

20.876 

5.3 

3 

2.8 

6.7 

326.4 

97.8 

82.31 

496.9 

 

 

Figure 7 shows the electromagnetic torque produced under the examined control techniques. In 

comparison to other methods, it is discovered that the adaptive fuzzy logic speed controller in Figure 7(a) has 

very promising results with a low steady-state torque ripple of 2%, but it also has very high transient peak 

torque (-162 to 232 N.m). In contrast, the PI speed regulator with AVOA in Figure 7(b) has a significant 

disadvantage with a higher steady state torque ripple of 10.1%. As opposed to an adaptive fuzzy logic speed 

controller, fuzzy PD-like with AVOA shown in Figure 7(c) has a very low steady-state torque ripple of 1.9% 

and reduces the transient peak torque by 10.91%. From Figures 7(c) and 7(d), AVOA shows a very low 

steady-state torque ripple and reduces the transient peak torque as compared to GA. Table 4 illustrates how 

ISE is used to further assess the performance of the controller. The results reveal that the performance of the 

fuzzy like PD and PI speed regulator tested with AVOA is significantly superior to AFLC and conventional 

PI. 
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(a) (b) 

  

  
(c) (d) 

 

Figure 7. Simulation of the electromechanical torque for the reference speed 50 rad/s and no-load using  

(a) adaptive fuzzy logic controller, (b) PI speed regulator with AVOA, (c) fuzzy PD-like using AVOA, and 

(d) fuzzy PD-like using GA 

 

 

Table 4. Integral square error performance at no-load 
Method ISE 

Conventional PI 37.61 

Adaptive Fuzzy Logic Controller 2.986 

PI speed regulator with AVOA Fuzzy 0. 814 

Fuzzy PD-like using AVOA 0. 235 
Fuzzy PD-like using GA 3.174 

 

 

4.2.  Small scale induction motor 

The MATLAB/Simulink platform is used to simulate the performance of the control system under 

fuzzy PD-like conditions of AVOA and GA in order to study their behaviors. A laboratory prototype of the 

control system is constructed using the DSPACE-DS1104 control board for a small induction motor (4-poles, 

0.8 kW, 50 Hz, 230/400 V, cosφ 1/0.75, 3.2/2 Amp) to evaluate the simulation results and verify the viability 

of the suggested controller. A picture of the actual experimental system is shown in Figure 8. 

 

 

 
 

Figure 8. The actual laboratory setup of the system 

 

 

Figures 9(a)-(b) and 10(a)-(b) display the simulation and experimental findings of the motor speed 

under fuzzy PD-like using GA and AVOA, respectively, at a command speed of 50 rad/s. Both Simulation 
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and experimental results confirm that the fuzzy PD-like using AVOA has less rising time and settling time 

than the fuzzy PD-like using GA. The AVOA parameters exhibit a quick dynamic response as compared to 

GA parameters for the same fuzzy-like PD parameters. 

Figures 11(a)-(b) and 12(a)-(b) display the simulation and experimental findings of the motor 

developed torque under fuzzy PD-like using GA and AVOA, respectively, at no-load and a command speed 

of 50 rad/s. Both Simulink and experimental results confirm that AVOA has a much lower steady-state 

torque ripple than GA and minimizes the transient peak torque. In addition, AVOA settles more quickly than 

GA.  

 

 

 
(a) 

 

 
(b) 

 

Figure 9. Simulation and experimental motor speed at no-load and command speed of 50 rad/s using fuzzy 

like PD with GA, (a) simulation and (b) experimental 

 

 

 
(a) 

 

 
(b) 

 

Figure 10. Simulation and experimental motor speed at no-load and command speed of 50 rad/s using fuzzy 

like PD with AVOA, (a) simulation and (b) experimental 
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(a) 

 

 
(b) 

 

Figure 11. Simulation and experimental motor developed torque at no-load and command speed of 50 rad/s 

using fuzzy like PD with GA, (a) simulation and (b) experimental 

 

 

 
(a) 

 

 
(b) 

 

Figure 12. Simulation and experimental motor developed torque at no-load and command speed of 50 rad/s 

using fuzzy like PD with AVOA, (a) simulation, (b) experimental 

 

 

5. CONCLUSION  

Using four different control methods, including an adaptive fuzzy logic controller, a PI speed 

regulator with AVOA, fuzzy PD-like with GA, and fuzzy PD-like with AVOA, a three-phase induction 

motor speed control drive system is investigated. The motor speed is regulated based on the integral square 

speed error and the change in this error. The newly proposed AVOA technique is appealing due to its clear 

formulation and simplicity of implementation. The performance of the induction motor drive system under 

the investigated control approaches is examined using MATLAB/Simulink. The simulation results 

demonstrate that using fuzzy-like PD with AVOA technique outperforms in terms of the performance and 

convergence rate. In the fuzzy-like PD speed regulator, the AVOA reduced the maximum peak overshoot for 
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speed dynamic response by 61.65% and the rising time by 4.17% as compared to GA. A quick response, 

outstanding anti-interference, and tracking precision are all advantages. Consequently, the AVOA technique 

is the most effective method for determining the tuning parameters that offer the optimal speed dynamic 

response (rising time, peak overshoot, and settling time). The applicability, effectiveness, and superiority of 

the AVOA to identify the optimal solution have been demonstrated.  

To assess the simulation findings and confirm the viability of the proposed controller, a lab 

prototype of the control system is built utilizing the dSPACE DS1104 control board. Experimental and 

simulation results indicate that the AVOA outperforms the GA in terms of overshoot and steady-state torque 

ripple. Using fuzzy PD-like with AVOA or PI speed regulator with AVOA as speed controller makes them a 

very good option compared to the adaptive fuzzy logic controller or fuzzy PD-like using GA. 
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