5 research outputs found

    Image-guided surgery and medical robotics in the cranial area

    Get PDF
    Surgery in the cranial area includes complex anatomic situations with high-risk structures and high demands for functional and aesthetic results. Conventional surgery requires that the surgeon transfers complex anatomic and surgical planning information, using spatial sense and experience. The surgical procedure depends entirely on the manual skills of the operator. The development of image-guided surgery provides new revolutionary opportunities by integrating presurgical 3D imaging and intraoperative manipulation. Augmented reality, mechatronic surgical tools, and medical robotics may continue to progress in surgical instrumentation, and ultimately, surgical care. The aim of this article is to review and discuss state-of-the-art surgical navigation and medical robotics, image-to-patient registration, aspects of accuracy, and clinical applications for surgery in the cranial area

    Virtual Surgical Planning and Stereolithography-guided Osteotomy for 3 Dimensional Mandibular Reconstruction with Free Fibula Osseous Flaps: A Case Report.

    Get PDF
    The osseous or osteocutaneous free fibula flap has become the gold standard for most mandibular reconstructions because of its favorable osseous characteristics. However, disadvantages, such as the time-consuming reconstructive step, difficulty in performing the osteotomies to precisely recreate the shape of the missing segment of mandible and poor bone-to-bone contact play a role in making the surgeons look for alternative flaps. With the advent of computerized design software, which accurately plans complex 3-dimensional reconstructions, has become a process that is more efficient and precise. However, the ability to transfer the computerized plan into the surgical field with stereolithographic models and guides has been a significant development in advancing reconstruction in the maxillofacial regions. The ability to "pre-plan" the case, mirror and superimpose natural structures into diseased and deformed areas, as well as the ability to reproduce these plans with good surgical precision has decreased overall operative time, and has helped facilitate functional and esthetic reconstruction. We describe a complex case treated with this technique, showing the power and elegance of computer assisted maxillofacial reconstruction from the University of Michigan, Oral and Maxillofacial Surgery.ope

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Sviluppo di funzionalità di augmented reality per computer assisted surgery

    Get PDF
    Negli ultimi anni, l'augmented reality -AR- ha aperto una finestra su un mondo di possibilità, che trovano spazio in tantissimi campi, anche molto diversi tra loro. Uno di questi è la chirurgia assistita dal computer (computer assisted surgery -CAS-). In questo lavoro, verrà mostrata un'interessante applicazione dell'AR in questo ambito, che consiste nel mixare, in modo coerente e in tempo reale, modelli virtuali 3D di parti anatomiche di un paziente, ottenuti da immagini TAC o RM, con immagini dal vivo di esso, acquisite per mezzo di telecamere. Il dispositivo utilizzato è un visore 3D dotato di telecamere, leggero e portatile (nonché economico), che un chirurgo può indossare, in fase pre-operatoria, per visualizzare il risultato degli esami radiologici, direttamente sul paziente e così pianificare meglio l'intervento che si sta accingendo a compiere. Le varie fasi che portano alla fusione delle immagini reali e virtuali verranno analizzate nel dettaglio, sia nei loro aspetti teorici che nei loro aspetti pratici: partiremo con le problematiche relative alla calibrazione, che ci porteranno a trovare un modello per descrivere analiticamente una telecamera, mediante alcuni parametri propri di essa e altri propri del modo di inquadrare la scena; continueremo occupandoci di aspetti di computer vision, (in particolare di pattern detection), al fine di localizzare alcuni pattern noti in precedenza, che, grazie alle loro caratteristiche, sono in grado di fornire informazioni sulla loro posizione/orientazione rispetto alle telecamere, creando così una relazione mondo-telecamera che si aggiorna in tempo reale; per concludere, tramite le informazioni ottenute in precedenza modelleremo due telecamere virtuali che abbiano lo stesso comportamento di quelle reali, istante per istante, in modo tale da consentire un perfetto matching real-time delle due scene inquadrate (quella reale e quella virtuale, costituita dall'immagine radiologica). L'analisi dei risultati sperimentali mostrerà un ottimo comportamento del sistema in quanto ad accuratezza e latenza, che fanno sì che il mix di elementi reali e virtuali risulti verosimile e dunque ben usufruibile
    corecore