2,590 research outputs found

    Augmented Lagrangian Approach to Design of Structured Optimal State Feedback Gains

    Get PDF
    We consider the design of optimal state feedback gains subject to structural constraints on the distributed controllers. These constraints are in the form of sparsity requirements for the feedback matrix, implying that each controller has access to information from only a limited number of subsystems. The minimizer of this constrained optimal control problem is sought using the augmented Lagrangian method. Notably, this approach does not require a stabilizing structured gain to initialize the optimization algorithm. Motivated by the structure of the necessary conditions for optimality of the augmented Lagrangian, we develop an alternating descent method to determine the structured optimal gain. We also utilize the sensitivity interpretation of the Lagrange multiplier to identify favorable communication architectures for structured optimal design. Examples are provided to illustrate the effectiveness of the developed method

    Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers

    Full text link
    We design sparse and block sparse feedback gains that minimize the variance amplification (i.e., the H2H_2 norm) of distributed systems. Our approach consists of two steps. First, we identify sparsity patterns of feedback gains by incorporating sparsity-promoting penalty functions into the optimal control problem, where the added terms penalize the number of communication links in the distributed controller. Second, we optimize feedback gains subject to structural constraints determined by the identified sparsity patterns. In the first step, the sparsity structure of feedback gains is identified using the alternating direction method of multipliers, which is a powerful algorithm well-suited to large optimization problems. This method alternates between promoting the sparsity of the controller and optimizing the closed-loop performance, which allows us to exploit the structure of the corresponding objective functions. In particular, we take advantage of the separability of the sparsity-promoting penalty functions to decompose the minimization problem into sub-problems that can be solved analytically. Several examples are provided to illustrate the effectiveness of the developed approach.Comment: To appear in IEEE Trans. Automat. Contro

    Enhanced gradient tracking algorithms for distributed quadratic optimization via sparse gain design

    Get PDF
    In this paper we propose a new control-oriented design technique to enhance the algorithmic performance of the distributed gradient tracking algorithm. We focus on a scenario in which agents in a network aim to cooperatively minimize the sum of convex, quadratic cost functions depending on a common decision variable. By leveraging a recent system-theoretical reinterpretation of the considered algorithmic framework as a closed-loop linear dynamical system, the proposed approach generalizes the diagonal gain structure associated to the existing gradient tracking algorithms. Specifically, we look for closed-loop gain matrices that satisfy the sparsity constraints imposed by the network topology, without however being necessarily diagonal, as in existing gradient tracking schemes. We propose a novel procedure to compute stabilizing sparse gain matrices by solving a set of nonlinear matrix inequalities, based on the solution of a sequence of approximate linear versions of such inequalities. Numerical simulations are presented showing the enhanced performance of the proposed design compared to existing gradient tracking algorithms
    • …
    corecore