21 research outputs found

    End-to-end Audiovisual Speech Activity Detection with Bimodal Recurrent Neural Models

    Full text link
    Speech activity detection (SAD) plays an important role in current speech processing systems, including automatic speech recognition (ASR). SAD is particularly difficult in environments with acoustic noise. A practical solution is to incorporate visual information, increasing the robustness of the SAD approach. An audiovisual system has the advantage of being robust to different speech modes (e.g., whisper speech) or background noise. Recent advances in audiovisual speech processing using deep learning have opened opportunities to capture in a principled way the temporal relationships between acoustic and visual features. This study explores this idea proposing a \emph{bimodal recurrent neural network} (BRNN) framework for SAD. The approach models the temporal dynamic of the sequential audiovisual data, improving the accuracy and robustness of the proposed SAD system. Instead of estimating hand-crafted features, the study investigates an end-to-end training approach, where acoustic and visual features are directly learned from the raw data during training. The experimental evaluation considers a large audiovisual corpus with over 60.8 hours of recordings, collected from 105 speakers. The results demonstrate that the proposed framework leads to absolute improvements up to 1.2% under practical scenarios over a VAD baseline using only audio implemented with deep neural network (DNN). The proposed approach achieves 92.7% F1-score when it is evaluated using the sensors from a portable tablet under noisy acoustic environment, which is only 1.0% lower than the performance obtained under ideal conditions (e.g., clean speech obtained with a high definition camera and a close-talking microphone).Comment: Submitted to Speech Communicatio

    Listening while Speaking and Visualizing: Improving ASR through Multimodal Chain

    Full text link
    Previously, a machine speech chain, which is based on sequence-to-sequence deep learning, was proposed to mimic speech perception and production behavior. Such chains separately processed listening and speaking by automatic speech recognition (ASR) and text-to-speech synthesis (TTS) and simultaneously enabled them to teach each other in semi-supervised learning when they received unpaired data. Unfortunately, this speech chain study is limited to speech and textual modalities. In fact, natural communication is actually multimodal and involves both auditory and visual sensory systems. Although the said speech chain reduces the requirement of having a full amount of paired data, in this case we still need a large amount of unpaired data. In this research, we take a further step and construct a multimodal chain and design a closely knit chain architecture that combines ASR, TTS, image captioning, and image production models into a single framework. The framework allows the training of each component without requiring a large number of parallel multimodal data. Our experimental results also show that an ASR can be further trained without speech and text data and cross-modal data augmentation remains possible through our proposed chain, which improves the ASR performance.Comment: Accepted in IEEE ASRU 201

    Investigating spoken emotion : the interplay of language and facial expression

    Get PDF
    This thesis aims to investigate how spoken expressions of emotions are influenced by the characteristics of spoken language and the facial emotion expression. The first three chapters examined how production and perception of emotions differed between Cantonese (tone language) and English (non-tone language). The rationale for this contrast was that the acoustic property of Fundamental Frequency (F0) may be used differently in the production and perception of spoken expressions in tone languages as F0 may be preserved as a linguistic resource for the production of lexical tones. To test this idea, I first developed the Cantonese Audio-visual Emotional Speech (CAVES) database, which was then used as stimuli in all the studies presented in this thesis (Chapter 1). An emotion perception study was then conducted to examine how three groups of participants (Australian English, Malaysian Malay and Hong Kong Cantonese speakers) identified spoken expression of emotions that were produced in either English or Cantonese (Chapter 2). As one of the aims of this study was to disambiguate the effects of language from culture, these participants were selected on the basis that they either shared similarities in language type (non-tone language, Malay and English) or culture (collectivist culture, Cantonese and Malay). The results showed that a greater similarity in emotion perception was observed between those who spoke a similar type of language, as opposed to those who shared a similar culture. This suggests some intergroup differences in emotion perception may be attributable to cross-language differences. Following up on these findings, an acoustic analysis study (Chapter 3) showed that compared to English spoken expression of emotions, Cantonese expressions had less F0 related cues (median and flatter F0 contour) and also the use of F0 cues was different. Taken together, these results show that language characteristics (n F0 usage) interact with the production and perception of spoken expression of emotions. The expression of disgust was used to investigate how facial expressions of emotions affect speech articulation. The rationale for selecting disgust was that the facial expression of disgust involves changes to the mouth region such as closure and retraction of the lips, and these changes are likely to have an impact on speech articulation. To test this idea, an automatic lip segmentation and measurement algorithm was developed to quantify the configuration of the lips from images (Chapter 5). By comparing neutral to disgust expressive speech, the results showed that disgust expressive speech is produced with significantly smaller vertical mouth opening, greater horizontal mouth opening and lower first and second formant frequencies (F1 and F2). Overall, this thesis provides an insight into how aspects of expressive speech may be shaped by specific (language type) and universal (face emotion expression) factors

    Emotional Speech-Driven Animation with Content-Emotion Disentanglement

    Full text link
    To be widely adopted, 3D facial avatars must be animated easily, realistically, and directly from speech signals. While the best recent methods generate 3D animations that are synchronized with the input audio, they largely ignore the impact of emotions on facial expressions. Realistic facial animation requires lip-sync together with the natural expression of emotion. To that end, we propose EMOTE (Expressive Model Optimized for Talking with Emotion), which generates 3D talking-head avatars that maintain lip-sync from speech while enabling explicit control over the expression of emotion. To achieve this, we supervise EMOTE with decoupled losses for speech (i.e., lip-sync) and emotion. These losses are based on two key observations: (1) deformations of the face due to speech are spatially localized around the mouth and have high temporal frequency, whereas (2) facial expressions may deform the whole face and occur over longer intervals. Thus, we train EMOTE with a per-frame lip-reading loss to preserve the speech-dependent content, while supervising emotion at the sequence level. Furthermore, we employ a content-emotion exchange mechanism in order to supervise different emotions on the same audio, while maintaining the lip motion synchronized with the speech. To employ deep perceptual losses without getting undesirable artifacts, we devise a motion prior in the form of a temporal VAE. Due to the absence of high-quality aligned emotional 3D face datasets with speech, EMOTE is trained with 3D pseudo-ground-truth extracted from an emotional video dataset (i.e., MEAD). Extensive qualitative and perceptual evaluations demonstrate that EMOTE produces speech-driven facial animations with better lip-sync than state-of-the-art methods trained on the same data, while offering additional, high-quality emotional control.Comment: SIGGRAPH Asia 2023 Conference Pape

    Oesophageal speech: enrichment and evaluations

    Get PDF
    167 p.After a laryngectomy (i.e. removal of the larynx) a patient can no more speak in a healthy laryngeal voice. Therefore, they need to adopt alternative methods of speaking such as oesophageal speech. In this method, speech is produced using swallowed air and the vibrations of the pharyngo-oesophageal segment, which introduces several undesired artefacts and an abnormal fundamental frequency. This makes oesophageal speech processing difficult compared to healthy speech, both auditory processing and signal processing. The aim of this thesis is to find solutions to make oesophageal speech signals easier to process, and to evaluate these solutions by exploring a wide range of evaluation metrics.First, some preliminary studies were performed to compare oesophageal speech and healthy speech. This revealed significantly lower intelligibility and higher listening effort for oesophageal speech compared to healthy speech. Intelligibility scores were comparable for familiar and non-familiar listeners of oesophageal speech. However, listeners familiar with oesophageal speech reported less effort compared to non-familiar listeners. In another experiment, oesophageal speech was reported to have more listening effort compared to healthy speech even though its intelligibility was comparable to healthy speech. On investigating neural correlates of listening effort (i.e. alpha power) using electroencephalography, a higher alpha power was observed for oesophageal speech compared to healthy speech, indicating higher listening effort. Additionally, participants with poorer cognitive abilities (i.e. working memory capacity) showed higher alpha power.Next, using several algorithms (preexisting as well as novel approaches), oesophageal speech was transformed with the aim of making it more intelligible and less effortful. The novel approach consisted of a deep neural network based voice conversion system where the source was oesophageal speech and the target was synthetic speech matched in duration with the source oesophageal speech. This helped in eliminating the source-target alignment process which is particularly prone to errors for disordered speech such as oesophageal speech. Both speaker dependent and speaker independent versions of this system were implemented. The outputs of the speaker dependent system had better short term objective intelligibility scores, automatic speech recognition performance and listener preference scores compared to unprocessed oesophageal speech. The speaker independent system had improvement in short term objective intelligibility scores but not in automatic speech recognition performance. Some other signal transformations were also performed to enhance oesophageal speech. These included removal of undesired artefacts and methods to improve fundamental frequency. Out of these methods, only removal of undesired silences had success to some degree (1.44 \% points improvement in automatic speech recognition performance), and that too only for low intelligibility oesophageal speech.Lastly, the output of these transformations were evaluated and compared with previous systems using an ensemble of evaluation metrics such as short term objective intelligibility, automatic speech recognition, subjective listening tests and neural measures obtained using electroencephalography. Results reveal that the proposed neural network based system outperformed previous systems in improving the objective intelligibility and automatic speech recognition performance of oesophageal speech. In the case of subjective evaluations, the results were mixed - some positive improvement in preference scores and no improvement in speech intelligibility and listening effort scores. Overall, the results demonstrate several possibilities and new paths to enrich oesophageal speech using modern machine learning algorithms. The outcomes would be beneficial to the disordered speech community
    corecore