1,722 research outputs found

    Technical aspects of a demonstration tape for three-dimensional sound displays

    Get PDF
    This document was developed to accompany an audio cassette that demonstrates work in three-dimensional auditory displays, developed at the Ames Research Center Aerospace Human Factors Division. It provides a text version of the audio material, and covers the theoretical and technical issues of spatial auditory displays in greater depth than on the cassette. The technical procedures used in the production of the audio demonstration are documented, including the methods for simulating rotorcraft radio communication, synthesizing auditory icons, and using the Convolvotron, a real-time spatialization device

    Mixed speech and non-speech auditory displays: impacts of design, learning, and individual differences in musical engagement

    Get PDF
    Presented at the 25th International Conference on Auditory Display (ICAD 2019) 23-27 June 2019, Northumbria University, Newcastle upon Tyne, UK.Information presented in auditory displays is often spread across multiple streams to make it easier for listeners to distinguish between different sounds and changes in multiple cues. Due to the limited resources of the auditory sense and the fact that they are often untrained compared to the visual senses, studies have tried to determine the limit to which listeners are able to monitor different auditory streams while not compromising performance in using the displays. This study investigates the difference between non-speech auditory displays, speech auditory displays, and mixed displays; and the effects of the different display designs and individual differences on performance and learnability. Results showed that practice with feedback significantly improves performance regardless of the display design and that individual differences such as active engagement in music and motivation can predict how well a listener is able to learn to use these displays. Findings of this study contribute to understanding how musical experience can be linked to usability of auditory displays, as well as the capability of humans to learn to use their auditory senses to overcome visual workload and receive important information

    An exploration of semiotics of new auditory displays: A comparative analysis with visual displays

    Get PDF
    Communicability is an important factor of user interfaces. To address communicability, extensive research has been done on visual displays, whereas relatively little research has been done on auditory displays. The present paper attempts to analyze semiotics of novel auditory displays (spearcon, spindex, and lyricon) using Peirce’s classification of signs: icon, symbol, and index. After the aesthetic developmental patterns of the visual counterparts are presented, semiotics of auditory cues is discussed with future design directions

    Tangible auditory interfaces : combining auditory displays and tangible interfaces

    Get PDF
    Bovermann T. Tangible auditory interfaces : combining auditory displays and tangible interfaces. Bielefeld (Germany): Bielefeld University; 2009.Tangible Auditory Interfaces (TAIs) investigates into the capabilities of the interconnection of Tangible User Interfaces and Auditory Displays. TAIs utilise artificial physical objects as well as soundscapes to represent digital information. The interconnection of the two fields establishes a tight coupling between information and operation that is based on the human's familiarity with the incorporated interrelations. This work gives a formal introduction to TAIs and shows their key features at hand of seven proof of concept applications

    Cultural differences in preference of auditory emoticons: USA and South Korea

    Get PDF
    For the last two decades, research on auditory displays and sonification has continuously increased. However, most research has focused on cognitive and functional mapping rather than emotional mapping. Moreover, there has not been much research on cultural differences on auditory displays. The present study compared user preference of auditory emoticons in two countries: USA and South Korea. Seventy students evaluated 112 auditory icons and 115 earcons regarding 30 emotional adjectives. Results indicated that they showed similar preference in the same category (auditory icons or earcons), but they showed different patterns when they were asked to select the best sound between the two categorical sounds. Implications for cultural differences in preference and directions for future design and research of auditory emoticons are discussed

    The Use of Audio in Minimal Access Surgery

    Get PDF
    In minimal access surgery (MAS) (also known as minimally invasive surgery), operations are carried out by making small incisions in the skin and inserting special apparatus into potential body cavities through those incisions. Laparoscopic MAS procedures are conducted in the patient’s abdomen. The aim of MAS is faster recovery, shorter hospitalisation and fewer major post-operative complications; all resulting in lower societal cost with better patient acceptability. The technique is markedly dependent on supporting technologies for vision, instrumentation, energy delivery, anaesthesia, and monitoring. However, in practice, much MAS continues to take longer and be associated with an undesirable frequency of unwanted minor (or occasionally major) mishaps. Many of these difficulties result precisely from the complexity and mal-adaptation of the additional technology and from lack of familiarity with it. A survey of South East England surgeons showed the two main stress factors on surgeons to be the technical difficulty of the procedure and time pressures placed on the surgeon by third parties. Many of the problems associated with MAS operations are linked to the control and monitoring of the equipment. This paper describes work begun to explore ergonomic enhancements to laparoscopic operating technology that could result in faster and safer laparoscopic operations, less surgeon stress and reduce dependence on ancillary staff. Auditory displays have been used to communicate complex information to users in a modality that is complementary to the visual channel. This paper proposes the development of a control and feedback system that will make use of auditory displays to improve the amount of information that can be communicated to the surgeon and his assistant without overloading the visual channel. Control of the system would be enhanced by the addition of voice input to allow the surgeon direct control

    Investigating Perceptual Congruence Between Data and Display Dimensions in Sonification

    Get PDF
    The relationships between sounds and their perceived meaning and connotations are complex, making auditory perception an important factor to consider when designing sonification systems. Listeners often have a mental model of how a data variable should sound during sonification and this model is not considered in most data:sound mappings. This can lead to mappings that are difficult to use and can cause confusion. To investigate this issue, we conducted a magnitude estimation experiment to map how roughness, noise and pitch relate to the perceived magnitude of stress, error and danger. These parameters were chosen due to previous findings which suggest perceptual congruency between these auditory sensations and conceptual variables. Results from this experiment show that polarity and scaling preference are dependent on the data:sound mapping. This work provides polarity and scaling values that may be directly utilised by sonification designers to improve auditory displays in areas such as accessible and mobile computing, process-monitoring and biofeedback

    Psychophysical Evaluation of Three-Dimensional Auditory Displays

    Get PDF
    This report describes the progress made during the second year of a three-year Cooperative Research Agreement. The CRA proposed a program of applied psychophysical research designed to determine the requirements and limitations of three-dimensional (3-D) auditory display systems. These displays present synthesized stimuli to a pilot or virtual workstation operator that evoke auditory images at predetermined positions in space. The images can be either stationary or moving. In previous years, we completed a number of studies that provided data on listeners' abilities to localize stationary sound sources with 3-D displays. The current focus is on the use of 3-D displays in 'natural' listening conditions, which include listeners'head movements, moving sources, multiple sources and 'echoic' sources. The results of our research on one of these topics, the localization of multiple sources, was reported in the most recent Semi-Annual Progress Report (Appendix A). That same progress report described work on two related topics, the influence of a listener's a-priori knowledge of source characteristics and the discriminability of real and virtual sources. In the period since the last Progress Report we have conducted several new studies to evaluate the effectiveness of a new and simpler method for measuring the HRTF's that are used to synthesize virtual sources and have expanded our studies of multiple sources. The results of this research are described below

    Ars Informatica -- Ars Electronica: Improving Sonification Aesthetics

    Get PDF
    In this paper we discuss æsthetic issues of sonifications. We posit that many sonifications have suffered from poor acoustic ecology which makes listening more difficult, thereby resulting in poorer data extraction and inference on the part of the listener. Lessons are drawn from the electro acoustic music community as we argue that it is not instructive to distinguish between sonifications and music/sound art. Edgar Var`ese defined music as organised sound and sonifications organise sound to reflect some aspect of the thing being sonified. Therefore, we propose that sonification designers can improve the communicative ability of their auditory displays by paying attention to the æsthetic issues that are well known to composers, orchestrators, sound designers & artists, and recording engineers
    corecore