1,741 research outputs found

    Sequential Single-Cluster Auctions for Multi-Robot Task Allocation

    Full text link
    This thesis studies task allocation in multi-robot teams operating in dynamic environments. The multi-robot task allocation problem is a complex NP-Complete optimisation problem with globally optimal solutions often difficult to find. Because of this, the rapid generation of near optimal solutions to the problem that minimise task execution time and/or energy used by robots is highly desired. Our approach seeks to cluster together closely related tasks and then builds on existing distributed market-based auction architectures for distributing these sets of tasks among several autonomous robots. Dynamic environments introduce many challenges that are not found in closed systems. For instance, it is common for additional tasks to be inserted into a system after an initial solution to the task allocation problem is determined. Additionally, it is highly likely in long-term autonomous systems that individual robots may suffer some form of failure. The ability to alter plans to react to these types of challenges in a dynamic environment is required for the completion of all tasks. In our approach we allow the repeated formation and auctioning of task clusters with varying tasks. This allows us to react to and change the task allocation among robots during execution. Throughout this thesis we use empirical evaluation to study different approaches for forming clusters of tasks and the application of task clustering to distributed auctions for multi-robot task allocation problems. Our results show that allocating clusters of tasks to robots in solving these types of problems is a fast and effective method and produces near optimal solutions

    Punctual versus continuous auction coordination for multi-robot and multi-task topological navigation

    Get PDF
    International audienceThis paper addresses the interest of using Punctual versus Continuous coordination for mobile multi-robot systems where robots use auction sales to allocate tasks between them and to compute their policies in a distributed way. In Continuous coordination, one task at a time is assigned and performed per robot. In Punctual coordination, all the tasks are distributed in Rendezvous phases during the mission execution. However , tasks allocation problem grows exponentially with the number of tasks. The proposed approach consists in two aspects: (1) a control architecture based on topo-logical representation of the environment which reduces the planning complexity and (2) a protocol based on Sequential Simultaneous Auctions (SSA) to coordinate Robots' policies. The policies are individually computed using Markov Decision Processes oriented by several goal-task positions to reach. Experimental results on both real robots and simulation describe an evaluation of the proposed robot architecture coupled wih the SSA protocol. The efficiency of missions' execution is empirically evaluated regarding continuous planning

    Simultaneous Auctions for "Rendez-Vous" Coordination Phases in Multi-robot Multi-task Mission

    Get PDF
    International audienceThis paper presents a protocol that permits to automatically allocate tasks, in a distributed way, among a fleet of agents when communication is not permanently available. In cooperation settings when communication is available only during short periods, it is difficult to build joint policies of agents to collectively accomplish a mission defined by a set of tasks. The proposed approach aims to punctually coordinate the agents during "Rendezvous'' phases defined by the short periods when communication is available. This approach consists of a series of simultaneous auctions to coordinate individual policies computed in a distributed way from Markov decision processes oriented by several goals. These policies allow the agents to evaluate their own relevance in each task achievement and to communicate bids when possible. This approach is illustrated on multi-mobile-robot missions similar to distributed traveling salesmen problem. Experimental results (through simulation and on real robots) demonstrate that high-quality allocations are quickly computed

    Multi-Robot Task Allocation: A Spatial Queuing Approach

    Get PDF
    Multi-Robot Task Allocation (MRTA) is an important area of research in autonomous multi-robot systems. The main problem in MRTA is to match a set of robots to a set of tasks so that the tasks can be completed by the robots while optimizing a certain metric such as the time required to complete all tasks, distance traveled by the robots and energy expended by the robots. We consider a scenario where the tasks can appear dynamically and the location of tasks are not known a priori by the robots. Additionally, for a task to be completed, it needs to be performed by multiple robots. This setting is called the MR-ST-TA (multi-robot, single-task, time- extended assginment) category of MRTA; solving the MRTA problem for this category is a known NP-hard problem. In this thesis, we address this problem by proposing a new algorithm that uses a spatial queue-based model to allocate tasks between robots while comparing its performance to several other known methods. We have implemented these algorithms on an accurately simulated model of Corobot robots within the Webots simulator for diïŹ€erent numbers of robots and tasks. The results show that our method is adept in all proïŹ€ered environments, especially scenarios that beneïŹt from path planning, whereas other methods display inherent weakness at one end of the spectrum: a decentralized greedy approach exhibits ineïŹƒcient behavior as the robot to task ratio dips below one, whereas the Hungarian method (an oïŹ„ine algorithm) fails to keep pace as the robot count increases
    • 

    corecore