6 research outputs found

    Auction-Based Distributed Resource Allocation for Cooperation Transmission in Wireless Networks

    Full text link
    Cooperative transmission can greatly improve communication system performance by taking advantage of the broadcast nature of wireless channels. Most previous work on resource allocation for cooperation transmission is based on centralized control. In this paper, we propose two share auction mechanisms, the SNR auction and the power auction, to distributively coordinate the resource allocation among users. We prove the existence, uniqueness and effectiveness of the auction results. In particular, the SNR auction leads to a fair resource allocation among users, and the power auction achieves a solution that is close to the efficient allocation.Comment: To appear in the Proceedings of the IEEE IEEE Global Communications Conference (GLOBECOM), Washington, DC, November 26 - 30, 200

    Network bandwidth allocation via distributed auctions with time reservations

    Get PDF
    Technical Report 5This paper studies the problem of allocating network capacity through periodic auctions. Motivated primarily by a service overlay architecture, we impose the following conditions: fully distributed solutions over an arbitrary network topology, and the requirement that resources allocated in a given auction are reserved for the entire duration of the connection, not subject to future contention. Under these conditions, we study the problem of selling capacity to optimize revenue for the operator.nbsp, We first study optimal revenue for a single distributed auction in a general network, writing it as an integer program and studying its convex relaxation. Next, the periodic auctions case is considered for a single link, modeling the optimal revenue problem as a Markov Decision Process (MDP), we develop a sequence of receding horizon approximations to its solution. Combining the two approaches we formulate a receding horizon optimization of revenue over a general network topology, leading to a convex program that yields a distributed implementation.nbsp, The proposal is demonstrated through simulations

    Border Games in Cellular Networks

    Get PDF
    In each country today, cellular networks operate on carefully separated frequency bands. This separation is imposed by the regulators of the given country to avoid interference between these networks. But, the separation is only valid within the borders of a country, hence the operators are left on their own to resolve cross-border interference of their cellular networks. In this paper, we focus on the scenario of two operators, each located on one side of the border. We assume that they want to fine-tune the emitting power of the pilot signals (i.e., beacon signals) of their base stations. This operation is crucial, because the pilot signal power determines the number of users they can attract and hence the revenue they can obtain. In the case of no power costs, we show that there exists a motivation for the operators to be strategic, meaning to fine-tune the pilot signal powers of their base stations. In addition, we study Nash equilibrium conditions in an empirical model and investigate the efficiency of the Nash equilibria for different user densities. Finally, we modify our game model to take power costs into account. The game with power costs corresponds to the well-known Prisoner's Dilemma: The players are still motivated to adjust their pilot powers, but their strategic behavior leads to a sub-optimal Nash equilibrium

    Development of resource allocation strategies based on cognitive radio

    Get PDF
    [no abstract

    Game Theory in Communications:a Study of Two Scenarios

    Get PDF
    Multi-user communication theory typically studies the fundamental limits of communication systems, and considers communication schemes that approach or even achieve these limits. The functioning of many such schemes assumes that users always cooperate, even when it is not in their own best interest. In practice, this assumption need not be fulfilled, as rational communication participants are often only interested in maximizing their own communication experience, and may behave in an undesirable manner from the system's point of view. Thus, communication systems may operate differently than intended if the behavior of individual participants is not taken into account. In this thesis, we study how users make decisions in wireless settings, by considering their preferences and how they interact with each other. We investigate whether the outcomes of their decisions are desirable, and, if not, what can be done to improve them. In particular, we focus on two related issues. The first is the decision-making of communication users in the absence of any central authority, which we consider in the context of the Gaussian multiple access channel. The second is the pricing of wireless resources, which we consider in the context of the competition of wireless service providers for users who are not contractually tied to any provider, but free to choose the one offering the best tradeoff of parameters. In the first part of the thesis, we model the interaction of self-interested users in a Gaussian multiple access channel using non-cooperative game theory. We demonstrate that the lack of infrastructure leads to an inefficient outcome for users who interact only once, specifically due to the lack of coordination between users. Using evolutionary game theory, we show that this inefficient outcome would also arise as a result of repeated interaction of many individuals over time. On the other hand, if the users correlate their decoding schedule with the outcome of some publicly observed (pseudo) random variable, the resulting outcome is efficient. This shows that sometimes it takes very little intervention on the part of the system planner to make sure that users choose a desirable operating point. In the second part of the thesis, we consider the competition of wireless service providers for users who are free to choose their service provider based on their channel parameters and the resource price. We model this situation as a two-stage game where the providers announce unit resource prices in the first stage and the users choose how much resource they want to purchase from each provider in the second stage. Under fairly general conditions, we show that the competitive interaction of users and providers results in socially optimal resource allocation. We also provide a decentralized primal-dual algorithm and prove its convergence to the socially optimal outcome
    corecore