17,055 research outputs found

    A truthful (1-É›)-optimal mechanism for on-demand cloud resource provisioning

    Get PDF
    On-demand resource provisioning in cloud computing provides tailor-made resource packages (typically in the form of VMs) to meet users’ demands. Public clouds nowadays provide more and more elaborated types of VMs, but have yet to offer the most flexible dynamic VM assembly, which is partly due to the lack of a mature mechanism for pricing tailor-made VMs on the spot. This work proposes an efficient randomized auction mechanism based on a novel application of smoothed analysis and randomized reduction, for dynamic VM provisioning and pricing in geo-distributed cloud data centers. This auction, to the best of our knowledge, is the first one in literature that achieves (i) truthfulness in expectation, (ii) polynomial running time in expectation, and (iii) (1-ɛ)-optimal social welfare in expectation for resource allocation, where ɛ can be arbitrarily close to 0. Our mechanism consists of three modules: (1) an exact algorithm to solve the NP-hard social welfare maximization problem, which runs in polynomial time in expectation, (2) a perturbation-based randomized resource allocation scheme which produces a VM provisioning solution that is (1-ɛ)-optimal and (3) an auction mechanism that applies the perturbation-based scheme for dynamic VM provisioning and prices the customized VMs using a randomized VCG payment, with a guarantee in truthfulness in expectation. We validate the efficacy of the mechanism through careful theoretical analysis and trace-driven simulations.published_or_final_versio

    Core-Selecting Auctions for Dynamically Allocating Heterogeneous VMs in Cloud Computing

    Get PDF
    In a cloud market, the cloud provider provisions heterogeneous virtual machine (VM) instances from its resource pool, for allocation to cloud users. Auction-based allocations are efficient in assigning VMs to users who value them the most. Existing auction design often overlooks the heterogeneity of VMs, and does not consider dynamic, demand-driven VM provisioning. Moreover, the classic VCG auction leads to unsatisfactory seller revenues and vulnerability to a strategic bidding behavior known as shill bidding. This work presents a new type of core-selecting VM auctions, which are combinatorial auctions that always select bidder charges from the core of the price vector space, with guaranteed economic efficiency under truthful bidding. These auctions represent a comprehensive three-phase mechanism that instructs the cloud provider to judiciously assemble, allocate, and price VM bundles. They are proof against shills, can improve seller revenue over existing auction mechanisms, and can be tailored to maximize truthfulness.published_or_final_versio

    Combinatorial Auction-Based Virtual Machine Provisioning And Allocation In Clouds

    Get PDF
    Current cloud providers use fixed-price based mechanisms to allocate Virtual Machine (VM) instances to their users. But economic theory states that when there are large amount of resources to be allocated to large number of users, auctions are the most efficient allocation mechanisms. Auctions achieve efficiency of allocation and also maximize the providers\u27 revenue, which a fixed-price based mechanism is unable to do. We argue that combinatorial auctions are best suited for the problem of VM provisioning and allocation in clouds, since they provide the users with the most flexible way to express their requirements. In combinatorial auctions, users bid for bundles of items rather than individual ones, therefore they are able to express whether the items they require are complementary to each other. The objective of this Ph.D. dissertation is to design, study, and implement combinatorial auction-based mechanisms for efficient provisioning and allocation of VM instances in clouds. The central hypothesis is that allocation efficiency and revenue maximization can be obtained by inducing users to fully express and truthfully report their preferences to the system. The rationale for our research is that, once efficient resource provisioning and allocation mechanisms that take into account the incentives of the users and cloud providers are developed and implemented, it will become more efficient to utilize cloud computing environments for solving challenging problems in business, science and engineering. In this dissertation, we present three combinatorial auction-based offline mechanisms to provision and allocation VM instances in clouds. We also present an online mechanism for dynamic provisioning of virtual machine instances in clouds. Finally, we designed an efficient bidding algorithm to assist users submitting bids to combinatorial auction-based mechanisms to execute parallel jobs the cloud. We outline our contribution and possible direction for future research in this field

    Putting auction theory to work : the simultaneous ascending auction

    Get PDF
    The"simultaneous ascending auction"was first introduced in 1994 to sell licenses to use bands of radio spectrum in the United States. Much of the attention devoted to the auction came from its role in reducing federal regulation of the radio spectrum and allowing market values, rather than administrative fiat, to determine who would use the spectrum resource. Several parts of economic theory proved helpful in designing the rules for simultaneous ascending auction and in thinking about how the design might be improved and adapted for new applications. After briefly reviewing the major rules of the auction in section 2, the author turns in section 3 to an analysis based on tatonnement theory, which regards the auction as a mechanism for discovering an efficient allocation and its supporting prices. The analysis reveals a fundamental difference between situations in which the licenses are mutual substitutes and others in which the same licenses are sometimes substitutes and sometimes complements. Section 4 is a selective account of some applications of game theory to evaluating the simultaneous ascending auction design for spectrum sales. Results like those reported in section 3 have led to renewed interest in auctions in which bids for license packages are permitted. In section 5, the author uses game theory to analyze the biases in a leading proposal for dynamic combinatorial bidding. Section 6 briefly answers two additional questions that economists often ask about auction design: If trading of licenses after the auction is allowed, why does the auction form matter at all for promoting efficient license assignments? Holding fixed the quantity of licenses to be sold, how sharp is the conflict between the objectives of assigning licenses efficiently and obtaining maximum revenue? Section 7 concludes.Economic Theory&Research,International Terrorism&Counterterrorism,Markets and Market Access,Environmental Economics&Policies,Labor Policies,Markets and Market Access,Access to Markets,Economic Theory&Research,Environmental Economics&Policies,International Terrorism&Counterterrorism

    Auction-based Bandwidth Allocation Mechanisms for Wireless Future Internet

    Get PDF
    An important aspect of the Future Internet is the efficient utilization of (wireless) network resources. In order for the - demanding in terms of QoS - Future Internet services to be provided, the current trend is evolving towards an "integrated" wireless network access model that enables users to enjoy mobility, seamless access and high quality of service in an all-IP network on an "Anytime, Anywhere" basis. The term "integrated" is used to denote that the Future Internet wireless "last mile" is expected to comprise multiple heterogeneous geographically coexisting wireless networks, each having different capacity and coverage radius. The efficient management of the wireless access network resources is crucial due to their scarcity that renders wireless access a potential bottleneck for the provision of high quality services. In this paper we propose an auction mechanism for allocating the bandwidth of such a network so that efficiency is attained, i.e. social welfare is maximized. In particular, we propose an incentive-compatible, efficient auction-based mechanism of low computational complexity. We define a repeated game to address user utilities and incentives issues. Subsequently, we extend this mechanism so that it can also accommodate multicast sessions. We also analyze the computational complexity and message overhead of the proposed mechanism. We then show how user bids can be replaced from weights generated by the network and transform the auction to a cooperative mechanism capable of prioritizing certain classes of services and emulating DiffServ and time-of-day pricing schemes. The theoretical analysis is complemented by simulations that assess the proposed mechanisms properties and performance. We finally provide some concluding remarks and directions for future research
    • …
    corecore