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Abstract—On-demand resource provisioning in cloud com-
puting provides tailor-made resource packages (typically in the
form of VMs) to meet users’ demands. Public clouds nowadays
provide more and more elaborated types of VMs, but have
yet to offer the most flexible dynamic VM assembly, which
is partly due to the lack of a mature mechanism for pricing
tailor-made VMs on the spot. This work proposes an efficient
randomized auction mechanism based on a novel application of
smoothed analysis and randomized reduction, for dynamic VM
provisioning and pricing in geo-distributed cloud data centers.
This auction, to the best of our knowledge, is the first one
in literature that achieves (i) truthfulness in expectation, (ii)
polynomial running time in expectation, and (iii) (1− ε)-optimal
social welfare in expectation for resource allocation, where ε
can be arbitrarily close to 0. Our mechanism consists of three
modules: (1) an exact algorithm to solve the NP-hard social
welfare maximization problem, which runs in polynomial time
in expectation, (2) a perturbation-based randomized resource
allocation scheme which produces a VM provisioning solution
that is (1−ε)-optimal and (3) an auction mechanism that applies
the perturbation-based scheme for dynamic VM provisioning and
prices the customized VMs using a randomized VCG payment,
with a guarantee in truthfulness in expectation. We validate the
efficacy of the mechanism through careful theoretical analysis
and trace-driven simulations.1

I. INTRODUCTION

Cloud computing services are proliferating in today’s In-
ternet. They try to cater to users’ resource demands of any
scale at any time. To be flexible at meeting users’ demands,
cloud platforms such as Amazon EC2, Microsoft Azure and
GoGrid exploit advanced virtualization technologies to pack
CPU, RAM, and disk resources into virtual machine (VM)
instances of various types. Undoubtedly, the more variety of
VM types they can provide, the better they could meet the
wide range of users’ demands. For example, Amazon EC2
has been expanding the variety of VM instances they provide,
which now spans 7 categories and 23 types [1]. However, the
increased variety on the provider’s side still often falls short
of addressing the user’s needs precisely, which could lead to
a waste of resources and an unjustifiably inflated payment by
the users. For example and suppose there is a user who needs
to run a computationally intensive job (e.g., MapReduce), and
he wishes to acquire 16 vCPU units and 16 GB memory [2]
in EC2’s Singapore data center in order to process 160 GB
usage data; the best match is a c3.4xlarge instance, which

1This work was supported in part by a grant from RGC under the contract
HKU 718513 and the Natural Sciences and Engineering Research Council of
Canada (NSERC).

unfortunately is far from a perfect match, and the result is
a waste of roughly half of the allocated memory and SSD
storage.

Current virtualization technology is in fact ready for real-
time, on-demand VM partitioning and provisioning (e.g., by
utilizing credit-based CPU scheduler and memory balloon-
ing [3]). What is lacking seems to be an effective pricing
mechanism that can decide on the spot the charges for the
customized VMs. The current representative charging models,
e.g., long-term reservation, fixed on-demand instance pricing
and spot instance pricing employed by Amazon EC2, are
not suitable for dynamically assembled VMs. Under fixed
pricing, it is impossible for the cloud provider to come up
with the appropriate prices, a priori, for any VM type that
could possibly be assembled according to the user’s needs.
Furthermore, fixed pricing fails to cater to the changing supply
and demand in the market; either overpricing or underpricing
would jeopardize the social welfare of the overall system
as well as the provider’s revenue. Amazon’s spot instance
market [4] represents the first attempt at a more market-driven
pricing system, which however still lacks the truthfulness
guarantee and service guarantee [5][6]. Some recent work
further studied auction mechanism design for cloud resource
provisioning from different perspectives [6][7][8][9]. However,
most of them model VMs as type-oblivious commodities, and
would fail to function property with VMs that are dynamically
assembled.

Besides pricing, packing available resources in a data
center to maximally cater to users’ VM demands translates
into an NP-hard combinatorial optimization problem, which
presents a tough challenge in VM auction design. The VCG
mechanism [10], essentially the only type of auction that
guarantees both truthfulness and economic efficiency (social
welfare maximization), requires an exact optimal allocation.
When polynomial-time approximation algorithms are applied
instead, VCG loses its truthfulness property [11]. To achieve
truthfulness with an approximation algorithm, researchers have
exploited the concept of critical bids [12], or resorted to some
LP decomposition technique [13][14][15]. The approximation
ratio of these auctions with respect to social welfare optimality
depends on the efficiency of the approximation algorithm
employed, which is typically much larger than 1 [14][15].

This work aims to leverage a set of recent, novel techniques
from smoothed analysis [16] and randomized reduction, to
design a randomized, highly efficient auction mechanism for



provisioning and pricing customized VM instances in a geo-
distributed cloud. The resulting combinatorial VM auction is
sufficiently expressive for cloud users to request the necessary
custom-made VM instances in bundles in different data centers
for their job execution. To the best of our knowledge, this is the
first VM auction that achieves (i) truthfulness (in expectation),
(ii) polynomial running time (in expectation), and (iii) (1−ε)-
optimal social welfare (in expectation) for resource allocation
in a geo-distributed cloud, where ε ∈ (0, 1) is a tunable
parameter that can approach zero.

Our proposed auction mechanism consists of three main
modules: (1) an exact algorithm to solve the NP-hard social
welfare maximization problem, which runs in polynomial time
in expectation and is based on smoothed analysis. It serves as
the basis for resource allocation in (2); (2) a perturbation-based
randomized resource allocation scheme that produces a VM
provisioning solution that is (1− ε)-optimal in social welfare
in expectation; and (3) an auction mechanism that applies the
perturbation-based scheme to dynamic VM provisioning, and
prices the customized VMs using a randomized VCG payment,
which guarantees truthfulness in expectation. The following
are the steps involved.

First, we formulate the social welfare optimization problem
as an integer linear program and then prove its NP-hardness.
Based on smoothed analysis, we randomly perturb the objec-
tive function of the optimization following a well designed
perturbation framework, and propose an exact dynamic pro-
gramming based algorithm to solve the perturbed problem.
The algorithm finds a feasible solution to the original, unper-
turbed problem with polynomial running time in expectation.
Furthermore, a transformation of this feasible solution yields
a fractional solution to the original problem, which achieves
(1− ε)-optimal social welfare in expectation.

Second, we design a randomized resource allocation
scheme, which outputs the allocation solution of the auction
following a well designed distribution over a set of feasible so-
lutions of the social welfare maximization problem, including
the feasible solution produced in the above step. By designing
the distribution in close connection with the perturbation
framework, we are able to show that the expectation of such a
randomized solution equals the fractional solution mentioned
above, and hence it achieves (1− ε)-optimal social welfare in
expectation.

Third, we combine the randomized resource allocation
scheme with a randomized VCG payment, and complete our
auction design with truthfulness guaranteed in expectation.

An interesting result of our mechanism design, which arises
from the contrast between the following pair of facts, rep-
resents perhaps the most surprising outcome of this work:
(i) For the social welfare maximization problem we formu-
late, even if truthful bids are given for free, no (deter-
ministic) polynomial-time algorithm can guarantee (1 − ε)-
approximation for arbitrarily tunable ε [17]. (ii) The (random-
ized) VM auction designed in our work is both polynomial-
time and (1−ε)-optimal in expectation, and can simultaneously
elicit truthful bids from selfish cloud users.

The above strong properties of our VM auction are made
possible by unleashing fully the power of randomization,
through the art of calculated random perturbation (for com-
putational efficiency) and associated perturbation (for truth-
fulness). While there exist separate literature on applying
randomization for efficient algorithm design and for truthful
mechanism design respectively, to the best of our knowledge,
this work is the first one that applies the same carefully
prepared randomization scheme twice in subtly different forms
and in a coordinated fashion to achieve low algorithm com-
plexity and truthful mechanism design in the same auction
framework. We believe that this new technique can be gener-
alized to become applicable to a rich class of combinatorial
auctions in which social welfare maximization can be modeled
as a linear integer program that is NP-hard (otherwise our
technique is unnecessary) but not too hard (which admits a
smoothed polynomial time algorithm) to solve.

We discuss related work in Sec. II and present the system
model in Sec. III. Sec. IV gives the complete auction design.
Sec. V presents trace-driven simulation studies and Sec. VI
concludes the paper.

II. RELATED WORK

Resource provisioning in cloud computing has been exten-
sively studied with different focuses. Beloglazov et al. [18]
aim at minimizing the energy consumption in computing
task scheduling. Alicherry et al. [19] study VM allocation
in distributed cloud systems, taking into consideration the
communication cost. Joe-Wong et al. [20] seek to balance
efficiency and fairness for allocating resources of multiple
types. None of them however focus on dynamic VM assembly
and provisioning, which is the focus of our work.

Auction mechanisms have been applied to achieve efficient
resource allocation in cloud systems. Zaman et al. [7] design
a truthful auction based on an approximation algorithm for
resource allocation, but without proving the performance of
the resource allocation algorithm. Wang et al. [5] propose a
truthful VM auction based on a greedy allocation algorithm
and a well-designed payment method; the derived allocation
solution approximates the optimal solution with a large ap-
proximation ratio which depends on the number of VMs.
Zhang et al. [9] and Wang et al. [6] design online cloud
auctions but they only consider a single type of VM instances,
ignoring dynamic provisioning of different VMs. Similar to
our work, Zhang et al. [14] and Shi et al. [15] address dynamic
VM provisioning, and design truthful auctions by applying an
LP decomposition technique, which achieve 2.72- and 3.30-
approximation of optimal social welfare, respectively. This
work departs from the existing literature by applying smoothed
analysis and randomized reduction techniques to randomized
auction design, which achieves a much better approximation to
the optimal solution, i.e., (1−ε)-optimal social welfare (where
ε can be very close to zero), while retaining truthfulness and
computation efficiency in expectation.

A key technique we adopt in this paper is a novel use of
smoothed analysis in designing an algorithm to produce a good



solution to the social welfare maximization in polynomial
time in expectation. Smoothed analysis is a technique for
analyzing the time complexity of an algorithm for an NP-
hard problem, that exactly solves a perturbed instance of
the problem based on a small, random perturbation, in order
to show that the algorithm can be efficient in expectation
despite its possible worst case complexity [16]. It has been
argued that complexity analysis on the expectation over some
distribution of the instances is more convincing than that of
the average case, and more practical than that of the worst
case [16]. Smoothed analysis has been applied recently in
areas such as combinatorial programming [21], computational
geometry [22], game analysis [23]. Dughmi et al. [24] focus
on social welfare maximization problems with an FPTAS, and
design a randomized reduction method to convert the FPTAS
into a truthful mechanism. Unlike theirs, our NP-hard social
welfare maximization problem does not have a deterministic
FPTAS; even so, we are able to show, surprisingly, that we
can still achieve a randomized, truthful, (1−ε)-approximation
mechanism with expected polynomial complexity by applying
the carefully designed permutation framework.

III. SYSTEM MODEL

A. Cloud Resource Aucion

Consider an IaaS cloud consisting of D geo-distributed data
centers. The cloud provider offers users K types of resources,
including CPU, RAM and storage, to be packaged as VMs for
lease. Let [X] denote the set of integers {1, 2, . . . , X}. The
overall capacity of resource of type k ∈ [K] in data center
(DC) d ∈ [D] is ck,d.

The cloud provider acts as an auctioneer and sells custom-
made VMs to N cloud users through auctions. Assume M is
the maximum number of VM types that the users may possibly
request to run their jobs, and each VM of type m ∈ [M ]
consumes an rkm amount of type-k resource, for all k ∈ [K].
Note that we allow flexible VM assembly on demand and the
numbering of VM types is purely for the ease of presentation.

The N cloud users act as bidders in the auction. Let L
be the total number of bids submitted by all the cloud users,
and we use i ∈ [L] to denote the index in the set of bids.
Each bid Bi contains a list of desired quantities of VMs of
different types, as well as the bidder’s reported valuation for
this bundle of VMs. More specifically, there is an (MD+ 1)-
tuple of elements in a bid: qim,d,∀m ∈ [M ],∀d ∈ [D], and
bi, where qim,d is the number of type-m VM instances the
corresponding bidder requires in data center d, and bi is the
bidder’s reported valuation for this bundle. Each cloud user
n ∈ [N ] can submit multiple bids, but at most one bid can be
successful. This assumption is reasonable given that any need
for concurrently acquiring VM bundles in two or more bids
can be expressed as a separate bid with a combined bundle.
Let Bn denote the set of bids submitted by user n. We have
0 ≤ |Bn| ≤ L.

Upon receiving user bids, the cloud provider computes the
outcome of the auction, including both (i) its VM allocation
scheme, ~x = {x1, ..., xL}, where binary variable xi is 1 if bid

TABLE I: Notation

N # of users L # of bids
M # of VM types K # of resource types
D # of data centers Bi the ith bid
vi true valuation of bid i ui utility of bid i
P perturbation matrix Bn bid set of user n
bi bidding price of bid i b̄i perturbed bi

ε parameter in (0, 1)
rkm amount of type-k resource in a type-m VM
qim,d # of type-m VMs in DC d requested in bid i
Rik,d demand of type-k resource in DC d in bid i
ck,d capacity of type-k resource in DC d
s(~x) social welfare under allocation solution ~x

Ck,d(~x) demand for type-k resource in DC d under ~x
θi parameter in [0, ε/L]

Ω(~x) distribution based on ~x, ε and ~θ
xi to accept (1) or reject (0) bid i
~x∗ optimal allocation solution of ILP (1)
~xp optimal allocation solution of ILP (3)
~xf fractional solution perturbed from ~xp

~yε auction’s final allocation solution
pi(~y

ε) payment of bid i under ~yε

i is successful and 0 otherwise, and (ii) a payment pi for each
winning bid i. Let vi denote the true valuation of the bidder
submitting bid i. The utility ui acquired due to this bid is then:

ui(Bi,B−i) =

{
vi − pi if Bi is accepted
0 otherwise

where B−i is the set of all bids in the auction except Bi. We
summarize important notations in Table I for ease of reference.

B. Goals of Mechanism Design

We pursue the following desirable properties in our mech-
anism design. (i) Truthfulness: The auction mechanism is
truthful if for any user n, declaring its true valuation of
the VM bundle in each of its bids always maximizes its
utility, regardless of other users’ bids. Truthfulness ensures
that selfish buyers are automatically elicited to reveal their true
valuations of the VMs they demand, simplifying the bidding
strategy and the auction design. (ii) Social welfare maximiza-
tion: The social welfare is the sum of the cloud provider’s
revenue,

∑
n∈[N ]

∑
i∈Bn pixi, and the aggregate users’ utility∑

n∈[N ]

∑
i∈Bn(vi−pi)xi. Since the cloud provider’s revenue

and the payment from the users cancel out, the social welfare
is equivalent to the overall valuation of the winning bids∑
n∈[N ]

∑
i∈Bn vixi, which equals

∑
n∈[N ]

∑
i∈Bn bixi under

truthful bidding. Different from existing work that achieve
only approximate social welfare optimality with a ratio much
larger than 1, we seek to achieve (1 − ε)-optimality where
ε is a tunable parameter that can be arbitrarily close to 0.
(iii) Computational efficiency: A polynomial-time resource
allocation algorithm is desirable for the auction to run ef-
ficiently in practice. Our auction mechanism leverages the
power of randomization to break through the inapproximability



barrier of the social welfare maximization problem which does
not have a deterministic FPTAS. Consequently, we target at
polynomial time complexity of the mechanism in expectation.

Next, we formulate the social welfare maximization prob-
lem, which gives rise to the optimal resource allocation
solution for the cloud provider to address users’ VM de-
mands, assuming truthful bidding is guaranteed. Here Rik,d =∑M
m=1 q

i
m,dr

k
m denotes the overall demand of type-k resource

in data center d in bid i.

maximize
∑
n∈[N ]

∑
i∈Bn

bixi (1)

subject to:

∑
n∈[N ]

∑
i∈Bn

xiR
i
k,d ≤ ck,d, ∀k ∈ [K], ∀d ∈ [D], (1a)

∑
i∈Bn

xi ≤ 1, ∀n ∈ [N ], (1b)

xi ∈ {0, 1}, ∀i ∈ Bn, ∀n ∈ [N ].

Constraint (1a) states that the overall demand for each type
of resource in the winning bids should not exceed the overall
capacity of the resource in each data center. Constraint (1b)
specifies that each user can win at most one bid.

Theorem 1. The social welfare maximization problem defined
in the integer linear program (ILP) (1) is NP-hard and there
does not exist a deterministic FPTAS for the problem.

The proof is given in our technical report [25].

IV. AUCTION DESIGN

At a high level, our strategy for truthful VM auction design
is to apply a randomized VCG-like payment mechanism that
works in concert with a randomized allocation algorithm, with
the latter achieving optimal social welfare in expectation. Such
randomized auctions leverage maximal-in-distributional range
(MIDR) algorithms, which are known to be a powerful tool
for designing (randomized) truthful mechanisms [26]. More
specifically, if we can design an MIDR allocation rule (i.e.,
a randomized allocation algorithm that chooses an allocation
solution randomly from a set of feasible solutions of the
social welfare maximization problem, following a distribution
that is independent of the bidders’ bids, and leads to the
largest expected social welfare as compared to all other such
distributions in a range), then we can combine a randomized
VCG payment scheme following a similar distribution to
obtain an auction mechanism that is truthful in expectation.
To achieve the other two goals of our auction design, the
allocation algorithm should run in polynomial time and be
(1− ε)-optimal in social welfare, both in expectation.

Next we first design an exact algorithm to solve the social
welfare maximization problem in Sec. IV-A. Then we apply
a perturbation framework to design the randomized allocation
algorithm in Sec. IV-B, making use of the exact algorithm,
based on a novel application of smoothed analysis techniques.

Then we describe the payment scheme in Sec. IV-C. The
missing proofs of some of the lemmas and theorems can be
found in our technical report [25].

A. An Exact Algorithm for Social Welfare Maximization

The basic idea of the exact algorithm is to enumerate all the
feasible allocation solutions excluding those absolutely “bad”
ones, and then select the optimal allocation solution ~x that
achieves maximum aggregate bidding price (corresponding to
maximum social welfare under truthful bidding) among the
set of “good” feasible solutions. The set of “good” solutions
are defined to be those Pareto optimal solutions which are not
dominated by any other feasible solutions, and the “bad” ones
are those dominated by at least one Pareto optimal solution.
This is in line with classical dynamic programming approaches
for enumerating Pareto optimal solutions in traditional combi-
natorial optimization [27].

Let s(~x) =
∑
n∈[N ]

∑
i∈Bn bixi denote the social

welfare under allocation solution ~x, and Ck,d(~x) =∑
n∈[N ]

∑
i∈Bn xiR

i
k,d be the total demand for type-k re-

source in data center d under ~x. The Pareto optimal solutions
are defined as follows.

Definition (Pareto Optimal Allocation) An allocation solution
~x is Pareto optimal if it satisfies all the constraints in ILP (1),
and there does not exist a feasible solution ~x′ that dominates ~x,
i.e., @~x′ such that s(~x′) ≥ s(~x) and Ck,d(~x′) ≤ Ck,d(~x),∀k ∈
[K],∀d ∈ [D], with at least one inequality being strict among
the above, as well as

∑
i∈Bn x

′
i ≤ 1, ∀n ∈ [N ].

We find out all the Pareto optimal solutions using a dynamic
programming approach: Let P(i) be the set of all Pareto
optimal solutions when we only consider the first i bids in
set [L] (the bids in [L] are ordered in any fashion). Let i-
dimensional vector ~x(i) denote a Pareto optimal solution in
P(i). We compute P(i) from P(i− 1), and eventually obtain
P(L) which is the set of Pareto optimal solutions of ILP (1).

We show the following property of the Pareto optimal
solution sets:

Lemma 1. If ~x(i) is a Pareto optimal solution in P(i), then
the vector obtained by removing the last element x(i)

i from ~x(i)

is a Pareto optimal solution in P(i− 1), ∀i = 2, . . . , L.

Let P(i − 1) + 1 denote the set of i-dimensional solutions
obtained by simply adding 1 as the ith element to each
solution vector in P(i − 1) (removing infeasible solutions),
and P(i − 1) + 0 be the set obtained by adding 0 as the ith
element. Given Lemma 1, we know that any solution in P(i)
must be contained in set P(i− 1) + 0 ∪ P(i− 1) + 1. In the
algorithm given in Alg. 1, we start with P(1), which contains
two Pareto optimal solutions 1 (accept B1) and 0 (reject B1),
if the resource demands in bid B1 do not exceed the respective
capacity limits, and contains only one Pareto optimal solution
0, otherwise. Then we construct P(i), i = 2, . . . , L, by
eliminating infeasible or non-Pareto-optimal solutions from
P(i−1)+0∪P(i−1)+1. Finally, the exact allocation solution
of ILP (1) is obtained as the solution in P(L) that achieves



the maximum social welfare. The computation complexity of

Algorithm 1: The Exact Algorithm for ILP (1)

1 Input: ~b, ~R,~c
2 Output: exact optimal solution ~x
3 if Ck,d({1}) ≤ ck,d,∀k ∈ [K],∀d ∈ [D] then
4 P(1) = {0, 1};
5 else
6 P(1) = {0};
7 for i = 2, ..L do
8 for all ~x(i−1) ∈ P(i− 1) do
9 ~x(i) = {~x(i−1), 1};

10 if ~x(i) satisfies Constraints (1a) and (1b) then
11 Put ~x(i) into P(i− 1) + 1;

12 Merge P(i− 1) + 0 and P(i− 1) + 1 into P(i)′;
13 Prune the solutions dominated by others in P(i)′ to

obtain P(i) = {~x(i) ∈ P(i)′|@~x(i)′ ∈ P(i)′ :
~x(i)′ dominates ~x(i)};

14 return ~x = argmax~y∈P(L)s(~y)

the exact Alg. 1 is polynomial in the number of Pareto optimal
solutions in P(L), as given in Theorem 2, which is based on
Lemma 2.

Lemma 2. The number of Pareto optimal solutions |P(i)| does
not decrease with i, i.e., |P(1)| ≤ ... ≤ |P(L)|.

The proof is given in our technical report [25].

Theorem 2. The computation complexity of Alg. 1 is
O(KDL|P(L)|2).

The proof is given in our technical report [25].
The algorithm runs in exponential time in the worst case,

since there can be exponentially many Pareto optimal solutions
to check in the worst case. In what follows, however, we will
show that this exact algorithm is efficient in practice and can
be used as a building block in a perturbation framework, for
producing a randomized allocation algorithm which runs in
polynomial time in expectation.

B. The Randomized (1− ε)-Approx. Allocation Algorithm

The basic idea of our randomized algorithm that can ef-
ficiently solve the social welfare maximization problem (1)
is to obtain a set of feasible allocation solutions that achieve
(1−ε)-optimal social welfare in expectation, following a well-
designed distribution, and then randomly output an allocation
solution from this set following this distribution. To achieve
computation efficiency, the set of feasible solutions are to
be computed in polynomial time in expectation, including
one from the random perturbation of the social welfare max-
imization problem, based on smoothed analysis techniques
[16][21]. We apply a pair of associated random perturbation
schemes—which is the most salient feature of this work and
for the first time in the literature—for smoothed polynomial

time algorithm design and for randomized auction design
respectively. The random perturbation is carefully designed,
in close connection with the distribution to sample feasible
solutions, to achieve (1 − ε)-optimal social welfare of (1) in
expectation.

Given an arbitrary parameter ε ∈ (0, 1) and L random
variables {θ1, θ2, . . . , θL} that are independently and identi-
cally chosen from [0, εL ] (following any distribution that is
not necessarily uniform). Let ~θ = {θ1, . . . , θL}. We perturb
the weight bi in the objective function of ILP (1), i.e., each
bidding price, independently to:

b̄i = (1− ε)bi +
θi

∑L
j=1 bj

L ,∀i ∈ [L].

Let
P = (1− ε)I +

~θ~1T

L
(2)

be the perturbation matrix, where I is the L × L identity
matrix. Then we can express the perturbation as ~̄b = P~b. The
perturbed social welfare maximization problem is:

maximize
∑
n∈[N ]

∑
i∈Bn b̄ixi (3)

subject to: constraints (1a)(1b)(1c).

We solve the perturbed social welfare maximization problems
using the exact algorithm (Alg. 1), and derive the optimal solu-
tion ~xp and optimum value of the perturbed objective function
POPT = ~̄bT~xp. We will show that the expected running time
to solve the randomly perturbed ILP is polynomial in Theorem
3 and Theorem 4. Let ~x∗ be the optimal solution of ILP (1),
and OPT = ~bT~x∗ be the optimal social welfare. We have

POPT = (P~b)T~xp ≥ (P~b)T~x∗ = ~bT ((1− ε)I +
~1~θT

L
)~x∗

≥ (1− ε)~bT~x∗ = (1− ε)OPT, (4)

i.e., the optimal objective value of the perturbed problem is at
least (1−ε) of the optimal social welfare of the original prob-
lem, which is very close as long as the perturbation, decided by
ε, is small enough. Given that (P~b)T~xp = ~bT (PT~xp), we also
obtain a potential solution ~xf = PT~xp to the original problem,
which achieves (1 − ε)-optimal social welfare. However, the
bad news is that ~xf may well be fractional due to the fractional
entries in PT , and hence not a feasible solution of ILP (1) (not
to mention whether it satisfies other constraints in (1) or not).
We hence cannot directly use ~xf as the allocation solution
to our social welfare maximization problem (1), but design
a random sampling approach to produce a feasible allocation
solution from a set of feasible solutions of (1) following a
well-designed distribution, such that the expectation of the
randomly produced solution is ~xf , which achieves (1 − ε)-
optimal social welfare in expectation.

Let ~li denote a solution of (1) that accepts only the ith bid
and rejects all the other bids, i.e., lii = 1 and li

′

i = 0,∀i′ 6= i.
We can easily see that ~li,∀i ∈ L, are feasible solutions to (1).
Note that ~xp is a feasible solution to (1) as well, since the
constraints in ILP (3) and ILP (1) are the same. The set of
feasible solutions to sample from hence is {~xp,~l1, . . . ,~lL,~0},
where ~0 is a L-dimensional all-zero vector. The final allocation



solution of (1), denoted by ~yε, is randomly produced following
the distribution Ω(~xp) below:

Ω(~xp) =


Pr[~yε = ~xp] = 1− ε,
Pr[~yε = ~li] =

∑L
j=1 θjx

p
j

L
, ∀i ∈ {1, ..., L},

P r[~yε = ~0] = 1− Pr[~yε = ~xp]−
∑L
i=1 Pr[~y

ε = ~li].
(5)

We can verify that the probability of each candidate is positive
and with a summation exactly 1. We then have that the
expectation of ~yε is

E[~yε] = (1− ε)~xp + (

∑L
j=1 θjx

p
j

L
)(

L∑
i=1

~li) = PT~xp = ~xf .

(6)
Given the above, the design of all the candidates in Ω(~p)
and probability assignment of each of them aim to make the
expectation equal to PT~xp. The high level idea is using Ω(~xp)
to randomly perturb ~xp to ~xf where PT of ~xp compensates the
perturbation P of ~b in (2). According to the critical property
(P~b)T~xp = ~bT (PT~xp), i.e., the perturbation of the objective
function is equal to the perturbation of the solution, ~xf enables
the (1−ε)-approximation, as indicated in (4). Here, ~yε is equal
to xp with a high probability of 1− ε, which is in accordance
with the 1 − ε part in (2). Each of the base vectors ~li and
the zero vector ~0 is chosen as a candidate to make Ω(~xp)
diffuse enough, such that an expected polynomial number of
Pareto optimal solutions to (3) can be guaranteed, which will
be proved in Theorem 3.

We summarize the above steps in Alg. 2, which is our
randomized algorithm for computing a (1 − ε)-approximate
solution to social welfare optimization problem (1).

Algorithm 2: The (1− ε)-Approx. Algorithm for ILP (1)

1 Input: ε ∈ (0, 1),~b, ~R,~c
2 Output: (1− ε)-approximate allocation solution ~yε

3 Choose θ1, ..., θL independently and identically in the
interval [0, εL ];

4 Produce perturbation matrix: P = (1− ε)I +
~θ~1T

L ;
5 Compute ~xp = Algorithm 1(P~b, ~R,~c);
6 Produce distribution Ω(~xp) according to (5);
7 return A sample ~yε according to Ω(~xp) in (5).

Alg. 2 achieves the following properties.
(i) The expected running time of the randomized Alg. 2
is polynomial. Although the worst-case computation com-
plexity of the exact Algorithm Alg. 1 is exponential due to
exponentially many Pareto optimal solutions in the worst case
(Theorem 2), we show that the algorithm runs efficiently in
practice, based on smoothed analysis [16][21]. The reason
is that the expected number of the Pareto optimal solutions
of the perturbed social welfare maximization problem (3) is
polynomial, and hence the exact algorithm runs in polynomial
time in expectation when applied to the perturbed problem—
perturbed with a P generated randomly as in (2). According

to smoothed analysis, Alg. 1 is said to run in smoothed
polynomial time.

Theorem 3. The expected number of Pareto optimal solutions
of the perturbed social welfare maximization problem (3) is
upper bounded by 1 + L4

ε , where the perturbation matrix P is
produced according to (2) with {θ1, θ2, . . . , θL} independently
and identically chosen from [0, εL ].

The proof is given in our technical report [25].

Theorem 4. The expected running time of the randomized
algorithm Alg. 2 is polynomial.

The proof is given in our technical report [25].

(ii) Alg. 2 achieves (1− ε)-optimal social welfare.

Theorem 5. Alg. 2 is a (1 − ε)-approximation randomized
algorithm for the social welfare maximization problem (1).

Proof. We have shown E[~yε] = ~xf . Hence E[~bT~yε] =
~bT~xf = ~bT (PT~xp) = POPT ≥ (1− ε)OPT , based on (4).

C. The Truthful-in-Expectation VM Auction

Recall the MIDR mechanism [26] we introduced at the
beginning of this section. We have designed the randomized
allocation algorithm which chooses an allocation solution
following the distribution Ω(~xp) in (5). This distribution is
independent of the cloud users’ bids. We next show that it
leads to the largest expected social welfare among a compact
set of such distributions, such that we can combine a random-
ized VCG payment scheme following a similar distribution, to
obtain an auction mechanism that is truthful in expectation.

Theorem 6. The randomized allocation Alg. 2 is an MIDR
allocation rule for the social welfare maximization problem
(1).

Proof. An MIDR allocation rule of a social welfare maxi-
mization problem returns an allocation solution that is sam-
pled randomly from a distribution over a feasible set of the
problem, which achieves the largest expected social welfare,
among random solutions produced following distributions in a
distributional range, which is a fixed compact set of probability
distributions over the feasible set that are independent of the
users’ bids [26].

Let T denote the set of all feasible solutions of ILP (1).
For each feasible solution ~x ∈ T , we can obtain a distribution
Ω(~x) in the same way as the distribution in (5) by replacing all
the ~xp with ~x shown in Ω(~xp). Then let ~y denote the random
allocation solution produced following Ω(~x), i.e., ~y ∼ Ω(~x).
Given ε and θ1, . . . , θL, the distribution Ω(~x) is dependent on
feasible solution ~x, but independent of the users’ bids. R =
{Ω(~x),∀~x ∈ T } is a compact set including all the distributions
indexed by feasible solution ~x. Using R as the distributional
range, we have

E~yε∼Ω(~xp)[~b
T ~yε] = ~bT (PT~xp) = max

~x∈T
~bT (PT~x)

= max
~x∈T

E~y∼Ω(~x)[~b
T ~y]. (7)



The first equation is due to (6). The second equation is because
~xp is the optimal solution of the perturbed ILP (3), and
the set of feasible solutions of ILP (1) and ILP (3) are the
same. The third equation is due to E~y∼Ω(~x)[~y] = PT~x, which
can be readily obtained according to (6). Hence the solution
~yε selected following distribution Ω(~xp) in Alg. 2 achieves
the largest expected social welfare, among all the solutions
produced following distributions in the distributional range R,
leading to an MIDR allocation rule.

Now we describe our randomized VCG payment, which is
based on the allocation solution ~yε, as follows:

pi(~y
ε) = ~bT−i~y

ε
−i − (~bT ~yε − biyεi ), ∀i ∈ [L]. (8)

Here ~b−i denotes the bidding price vector where the ith
bidding price is set to 0; ~yε−i is the random allocation solution
output by Alg. 2 with the input bidding price vector~b−i. Hence
~bT−i~y

ε
−i is the social welfare when the ith bid is excluded from

the auction. Further recall ~yε is the output of Alg. 2 with the
full bidding price vector ~b. Let yεi be the ith element of ~yε.
Hence ~bT~yε − biyεi is the social welfare achieved by all the
other bids except bid i, when all the bids are considered in
the auction.

Theorem 7. The randomized allocation algorithm Alg. 2
combined with the randomized VCG payment in (8) yields an
auction mechanism that runs in polynomial time in expecta-
tion, is truthful in expectation, and achieves (1 − ε)-optimal
social welfare in expectation.

Proof. According to the principles of MIDR algorithms [26],
to render a truthful-in-expectation mechanism, we should
combine an MIDR allocation rule with a VCG-like payment
as follows:

p′i = E[~bT−i~y
ε
−i − (~bT~yε − biyεi )], (9)

where the expectation is computed as follows in more details:
E~yε−i∼Ω(~xp−i)

[~bT−i~y
ε
−i] − E~yε∼Ω(~xp)[~b

T~yε − biyεi ]. Here ~xp−i is
the optimal solution of the perturbed ILP (3), produced by line
5 of Alg. 2, when the input bidding price vector is ~b−i.

Since it may not be always possible to compute the expec-
tation in (9) efficiently, it has been proved [24] that instead
of using (9), we can use a randomized payment rule to yield
the truthfulness in expectation as well, as long as the expected
payment of the randomized payment rule equals p′i in (9).

The expectation of our random payment in (8) is exactly

E[pi(~y
ε)]

= E~yε−i∼Ω(~xp−i)
[~bT−i~y

ε
−i]− E~yε∼Ω(~xp)[~b

T~yε − biyεi ]
= p′i.

Hence the random payment in (8) renders truthfulness in
expectation and can be computed in polynomial time in ex-
pectation. Combining Theorem 4 and Theorem 5, this theorem
is proved.

We summarize our complete randomized auction mecha-
nism in Alg. 3.

Algorithm 3: The Randomized Auction Mechanism

1 Input: ε ∈ (0, 1),~b, ~R,~c
2 Output: allocation solution ~yε and payment ~p
3 Compute ~yε=Algorithm 2(ε,~b, ~R,~c);
4 Compute payment pi(~yε) = ~bT−i~y

ε
−i − (~bT~yε − biyεi ), for

all accepted bids i ∈ [L];
5 return ~yε and ~p

V. PERFORMANCE EVALUATION

We evaluate our randomized auction using trace-driven
simulations, exploiting Google cluster-usage data [28] which
record jobs submitted to the Google cluster. Each job contains
multiple tasks, with information on resource demands (CPU,
RAM, Disk) of the tasks. We translate each job into a bundle
bid, and each task in the job into a VM in the bundle.
There are 100 types of VMs consisting of K = 3 types of
resources in our experiments. Each task is mapped to a VM
of a specific type by resource demands, and further mapped
to a data centre randomly. We then generate the VM demands
of the bundle, qim,d, by counting the number of VMs of
the same type mapped to the same data center among the
tasks in the job. We estimate the unit prices of CPU, Disk
and RAM, respectively, based on the prices of Amazon EC2
instances and their resource composition, and then set the bid
price of each bundle based on the unit prices and the overall
resource demands in the bundle, scaled by a random number in
[0.75, 1.5]. In this way, we obtain a pool of bidding bundles
from the Google cluster data. Each user randomly chooses
at most |Bn| bundles from the pool to bid. We compute the
capacity of type-k resource, cd,k, in a data center based on the
overall amount of this resource required in this data center in
all the bid bundles submitted by the users, and scale it down
using a random factor in [0, 0.5N/L], such that roughly no
more than half of the users can win a bid under constraint
(1b), without loss of generality. By default, the number of
users is N = 500, the upper-bound on the number of bids a
user can submit is |Bn| = 4, the number of data centers is
D = 8, and ε = 0.05. We repeat each experiment for 50 times
to obtain the average results.

A. Approximation Ratio

We first study the average approximation ratio achieved by
our algorithm, computed by the social welfare achieved by
Alg. 2 over the optimal social welfare by solving (1) exactly.
Given ε = 0.05, the theoretical expected approximation ratio
is 0.95. Fig. 1 shows that the average approximation ratio is
larger than the theoretical ratio and approaches the latter when
the number of users (or bids) increases. According to (4) and
(6) in Sec. IV, 1 − ε is a lower bound of the approximation
ratio, and the results show that under practical settings the
average ratio achieved is better. The reason why the ratio
approaches the theoretical one when N is large can also
be explained by (4) in Sec. IV, that the inequality tends to
equality when N (and hence L) is large. The average ratio does
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not vary much with different numbers of data centers, since
the perturbation does not influence constraints (1a) where the
number of data centers shows up.

Fig. 2 compares the average approximation ratio obtained
in our experiments and the respective theoretical approxima-
tion ratios at different values of ε. We plot the relative ap-
proximation ratio, computed as average approx. ratio

1−ε . The average
approximation ratio we obtained outperforms the theoretical
ratio a lot more when ε is larger, since θi, i = 1, . . . , L are
larger (they are selected in the interval [0, ε/L]) and the gap
is larger according to (4) in Sec. IV. The better performance
at a smaller N can be explained similarly as that for Fig. 1.

B. Social Welfare Comparison with PDAA

We now compare the social welfare achieved by our Alg. 2
with the primal-dual approximation algorithm in [14] (which is
essentially the algorithm used in [15] as well). The algorithm
in [14] does not consider the distribution of VM demands in
multiple data centers. We hence extend this algorithm to mul-
tiple data centers by expanding the dimensions of the capacity
constraint from K to K ×D to handle K types of resources
distributed in D data centers, for a fair comparison. In the
following figures, we use RPAA to represent our Randomized
Perturbation-based Approximation Algorithm and PDAA to
represent the Primal-Dual Approximation Algorithm in [14].

Fig. 3 and Fig. 4 show that our algorithm consistently out-
performs the algorithm in [14] in terms of social welfare, under
the same parameter settings. This validates our theoretical
analysis: our algorithm is guaranteed to achieve a no-lower-
than-(1− ε) approximation in social welfare, where the other
algorithm achieves a ratio of around 2.72 [14].

Fig. 3 also indicates that the social welfare of both algo-
rithms increases with the increase of N and |Bn|. The resource
capacity in our experiments is set to be roughly linear in the
total resource demand of the users, and when N is large, more

bids can be accepted and hence the social welfare is larger.
When each user can submit more bids, the decision space for
ILP (1) is larger, leading to a better social welfare.

Fig. 4 implies a negative correlation between the social
welfare and D, which can be intuitively explained as follows:
When the number of data centers is larger, the bid bundles that
each user submits contain VMs scattered in more data centers.
Had any resource demand in any data center not be satisfied,
a bid will be rejected. Thus the chance of each bundle to be
accepted decades, leading to a slight decrease of the social
welfare.

C. User Satisfaction Comparison with PDAA

We next evaluate user satisfaction achieved by both algo-
rithms, which is the percentage of users accepted as winners
in the respective auctions. Fig. 5 and Fig. 6 show that user
satisfaction achieved by our algorithm is about twice that of
the other algorithm, which results from similar reasons as
given in the comparison of social welfare. User satisfaction
of both algorithms improves slightly with the increase of the
number of bids a user submits, mainly because more choices
of the bids provide a user a higher chance to win one, while
the chance does not improve much since all the users now
have more bids to submit. User satisfaction in Fig. 6 decreases
slightly as more data centers are included, suffering from the
same cause as explained for Fig. 4.

Finally, we remark on the running time incurred by the two
algorithms (figures omitted due to space limit). Figs. 3–6 illus-
trate that our algorithm outperforms the algorithm in [14] in
social welfare and user satisfaction, which is mainly due to the
much better approximation ratio achieved by our algorithm.
The running time of PDAA is shown to be O(L6 logL), where
L is the number of bids, while our algorithm has an expected
time complexity of O(KDL9( 1

ε )2) (details in the proof of
Theorem 4 in [25]). Hence, our algorithm may sacrifice some
of the computation efficiency for a much better approximation
to the optimal social welfare. However, the difference is not
substantial, and a polynomial running time is still guaranteed
for our algorithm in practice.

VI. CONCLUDING REMARKS

This work presents a truthful and efficient auction mech-
anism for dynamic VM provisioning and pricing in geo-
distributed cloud data centers. By employing smoothed anal-
ysis in a novel way and randomized reduction techniques, we
develop a randomized mechanism that achieves truthfulness,
polynomial running time, and (1 − ε)-optimal social welfare
for resource allocation (all in expectation). We propose an
exact algorithm which solves the NP-hard social welfare
maximization problem in expected polynomial time, and apply
a perturbation-based randomized scheme based on the exact
algorithm to produce a VM provisioning solution that is
(1 − ε)-optimal in social welfare in expectation. Combining
the randomized scheme with a randomized VCG payment,
we achieve an auction mechanism truthful in expectation.
From a theoretical perspective, we achieve a randomized
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fully polynomial-time-in-expectation (1 − ε)-approximation
scheme for a strongly NP-hard problem which does not have
a deterministic FPTAS. We believe that this new technique
can be generalized to work for a rich class of combinatorial
auctions, other than VM auctions. Trace driven simulations
we conduct validate our theoretical analysis and reveals the
superior performance of our mechanism as compared to an
existing mechanism on dynamic VM provisioning.

REFERENCES

[1] “Amazon EC2 Instance Types,” http://aws.amazon.com/ec2/instance-
types/.

[2] “Recommended Memory Configurations for the MapReduce
Service,” https://ambari.apache.org/1.2.0/installing-hadoop-using-
ambari/content/ambari-chap3-7-9a.html.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
Proc. of ACM SOSP, 2003.

[4] “Amazon EC2 Spot Instances,” http://aws.amazon.com/ec2/spot-
instances/.

[5] Q. Wang, K. Ren, and X. Meng, “When Cloud Meets eBay: Towards
Effective Pricing for Cloud Computing,” in Proc. of IEEE INFOCOM,
2012.

[6] W. Wang, B. Liang, and B. Li, “Revenue Maximization with Dynamic
Auctions in IaaS Cloud Markets,” in Proc. of IEEE/ACM IWQoS, 2013.

[7] S. Zaman and D. Grosu, “Combinatorial Auction-Based Dynamic VM
Provisioning and Allocation in Clouds,” in Proc. of IEEE CloudCom,
2011.

[8] ——, “Combinatorial Auction-based Allocation of Virtual Machine
Instances in Clouds,” Journal of Parallel and Distributed Computing,
vol. 73, no. 4, pp. 495–508, 2013.

[9] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and J. Liu, “A
Framework for Truthful Online Auctions in Cloud Computing with
Heterogeneous User Demands,” in Proc. of IEEE INFOCOM, 2013.

[10] W. Vickrey, “Counterspeculation Auctions and Competitive Sealed Ten-
ders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, 1961.

[11] A. Mu’alem and N. Nisan, “Truthful Approximation Mechanisms for
Restricted Combinatorial Auctions,” Games and Economic Behavior,
vol. 64, no. 2, pp. 612–631, 2008.
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