
Title Core-Selecting Auctions for Dynamically Allocating
Heterogeneous VMs in Cloud Computing

Author(s) Fu, H; Li, Z; Wu, C; Chu, X

Citation

The IEEE 7th International Conference on Cloud Computing
(CLOUD), Anchorage, Alaska, USA, 27 June -2 July 2014. In the
Proceedings of the IEEE International Conference on Cloud
Computing (CLOUD), 2014, p. 152-159

Issued Date 2014

URL http://hdl.handle.net/10722/201100

Rights IEEE International Conference on Cloud Computing (CLOUD).
Copyright © I E E E Computer Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38052093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Core-Selecting Auctions for Dynamically Allocating

Heterogeneous VMs in Cloud Computing

Haoming Fu, Zongpeng Li

Department of Computer Science

University of Calgary

{hafu, zongpeng}@ucalgary.ca

Chuan Wu

Department of Computer Science

The University of Hong Kong

cwu@cs.hku.hk

Xiaowen Chu

Department of Computer Science

Hong Kong Baptist University

chxw@comp.hkbu.edu.hk

Abstract— In a cloud market, the cloud provider provisions
heterogeneous virtual machine (VM) instances from its resource
pool, for allocation to cloud users. Auction-based allocations are
efficient in assigning VMs to users who value them the most.
Existing auction design often overlooks the heterogeneity of VMs,
and does not consider dynamic, demand-driven VM provisioning.
Moreover, the classic VCG auction leads to unsatisfactory seller
revenues and vulnerability to a strategic bidding behavior known
as shill bidding. This work presents a new type of core-selecting
VM auctions, which are combinatorial auctions that always select
bidder charges from the core of the price vector space, with
guaranteed economic efficiency under truthful bidding. These
auctions represent a comprehensive three-phase mechanism that
instructs the cloud provider to judiciously assemble, allocate, and
price VM bundles. They are proof against shills, can improve
seller revenue over existing auction mechanisms, and can be
tailored to maximize truthfulness.

I. INTRODUCTION

Cloud computing is emerging as a new computing paradigm

for flexibly organizing a shared pool of configurable resources

(CPU, RAM, storage, etc.) in data centers into various types

of virtual machines (VMs), for allocation to cloud users any-

where, anytime [1]. Leveraging resource virtualization, such

a paradigm abstracts the underlying physical resources from

the users by directly providing them with the view of VMs.

As a market-driven pricing approach that provides economic

incentives for both the cloud provider (CP) and cloud users

(CUs), auctions represent a fast and efficient mechanism for

VM allocation. For a well known example, Amazon has made

its initial effort to implement an auction-based VM allocation

mechanism termed Spot Instances [2].

Existing literature on VM auctions often treats VMs as

identical or substitutable goods [3], [4]. However, CUs have

natural demands for combinations of heterogenous VMs in

practice, given the inherent heterogeneity in real-world com-

puting tasks. For instance, a social gaming application often

consists of a front-end web server layer, a load balancing layer

and a back-end data storage layer, each best served by a VM

that is intended for communication-intensive, computation-

intensive, and storage-intensive tasks, respectively [5]. Table

I shows an excerpt from the Amazon EC2 Spot Instances.

This work was supported by National Sciences and Engineering Research
Council of Canada (NSERC) (10006298 and 10006977) and the University
Grants Committee of Hong Kong (HKU 718513 and HKBU 210412).

Multi-unit combinatorial auctions are natural for such a cloud

market, enabling expressive bids for requesting bundles of VM

instances belonging to different types.

TABLE I
VM CONFIGURATIONS FROM SPOT INSTANCES [2].

ID VM Type CPU ECU∗ Memory Storage

1 m1.medium 1 2 3.75 GB 410 GB

2 m1.large 2 4 7.5 GB 840 GB

3 c1.xlarge 8 20 7 GB 1680 GB

4 cc2.8xlarge 32 88 60.5 GB 3360 GB

5 m2.xlarge 2 6.5 17.1 GB 420 GB

6 m2.2xlarge 4 13 34.2 GB 850 GB

7 hi1.4xlarge 16 35 60.5 GB 2048 GB
∗ECU: EC2 compute units

Prior to the phase of allocating VMs to CUs, the CP needs

to assemble the configurable resources from its resource pool

into VM instances [1]. The de facto standard in the literature

of VM auctions is to ignore the phase of resource provisioning,

assuming implicitly the strategy of static resource provision-

ing (SRP) [6] — i.e., VMs are pre-configured and already

assembled when CUs’ bids are received. In contrast, dynamic

resource provisioning (DRP) is considered in this work. DRP

enables the flexibility of tailoring the VM construction process

to the specific bids received, improving hardware utilization

and overall revenue gleaned. DRP is practically feasible in that

online VMs deployment incurs only a small time overhead [7].

The celebrated VCG mechanism [8]–[10] represents essen-

tially the only auction mechanism that is both truthful and

efficient [11]. In the context of the cloud market, an auction

is truthful if a CU has no incentives to lie about its valuation

of its desired VM bundle; and (economic) efficiency holds

when winners are chosen to maximize the aggregated valuation

of awarded VM bundles. Despite a myriad of interests in

theoretical research, the VCG mechanism suffers from two

severe economic problems that have essentially prevented its

direct application in practice. First, a VCG auction generates a

low revenue for the auctioneer, under-exploiting the payment

potential of CUs. Second, a VCG auction is susceptible to

shill bidding, or false-name bidding, in which a single CU

impersonates multiple CUs, each bidding for a subset of the

desired VM instances [12].

Since the VCG mechanism represents the only truthful and

efficient auction mechanism, a relaxation of either efficiency

or truthfulness is inevitable in any auction design that aims

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.30

152

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.30

152

to address its two inherent problems. Previous research often

concentrates on truthfulness by relaxing efficiency, because

social welfare maximization leads to NP-hard problems often

in the form of 0-1 integer programs [6]. However, latest

empirical evidences suggest that 0-1 linear integer programs

resulting from such real-world problems can be solved in a

reasonable amount of time (e.g., 5000 integer variables in

less than 1 second using CPLEX [13] on a laptop computer).

A sacrifice of efficiency is therefore less justified. Core-

selecting auctions, recently proposed in economics [14]–[16],

provide a promising direction for designing combinatorial

auctions that are efficient, shill-proof, and generate satisfactory

revenues. An auction outcome is in-core if no other outcome

both is preferred by some subset of CUs and increases the

CP’s revenue at the same time. The in-core property implies

efficiency (social welfare maximization), which in turn ensures

effective utilization of cloud resources.

This work makes the following three main contributions.

First, we are the first to apply the core-selecting auction

framework to a cloud market, by formulating a winner de-

termination problem, and a pair of correlated linear program

(LP) and quadratic program (QP) for payment computation.

While guaranteeing efficiency, the in-core property is further

proven to be sufficient and necessary to avoid shill bidding.

Furthermore, our core-selecting auctions are able to achieve a

revenue that is at least on par with that of VCG mechanisms,

and can be tailored to achieve provable minimization of

CUs’ incentive to deviate from truthful bidding. Our proposed

auctions further represent the first design of multi-unit core-

selecting combinatorial auctions.

Cloud resources

Core-Selecting

Aucion

Cloud users

Heterogeneous user demands

bid

general

purpose

Cloud provider
computation-

intensive jobs

memory-

intensive jobs
。。。

。。。

。。。bid

submission

2. payment

charge

1. winner

determination

3. dynamic resource

provisioning

control
VM allocation

Heterogeneous VMs

bidbidbid1,1 1,2 2,1 n,1

Fig. 1. An illustration of the three-dimension core-selecting auction design.

Second, we propose a new, three-dimension auction frame-

work (Fig. 1) for modeling dynamic resource provisioning.

Existing cloud auctions are mostly two dimensional, including

winner determination (VM bundle allocation) and payment

computation, with static resource provisioning. Our empirical

studies reveal that dynamic provisioning can enable substantial

improvements over static provisioning in terms of social

welfare, seller revenue, and resource utilization.

Third, departing from the previous standard of simplifying

VMs into homogeneous and substitutable commodities, our

core-selecting auctions give up the restrictive assumption that

all VMs are equally powerful, or equally powerful up to an

integer scaling factor [6]. Our auctions are expressive enough

to model (a) the provisioning of heterogeneous types of VMs

for sale at the CP side, and (b) the desire of VMs and VM

bundles of different nature by real-world computing jobs, and

hence are more readily applicable in realistic cloud systems.

We conducted extensive simulations to examine the per-

formance of the proposed core-selecting VM auctions, driven

partially by real world traces from Google Cluster Data [17].

Our auctions run efficiently on a platform with limited com-

puting resources, and generate higher revenues than the VCG

mechanism does. DRP is observed to enable a stably high

resource utilization and outperforms SRP in terms of revenue

by a ratio of at least 20%, because judiciously provisioning

resources can accommodate more requests from CUs.

In the rest of the paper, we discuss related work in Sec. II,

and present preliminaries in Sec. III. Sec. IV introduces and

analyzes core-selecting auctions for a cloud market, while Sec.

V studies payment rules. Simulation studies are presented in

Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

The classic VCG mechanism [8]–[10] is both efficient and

truthful, but suffers from low seller revenue and vulnerability

to shill bidding [12]. Many existing auctions for VM allocation

similarly choose to enforce absolute truthfulness and have to

settle for a low revenue. Zhang et al. [3] proposed an online

auction for truthful VM allocation to serve heterogeneous

user demands, yet it achieves only 50% of the VCG revenue.

Auctions belonging to this realm also appeared in markets

formed by federations of clouds, for which two truthful

double-auctions were specifically designed [18], [19]. Zhang

et al. [20] designed a randomized combinatorial auction by

utilizing a pair of primal and dual linear programs, and

pursue absolute truthfulness at the price of computational and

economic efficiencies.

Using auction mechanisms to manage VM allocation has

been extensively studied in the past, but many of them simpli-

fied VMs into a homogeneous commodity [3], [21]. With an

intention to address this problem, Zaman and Grou proposed

CA-GREEDY [4] and CA-LP [6], which are combinatorial

multi-unit auction mechanisms for VM allocation. However,

they still assumed that different types of VMs are interchange-

able up to a multiplicative factor, which does not faithfully

reflect real-world VM heterogeneity.

Bringing the heterogeneity nature of VMs into consider-

ation, Li et al. proposed double auctions for heterogeneous

virtual machine trading [18], [19]. Wang et al. formulated a

combinatorial auction for VM pricing, which is coupled with

an algorithm that is computationally efficient [22]. These auc-

tions ingored the stage of resource provisioning, and implicitly

relied on static provisioning that is relatively inefficient [1].

III. PROBLEM FORMULATION AND PRELIMINARIES

We consider a cloud provider (CP) who periodically pools

its idle resources and leases them as virtual machines (VMs)

to cloud users (CUs), through round-by-round auctions. There

are t types of resources, such as CPU, RAM and network

bandwidth, in the CP’s resource pool. The total amount of

153153

type k resource is πk, where 1 ≤ k ≤ t. The CP offers m

different types of virtual machines VM1, . . . ,VMm. Based on

CUs’ demands submitted in their bids, the CP assembles its

resources into an appropriate number of VMs for each type j.

A VMj instance consumes an amount αk
j of type k resource.

A set N of CUs act as bidders in the auction. Each CU

i ∈ N is free to bid for one or more bundles of VM instances.

For each bundle S = (r1, r2, . . . , rm), where rj is the number

of VMj instances CU i requests, let vi(S) be i’s valuation of

S. Let Bi be the set of all VM bundles CU i bids for. We

adopt an XOR bidding language, in which a CU can submit

multiple bids, but can win a single bid only (a CU’s bids are

mutually exclusive).
Each CU i has a quasi-linear utility defined as:

ui =

{
vi(S)− pi if CU i wins a bundle S ∈ Bi

0 otherwise

where pi is the payment of CU i if it wins S. We assume that

the CUs are individually rational in that they always prefer

a higher utility; consequently vi(S) is the maximum amount

that CU i is willing to pay for S.

Let bi(S) denote the bid submitted by CU i for VM bundle

S. We denote by o the auctioneer (CP) and by uo =
∑

i∈N pi
the revenue of the auctioneer.

After collecting all bids submitted, the CP computes a

resource provision scheme, a VM instance allocation plan as

well as a corresponding payment vector. The winner determi-

nation problem can be formulated accordingly (WDP):

w(N) = max
∑
i∈N

∑
S∈Bi

bi(S)xi(S) (1)

subject to:

m∑
j=1

njα
k
j ≤ πk ∀1 ≤ k ≤ t; (2)

∑
S∈Bi

xi(S) ≤ 1 ∀i ∈ N ; (3)

∑
i∈N

∑
S∈Bi

xi(S)rj ≤ nj ∀1 ≤ j ≤ m,

S = (r1, r2, . . . , rm); (4)

nj ∈ N ∀1 ≤ j ≤ m; (5)

xi(S) ∈ {0, 1} ∀i ∈ N , ∀S ∈ Bi. (6)

Here nj is the total number of VMj instances assembled,

and let n be the vector of nj values. Constraint (2) states that

the amount of resource of each type used for provisioning

can not exceed what is available in the resource pool. The

total number of VM instances of each type won by all CUs is

bounded by the number provisioned, as enforced in Constraint

(4). Constraint (3) implements the XOR bidding rule.

Theorem 1. Relaxing n to take fractional values in the WDP

does not change the value of w(N).
Proof: Let WDP′ be the problem derived from WDP

with constraint (5) removed, and let w′(N) be the objective

function of WDP′. w′(N) ≥ w(N) since WDP′ has fewer

constraints. Given a solution (n′, x′) to WDP′, we claim

that (�n′�, x′) is a solution to WDP, in which case we can

conclude that w′(N) ≤ w(N). In WDP, (�n′�, x′) satisfies

constraints (3, 5, 6).
∑m

j=1
�nj�αk

j ≤
∑m

j=1
njα

k
j ≤ πk, hence

constraint (2) holds. Finally,
∑

i∈N

∑
S∈Bi

xi(S)rj ≤ �nj�
(constraint (4) is feasible) since

∑
i∈N

∑
S∈Bi

xi(S)rj ≤ nj

and x, r are integers. Hence the claim is true, and we have

w′(N) = w(N).

In light of Theorem 1, we can solve WDP in three steps:

relax WDP to WDP′, solve WDP′, then round each nj to

�nj�. Note that WDP′ is a linear integer program with a

moderate number of {0, 1}-variables, which are known to

be practically solvable in a reasonable amount of time. Our

empirical experiences show that even with up to 5, 000 {0, 1}-
variables (xi(S)), the WDP can still be solved in a second,

using CPLEX [13] on an off-the-shelf laptop computer. An

optimal solution to the WDP maximizes the social welfare of

the cloud market, and is required in any economically efficient

auction. Notations are summarized in the table below.

N Set of CUs pi Payment of CU i
W Set of Winners ui Utility of CU i

αk
j Amount of type k resource required by a VMj instance

bi(S) Bid price of CU i for bundle S
Bi Set of bundles of VMs bid by CU i
nj Number of VMj instances assembled

πk Total amount of type k resource in resource pool

Si Bundle of VMs allocated to CU i
vi(S) Valuation for bundle S of CU i
xi(S) Indicate whether CU i wins bundle S or not

IV. CORE-SELECTING VM AUCTIONS

A. The Core of Our VM Auction

Let Si denote the bundle of VMs allocated to CU i in the

auction, and Si = ∅ if i loses. An auction outcome is blocked

by coalition C ⊆ N if there is an alternative outcome with

awarded bundles {S ′i}i∈N and payment vector p′, such that

u′i ≥ ui for all i ∈ C, and u′o =
∑

i∈N p′i > uo. C is referred

to as a blocking coalition. The outcomes not blocked by any

coalition with respect to the submitted bids b form the core:

Core(N) =

{u ≥ 0|
∑

i∈N∪{o}

ui = w(N),
∑

i∈C∪{o}

ui ≥ w(C),∀C ⊆ N} (7)

For example, consider seven CUs numbered 1 through 7,

each submitting a single bid for three types of VMs, with the

following configuration in CPU units and storage (GB): (1, 1),

(1, 3) and (2, 1). The CP has 25 CPUs and 25 GB storage in

its resource pool, and the following bids are submitted. The

CPU and storage consumptions of each bid are given in the

superscript and subscript, respectively.

b1(6, 0, 1)
8
7 = 4 b2(2, 3, 0)

5
11 = 5 b3(0, 0, 6)

12
6 = 4

b4(7, 0, 0)
7
7 = 27 b5(0, 4, 0)

4
12 = 25 b6(0, 0, 6)

12
6 = 24

b7(5, 3, 7)
24
22 = 33

The unique set of winners in any efficient allocation includes

CUs 4, 5 and 6, generating a social welfare of 76. The core

can be drawn in the payment space, shown in Fig. 2.

154154

0 5 10 15 20 25 30 0

10

20

30

0

5

10

15

20

25

30

p4

p5

p6 (27, 25, 24)
first-price payment

(4, 5 ,4)
VCG payment

(4, 5, 24)

(4, 25, 4)

(24, 5, 4)

Fig. 2. A geometric illustration of the core.

In this simple example, the constraints defining the core are

simply the bids of the losing CUs together with individual

rationality of winning CUs. In particular, since CU 1 will

always block if CU 4 pays less than 4, we have the constraint

p4 ≥ 4. Similarly, CU 2 and CU 3 dictate p5 ≥ 5 and p6 ≥ 4,

respectively. CU 7 blocks if CUs 4, 5 and 6 pay less than

33 in total, implying p4 + p5 + p6 ≥ 33. Upper-bounds are

given by winners’ bids themselves, consistent with individual

rationality. As a result, the intersection of the half spaces

defined above formulates the core.

In a general economic problem, the core does not always

exist [16]. However, the core is always non-empty in our

setting, and in particular contains the first price payment (the

winner pays what he bids).

Theorem 2. The payment vector of first price auction is

always in the core of our VM auction.

Proof: Let W ⊆ N be the set of winners. Note that

pFP
i = bi(Si), ∀i ∈ W and uFP

i = 0 no matter whether CU i

wins or not. We have the following:

(1)
∑

i∈N∪{o} u
FP
i = uFP

o =
∑

i∈W pFP
i =

∑
i∈W bi(Si) = w(N).

(2)
∑

i∈C∪{o} u
FP
i = uFP

o = w(N) ≥ w(C), ∀C ⊆ N .

Hence by definition uFP ∈ Core(N).

B. Necessity of Core-Selecting Auctions

How do we justify the use of a core-selecting auction in a

cloud market? We next take VCG revenue as a benchmark, and

prove that a core-selecting auction always generates a revenue

for the CP at least on par with the VCG revenue, even when

bidders are using shills. This is done by showing that a core-

selecting auction always leads to a total CU utility no higher

than that in the VCG auction, which is combined with the fact

that the total utility from both the CP and the CUs is constant

in an efficient VM provisioning and allocation scheme.

Informally, the VCG mechanism first solves the WDP to

obtain an optimal allocation, and asks each winning CU to

pay a price equal to the externality it exerts on the other CUs.

More specifically, the VCG payment of a winning CU i is:

pi = bi(Si)− (w(N)− w(N\{i})) (8)

where w(N)−w(N\{i}) is the marginal contribution of CU

i, i.e., the revenue difference with and without CU i bidding.

We now illustrate the shill bidding problem under the VCG

mechanism with the example from section IV-A. Assume that

instead of submitting its own bid, CU 5 impersonates four

different CUs, each submitting the bid b(0, 1, 0)1
3

= 6.25.

Knowing the rule of the VCG mechanism, CU 5 still wins

4 instances of VM2, while successfully reducing its payment

from 5 to 0 (because each shill wins one VM2 instance

and pays 0 under the VCG mechanism) via disaggregation

and impersonation, manifesting the shill bidding problem that

threatens the CP’s revenue.

Now we are ready to show that in our cloud market, core-

selecting auctions formulated with WDP as the winner deter-

mination problem are essentially robust against shill bidding.

Theorem 3. In a VM auction formulated with WDP, no CU

can earn more than its VCG utility by bidding with shills if

and only if the auction is core-selecting.

Proof: Given a set of CUs N and an auctioneer o, we

show that for any coalition C ⊆ N , their total utility in a

core-selecting auction is no more than if they were to act as a

single CU in a VCG auction, in which case the merged entity

would bid the same bundle of VMs at the aggregated price.

The merged entity of C enjoys a utility equal to its marginal

contribution: w(N) − w(N\C). Our restriction is therefore∑
i∈C

ui ≤ w(N)− w(N\C) (9)

Since WDP guarantees efficiency, we have

w(N) =
∑

i∈N∪{o}

ui (10)

In view of (10), (9) holds if and only if∑
i∈(N∪{o})\C

ui ≥ w(N\C) (11)

Since C is an arbitrary coalition of CUs, we have that for

every coalition D = N\C,
∑

i∈D∪{o} ui ≥ w(D), which

implies that there is no blocking coalition in the auction.

Together with efficiency, we derive u ∈ Core(N).

Combining Teorem 3 with the definition of CU utility, we

have the following corollaries.

Corollary 1. Each CU’s in-core payment in a VM auction

formulated with WDP is at least as high as its VCG payment.

Corollary 2. The total revenue in a core-selecting VM auction

formulated with WDP is at least as high as that in a VCG

auction.

V. CORE-SELECTING PAYMENT RULES AND ALGORITHMS

We next study several payment rules that can be employed

in our core-selecting VM auction, and formulate a linear

program and a quadratic program for implementing these rules.

A. Revenue Minimization Rule

Individually rational CUs can try to maximize their utilities

through either unilateral or collusive strategic behaviors. In

Section IV-B we show that CUs gain no benefits through a

form of collusion known as shill bidding. With the relaxation

of absolute truthfulness in core-selecting auctions, we are

further motivated to minimize CUs’ benefits from unilaterally

155155

deviating from truth-telling, which in turn, maximizes CUs’

incentives towards reporting valuations truthfully.

We start with the notion of bidder-Pareto optimality:

Definition A core-selecting auction is bidder-Pareto optimal

if it always generates a core outcome such that no other

core outcome can improve at least one CU’s utility without

reducing any other one’s in N .

To measure how much CUs are likely to deviate from

truthful reporting, we define the incentive profile for a core-

selecting auction.

Definition The incentive profile of a core-selecting auction

M at v is {θMi (v)}i∈N , where θMi (v) is i’s maximum utility

gain by deviating from truthful reporting.

We aim at minimizing CUs’ overall economic benefits from

deviating from truthful bidding in our core-selecting auction.

Consider a core-selecting auction M , it provides optimal

incentives if there is no core-selecting auction M ′ such that

θM
′

i (v) ≤ θMi (v), i ∈ N with strict inequality for some i.

Actually, core-selecting auction M provides optimal incentives

if and only if M is bidder-Pareto optimal [14].

Suppose that in our efficient VM auction, CU i bids

truthfully and wins a bundle of VMs at price pi. By Corollary

1, pi is guaranteed to be at least pVCG
i . The following lemma

bounds the economic benefit of i [15], [23]:

Lemma 1. For any efficient auction that produces payments

greater than or equal to the VCG payments, the amount that

bidder i can benefit by unilaterally deviating from the truthful

bidding strategy is no more than pi − pVCG
i .

Theorem 4. A core-selecting VM auction formulated with

WDP provides optimal incentives for truthful bidding if and

only if it is a bidder-Pareto optimal auction.

Proof: A VM auction formulated with WDP is efficient.

From Lemma 1, for a bidder-Pareto optimal, core-selecting

VM auction formulated with WDP, the maximum benefit CU

i can get is pi − pVCG
i . Hence the auction is suboptimal

exactly when there is another core-selecting auction with

higher utilities for all CUs, contradicting the assumption that

this auction is bidder-Pareto optimal.

Nonetheless, there may be a broad range of possible bidder-

Pareto optimal outcomes in the core. By minimizing the

total payments over the core, one can guarantee bidder-Pareto

optimality [15], which narrows the space of possible outcomes

as well. We further derive the following corollary:

Corollary 3. A core-selecting VM auction formulated with

WDP and employing a revenue-minimization payment rule

minimizes CUs’ incentives to deviate from truthful bidding.

Recall the coalitional core constraint, we have∑
i∈C∪{o}

ui ≥ w(C), ∀C ⊆ N (12)

Assume that CU i receives a bundle Si. Let W be the set

of winning CUs in WDP, we expand (12) to obtain:

uo +
∑

i∈C∩W

ui +
∑

i∈C\W

ui =
∑
i∈W

pi +
∑

i∈C∩W

(bi(Si)− pi)

=
∑

i∈W\C

pi +
∑

i∈C∩W

bi(Si) ≥ w(C), ∀C ⊆ N (13)

Let C̃ = C ∩W, then we have w(C) ≤ w(C̃ ∪ (N\W)) since

C ⊆ C̃ ∪ (N\W). Since C is an arbitrary subset of N , (13) is

equivalent to∑
i∈W\C̃

pi ≥ w(C̃ ∪ (N\W))−
∑
i∈C̃

bi(Si), ∀C̃ ⊆ W (14)

Setting βC̃ = w(C̃ ∪ (N\W))−
∑

i∈C̃ bi(Si), and denoting the
vector of all βC̃ as β, we can reformulate (14) as

Ap ≥ β (15)

where A is a 2|W|−1 × |W| matrix. In each row aT
C̃

of A,

the i-th entry equals 0 if CU i is in coalition C̃ and equals 1
otherwise. The revenue minimization rule can be formulated
as the following linear program (LP):

δ = min 1T · p

subject to:

Ap ≥ β

p ≤ b

B. Point Reference Rules

The points minimizing the revenue are not unique, hence

there is a lack of precision even if we minimize the total

payments over the core to ensure bidder-Pareto-optimality. We

further define a point reference rule, for choosing among these

points the one that has the smallest geometric distance from

some pre-determined reference point p′.

The reference point can be static or dependent on CUs’

bids. The point reference rule always leads to a unique

revenue-minimizing payment vector, which can be computed

by solving the following quadratic program (QP):

min(p− p
′)T (p− p

′)

subject to:

Ap ≥ β

p ≤ b

1
T · p = δ

We introduce two specific point reference rules. The first is

the VCG-nearest rule, in which p′ is set to be the VCG point

pVCG. This payment rule is natural in that pVCG is known to

be the payment point that motivates truthful bidding.

The second is the constant p′ reference rule. In this rule p′

is some constant payment point pre-defined by the auctioneer.

Under this rule, the final payment highly depends on the

assumptions of the auctioneer, and the winner with high

valuation relative to the auctioneer’s expectation shares less

of the burden to conquer a coalitional blocking.

We elaborate this with an example. Consider the origin-

nearest rule, in which p′ = 0. There are 18 CPUs and 18 GB

156156

storage in the resource pool. Four CUs each submits a single

bid for three types of VMs, with the following configuration

in CPU units and storage (GB): (1, 1), (1, 3) and (2, 1):

b1(0, 0, 6)
12

6 = 100 b2(0, 4, 0)
4

12 = 20

b3(0, 4, 6)
16

18
= 60 b4(0, 0, 6)

12

6
= 50

The VCG payments (50, 0) for winners 1 and 2 are not in

the core; the pair must raise their combined payment to 60 to

keep CU 3 from blocking. If the origin-nearest rule is used,

CU 2 will be responsible for this total payment increase with

final payments (50, 10). In comparison, the VCG-nearest rule

results in a sharing of this burden, with payments (55, 5).
Since the QP is a convex problem, the Karush-Kuhn-Tucker

(KKT) conditions are sufficient and necessary for the QP. The
KKT conditions indicate that for an optimal solution p∗ to the
QP, there exist a vector λ ≥ 0, a vector ω ≥ 0, and a scalar
ν ≥ 0, such that

p
∗ − p

′ − AT
λ+ Iω + 1ν = 0 (16)

where I is the identity matrix of size |p|. The final payment

p∗ can be decomposed as follows for each winning CU i:

p∗i = p′i +
∑

C̃∈W\{i}

λC̃ − ωi − ν

By utilizing the KKT conditions, it can be shown that the set

of constraints p ≤ b is not necessary under the VCG-nearest

rule, which simplifies the QP and improves computational

efficiency.

Theorem 5. Under the VCG-nearest rule, the set of con-

straints p ≤ b in the QP is unnecessary.

Proof: By way of contradiction, assume that there is an

i ∈ W , such that the constraint pi ≤ bi(Si) is necessary. Then

there exists some ε > 0, for which the constraint is still tight

when relaxed by ε, and for which the solution must change.

After relaxation, bi(Si) is increased by ε and the set of winners

W due to WDP does not change. Now for the VCG-nearest

rule, the KKT necessary and sufficient conditions form the

same linear system, since the only affected condition is that of

CU i, i.e., p∗i = pVCG
i +

∑
C̃∈W\{i} λC̃−ωi−ν, which remains

unchanged when bi(Si) increases by ε. This is because pVCG
i =

bi(Si)−w(N) +w(N\{i}), and the increment ε in bi(Si) is

cancelled by the increase ε in w(N). Now the solution to the

linear system does not change when the constraint is relaxed

by ε, which is a contradiction.

Based on Theorem 5, under the VCG-nearest rule, we can
solve the following quadratic program instead, which still
generates the optimal solution but is easier to solve.

min(p− p
VCG)T (p− p

VCG)

subject to:

Ap ≥ β

1
T · p = δ

C. Payment Generation Algorithm

In the payment rules mentioned above, evaluating each βC̃
requires the solution of a WDP, so there will be 2|W|−1

non-empty coalitions to consider, prohibitive for a large |W|.
However, by adapting the core-constraint generation process

given by Day and Raghavan [15], a VCG-nearest in-core

payment generation procedure can be employed to reduce the

complexity, as shown in Algorithm 1. Instead of enumerating

all the possibilities of non-empty coalitions, it finds blocking

coalitions effectively by raising payments from the reference

point, thereby reducing the complexity. Algorithm 1 can

further be easily adapted to solve the in-core payment vectors

under other payment rules. The following theorem shows that

Algorithm 1 always yields the VCG-nearest in-core payment.

Algorithm 1: VCG-Nearest In-Core Payment Generation

1 Set t := 0, payment vector pt := pVCG, coefficient matrix

At := ∅, and vector βt := ∅;
2 while True do
3 t := t+ 1;
4 for CU i ∈ N do
5 for bundle S bid by i do

6 bti(S) := bi(S)− (bi(Si)− pt−1
i);

7 end
8 end

9 Calculate wt(N) with bt, and the set of winning CUs Ct

is the most violated coalition;

10 if wt(N) ≤ 1Tpt−1 then break;

11 C̃t := Ct ∩W;

12 βC̃t := wt(C̃t ∪ (N\W))−
∑

i∈C̃t b
t
i(Si);

13 Append the corresponding row aT

C̃t
and new entry βC̃t to

At−1 and βt−1 to form At and βt, respectively;

14 Solve the LP with At and βt, obtaining δt;
15 Solve the QP with At,βt and δt, obtaining pt;
16 end

17 p∗ := pt−1 is the final payment vector.

Theorem 6. Algorithm 1 always yields VCG-nearest in-core

payments.

Proof: We claim that when the algorithm terminates, pt−1

is in the core. Suppose this is not true, then (14) does not hold:∑
i∈W\C̃

pt−1
i < w(C̃ ∪ (N\W))−

∑
i∈C̃

bi(Si), ∃C̃ ⊆ W (17)

From Algorithm 1 (Line 6), we have{
bti(Si) = pt−1

i , i ∈ W
bti(S) = bi(S), i /∈ W

(18)

Eq. (18) and the stopping criterion (Line 10) lead to:

wt(C̃ ∪ (N\W)) ≤ wt(N) ≤
∑

i∈W\C̃

pt−1
i +

∑
i∈C̃

bti(Si) (19)

We further have the following:∑
i∈C̃

(bi(Si)− bti(Si)) <1 w(C̃ ∪ (N\W))− wt(C̃ ∪ (N\W))

≤2

∑
i∈W̃

(bi(S̃i)− bti(S̃i)) =3

∑
i∈W̃∩C̃

(bi(S̃i)− bti(S̃i)) (20)

where W̃ is the set of winners to w(C̃∪(N\W)) with bundle

S̃i allocated to CU i. <1 is due to (17) and (19). Winning

set W̃ with bundle S̃i allocated to i is a feasible solution to

wt(C̃∪(N\W)), and hence
∑

i∈W̃ bti(S̃i) ≤ wt(C̃∪(N\W)),

157157

which leads to ≤2. =3 is due to Eq. (18) and the fact that

W̃ ⊆ C̃ ∪ (N\W). In view of Line 6, (20) indicates:∑
i∈C̃

(bi(Si)− pt−1
i) <

∑
i∈W̃∩C̃

(bi(Si)− pt−1
i) (21)

(21) does not hold and our claim is hence correct. The in-

core payment is VCG-nearest since the correlated LP and QP

are solved. The convergence of this algorithm is guaranteed

because only a finite number of blocking constraints may be

generated, and because the core always contains at least the

trivial first-price payment solution (Theorem 2).

VI. SIMULATION STUDIES

A. Simulation Environment

We consider 7 types of VMs configured from 4 types of

resources (Table I). The default amount of resources in the

cloud is R = (5000, 14000, 16000, 700000), and scales from

0.5R to 4R in other cases. The number of bids submitted

by a CU is uniform on [1, 6]. The bundles of VMs that a CU

requests and the bid prices are generated according to uniform

and normal distributions, respectively; we refer to this setting

as “uniform-normal”. For each set of auction parameters, the

results shown are averaged over 100 simulation executions.

We adopt the following performance criteria. (a) Social

welfare, measured as the sum of reported values from all

the winning CUs. (b) Resource utilization, the percentage of

resources that are provisioned and sold. (c) User satisfaction,

the percentage of CUs winning a VM bundle. (d) CP revenue.

B. VCG-Nearest vs. Origin-Nearest Payment Rules

Using the example in Section V-B, we show that the use
of the origin-nearest rule (p′ = 0) can lead to a high-valued
winner shouldering little of the monetary burden, if any, to
conquer a blocking coalition. When the VCG payment is not
in the core, we define the monetary burden [16] of CU ī as:

μī =
p∗ī − pVCG

ī∑
i∈N (p∗i − pVCG

i)
(22)

where ī is the index of the highest-valued winning CU or the

lowest-valued winning CU.

Using this measure, Fig. 3 demonstrates that this phe-

nomenon is not peculiar to a carefully constructed example,

but indeed occurs frequently from random data sets. For

the VCG-nearest computations, the statistic (22) averages

∼27% for the highest-valued winner, while the origin-nearest

computations result in a value of ∼5% for the highest-valued

winner; the use of the origin-nearest rule results in high-

valued winners shouldering less of the burden of conquering

blocking coalitions. Similarly, the lowest-valued winners pay

∼29% of the burden under the VCG-nearest rule, while they

pay 42% under the origin-nearest implementation. From these

figures, this disparity between these two approaches is most

pronounced when the number of CUs is small.

C. Allocation Results

We use “xVyR” to denote the auction settings, where x

represents the number of types of VMs auctioned and y

represents that an amount yR of resources are available (R

10 20 30 40 50 60 70 80

10
20
30
40
50
60
70
80
90

100

Number of CUs

μ
(%

) Highest valued
All others
Lowest valued

(a) VCG-nearest

10 20 30 40 50 60 70 80

10
20
30
40
50
60
70
80
90

100

Number of CUs

μ
(%

) Highest valued
All others
Lowest valued

(b) Origin-nearest

Fig. 3. The figures show the monetary burden shouldered by the winner(s)
under (a) the VCG-nearest rule, and (b) the origin-nearest rule.

is a vector defined in Sec. VI-A). When x = 4, we are using

the VMs from Table I with odd IDs.

Fig. 4 plots the social welfare, resource utilization and

user satisfaction under core-selecting auctions, by changing

the number of CUs from 10 to 80. Both static and dynamic

resource provisioning are tested. When SRP is employed, the

resource provisioning scheme, i.e., the vector (n1, . . . , nm), is

determined by solving w(N) for 100 times and multiplying

their average with some value such that at least one type

of resource is depleted. This way we try to improve the

performance of SRP through predicting the market demand,

for comparison with DRP.

In Fig. 4a, the relative social welfare is at least 10% larger

under DRP than under SRP. An interesting observation is that

‘4V1R static’ is always higher than ‘7V1R static’, under an

equal amount of resources. This is because in the former

scenario, the 4 types of VMs on sale are finer-grained in their

configurations, so that a larger number of VM instances can

be constructed for sale, leading to a higher social welfare.

Fig. 4b shows that when our 3-D auction mechanism is

employed, with resources dynamically provisioned, resource

utilization does not apparently change, and is as high as 90%
in ‘7V2R dynamic’. In contrast, under static provisioning,

resource utilization increases with the number of CUs, and

is always lower than that under DRP. Despite the fact that we

already attempted to improve the performance of SRP, the gap

is still as high as 21%.

An interesting phenomenon in Fig. 4c is that user satis-

faction decreases and remains rather low when the number of

CUs is large. This is due to the fact that when there are enough

participants in the auction, there exist a few CUs requesting

large bundles of VMs and submitting high bids to exclude

other CUs. We can see that SRP performs better than DRP in

terms of user satisfaction.

D. The Role of Bid Distribution

To investigate the influence on revenues by the bid distribu-

tion, in addition to “uniform-normal”, we further adopt another

three settings for comparison, which are “uniform-uniform”,

“normal-normal” and “normal-uniform”. From Fig. 5a and Fig.

5b, we find that the performance of core-selecting auctions is

rather stable. Even when bidding instances are generated in

different ways, the revenues do not deteriorate.

In Fig. 5c, CUs’ bids are synthesized from Google Cluster

Data [17] with bid prices generated according to normal

158158

10 20 30 40 50 60 70 80
3

4

5

6

7

8

9

10

11

12

13
x 106

Number of CUs

S
oc

ia
l w

el
fa

re 4V1R dynamic
4V1R static
7V1R dynamic
7V1R static
7V2R dynamic
7V2R static

(a) Social welfare

10 20 30 40 50 60 70 80

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of CUs

R
es

ou
rc

e
ut

ili
za

tio
n

4V1R dynamic
4V1R static
7V1R dynamic
7V1R static
7V2R dynamic
7V2R static

(b) Resource utilization

10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of CUs

U
se

r s
at

is
fa

ct
io

n

4V1R dynamic
4V1R static
7V1R dynamic
7V1R static
7V2R dynamic
7V2R static

(c) User satisfaction

Fig. 4. Performance of the VM allocation result under core-selecting auctions.

10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7
x 106

Number of CUs

R
ev

en
ue uniform−normal

uniform−uniform
normal−normal
normal−uniform

(a) Revenue vs. Number of CUs

0.5R 1R 1.5R 2R 2.5R 3R 3.5R 4R
0

0.5

1

1.5

2

2.5
x 107

Amount of resources

R
ev

en
ue

uniform−normal
uniform−uniform
normal−normal
normal−uniform

(b) Revenue vs. Amount of resources

10 20 30 40 50 60 70 80

1R2R3R4R
0

0.5

1

1.5

2

2.5

x 10
7

(c) Revenue against Google Cluster Data

Fig. 5. Influence of bid distribution.

distribution. We find that revenues increase moderately with

the number of CUs and increase approximately linearly with

increasing amount of resources, which is consistent with what

we observe in Fig. 5a and in Fig. 5b.

VII. CONCLUSIONS

Core-selecting auctions are emerging as an effective com-

binatorial auction mechanism for allocating bundles of goods.

They guarantee economic efficiency, are proof to shill bidding,

and outperform VCG auctions in revenue. This work is the first

that designs core-selecting auctions for the cloud computing

market, and advances the state-of-the-art of VM auction de-

sign by generalizing static resource provisioning to dynamic

resource provisioning, and from homogeneous VM instances

to heterogeneous VM instances.

REFERENCES

[1] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, and
X. Zhu, “Vmware distributed resource management: Design, implemen-
tation, and lessons learned,” VMware Technical Journal, vol. 1, no. 1,
pp. 45–64, June 2012.

[2] Amazon EC2, http://aws.amazon.com/ec2/.
[3] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and J. Liu,

“A framework for truthful online auctions in cloud computing with
heterogeneous user demands,” in Proc. of IEEE INFOCOM, April 2013.

[4] S. Zaman and D. Grosu, “Combinatorial auction-based mechanisms for
vm provisioning and allocation in clouds,” in IEEE/ACM CCGrid, May
2012, pp. 729–734.

[5] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine(s) that could: Scaling online social
networks,” in Proc. of ACM SIGCOMM, October 2010, pp. 375–386.

[6] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of
virtual machine instances in clouds,” Journal of Parallel and Distributed
Computing, vol. 73, no. 4, pp. 495–508, April 2013.

[7] DigitalOcean, https://www.digitalocean.com/.

[8] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” The Journal of Finance, vol. 16, no. 1, pp. 8–37, March 1961.

[9] E. H. Clarke, “Multipart pricing of public goods,” Public Choice, vol. 11,
no. 1, pp. 17–33, September 1971.

[10] T. Groves, “Incentives in teams,” Econometrica: Journal of the Econo-

metric Society, vol. 41, no. 4, pp. 617–631, July 1973.
[11] B. Holmstrom, “Groves scheme on restricted domains,” The Econometric

Society, vol. 47, no. 5, pp. 1137–1144, September 1979.
[12] M. Yokoo, Y. Sakurai, and S. Matsubara, “The effect of false-name bids

in combinatorial auctions: New fraud in internet auctions,” Games and

Economic Behavior, vol. 46, no. 1, pp. 174–188, January 2004.
[13] CPLEX Optimizer, http://www-01.ibm.com/software/commerce/optimi-

zation/cplex-optimizer/.
[14] R. Day and P. Milgrom, “Core-selecting package auctions,” International

Journal of Game Theory, vol. 36, no. 3-4, pp. 393–407, March 2008.
[15] R. W. Day and S. Raghavan, “Fair payments for efficient allocations

in public sector combinatorial auctions,” Management Science, vol. 53,
no. 9, pp. 1389–1406, September 2007.

[16] R. W. Day and P. Cramton, “Quadratic core-selecting payment rules
for combinatorial auctions,” Operations Research, vol. 60, no. 3, pp.
588–603, May 2012.

[17] Google Cluster Data, https://code.google.com/p/googleclusterdata/.
[18] H. Li, C. Wu, Z. Li, and F. Lau, “Virtual machine trading in a federation

of clouds: Individual profit and social welfare maximization,” 2013,
technical report, arXiv:1304.6491.

[19] ——, “Profit-maximizing virtual machine trading in a federation of
selfish clouds,” in Proc. of IEEE INFOCOM (mini-conf.), April 2013.

[20] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, April 2014.

[21] E. Angel, E. Bampis, and F. Pascual, “Truthful algorithms for scheduling
selfish tasks on parallel machines,” Theoretical Computer Science, vol.
369, no. 1, pp. 157–168, December 2006.

[22] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards
effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
March 2012.

[23] Y. Zhu, B. Li, and Z. Li, “Core-selecting combinatorial auction design
for secondary spectrum markets,” in Proc. of IEEE INFOCOM, April
2013.

159159

