120,129 research outputs found

    Unlinkable Policy-based Sanitizable Signatures

    Get PDF
    In CT-RSA 2020, P3S was proposed as the first policy-based sanitizable signature scheme which allows the signer to designate future message sanitizers by defining an access policy relative to their attributes rather than their keys. However, since P3S utilizes a policy-based chameleon hash (PCH), it does not achieve unlinkability which is a required notion in privacy-preserving applications. Moreover, P3S requires running a procedure to share the secret trapdoor information for PCH with each new sanitizer before sanitizing a new message. We further observe that in order to maintain the transparency in P3S’s multiple-sanitizers setting, the signature size should grow linearly with the number of sanitizers. In this work, we propose an unlinkable policy-based sanitizable signature scheme (UP3S) where we employ a rerandomizable digital signature scheme and a traceable attribute-based signature scheme as its building blocks. Compared to P3S, UP3S achieves unlinkability, does not require new secrets to be shared with future sanitizers prior to sanitizing each message, and has a fixed signature size for a given sanitization policy. We define and formally prove the security notions of the generic scheme, propose an instantiation of UP3S utilizing the Pointcheval-Sanders rerandomizable signature scheme and DTABS traceable attribute-based signature scheme, and analyze its efficiency. Finally, we compare UP3S with P3S in terms of the features of the procedures, scalability, and security models

    Evolutionary intelligent agents for e-commerce: Generic preference detection with feature analysis

    Get PDF
    Product recommendation and preference tracking systems have been adopted extensively in e-commerce businesses. However, the heterogeneity of product attributes results in undesired impediment for an efficient yet personalized e-commerce product brokering. Amid the assortment of product attributes, there are some intrinsic generic attributes having significant relation to a customer’s generic preference. This paper proposes a novel approach in the detection of generic product attributes through feature analysis. The objective is to provide an insight to the understanding of customers’ generic preference. Furthermore, a genetic algorithm is used to find the suitable feature weight set, hence reducing the rate of misclassification. A prototype has been implemented and the experimental results are promising

    Authorised Translations of Electronic Documents

    Full text link
    A concept is proposed to extend authorised translations of documents to electronically signed, digital documents. Central element of the solution is an electronic seal, embodied as an XML data structure, which attests to the correctness of the translation and the authorisation of the translator. The seal contains a digital signature binding together original and translated document, thus enabling forensic inspection and therefore legal security in the appropriation of the translation. Organisational aspects of possible implementation variants of electronic authorised translations are discussed and a realisation as a stand-alone web-service is presented.Comment: In: Peer-reviewed Proceedings of the Information Security South Africa (ISSA) 2006 From Insight to Foresight Conference, 5 to 7 July 2006, Sandton, South Afric

    Reconfigurable Security: Edge Computing-based Framework for IoT

    Full text link
    In various scenarios, achieving security between IoT devices is challenging since the devices may have different dedicated communication standards, resource constraints as well as various applications. In this article, we first provide requirements and existing solutions for IoT security. We then introduce a new reconfigurable security framework based on edge computing, which utilizes a near-user edge device, i.e., security agent, to simplify key management and offload the computational costs of security algorithms at IoT devices. This framework is designed to overcome the challenges including high computation costs, low flexibility in key management, and low compatibility in deploying new security algorithms in IoT, especially when adopting advanced cryptographic primitives. We also provide the design principles of the reconfigurable security framework, the exemplary security protocols for anonymous authentication and secure data access control, and the performance analysis in terms of feasibility and usability. The reconfigurable security framework paves a new way to strength IoT security by edge computing.Comment: under submission to possible journal publication

    Towards a Flexible Intra-Trustcenter Management Protocol

    Full text link
    This paper proposes the Intra Trustcenter Protocol (ITP), a flexible and secure management protocol for communication between arbitrary trustcenter components. Unlike other existing protocols (like PKCS#7, CMP or XKMS) ITP focuses on the communication within a trustcenter. It is powerful enough for transferring complex messages which are machine and human readable and easy to understand. In addition it includes an extension mechanism to be prepared for future developments.Comment: 12 pages, 0 figures; in The Third International Workshop for Applied PKI (IWAP2004

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German
    corecore