
Unlinkable Policy-Based Sanitizable Signatures

Ismail Afia[0000−0002−7669−8762] and Riham AlTawy[0000−0002−4734−3700]

University of Victoria, Victoria, BC V8P5C2, Canada
iafia@uvic.ca raltawy@uvic.ca

Abstract. In CT-RSA 2020, P3S was proposed as the first policy-
based sanitizable signature scheme, allowing the signer to designate fu-
ture message sanitizers by defining an access policy relative to their at-
tributes rather than their keys. However, since P3S utilizes a policy-based
chameleon hash (PCH), it does not achieve unlinkability, a required no-
tion in privacy-preserving applications. Moreover, P3S requires running
a procedure to share the secret trapdoor information for PCH with each
new sanitizer before sanitizing a new message. We further observe that to
maintain transparency in P3S’s multiple sanitizers setting, the signature
size should grow linearly with the number of sanitizers. In this work, we
propose an unlinkable policy-based sanitizable signature scheme (UP3S)
where we employ a rerandomizable digital signature scheme and a trace-
able attribute-based signature scheme as its building blocks. Compared
to P3S, UP3S achieves unlinkability, does not require new secrets to be
shared with future sanitizers prior to sanitizing each message, and has a
fixed signature size for a given sanitization policy. We define and formally
prove the security notions of the generic scheme, propose an instantia-
tion of UP3S utilizing the Pointcheval-Sanders rerandomizable signature
scheme and DTABS traceable attribute-based signature scheme, and an-
alyze its efficiency. Finally, we compare UP3S with P3S in terms of the
features of the procedures, scalability, and security models.

Keywords: sanitizable signature · attribute-based signatures · reran-
domizable signature · policy-based signatures.

1 Introduction

Sanitizable signature schemes allow the signer of a message to designate a semi-
trusted entity called the sanitizer to alter a signed message in a controlled way,
and yet the original signature of the message is verified successfully [1]. The
original signer of the message controls the modification process by defining which
blocks of the message are allowed to be modified. Sanitizable signature schemes
enabled numerous applications where the modification of a signed message is
required without interaction with its signer. Such applications include outsourced
databases, multicast transmissions, secure routing, privacy-preserving document
disclosure, and privacy-preserving dissemination of patient data in healthcare
applications [1, 10, 30].
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The standard security notions of sanitizable signatures include unforgeability,
immutability, privacy, accountability, and transparency. Additionally, unlinkabil-
ity has been presented by Brzuska et al. as a required security notion for privacy-
preserving applications [10, 1]. Intuitively, unlinkability ensures that associating
different sanitized signatures with a source original message, i.e., linking the
two sanitized versions of the same message, is not feasible. Hence, concluding
combined information about the original message is prevented. For instance, in
healthcare applications, if we have two sanitized message signature pairs of a
specific patient’s medical records where one of the messages contains only the
personal information of the patient and the other is an anonymized version of
the same patient’s health records, linking both message signatures may lead
to the reconstruction of the full medical records of the patient. Consequently,
within the literature on sanitizable signature schemes [14, 16, 2, 18], constructing
unlinkable ones has been the objective of the works in [12, 23, 27, 13]. Broadly, in
the literature, several sanitizable signature schemes have been presented, which
are classified by Bilzhause et al. [6] into four major categories as follows, i)
schemes that provide additional security properties such as non-interactive pub-
lic accountability [11] and invisibility [13, 14], ii) schemes that support multiple
signers and sanitizers [16, 17, 9, 26], iii) schemes that limit the sanitizer ability
to alter admissible blocks to signer chosen values [15, 20], and iv) schemes that
allow the sanitization of encrypted data [2, 18].

Sanitizable signature schemes are usually defined in a single-signer single-
sanitizer setting where the sanitizer is known in advance to the signer before the
signature generation process. Conversely, trapdoor sanitizable signature schemes
enable the signer to grant sanitization rights to sanitizer(s) after signature gen-
eration [16, 17]. However such schemes often require interaction between the
sanitizer and the signer after signature generation to obtain trapdoor infor-
mation [26]. To tackle the aforementioned limitation, Samelin and Slamanig
proposed the first policy-based sanitizable signature scheme (P3S) where saniti-
zation rights are assigned to any sanitizer that fulfills a predefined access policy
[35]. Hence, sanitization is enabled based on possible sanitizer(s) attributes de-
termined by the signer rather than sanitizers’ public keys that may be unknown
to the signer at the time of signing. Accordingly, sanitizers are not required to
be known to the signer before signature generation. P3S employs a policy-based
chameleon hash (PCH) [19] and a dynamic-group-signature similar primitive as
its building blocks [4]. PCH allows sharing of the encryption of the trapdoor
information of a chameleon hash function with possible sanitizers of a given
message using an attribute-based encryption algorithm (ABE) where the sani-
tization policy controls who can decrypt the trapdoor [33]. On the other hand,
P3S accountability is achieved by group signature similar primitive in which the
signer/sanitizer of a given message provides the encryption of their public key in
addition to a non-interactive zero-knowledge (NIZK) proof that the encryption
hides either the signer or the sanitizer public key. Nevertheless, the use of PCH
in P3S facilitates linking two signatures together because the message hash is
not changed with each sanitization process. Moreover, for each new message,
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the P3S setup has to be executed where the encryption of the PCH trapdoor
secret key is shared with all sanitizers which do not lead to the most efficient
instantiation. We also observe that to maintain the transparency security notion
where it is infeasible to distinguish a freshly signed message from a sanitized
one, the size of the group signature in P3S should grow linearly with the number
of sanitizers which may further affect the system’s scalability (see section 7.1).
Our Contributions. We present an Unlinkable Policy-based Signature Scheme
(UP3S) that allows a signer to grant the sanitization rights of a specific document
to sanitizers satisfying a predefined policy. UP3S ensures that the generated
sanitized versions of such documents are unlinkable where it is infeasible to
associate them with the same original document. We design UP3S such that for
a given sanitization policy, the system setup is run once for the sanitization of
all future messages and the signature size is fixed. We define the unlinkability,
unforgeability, immutability, transparency, privacy, and accountability security
notions for the generic UP3S, and prove that it achieves them. Moreover, we
instantiate UP3S with Pointcheval-Sanders rerandomizable signature scheme [31]
and DTABS [24], and analyze its performance. Finally, We compare it with P3S
in terms of the schemes’ properties, scalability, and security.

2 Preliminaries and Building Blocks

Let i ∈ I denote an identity i from the identity universe I and S ⊆ U denote
an attribute set S from the attribute universe U. Let λ ∈ N denote our security
parameter, then a function ϵ(λ) : N→ [0, 1] denotes the negligible function if for
any c ∈ N, c > 0 there exists λc ∈ N s.t. ϵ(λ) < λ−c for all λ > λc. For a message
m = (m1,m2, . . . ,ml) ∈ Ml, let mi denotes a message block, and the variable
adm = ({A ⊆ {1, . . . , l}}, l) specifies the set of indices A of the modifiable
blocks over m which contains l blocks each of size n bits. We use Adm(m) = 1
if adm is valid with respect to m, i.e., it contains a subset A of {0, ..., l} and
m contains exactly l blocks. Let madm denote the list of blocks in m which are
admissible with respect to adm. We denote the list of blocks in m which are
not admissible under adm with m!adm. The function m′ ← MoD(m, adm,mod)
is used to modify the message m by applying the modifications mod on the
admissible block(s) adm and outputs the modified message m′, where mod is
a set that contains the tuple (i,mi,m

′
i) for i ∈ adm. Furthermore, we write

CheckMoD(m, adm) = 1, if adm is valid with respect to m, i.e., Adm(m) = 1
and the blocks indices to be modified in a message m are contained in adm as
admissible. For each message m, there is one signer and one or more sanitizer(s)
who can sanitize m by running m′ ← MoD(m, adm,mod) and generating a valid
sanitized signature on m′ depending on their attributes. Finally, to denote that
an attribute set S satisfies a monotone access structure predicate Υ (see Def. 1),
we use Υ(S) = 1.

Definition 1. (Access Structure [5]). Let U denote the universe of attributes.
A collection A ∈ 2U \{0} of a non-empty set is an access structure on U. The
sets in A are called the authorized sets, and the sets not in A are called the
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unauthorized sets. The collection A is called monotone if ∀B,C ∈ A : if B ∈ A
and B ⊆ C, then C ∈ A.

2.1 Rerandomizable Digital Signature (RDS) Scheme

RDS schemes are digital signature algorithms that allow rerandomizing a signa-
ture such that the rerandomized version of the signature is still verifiable under
the verification key of the signer [36]. An important property of RDS schemes
is that the rerandomized signatures produced using the same signing key on
the same message are indistinguishable from a freshly signed one [31]. An RDS
scheme is a tuple of five polynomial-time algorithms, RDS = {ppGenRDS, Key-
GenRDS, SignRDS, RandomizeRDS, VerifyRDS} which are defined as follows.

- ppGenRDS. This algorithm outputs the public parameters of the scheme,
ppRDS ← ppGenRDS(1λ).

- KeyGenRDS. This procedure generates the signer’s secret and public key pair,
(skRDS , pkRDS)← KeyGenRDS(ppRDS).

- SignRDS. This procedure generates a digital signature σRDS on a message m,
σRDS ← SignRDS(skRDS ,m).

- VerifyRDS. This algorithm verifies the (rerandomized) signature σRDS over m,
{⊤,⊥} ← VerifyRDS(pkRDS ,m, σRDS).

- RandomizeRDS. This procedure rerandomizes the digital signature σRDS on a
message m and outputs σ′RDS , σ

′
RDS ← RandomizeRDS(m,σRDS).

RDS schemes ensure both existential unforgeability under chosen message at-
tacks (EUF-CMA) and unlinkability. The formal definition of both security no-
tions, their associated experiments, and security oracles, are given in [31, 36] and
in Appendix A.

2.2 Traceable Attribute-based Signatures (TABS)

Attribute-based signature (ABS) schemes are probabilistic digital signature
schemes in which the produced signature attests a specific claim predicate (Υ)
regarding the attributes that the signer possesses rather than the identity of the
signer [28]. ABS schemes ensure privacy where the signer’s identity is anony-
mous among all the users who possess a set of attributes that satisfy the claim
predicate specified in the signature. Such schemes utilize a trusted entity called
the Attribute Authority (AA) to authenticate users’ identities and issue their
corresponding attributes. Traceable ABS (TABS) schemes are a variant of ABS
schemes where tracing a signature to its original signer is supported [21]. In such
schemes, tracing could be performed by AA or another tracing authority (TA)
[21, 22]. A TABS scheme is a tuple of eight polynomial-time algorithms, TABS =
{ppGenTABS, TAKeyGenTABS, AAKeyGenTABS, SignerKeyGenTABS, SignTABS,
VerifyTABS, TraceTABS, JudgeTABS} which are specified as follows.
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- ppGenTABS. This algorithm outputs the public parameters of the scheme
ppTABS which also defines both the identity universe I and the attribute universe
U, ppTABS ← ppGenTABS(1λ).

- TAKeyGenTABS. This algorithm is run by the TA and outputs a tracing key
tskTA

TABS for the tracing authority, tskTA
TABS ← TAKeyGenTABS(ppTABS).

- AAKeyGenTABS. This algorithm is run by the AA to generate its public key
and master secret key pair, (pkTABS ,mskAA

TABS)← AAKeyGenTABS(ppTABS).

- SignerKeyGenTABS. This algorithm is run by the AA, on the attribute set Si ⊂
U and i ∈ I for a specific user and the AA master secret keymskAA

TABS . It outputs

the user’s secret key, skUser,i
TABS ← SignerKeyGenTABS(ppTABS ,mskAA

TABS , i,Si).

- SignTABS. This algorithm is run by the signer on a message m ∈ {0, 1}∗
for a claim predicate Υ where the user possesses a set of attributes S′i ⊆ Si
satisfying the claim predicate Υ, i.e., Υ(S′i) = 1. It outputs a signature,

σTABS ← SignTABS(ppTABS , sk
User,i
TABS ,m,Υ).

- VerifyTABS. This algorithm verifies the signature σTABS over m with respect
to a claim predicate Υ, {⊤,⊥} ← VerifyTABS(ppTABS , pkTABS ,m, σTABS ,Υ).

- TraceTABS. The TA runs this algorithm to trace a signature tu-
ple (m,σTABS ,Υ) to its actual signer. It outputs the identity of the
signer along with NIZK proof π, attesting to this claim, (i, π) ←
TraceTABS(tskTA

TABS ,m, σTABS ,Υ).

- JudgeTABS. This algorithm outputs true if it verifies that π proves that i is
the identity of the signer who produced σTABS on m,
{⊤,⊥} ← JudgeTABS(ppTABS , pkTABS ,m, σTABS ,Υ, i, π).

The security definitions for unforgeability, privacy, traceability, and non-
frameability which are the security notions required to prove the security of
UP3S are defined in [24] and are also given in Appendix B.

3 UP3S Black-box Construction

The main idea behind the proposed construction is that after signers and sani-
tizers acquire their respective secret keys, the signer of a given message defines a
policy Υ that controls the sanitization rights of such a message, i.e., any sanitizer
who possesses an attribute-set satisfying Υ is able to generate a sanitized version
of such a message without interaction with the AA or the signer. Formally, UP3S
scheme is a tuple of nine polynomial-time algorithms, UP3S = {ParGenUP3S, Se-
tupUP3S, KGenSignUP3S, KGenSanUP3S, SignUP3S, SanitizeUP3S, VerifyUP3S,
ProveUP3S, JudgeUP3S}. The specifications of the aforementioned algorithms
are as follows:
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- ParGenUP3S. This algorithm returns the scheme’s public parameters which be-
come implicit input for all UP3S algorithms. It also defines the identity universe
I and the attribute universe U. ppUP3S ← ParGenUP3S(1λ)

- SetupUP3S. This algorithm outputs the global public key pkUP3S and the master
secret key skUP3S of the scheme. (pkUP3S, skUP3S)← SetupUP3S(ppUP3S)

- KGenSignUP3S. This algorithm generates the public-secret key pairs of a signer
with identity iSign ∈ I who holds an attribute-set SSign ⊂ U.
(pkSign

UP3S, sk
Sign
UP3S)← KGenSignUP3S(skUP3S, iSign,SSign)

- KGenSanUP3S. This algorithm generates the secret key of a sanitizer with
identity iSan ∈ I who holds an attribute-set SSan ⊂ U.
skSan

UP3S ← KGenSanUP3S(skUP3S, iSan,SSan,i)

- SignUP3S. This algorithm generates a sanitizable signature σm using the
signer’s key skSign

UP3S on a message m, given the set of indices of the modifiable
blocks adm, a predicate Υ, and the attribute-set of possible future sanitizer(s)

SPSan ⊆ U. (m,σm, adm,Υ)← SignUP3S(pkUP3S, sk
Sign
UP3S,m, adm, SPSan)

- VerifyUP3S. This algorithm verifies a signature σm on a message m, a set of
indices of the modifiable blocks adm and a predicate Υ, using the scheme’s public
key pkUP3S and the signer’s public key pkSign

UP3S.

{⊤,⊥} ← VerifyUP3S(pkUP3S, pk
Sign
UP3S,m, σm, adm,Υ)

- SanitizeUP3S. This algorithm generates a sanitized signature σ′m using the san-
itizer secret key skSan

UP3S on a signature σm, the original message m which is modi-
fied tom′ ←MoD(m, adm,mod), the set of indices of the modifiable blocks adm,

a predicate Υ, the scheme public key pkUP3S, and the signer public key pkSign
UP3S.

(m′, σ′m, adm,Υ)← SanitizeUP3S(pkUP3S, pk
Sign
UP3S, sk

San
UP3S,m, σm, adm,mod,Υ)

- ProveUP3S. This algorithm outputs the identity i of the signer (resp. sanitizer)

of a specific message signature tuple (pkUP3S, pk
Sign
UP3S,m, σm, adm,Υ) along with

a NIZK proof π which proves that i is the signer who generated σm on m.
{i, π} ← ProveUP3S(pkUP3S, skUP3S, pk

Sign
UP3S,m, σm, adm,Υ)

- JudgeUP3S. This algorithm verifies the proof π on a specific message signature
tuple (m,σm, adm,Υ) and an identity i.

{⊤,⊥} ← JudgeUP3S(pkUP3S, pk
Sign
UP3S,m, σm, adm,Υ, i, π)

UP3S Correctness. For the correctness of UP3S, we require that, for
all λ ∈ N, for all ppUP3S ← ParGenUP3S(1λ), for all (pkUP3S,skUP3S)
← SetupUP3S (ppUP3S), for all iSign ∈ I, for all SSign ⊆ U, for

all (skSign
UP3S) ← KGenSignUP3S (skUP3S,iSign,SSign), for all l ∈ N, for

all m ∈ Ml, for all SPSan ∈ U, for all Υ ∈ 2U | Υ(SSign) = 1,
for all adm = ({A ⊆ {1, . . . , l}}, l) such that Adm(m) = 1, for all
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(m,σm, adm,Υ) ← SignUP3S (pkUP3S,sk
Sign
UP3S,m,adm,SPSan), for all iSan ∈ I,

for all SSan ⊆ U | Υ(SSan) = 1, for all skSan
UP3S ← KGenSanUP3S

(skUP3S,iSan,SSan,i), for all mod = {modi} | modi = (i,mi,m
′
i)∀i ∈ adm,

for all m′ ← MoD(m, adm,mod) | CheckMoD(m, adm) = 1, and for all

(m′,σ′m,adm,Υ) ← SanitizeUP3S(pkUP3S,pk
Sign
UP3S,sk

San
UP3S,m,σm,adm,mod,Υ),

we have ⊤ = VerifyUP3S(pkUP3S,pk
Sign
UP3S,m,σm,adm,Υ) and ⊤ =

VerifyUP3S(pkUP3S,pk
Sign
UP3S,m

′,σ′m,adm,Υ).

Furthermore, for all {i,π} ← ProveUP3S(pkUP3S,skUP3S,pk
Sign
UP3S,m,σm,adm,Υ),

and {i′,π′} ← ProveUP3S(pkUP3S,skUP3S,pk
Sign
UP3S,m

′,σ′m,adm,Υ), we

have ⊤ = JudgeUP3S(pkUP3S,pk
Sign
UP3S,m,σm,adm,Υ,i,π) and ⊤ =

JudgeUP3S(pkUP3S,pk
Sign
UP3S,m

′,σ′m,adm,Υ,i′,π′).

3.1 UP3S Security Definitions

In what follows, we define the required security notion of UP3S. We use the same
notations as in [35, 8, 10] for ease of readability. The oracles used in the security
experiments are defined in Fig. 1. All the security experiments are initialized by
running the following setup and key generation procedures.

ppUP3S ← ParGenUP3S(1λ)

(pkUP3S, skUP3S)← SetupUP3S()

(sk
Sign
UP3S , pk

Sign
UP3S )← KGenSignUP3S(skUP3S, iSign, SSign,i)

(sk
San
UP3S)← KGenSanUP3S(skUP3S, iSan, SSan,i)

The OSignUP3S, OSanitUP3S, OProveUP3S, OLoRSanitUP3S,
OLoRSignSanitUP3S, and OSign-or-SanitUP3S oracles are implicitly ini-
tialized with the secrets skSign

UP3S, sk
San
UP3S, skUP3S, sk

San
UP3S, (sk

Sign
UP3S, sk

San
UP3S), and

(skSign
UP3S, sk

San
UP3S), respectively. Moreover, OLoRSanitUP3S, OLoRSignSanitUP3S,

and OSign-or-SanitUP3S oracles are further initialized with a secret bit b that
is randomly chosen in the experiments, thus we pass it as a secret input
after it gets selected. Note that the attribute sets SSign,i and SSan,i used
in the experiments initialization are selected such that Υ(SSign,i) = 1 and
Υ(SSan,i) = 1 for those oracles queried by the adversary with any Υ.
Unlinkability. Unlinkability is defined using the experiment in Fig 2, where
the adversary has access to left-or-right sanitization oracle OLoRSanitUP3S
(see Fig. 1) among other oracles. The adversary inputs two sanitizable
messages-signature pairs {(m0, σm0),(m1, σm1)} along with their modifications
to OLoRSanitUP3S, the oracle is initialized with a secret random bit ’b ∈ {0, 1}’.
Depending on ’b’, the oracle outputs a sanitized signature of either the left or
right input message signature pair. The adversary wins if it could determine
which pair is used in the sanitization process with probability better than the
random guess. The adversary is restricted to inputting two messages such that
their modified outputs are the same m′0 = m′1 to prevent linking a sanitized
message to its original source. To achieve such a restriction, the adversary must
input two messages with identical fixed parts, m0!adm

= m1!adm
and the two mes-

sages’ admissible blocks indices must be the same, i.e., adm0 = adm1. To match
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OSignUP3S(pk′
UP3S,m, adm, SPSan)

if pk
′
UP3S = pkUP3S

(m,σm, adm,Υ)← SignUP3S(pkUP3S, sk
Sign
UP3S ,m, adm, SPSan)

M =M∪ {m, adm, σm,Υ}
S = S ∪ {SPSan}
return (m,σm, adm,Υ)

return 0

OSanitUP3S(pkUP3S, pkSign
UP3S ,m, σm, adm,mod,Υ)

(m
′
, σ

′
m, adm,Υ)← SanitizeUP3S(pkUP3S, pk

Sign
UP3S , sk

San
UP3S ,m, σm, adm,mod,Υ)

L = L ∪ {m′
, σ

′
m, adm,Υ}

return (m
′
, σ

′
m, adm,Υ)

OProveUP3S(pkUP3S, pkSign
UP3S ,m, σm, adm,Υ)

if (m,σm) /∈ T

return (i, π)← ProveUP3S(pkUP3S, skUP3S, pk
Sign
UP3S ,m, σm, adm,Υ)

return 0

OLoRSanitUP3S(pkUP3S, pkSign
UP3S ,m0, σm0, adm0,Υ0,mod0,m1, σm1, adm1,Υ1,mod1)

if MoD(m0, adm0,mod0) = MoD(m1, adm1,mod1) ∧Υ0 = Υ1 ∧ adm0 = adm1

if VerifyUP3S(pkUP3S, pk
Sign
UP3S ,m0, σm0, adm0,Υ0) ∧ VerifyUP3S(pkUP3S, pk

Sign
UP3S ,m1, σm1, adm1,Υ1)

return (m
′
b, σ

′
mb, admb,Υb)← SanitizeUP3S(pkUP3S, pk

Sign
UP3S , sk

San
UP3S ,mb, σmb, admb,modb,Υb)

return 0

OLoRSignSanitUP3S(m0, adm0,Υ0,mod0, SPSan,0,m1, adm1,Υ1,mod1, SPSan,1)

if MoD(m0, adm0,mod0) = MoD(m1, adm1,mod1) ∧Υ0 = Υ1 ∧ adm0 = adm1 ∧ SPSan,0 = SPSan,1

(mb, σmb, admb,Υb)← SignUP3S(pkUP3S, sk
Sign
UP3S ,mb, admb, SPSan,b)

return (m
′
b, σ

′
mb, admb,Υb)← SanitizeUP3S(pkUP3S, pk

Sign
UP3S , sk

San
UP3S ,mb, σmb, admb,modb,Υb)

return 0

OSign-or-SanitUP3S(m,adm, SPSan,mod)

if b = 0

m
′ ← MoD(m,mod, adm)

(m
′
, σ

′
m, adm,Υ)← SignUP3S(pkUP3S, sk

Sign
UP3S ,m

′
, adm, SPSan)

else (m,σm, adm,Υ)← SignUP3S(pkUP3S, sk
Sign
UP3S ,m, adm, SPSan)

(m
′
, σ

′
m, adm,Υ)← SanitizeUP3S(pkUP3S, pk

Sign
UP3S , sk

San
UP3S ,m, σm, adm,mod,Υ)

T = T ∪ {m′
b, σ

′
mb}

return (m
′
, σ

′
m, adm,Υ)

Fig. 1: UP3S security experiments oracles

UP3S’s policy-based expressiveness, we further restrict the adversary to input
two messages that could be sanitized under the same predicate, i.e., Υ1 = Υ2.
Note that, unlike group signature schemes where unlinkability is defined as the
infeasibility to link two messages and their signatures to the same signer [3], in
sanitizable signature, unlinkability is defined as the infeasibility to link signatures
of two or more sanitized versions of a message to the same source message [10].

Definition 2. (Unlinkability) UP3S scheme is unlinkable if for any PPT adver-

sary A,
∣∣∣Pr[ExpUnlinkability

A,UP3S (λ) = 1]− 1
2

∣∣∣ ≤ ϵ(λ), where the unlinkability exper-

iment is described in Fig. 2.
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ExpUnlinkability

A,UP3S (λ)

b
$← {0, 1}

a← AOSignUP3S(.),OSanitUP3S(.),OProveUP3S(.),OLoRSanitUP3S(.,b)
(pkUP3S, pk

Sign
UP3S )

if a = b

return 1

return 0

Fig. 2: UP3S unlinkability experiment.

Transparency. This notion requires that no adversary can distinguish between
sanitizable signatures created by the signer or the sanitizer. Transparency is mod-
eled by the experiment in Fig. 3 in which adversary A has access to OSignUP3S,
OSanitUP3S , and OProveUP3S. At the end, A queries OSign-or-SanitUP3S with
a message m, a modification mod, possible sanitizers attribute set SPSan and
the set of indices of the modifiable blocks adm. OSign-or-SanitUP3S which is ini-
tialized by a secret random bit b, outputs the signature tuple (m′, σ′m, adm,Υ)
as follows.

– For b = 0, m′ ← MoD(m, adm,mod), OSign-or-SanitUP3S runs the signing

algorithm to create (m′, σ′m, adm,Υ) ← SignUP3S( pkUP3S , skSign
UP3S, m

′, adm,
SPSan) and outputs the message signature pair (m′, σ′m, adm,Υ).

– For b = 1, OSign-or-SanitUP3S runs the signing algorithm to create
(m,σm, adm,Υ) ← SignUP3S(pkUP3S, sk

Sign
UP3S,m, adm, SPSan), further sani-

tizes the message m′ ← MoD(m, adm,mod) and returns (m′, σ′m, adm,Υ) ←
SanitizeUP3S(pkUP3S, pk

Sign
UP3S, sk

San
UP3S,m, σm, adm,mod,Υ).

A wins if it can guess b with probability better than the random guess. Note
that access to OProveUP3S oracle is restricted to (m,σm) pairs that have never
been queried to OSign-or-SanitUP3S oracle.

Definition 3. (Transparency) UP3S is transparent if for any PPT adversary A,∣∣∣Pr[ExpTransparency
A,UP3S (λ) = 1]− 1

2

∣∣∣ ≤ ϵ(λ), where the transparency experiment is

defined in Fig 3

ExpTransparency

A,UP3S (λ)

b
$← {0, 1}, T = {}

a← AOSignUP3S(.),OSanitUP3S(.),OProveUP3S(.),OSign-or-SanitUP3S(.,b)
(pkUP3S, pk

Sign
UP3S )

if a = b

return 1

else return 0

Fig. 3: UP3S transparency experiment.
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Immutability. This security notion implies that no adversary with no access to
the signer’s secret key skSign

UP3S can alter inadmissible blocks. In UP3S, we extend
the immutability definition to capture adversarial changes in the predefined sign-
ing predicate Υ, i.e., no adversary can change the signing predicate defined by the
original signer of a message. Immutability is modeled by the security experiment
defined in Fig. 4 in which adversaryA has access toOSignUP3S, andOSanitUP3S
oracles. The signing oracle OSignUP3S is initialized with skSign

UP3S for the attribute
set SSign. A queries OSignUP3S by mi, admi,SPSan,i for i = 1, 2, ..., q, the
signing oracle outputs the signature tuple (mi, σmi, admi,Υi) where the predi-
cate Υi is satisfied by S′Sign ⊆ SSign and by SPSan,i. On the other hand, The

sanitization oracle OSanitUP3S is initialized with skSan
UP3S for the attribute set

SSan. A queries OSanitUP3S by (mj , σmj , admj ,modj ,Υj) for j = 1, 2, ..., p,
the sanitization oracle outputs the signature tuple (m′j , σ

′
mj , admj ,Υj). The

adversary wins if it could generate a verifiable (σ∗m,m∗, adm∗,Υ∗) such that
for all i = 1, 2, ..., q (resp. j = 1, 2, ..., p), m∗ is not valid a modification of
any mi (resp. mj) under admi (resp. admj) where CheckMoD(mi, admi) = 1
(resp. CheckMoD(mj , admj) = 1), or m∗ is a valid a modification of any mi

(resp. mj) under admi (resp. admj) where CheckMoD(mi, admi) = 1 (resp.
CheckMoD(mj , admj) = 1) and Υ∗ ̸= Υi (resp. Υ∗ ̸= Υj). Note that A is al-
lowed to query OSanitUP3S oracle to simulate multiple sanitization cases where
a sanitized message could be further sanitized by a different sanitizer. The defi-
nition considers adversaries who are valid sanitizers trying to alter inadmissible
blocks thus the adversary may access some sanitization key skSan,A

UP3S for a pre-
defined attribute set.

Definition 4. (Immutability) UP3S is an immutable sanitizable signature

scheme if for any PPT adversary A, Pr[ExpImmutability
A,UP3S (λ) = 1] ≤ ϵ(λ), where

the immutability experiment is defined in Fig. 4.

ExpImmutability

A,UP3S (λ)

M = L = {}

(m
∗
, σ

∗
m, adm

∗
,Υ

∗
)← AOSignUP3S(.),OSanitUP3S(.)

(pkUP3S, pk
Sign
UP3S )

if VerifyUP3S(pkUP3S, pk
Sign
UP3S ,m

∗
, σ

∗
m, adm

∗
,Υ

∗
)

(∀{mi, admi,Υi} ∈ M∧ ∀{mj , admj ,Υj} ∈ L)

if (m
∗

/∈ {MoD(mi, admi, .)|CheckMoD(mi, admi) = 1}∧

m
∗

/∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) = 1})
return 1

elseif (m
∗ ∈ {MoD(mi, admi, .)|CheckMoD(mi, admi) = 1} ∧Υ

∗ ̸= Υi)∨

(m
∗ ∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) = 1} ∧Υ

∗ ̸= Υj))

return 1

return 0

Fig. 4: UP3S immutability experiment.
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Accountability. This security notion implies that if a signer (resp. sanitizer)
did not sign (resp. sanitize) a message, then a malicious sanitizer (resp. signer)
should not be able to convince the judge to accuse the signer (resp. sani-
tizer). Accountability is modeled by the security experiment defined in Fig. 5,

in which adversary A has access to either skSan
UP3S (resp. skSign

UP3S), in addition
to two oracles OSanitUP3S (resp. OSignUP3S) and OProveUP3S. A can query
OSanitUP3S (resp. OSignUP3S) with (mi, σmi, admi,modi,Υi) (resp. mi) to get
(m′i, σ

′
mi, admi,Υi) (resp. (mi, σmi, admi,Υi)) for i = {1, 2, ..., q}. The adver-

sary wins if it outputs a verifiable message signature pair (m∗, σ∗m, adm∗,Υ∗)
where m∗ /∈ {m1, . . . ,mq} and the output OProveUP3S oracle on the input

of (pkSign
UP3S,m

∗, σ∗m, adm∗,Υ∗) is falsely traced back to iSign if A has access to

skSan
UP3S), or to iSan if A has access to skSign

UP3S, and such a result is verified by the
JudgeUP3S algorithm.

Definition 5. (Accountability) UP3S ensures accountability if for any PPT ad-

versary A, Pr[ExpAccountability
A,UP3S (λ) = 1] ≤ ϵ(λ), where the accountability exper-

iment is defined in Fig. 5

ExpAccountability

A,UP3S (λ)

M = 0,L = 0

if A has sk
Sign
UP3S

(m
∗
, σ

∗
m, adm

∗
,Υ

∗
)← AOSanitUP3S(.),OProveUP3S(.)

(pkUP3S, pk
Sign
UP3S )

(i
∗
, π

∗
)← ProveUP3S(pkUP3S, skUP3S, pk

Sign
UP3S ,m

∗
, σ

∗
m, adm

∗
,Υ

∗
)

if VerifyUP3S(pkUP3S, pk
Sign
UP3S ,m

∗
, σ

∗
m, adm

∗
,Υ

∗
) ∧ i

∗ ̸= iSign ∧ (m
∗
, σ

∗
m) /∈ (M∪L)∧

⊤ ← JudgeUP3S(pkUP3S, pk
Sign
UP3S ,m

∗
, σ

∗
m, adm

∗
,Υ

∗
, i

∗
, π

∗
)

return 1

else return 0

if A has sk
San
UP3S

(m
∗
, σ

∗
m, adm

∗
,Υ

∗
)← AOSignUP3S(.),OProveUP3S(.)

(pkUP3S, pk
Sign
UP3S )

(i
∗
, π

∗
)← ProveUP3S(pkUP3S, skUP3S, pk

Sign
UP3S ,m

∗
, σ

∗
m, adm

∗
,Υ

∗
)

if VerifyUP3S(pkUP3S, pk
Sign
UP3S ,m

∗
, σ

∗
m, adm

∗
,Υ

∗
) ∧ i

∗ ̸= iSan ∧ (m
∗
, σ

∗
m) /∈ (M∪L)∧

⊤ ← JudgeUP3S(pkUP3S, pk
Sign
UP3S ,m

∗
, σ

∗
m, adm

∗
,Υ

∗
, i

∗
, π

∗
)

return 1

return 0

Fig. 5: UP3S accountability experiment.

Privacy. This notion implies that it is infeasible to use sanitized signatures
to recover information about the sanitized parts of the message. Privacy is de-
fined using an experiment where the adversary inputs two message-modifications
tuples (m0, adm0,mod0) and (m1, adm1,mod1) to OLoRSignSanitUP3S oracle
which is initialized with a secret random bit ’b’. Depending on ’b’, the oracle
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outputs a sanitized signature of either the left or right input message modifica-
tion tuple. The adversary wins if it could determine which pair is used in the
sanitization process with probability better than the random guess. Similar to
OLoRSanitUP3S, the adversary must input two messages with identical fixed
parts, m0!adm

= m1!adm
, the two messages’ admissible policies must be the same,

i.e., adm0 = adm1, and the two messages have to be signed under the same
attribute-set of possible future sanitizers, SPSan,0 = SPSan,1.

Definition 6. (Privacy) UP3S scheme is private if for any PPT adversary A,
|Pr[ExpPrivacy

A,UP3S (λ) = 1] − 1
2 |≤ ϵ(λ), where the privacy experiment is defined in

Fig. 6.

ExpPrivacy

A,UP3S (λ)

b
$← {0, 1}

a← AOSignUP3S(.),OSanitUP3S(.),OProveUP3S(.),OLoRSignSanitUP3S(.,b)
(pkUP3S, pk

Sign
UP3S )

if a = b

return 1

return 0

Fig. 6: UP3S privacy experiment.

Unforgeability This notion implies that an adversary with no access to either
the signer or the sanitizer secret keys cannot generate a verifiable signature
under honestly generated keys. This also includes the case where the adversary
does not possess the required attribute set by the claim predicate to generate
such signatures. This must hold even if the adversary has access to additional
message signature pairs and the public keys. Unforgeability is modeled by the
experiment depicted in Fig. 7 in which adversary A has access to three oracles
OSignUP3S, OSanitUP3S , OProveUP3S and possesses a set of attributes SA.
A wins if it outputs a verifiable tuple (m∗, σ∗m, adm∗,Υ∗) that has never been
queried to OSignUP3S nor OSanitUP3S oracles and the claim predicate Υ∗ is
not satisfied by SA.

Definition 7. (Unforgeability) UP3S scheme is unforgeability if for any PPT

adversary A, |Pr[ExpUnforgeability
A,UP3S (λ) = 1]|≤ ϵ(λ), where the unforgeability ex-

periment is defined in Fig. 7.

4 UP3S Generic Construction

In the generic construction for UP3S, we utilize two main building blocks, a
TABS scheme, and an RDS scheme. The generic construction of UP3S scheme is
depicted in Fig. 8. Once UP3S is initialized, signers and sanitizers can generate
their keys using KGenSignUP3S and KGenSanUP3S algorithms. To construct the
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ExpUnforgeability

A,UP3S (λ)

M = L = {}

(m
∗
, σ

∗
m, adm

∗
,Υ

∗
)← AOSignUP3S(.),OSanitUP3S(.),OProveUP3S(.)

(pkUP3S, pk
Sign
UP3S )

if VerifyUP3S(pkUP3S, pk
Sign
UP3S ,m

∗
, σ

∗
m, adm

∗
,Υ

∗
) ∧ (m

∗
, σ

∗
m) /∈ M∪ L ∧Υ

∗
(SA) ̸= 1

return 1

return 0

Fig. 7: UP3S unforgeability experiment.

sanitization policy for a given message, the signer uses their own selective set
of attributes (S′Sign ⊆ SSign), and that of possible future sanitizers SPSan to
construct a monotone access structure (predicate) Υ. The produced predicate
Υ must be satisfied by some of the signer attributes (S′Sign) and should be
satisfied by the selected attribute sets of future possible sanitizers SPSan as well,
i.e., (Υ(S′Sign) = 1 and Υ(SPSan) = 1). Thus any scheme user who holds an
attribute set S′′ that satisfies the claim predicate Υ, i.e, Υ(S′′) = 1, can sanitize
such a message.

Signing. To sign a given message, the signer uses the SignUP3S algorithm, in
which a hash function H is applied on the access structure Υ along with the
inadmissible part of the message m!adm, and the set of indices of the modifiable
blocks adm. The output of H is signed using the RDS scheme with the signer
key skSign

RDS to output a signature σfix. Next, the full message m is anonymously

signed using the TABS scheme under the signer key skSign
TABS to output (σfull,Υ),

where σfull attests that the message signer possesses a set of attributes satisfying
the sanitization policy, i.e., Υ(S′Sign) = 1. Finally, the signer outputs (σm,Υ) as
the sanitizable signature over m, where σm = (σfix, σfull).

Sanitizing. A sanitizer who holds a set of attributes (S′PSan ⊆ SPSan) that satisfy
the message signature claim predicate i.e Υ(S′PSan) = 1, is authorized to sanitize
the admissible part(s) of the message madm according to adm. The sanitizer first
applies the set of modification mod over m to generate the modified version of
the message m′ such that m′ = MoD(m, , adm,mod). Then the sanitizer signs
m′ anonymously using their TABS scheme sanitizer key skSan

TABS under the same
claim predicate Υ where Υ(S′PSan) = 1 to evaluate σ′full. Finally, the sanitizer
rerandomizes the original signature σfix to produce σ′fix, and outputs (σ′m,Υ)
as the sanitized signature version, where σ′m = (σ′fix, σ

′
full).

Verifying and tracing. Verifying a message signature pair is straightforward,
where σ′fix and σ′full are separately verified with respect to their corresponding
verification keys using the VerifyUP3S algorithm. To trace a message signature
pair to its original signer, the tracing function of the underlying TABS scheme is
utilized in the ProveUP3S algorithm and then the JudgeUP3S algorithm attests
whether the output of ProveUP3S is valid or not.
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ppGenUP3S. Given a collision-resistant hash function H : {0, 1}∗ → Z∗
p ,

run ppTABS ← ppGenTABS(1λ), ppRDS ← ppGenRDS(1λ). Set ppUP3S =
{H, ppTABS , ppRDS}, where ppUP3S becomes an implicit input for all UP3S al-
gorithms.

ppUP3S ← ppGenUP3S(1λ)

SetupUP3S. Initialize the TABS scheme trusted entities and generate their corre-

sponding keys, tskTA
TABS ← TAKeyGenTABS(ppUP3S) and (pkTABS ,mskTABS) ←

AAKeyGenTABS(ppUP3S). Output UP3S public-secret key pair (pkUP3S, skUP3S) =
(pkTABS , (mskTABS , tsk

TA
TABS))

(pkUP3S, skUP3S)← SetupUP3S(ppUP3S)

KGenSignUP3S. Let (skSign
RDS , pk

Sign
RDS) ← keyGenRDS(ppRDS) and skSign,i

TABS ←
SignerKeyGenTABS(ppTABS ,mskTABS , iSign, SSign,i). Output (skSign

UP3S , pk
Sign
UP3S ) =

((skSign
RDS , sk

Sign,i
TABS), pk

Sign
RDS).

(skSign
UP3S , pk

Sign
UP3S )← KGenSignUP3S(skUP3S, iSign, SSign,i)

KGenSanUP3S. Let skSan,i
TABS ← SignerKeyGenTABS(ppTABS ,mskTABS , iSan,

SSan,i). Output skSan
UP3S = skSan,i

TABS .

skSan
UP3S ← KGenSanUP3S(skUP3S, iSan, SSan,i)

SignUP3S. Generate the signing predicate Υ s.t. S′
Sign,i ⊆ SSign,i and SPSan,

where Υ(S′
Sign,i) = 1 and Υ(SPSan) = 1. Generate σfix ← SignRDS(skSign

RDS ,

H(pkUP3S||m!adm||adm||Υ)) and σfull ← SignTABS(ppTABS , sk
Sign,i
TABS ,m,Υ). Let

σm = (σfix, σfull), return (m,σm, adm,Υ).

(m,σm, adm,Υ)← SignUP3S(pkUP3S, sk
Sign
UP3S ,m, adm, SPSan)

VerifyUP3S. Check if Adm(m) = 1 and m!adm ∈ m at the correct po-

sitions, otherwise return ⊥. Let (σfix, σfull) ← σm, if VerifyRDS(pkSign
RDS ,

H(pkUP3S||m!adm||adm||Υ, σfix)) ∧ VerifyTABS(ppTABS , pkTABS ,m, σfull,Υ) re-
turn ⊤. Otherwise, return ⊥.

{⊤,⊥} ← VerifyUP3S(pkUP3S, pk
Sign
UP3S ,m, σm, adm,Υ)

SanitizeUP3S. If VerifyUP3S(pkUP3S, pk
Sign
UP3S ,m, σm, adm,Υ) = ⊥ ∨

CheckMoD(m,adm) ̸= 1 return ⊥. Otherwise, let (σfix, σfull) ← σm,
generate σ′

fix ← RerandomizeRDS(m,σfix), m′ ← MoD(m,adm,mod),

σ′
full ← SignTABS(ppTABS , sk

San,i
TABS ,m

′,Υ). Let σ′
m ← (σ′

fix, σ
′
full), return

(m′, σ′
m, adm,Υ).

(m′, σ′
m, adm,Υ)← SanitizeUP3S(pkUP3S, pk

Sign
UP3S , sk

San
UP3S,m, σm, adm,mod,Υ)

ProveUP3S. If VerifyUP3S(pkUP3S, pk
Sign
UP3S ,m, σm, adm,Υ) = ⊥ return ⊥. Other-

wise, parse σfull from σm. Return (i, π)← TraceTABS(tskTA
TABS ,m, σfull,Υ).

{i, π} ← ProveUP3S(pkUP3S, skUP3S, pk
Sign
UP3S ,m, σm, adm,Υ)

JudgeUP3S. If VerifyUP3S(pkUP3S, pk
Sign
UP3S ,m, σm, adm,Υ) = ⊥, return ⊥.

Otherwise, parse σfull from σm. Return {⊤,⊥} ← JudgeTABS(ppTABS ,
pkUP3S,m, σfull,Υ, i, π).

{⊤,⊥} ← JudgeUP3S(pkUP3S, pk
Sign
UP3S ,m, σm, adm,Υ, i, π)

Fig. 8: UP3S generic construction.
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5 UP3S Security

It has been proven in [10] that unlinkable sanitizable signature schemes are
private. More precisely, Brzuska et al. have shown how to convert an adversary
against privacy into an adversary against unlinkability. Accordingly, in what fol-
lows we prove that UP3S is unlinkable (implies private), accountable, immutable,
transparent, and unforgeable sanitizable signature scheme.

Theorem 1. Given an unlinkable RDS scheme, then the sanitizable signature
scheme in Fig. 8 is unlinkable.

Proof. In the UP3S unlinkability experiment in Fig. 2, the adversary inputs
to OLoRSanitUP3S oracle two valid signature tuples (m0, σm0, adm0,Υ0,mod0),
and (m1, σm1, adm1,Υ1,mod1) where adm0 = adm1, MoD(m0, adm0,mod0) =
MoD(m1, adm1,mod1) and Υ0 = Υ1. OLoRSanitUP3S oracle outputs

(m′b, σ
′
mb) ← SanitizeUP3S(pkUP3S, pk

Sign
UP3S, sk

San
UP3S,mb, σmb, admb,modb,Υb) for

b
$← {0, 1}. Recall that σ′mb = (σ′fix,b, σ

′
full,b) where σ′fix,b is a random-

ized version of the signer’s RDS signature on H(pkUP3S||m!adm,b||admb||Υb)
and σ′full,b is the sanitizer’s TABS signature on the modified message m′b =
MoD(mb, admb,modb). By contradiction, we let an adversary A be success-

ful in ExpUnlinkability
A,UP3S , we then show that we can build an adversary B that

uses A to break the unlinkability of the underlying RDS scheme and win

in ExpUnlinkability
B,RDS in Fig. A.3. B first generates (skBTABS , pk

B
TABS) for at-

tribute set SB = U. To simulate A’s oracles calls, B answers A’s calls to
OSignUP3S by constructing the claim predicate Υ such that Υ(SB) = 1,
calculating H(pkUP3S||m!adm||adm||Υ), and passes H(pkUP3S||m!adm||adm||Υ)
to OSignRDS(.) to get σfix, then signs (m) using skBTABS to get σfull.
To answer A’s calls to OSanitizeUP3S, B evaluates σ′fix by rerandomiz-
ing σfix, and calculates m′ = MoD(m, adm,mod), then signs (m′) using
skBTABS (where Υ(SB = 1)) to get σ′full. For A’s calls to OProveUP3S,
B simply replies with its own identity for all queries where Υ(SB = 1).
When A inputs (m0, σm0, adm0,Υ0,mod0), and (m1, σm1, adm1,Υ1,mod1)
to OLoRSanitUP3S, B forwards (H(pkUP3S||m!adm,0||adm0||Υ0), σfix,0) and
(H(pkUP3S||m!adm,1||adm1||Υ1), σfix,1) to OLoRRDS to obtain the challenge
σ′fix,b. Then B evaluates m′ = m′0 ← MoD(m0, adm0,mod0) = m′1 ←
MoD(m1, adm1,mod1) and then signs (m′) using skBTABS where Υ(SB) =
Υ0(SB) = Υ1(SB) = 1 to obtain σ′full. B returns (m′, (σ′fix,b, σ

′
full), adm,Υ)

where adm = adm0 = adm1 to A as the sanitizer’s signature over mb un-
der admb ,and Υb. At the end, A outputs a bit ‘a’ which B relays as its an-
swer to its OLoRRDS oracle. Note that both messages m0 and m1 have the
same modified message m′ and since B signs the same m′ for either m0, or m1,
i.e., m′ = m′0 ← MoD(m0, adm0,mod0) = m′1 ← MoD(m1, adm1,mod1) from
scratch using the TABS scheme to generate σ′full, A cannot link the signature
σ′full to either m0 or m1 (since m′ ̸= m0 and m′ ̸= m1). Even if A is a successful
adversary against the privacy of the underlying TABS scheme (see Fig. B.6), it
could only deduce the identity of the TABS signer and\or the attributes used
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in signing m′ but it is not able to link the signature over m′ to either m0 or

m1. Hence, the success of A in ExpUnlinkability
A,UP3S implies the success of B in

ExpUnlinkability
B,RDS .

Theorem 2. Given a private TABS scheme, then the sanitizable signature
scheme in Fig. 8 is transparent.

Proof. The privacy of the TABS scheme ensures that the generated signature
reveals no information about the signer other than the fact that the signer pos-
sesses a set of attributes that satisfies a claim predicate. Hence, such a signa-
ture hides both the original signer identity and the attributes used to satisfy
the predicate Υ as well. Therefore, by contradiction, we assume that the UP3S
scheme is not a transparent sanitizable signature scheme. We then show that
the privacy of the underlying TABS scheme cannot hold. Let an adversary A be

successful in ExpTransparency
A,UP3S , we show how to build an adversary B that uses

A to break the privacy of the underlying TABS scheme and win in ExpPrivacy
B,TABS

in Fig. B.6. B simulates A’s UP3S oracles calls as follows; B first generates
the keys (skRDS , pkRDS) for the RDS scheme so that it can compute σfix on
H(pkUP3S||m!adm||adm||Υ). B answers A’s calls to OSignUP3S by constructing
the claim predicate Υ, calculating H(pkUP3S||m!adm||adm||Υ), signs the output
using skRDS to get σfix, then forwards (m,Υ) to OSignTABS oracle to get σfull.
To answer A’s calls to OSanitizeUP3S, B obtains σ′fix by rerandomizing σfix,
then it calculates m′ = MoD(m, adm,mod) and forwards (m′,Υ) to OSignTABS
oracle to get σ′full. For A calls to OProveUP3S, B simply forwards (m,σfull,Υ)
to OProveTABS. When A inputs (m,mod, adm,Υ) to OSign-or-SanitUP3S, B
signs the message H(pkUP3S||m!adm||adm||Υ) using its RDS keys thus produc-
ing σfix. Then, B evaluates m′ ← MoD(m, adm,mod) and passes the message
(m′,Υ) to the OLoRSignTABS oracle which responds with a challenge TABS
signature σfull. B returns (m′, (σfix, σfull), adm,Υ) to A as either the signer or
sanitizer signature over m′. At the end, A outputs a bit ’a’ which B forwards as
its answer to the OLoRSignTABS oracle.

Theorem 3. Given an unforgeable RDS, and a collision-resistant hash function,
the sanitizable signature scheme in Fig. 8 is immutable.

Proof. Recall that for an adversary A against UP3S immutability to succeed

in ExpImmutability
A,UP3S , it has to output a verifiable (m∗, σ∗m, adm∗,Υ∗) such that

m∗ /∈ {MoD(mi, admi, .)|CheckMoD(mi, admi) = 1} ∀ i queries to OSignUP3S
and m∗ /∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) = 1} ∀ j queries to
OSanitUP3S or (m∗ ∈ {MoD(mi, admi, .)|CheckMoD(mi, admi) = 1}∧Υ∗ ̸= Υi)
∀ i queries to OSignUP3S or (m∗ ∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) =
1} ∧ Υ∗ ̸= Υj)) ∀ j queries to OSanitUP3S. Given a collision-resistant hash
function H, by contradiction, we assume that the UP3S scheme is not im-

mutable. We show that if we have a successful adversary A in ExpImmutability
A,UP3S ,

we can build an adversary B that wins the unforgeability of the underlying
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RDS signature scheme in ExpEUF−CMA
B,RDS in Fig. A.2. B simulates A’s envi-

ronment with the help of the RDS signing oracle OSignRDS as follows, B re-
ceives a public key pkSign

RDS from its experiment, initializes the TABS scheme,
then generates a secret key of the TABS scheme skBTABS . It then passes to
A both public keys and answers A’s oracle queries as follows. B answers
A’s calls to OSignUP3S by constructing the claim predicate Υ, calculating
H(pkUP3S||m!adm||adm||Υ), then passesH(pkUP3S||m!adm||adm||Υ) toOSignRDS
to obtain σfix, and signs (pkUP3S,m,Υ) using skBTABS to generate σfull. To
answer A’s calls to OSanitizeUP3S, B obtains σ′fix by rerandomizing σfix, cal-
culates m′ = MoD(m, adm,mod), then signs (pkUP3S,m

′,Υ) using its gener-
ated skBTABS to evaluate σ′full. When A eventually outputs (m∗, σ∗m, adm∗,Υ∗),

B returns to its RDS unforgeability challenger in ExpEUF−CMA
B,RDS the mes-

sage (H(m∗!adm||adm∗||Υ∗)) and the forgery attempt σ∗fix which is the forged
RDS signature on the output of H on the input of (m∗!adm||adm∗||Υ∗).
Note that A succeeds if it outputs a verifiable σfix under the original
signer’s public key where m∗ /∈ ({MoD(mi, admi, .)|CheckMoD(mi, admi) =
1} ∧ m∗ /∈ {MoD(mj , admj , .)|CheckMoD(mj , admj) = 1}) or (m∗ ∈
{MoD(mi, admi, .)|CheckMoD(mi, admi) = 1} ∧ Υ∗ ̸= Υi) ∨ (m∗ ∈
{MoD(mj , admj , .)|CheckMoD(mj , admj) = 1} ∧ Υ∗ ̸= Υj)), hence
H(m∗!adm||adm∗||Υ∗) was not queried by B to its RDS signing oracle before
in either case which implies a valid forgery by B.

Theorem 4. Given a non-frameable and traceable TABS scheme, then the san-
itizable signature scheme in Fig. 8 achieves accountability.

Proof. Recall that the non-frameability security property of a TABS scheme
ensures that even if all authorities and users of the scheme collude, they can-
not produce a signature that traces to an honest user whose secret key has
not been learned by the adversary. In other words, any generated signature
must be traced back to the entity that holds the secret key used in sign-
ing such a message. Moreover, the traceability security property of a TABS
scheme ensures that every message signature pair generated could be traced.

By contradiction, we let an adversary A be successful in ExpAccountability
A,UP3S and

show that we can build an adversary B (resp. B′) which can break the non-
frameability (resp. traceability) of the underlying TABS scheme and win in

ExpNon−frameability
B,TABS in Fig. B.7 (resp. ExpTraceability

B′,TABS in Fig. B.8). B simu-
lates A’s oracles as follows. B first generates keys (skRDS , pkRDS) for the un-
derlying RDS scheme so B can compute σfix on H(m!adm||adm||Υ). When A
queries OSignUP3S with (mi, admi,SPSan), B constructs the claim predicate
Υ and uses the RDS key pairs to compute σfix,i on H(m!adm,i, admi,Υi) and
forwards (mi,Υi) to the TABS signing oracle OSignTABS to get σfull,i on mi

and then forwards the tuple ((σfix,i, σfull,i), admi,Υi) to A. When A queries
OSanitUP3S with mj , σm,j , admj ,modj ,Υj , B rerandomize σfix,j to get σ′fix,j ,
then calculatesm′j ← MoD(mj , admj ,modj) and forwards (m′j ,Υj) to the TABS
signing oracle OSignTABS to get σ′full,j on mj and then forwards the tuple
((σ′fix,j , σ

′
full,j), admj ,Υj) to A. For OProveUP3S queries by A, B forwards the
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queries directly to the Prove oracle of the TABS scheme OProveTABS and relays
back the output. At the end A outputs a tuple (m∗, σ∗m, adm∗,Υ∗), B forwards

(m∗, σ∗full,Υ
∗) to its non-frameability challenger in ExpNon−frameability

B,TABS exper-
iment in Fig. B.7. On the other hand, B′ could be constructed in a similar
way to B. However, when A outputs a tuple (m∗, σ∗m, adm∗,Υ∗), B′ forwards
(m∗, σ∗full,Υ

∗) to its traceability challenger in ExpTraceability
B′,TABS in Fig. B.8.

Therefore, the success of A in ExpAccountability
A,UP3S implies the success of B and B′

in ExpNon−frameability
B,TABS and ExpTraceability

B′,TABS , respectively.

Theorem 5. Given an unforgeable RDS scheme, an unforgeable TABS scheme,
and a collision-resistant hash function, the sanitizable signature scheme in Fig. 8
is unforgeable.

Proof. Recall that the unforgeability security property of a TABS scheme en-
sures that an adversary cannot generate a valid signature under a predicate
where it does not possess the corresponding set of attributes that satisfy such
a predicate. Moreover, the unforgeability security property of an RDS scheme
ensures that it is infeasible for an adversary who does not have access to
the signing keys to output a valid message signature pair. Given a collision-
resistant hash function H, by contradiction, we let an adversary A be suc-

cessful in ExpUnforgeability
A,UP3S (λ), then we show that we can build an adver-

sary B (resp. B′) which can break the unforgeability of the underlying TABS

scheme (resp. RDS scheme) and win in ExpUnforgeability
B,TABS (λ) in Fig. B.5 (resp.

ExpEUF−CMA
B′,RDS (λ) in Fig. A.2). B simulates A’s oracles as follows. B first gener-

ates the keys (skRDS , pkRDS) for the underlying RDS scheme. When A queries
OSignUP3S with (mi, admi,SPSan), B constructs the claim predicate Υi and
uses the RDS secret key to compute σfix,i on H(m!adm,i, admi,Υi) and forwards
(mi,Υi) to the TABS signing oracle OSignTABS to get σfull,i onmi and then an-
swers A with the tuple ((σfix,i, σfull,i), admi,Υi). When A queries OSanitUP3S
with (mj , σm,j , admj ,modj ,Υj) where σm,j = (σfix,j , σfull,j), B rerandomize
σfix,j to get σ′fix,j , then calculates m′j ← MoD(mj , admj ,modj),Υj) and for-
wards (m′j ,Υj) to the TABS signing oracle OSignTABS to get σ′full,j on mj

and then forwards the tuple ((σ′fix,j , σ
′
full,j), admj ,Υj) to A. For OProveUP3S

queries by A, B forwards the queries directly to the Prove oracle of the
TABS scheme OProveTABS and relays the output back to A. At the end

of ExpUnforgeability
A,UP3S (λ), A outputs a tuple (m∗, σ∗m, adm∗,Υ∗) where σ∗m =

(σ∗fix, σ
∗
full), and B forwards (m∗, σ∗full,Υ

∗) to its unforgeability challenger in

ExpUnforgeability
B,TABS (λ). On the other hand, an RDS unforgeability adversary B′ is

constructed as follows. To simulate A’s oracles, B′ initializes the TABS scheme
and generates the secret key skB

′

TABS for some identity iB′ and a set of attributes
(SB′) s.t Υ(SB′) = 1 for any Υ, hence B′ can compute σfull on m for any
predicate. When A queries OSignUP3S with (mi, admi,SPSan), B′ constructs
the claim predicate Υi such that Υ(SB′) = 1 and Υ(SPSan) = 1, computes
H(m!adm,i, admi,Υi) and forwards it to the RDS signing oracle OSignRDS to
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get σfix,i on mi. Then B′ uses its own TABS secret key to compute σfull,i on
mi, and then forwards the tuple ((σfix,i, σfull,i), admi,Υi) to A. When A queries
OSanitUP3S with mj , σm,j , admj ,modj ,Υj , B′ rerandomize σfix,j to get σ′fix,j ,

then calculates m′j ← MoD(mj , admj ,modj) and signs σ′full,j using sk
B′,iB′
TABS

and then forwards the tuple ((σ′fix,j , σ
′
full,j), admj ,Υj) to A. For OProveUP3S

queries by A, B′ returns its own identity and a valid proof for all queries. At
the end, A outputs a tuple (m∗, σ∗m, adm∗,Υ∗) where σ∗m = (σ∗fix,σ

∗
full), and B′

forwards (m∗, σ∗fix) to its unforgeability challenger inExpEUF−CMA
B′,RDS (λ). There-

fore, the success of A in ExpUnforgeability
A,UP3S implies the success of B and B′ in

ExpUnforgeability
B,TABS (λ) and ExpEUF−CMA

B′,RDS (λ), respectively.

6 Instantiation and Efficiency

We instantiate UP3S with Pointcheval-Sanders (PS) RDS Scheme [31] because
of its short signature size and low signing and verification costs. For the TABS
scheme, we utilize the DTABS scheme in [24] because in addition to providing
all the security properties required by UP3S, DTABS offers minimal trust in
the attribute authorities by defining a stronger definition for non-frameability,
i.e., when all authorities and users collude, they can not frame an honest user.
This stronger notion of non-frameability overcomes the shortcomings in standard
ABS schemes where the attribute keys are generated by the attribute authority
for the scheme’s users (signers and sanitizers in UP3S) and hence, the attribute
authority has to be fully trusted. Another advantage of using DTABS is the
ability to add multiple attribute authorities to the scheme dynamically, which
further supports UP3S’s scalability. Both PS and DTABS are instantiated in a
type-3 bilinear group setting. We use instantiation 1 of DTABS for its shorter
signature size [24]. The hash function H should be chosen such that its output is
mapped to Z∗P , thus the PS scheme is used in a single message signature setting
where m ∈ Zp to produce σfix.

Efficiency. To sign a message, the signer needs to generate a hash, an RDS
signature on the output of the hash function, and a TABS signature on the
whole message. To sanitize a message, the sanitizer has to modify the message,
rerandomize the RDS signature and generate a TABS signature for the modi-
fied message. To verify a message signature pair, the verifier verifies both the
RDS and TABS signatures. Tracing a signature to its origin requires verifying
the sanitizable signature, and running the tracing algorithm of the underlying
TABS scheme. Finally, to verify the output of the tracing algorithm, the judge
procedure verifies both the sanitizable signature and the proof generated by the
tracing algorithm of the TABS scheme. The computation and communication
complexities of the instantiated UP3S are as follows. Let l × t be the size of
DTAB’s claim-predicate monotone span program [24]. The proposed instantia-
tion produces a total signature (σfix, σfull) size of (27.l + 21) elements in G1 +
(22.l + 15) elements in G2 + (t+ 3) elements in Zp, where σfix is a PS signature
of size 2 elements in G1 and requires two modular exponentiations in G1 [31],
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and σfull is a DTABS signature of size (27.l + 19) elements in G1 + (22.l + 15)
elements G2 + (t+ 3) elements in Zp [24] and, costs approximately (27l + 32)
modular exponentiation in G1 + (38l + 34) modular exponentiation in G2 to
produce. Note that the aforementioned signature size and computational cost
apply to both signing and sanitizing a given message. Verifying a given UP3S
message signature pair costs a total of (32l+80) pairing operations + 1 modular
exponentiation in G1 + 2 modular exponentiation in G2

1. On the other hand,
to trace a signature to its origin, the tracing authority produces 2 elements in
G2 and performs 2 modular exponentiation in G2 in addition to the cost of
UP3S signature verification. The judge procedure performs 4 pairing operations
to verify the proof of the tracing procedure.

7 Comparing UP3S to P3S

In what follows, we provide a comparison between UP3S and P3S with respect to
their features and security models. The reader is referred to [35] for the formal
definition of P3S and its security notions. Note that comparing the efficiency
of the UP3S and P3S schemes is not possible because P3S does not provide an
efficiency evaluation for its suggested instantiation. Also, both generic schemes
have different building blocks and there are no standard metrics for the associ-
ated complexities of the generic building blocks, i.e., PCH and a group signature
scheme in P3S compared to TABS and RDS in UP3S.

7.1 Features Comparison

We compare UP3S with P3S in terms of the roles of the scheme’s entities, features
of its procedures, and scalability. Signing. In UP3S, the signer’s responsibility is
limited only to signature generation and sanitization policy definition, and no
interaction is needed from the signer to reveal the identity of the actual signer
or sanitizer of a given message signature pair. In P3S, signers act as group man-
agers, where they add new sanitizers to the system in addition to acting as
openers for the group signature on the message. In P3S, the signer should know
the identity/public key of at least one sanitizer prior to signature generation in
order to be able to create the group signature using a NIZK OR proof. How-
ever, in UP3S, the signer defines a sanitization policy (signing predicate) which
determines possible future sanitizers based on their attributes only, and no need
to know the identity/key of any of them prior to signature generation.
Sanitizing. Unlike P3S which uses a policy-based chameleon hash as its core
building block, UP3S uses a TABS scheme. Thus, it is not required to share any
trapdoor information with every sanitizer before sanitizable signature generation
as in the case of P3S. In P3S, Υ is only used as an input to the signing algorithm
and could not be verified during the signature verification. In UP3S, Υ is an input

1 The verification cost of DTABS could be enhanced using batch verification [7] of the
underlying Groth-Sahai proof of knowledge [25]



Unlinkable Policy-Based Sanitizable Signatures 21

to all its subsequent algorithms, hence any of UP3S algorithms can verify that
a message signature pair is generated by a signer\sanitizer who possesses a set
of attributes satisfying Υ. Furthermore, in UP3S, the sanitization rights of a
given message are solely controlled by the attribute set possessed by any scheme
user. Hence, UP3S neither requires a group manager role nor defines an AddSan
procedure (Def. 6 in [35]) as in P3S, which is used by the group manager to
grant the sanitization rights of a given message to a specific sanitizer.
Scalability. In P3S, the signature size should grow linearly with the number of
group members (possible future sanitizers) which is required to achieve trans-
parency in a linkable signature scheme. More precisely, like in group signature
schemes, P3S generates a NIZK OR proof that proves that the encrypted public
key (identity) of the signature generator for a given message is either the original
signer OR a sanitizer. However, since P3S is linkable, assuming a given timeline
for signature generation, an observer can link two signatures originating from
two different sanitizers to their original message. Thus, using the description of
the NIZK in construction 1 in [35] where the anonymity set is always equal to
two (the signer identity is always in the set), an adversary can determine with
more than the negligible probability if the second message is sanitized or not
which contradicts the transparency requirement. In UP3S every message has a
specific sanitization policy with no sanitizers identities included in the signa-
ture, and whatever the number of sanitizers who are authorized to sanitize a
given message, the signature size is fixed per the associated sanitization policy.
In P3S all system-wide parameters including secret-public key pairs are initial-
ized from scratch for each message, i.e., a new chameleon hash instance, which
may limit the system’s scalability. UP3S on the other hand is based on an ABS
scheme where once initialized, signers (resp. sanitizers) can sign (resp. sanitize)
any message, and sanitization rights are controlled by a predicate defined by the
signer only.
Table 1 summarizes the features comparison between UP3S and P3S in terms
of the building blocks, if the scheme requires knowing future sanitizers or not,
sanitization technique, how sanitization rights are granted, signature size, and if
a group manager is needed.

7.2 Security Models Comparison

Our security definitions introduce some modifications to the definitions which
are proposed in P3S to capture the roles and features of the underlying build-
ing blocks in UP3S. P3S defines nine security properties, namely unforgeabil-
ity, immutability, privacy, transparency, pseudonymity, signer-accountability,
sanitizer-accountability, proof-soundness, and traceability [35]. Besides unlinka-
bility which is not offered by P3S, UP3S defines unforgeability, immutability, pri-
vacy, transparency, and accountability as its required notion of security. In what
follows, we compare the definitions of the security properties of both schemes.
Unforgeability. Unlike UP3S, P3S uses the concept of groups and defines unforge-
ability in a way to capture the various cases that arise where groups are used,
such as secret signing keys can be re-used across multiple groups and sanitization
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Table 1: Comparison between UP3S and P3S.

UP3S (this work) P3S [35]

Building blocks TABS and RDS PCH and GSS
Unlinkability yes no
Future sanitizers no at least one
Sanitization technique ABS secret key sharing
Sanitization rights set prior to sig. gen. granted after sig. gen.
Signature size fixed* variable**
Group manager no yes

GSS: Group signature scheme

* Per message sanitization policy

** To achieve transparency, the signature should grow linearly with the number of group members

(possible future sanitizers of a certain message)

between different groups. On the other hand, UP3S does not use groups, accord-
ingly, the unforgeability experiment (see Fig. 7) is defined with no consideration
for forgery cases associated with groups as in P3S.

Immutability. Both P3S and UP3S definitions follow the original definition in [8].
However, in UP3S’s immutability experiment (see Fig. 4), we give the adversary
access to the sanitization oracle to consider double sanitization cases where a
sanitized message could be further sanitized by a different sanitizer who fulfils
the sanitization policy.

Privacy. P3S defines a stronger notion of privacy, to capture secret key leakage
and bad randomness in key generation use cases. However, since UP3S provides
unlinkability and it has been proven in [10] that unlinkability implies privacy,
UP3S follows the definition in [10].

Transparency. Both schemes follow Brzuska et. al definition of transparency
[8]. However, both schemes designed the experiment with different inputs to the
oracles due to the difference in the used building blocks.

Pseudonymity. P3S defines pseudonymity as the infeasibility that an adversary
can decide which sanitizer actually is responsible for a given signature. P3S
modeled such property by an experiment where the adversary input a message
signature pair, some modifications, and two possible sanitizers’ secret keys to
the left-or-right sanitization oracle. The adversary wins if it can decide which
sanitizer secret key is used by the left-or-right sanitization oracle (see Fig.8 in
[35]). To prove the independence of pseudonymity, the authors assume that the
sanitizer’s identity is encoded such that it can only be recovered, if both the
sanitized and the original signatures are available to the adversary. We find
the latter assumption counter-intuitive to the transparency requirement because
such an adversary can decide with certainty which of the signatures is freshly
signed and which is sanitized. UP3S provides a stronger notion of pseudonymity
since it defines unlinkability (see Theorem. 1), where such an assumption can
not hold while preserving unlinkability.
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Accountability. P3S uses the signer secret key to open a signature and trace
it to the identity (the public key) of the signer/sanitizer of a given message.
Hence, it defines two types of accountability, signer-accountability, and sanitizer-
accountability. Moreover, P3S defines traceability to capture the case when the
opening algorithm returns ⊥. On the other hand, UP3S uses a separate trac-
ing authority to trace a signature back to its actual signer and does not use
the signer keys in the tracing process. Hence, UP3S defined one security prop-
erty, accountability in Fig. 5, which captures the cases of signer-accountability,
sanitizer-accountability, and traceability in P3S.
Proof-Soundness. P3S constructs a dynamic-group-signature-like scheme, hence,
it introduces proof-soundness to resist signature hijacking in group signatures
where an adversary can generate a valid NIZK for an already signed message
that traces back to another user [34]. In UP3S, traceability is provided by the
underlying TABS scheme, where its traceability-soundness notion (see tracing
soundness in [24]) serves the same goal.

8 Conclusion

We have proposed UP3S, an unlinkable policy-based sanitizable signature scheme
with a fixed signature length per sanitization policy. Our scheme does not require
any interaction between sanitizers and the original signer to enable the sanitiza-
tion of new messages. We have analyzed the security of UP3S and proved that
it is an unlinkable, immutable, transparent, and accountable signature scheme.
Moreover, we provided an instantiation of UP3S using the Pointcheval-Sanders
rerandomizable signature scheme and DTABS attribute-based signature scheme
and analyzed its efficiency. Finally, we compared our proposed scheme with P3S,
the only policy-based sanitizable signature scheme in the literature, in terms of
features, scalability, and security models.

A RDS Schemes Security

In what follows, we give the formal definitions of the security properties of RDS
schemes that are required for proving the security of UP3S.
Existential Unforgeability under Chosen Message Attack (EUF-
CMA). This security notion implies that given access to a signing oracle
OSignRDS (see Fig. A.1), it is hard for an adversary A who does not have
access to the signing keys to output a valid message signature pair (m∗, σ∗RDS)
for which m∗ was never queried to the signing oracle [31].

Definition 8. (RDS EUF-CMA) The RDS scheme is EUF-CMA secure if the

for any PPT adversary A, Pr[ExpEUF−CMA
A,RDS (λ) = 1] ≤ ϵ(λ), where the RDS

EUF-CMA experiment is defined in Fig. A.2.

Unlinkability. This security notion requires that given access to oracles
OSign(.) and OLoRRDS(.) which are defined in Fig. A.1, the adversary A inputs
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OSignRDS(m)

(m,σRDS)← SignRDS(skRDS ,m)

M =M∪ {m,σRDS}
return (m,σRDS)

OLoRRDS(m0, σRDS,0,m1, σRDS,1)

if VerifyRDS(pkRDS ,m0, σRDS,0) ∧ VerifyRDS(pkRDS ,m1, σRDS,1)

(mb, σ
′
RDS,b)← RandomizeRDS(mb, σRDS,b)

return (σ′
RDS,b)

return 0

Fig.A.1: RDS security experiments oracles

ExpEUF−CMA

A,RDS (λ)

M = {}

ppRDS ← ParGenRDS(1λ)

(pkRDS , skRDS)← KeyGenRDS(ppRDS)

(m
∗
, σ

∗
RDS)← AOSignRDS(.)

(pkRDS)

if (m
∗
, σ

∗
RDS) /∈ M

return VerifyRDS(pkRDS ,m
∗
, σ

∗
RDS)

return 0

Fig.A.2: RDS EUF-CMA experiment.

two valid message signature pairs (m0, σRDS,0) and (m1, σRDS,1) to OLoRRDS(.)
oracle, the oracle is initialized with a secret random bit ’b ∈ {0, 1}’. Depending
on ’b’, the oracle calls RandomizeRDS on either the left or right input message sig-
nature pair and outputs σ′RDS,b. The adversary wins if it could determine which
message signature pair is used in the rerandomization process with probability
better than the random guess [36]. Note that RDS unlinkability implies that
no adversary can distinguish between a freshly signed message signature pair
and rerandomized version of the same message as with the case if the adversary
obtains two different signatures for the same message m (since RDS schemes are
probabilistic schemes) by querying OSignRDS twice with the same message m,
then inputs (m,σRDS,0) and (m,σRDS,1) to OLoRRDS(.).
Note: According to [32] the unlinkability game of the underlying RDS scheme
in Fig. A.3 can only be possible if the adversary does not explicitly know the
RDS signed message, hence the adversary cannot link the Challenger output
to the originating message using the RDS verification algorithm. However, for
UP3S unlinkability proof, since the adversary inputs two identical messages to
OLoRRDS(.), thus the aforementioned restriction does not apply.

Definition 9. (RDS Unlinkability) The RDS scheme is unlinkable if for any

PPT adversary A, |Pr[ExpUnlinkability
A,RDS (λ) = 1] − 1

2 |≤ ϵ(λ), where the unlinka-
bility experiment is defined in Fig. A.3.
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ExpUnlinkability

A,RDS (λ)

ppRDS ← ParGenRDS(1λ)

(pkRDS , skRDS)← KeyGenRDS(ppRDS)

b
$← {0, 1}

a← AOSignRDS(.),OLoRRDS(.,b)
(pkRDS)

if a = b

return 1

return 0

Fig.A.3: RDS unlinkability experiment.

B TABS Schemes Security

In what follows we give the formal definitions of the security properties of TABS
schemes that are required for proving the security of UP3S.

Unforgeability. This notion requires that an adversary cannot produce a veri-
fiable signature σTABS for a message m under a predicate Υ such that Υ(S) ̸= 1
where S is the set of attributes that the adversary holds. In other words, an adver-
sary cannot generate a valid signature under a predicate where they do not pos-
sess the corresponding set of attributes that satisfy such a predicate [21]. The ex-
periment, defined in Fig. B.5, models the unforgeability security notion in which
the adversary is given access to the three oracles OKeyGenTABS, OSignTABS,
and OProveTABS which are defined in Fig. B.4. The adversary wins if it could
generate a verifiable signature (m∗, σ∗TABS ,Υ

∗) such that Υ∗(SAdv) = 0 for all
the set of attributes SAdv queried by the adversary to OKeyGenTABS and the
pair (m∗,Υ∗) have not been queried before to OSignTABS.

OKeyGenTABS(i, Si)

SAdv = SAdv ∪ {i, Si}

skUser,i
TABS ← SignerKeyGenTABS(ppTABS ,mskAA

TABS , i, Si)

return skUser,i
TABS

OSignTABS(m,Υ)

σTABS ← SignTABS(ppTABS , sk
User,i
TABS ,m,Υ)

M =M∪ (m,σTABS ,Υ)

return (m,σTABS ,Υ)

OProveTABS(m,σTABS ,Υ)

if (m,σTABS ,Υ) ∈M

(i, π)← TraceTABS(tskTA
TABS ,m, σTABS ,Υ)

return (i, π)

return 0

OLoRSignTABS(m,Υ)

σTABS ← SignTABS(ppTABS , sk
User,b
TABS ,m,Υ)

return (m,σTABS ,Υ)

Fig. B.4: TABS security experiments oracles



26 I. Afia and R. AlTawy

Definition 10. (TABS Unforgeability) a TABS scheme is unforgeable if for any

PPT adversary A, Pr[ExpUnforgeability
A,TABS (λ) = 1] ≤ ϵ(λ), where the unforgeability

experiment is defined in Fig. B.5.

ExpUnforgeability

A,TABS (λ)

ppTABS ← ppGenTABS(1λ)

tsk
TA
TABS ← TAKeyGenTABS(ppTABS)

(pkTABS ,msk
AA
TABS)← AAKeyGenTABS(ppTABS)

M = SAdv = {}

(m
∗
, σ

∗
TABS ,Υ

∗
)← AOKeyGenTABS(.),OSignTABS(.),OProveTABS(.)

(pkTABS)

if VerifyTABS(ppTABS , pkTABS ,m
∗
, σ

∗
TABS ,Υ

∗
) ∧ (m

∗
, σ

∗
TABS ,Υ

∗
) /∈ M∧

∀{S′} ∈ SAdv,Υ
∗
(S′) = 0

return 1

return 0

Fig. B.5: TABS unforgeability experiment.

Privacy. Generally speaking, TABS privacy implies that the generated signature
only attests to the fact that a set of attributes possessed by a signer satisfies
a predicate while hiding the identity of the signer and the set of attributes
used to satisfy a such predicate. While preserving the anonymity of the signer.
Privacy also implies unlinkability, where an observer cannot distinguish if two
valid signatures for the same signing policy have been computed by the same
signer [29]. TABS privacy is modeled by an indistinguishability experiment that
is defined in Fig. B.6, in which, the adversary has access to key generation oracle
OKeyGenTABS, a signing oracle OSignTABS, and proving oracle OProveTABS
where anonymity revocation is restricted to signatures generated by OSignTABS
only, see Fig. B.4. The adversary is challenged by OLoRSignTABS oracle, which
is initialized by two signing secret signing keys skUser,0

TABS and skUser,1
TABS of two

different users identities, and a random bit b ∈ {0, 1}. Upon the input of a

message m, OLoRSignTABS outputs (m,σTABS ,Υ) signed by skUser,b
TABS such that

Υ(SUser,0) = Υ(SUser,1) = 1. The adversary wins if it could guess the bit b.

Definition 11. (TABS Privacy) TABS scheme is private if for any PPT ad-

versary A, |Pr[Expprivacy
A,TABS(λ) = 1]− 1

2 |≤ ϵ(λ), where the privacy experiment is
defined in Fig. B.6.

Non-frameability. This property ensures that even if all authorities (AA and
TA) and users in the scheme collude together dishonestly, they cannot produce a
valid signature that is traced back to an honest user [24]. TABS non-frameability
is modeled by the experiment defined in Fig. B.7, in which the adversary has
access to both TA and AA secret keys (tskTA

TABS ,mskAA
TABS), in addition to

OKeyGenTABS, OSignTABS, and OProveTABS. The adversary wins if it out-
puts a verifiable (m∗, σ∗TABS ,Υ

∗) under pkTABS that has not been queried to
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ExpPrivacy

A,TABS(λ)

ppTABS ← ppGenTABS(1λ)

tsk
TA
TABS ← TAKeyGenTABS(ppTABS)

(pkTABS ,msk
AA
TABS)← AAKeyGenTABS(ppTABS)

sk
User,0
TABS ← SignerKeyGenTABS(ppTABS ,msk

AA
TABS , i0, SUser,0)

sk
User,1
TABS ← SignerKeyGenTABS(ppTABS ,msk

AA
TABS , i1, SUser,1)

M = {}

b
$← {0, 1}

a← AOKeyGenTABS(.),OSignTABS(.),OLoRSignTABS(.,b)
(pkTABS)

if a = b

return 1

return 0

Fig. B.6: TABS privacy experiment.

OSignTABS and when (m∗, σ∗TABS ,Υ
∗) is traced back to its signer, the tracing

algorithm outputs an identity that has never been queried toOKeyGenTABS. Ad-
ditionally, the output of the tracing algorithm is verifiable using the JudgeTABS
algorithm.

ExpNon−frameability

A,TABS (λ)

ppTABS ← ppGenTABS(1λ)

tsk
TA
TABS ← TAKeyGenTABS(ppTABS)

(pkTABS ,msk
AA
TABS)← AAKeyGenTABS(ppTABS)

M = SAdv = {}

(m
∗
, σ

∗
TABS ,Υ

∗
)← AOKeyGenTABS(.),OSignTABS(.),OProveTABS(.)

(tsk
TA
TABS , pkTABS ,msk

AA
TABS)

if VerifyTABS(ppTABS , pkTABS ,m
∗
, σ

∗
TABS ,Υ

∗
)

(i
∗
, π

∗
)← TraceTABS(tskTA

TABS ,m
∗
, σ

∗
TABS ,Υ

∗
)

if JudgeTABS(ppTABS , pkTABS ,m
∗
, σ

∗
TABS ,Υ

∗
, i

∗
, π

∗
) ∧ i

∗
/∈ SAdv : Υ

∗
(Si) = 1

∧ (m
∗
, σ

∗
TABS ,Υ

∗
) /∈ M

return 1

return 0

Fig. B.7: TABS non-frameability experiment.

Definition 12. (TABS Non-frameability) a TABS scheme is non-frameable if

for any PPT adversary A, Pr[ExpNon−frameability
A,TABS (λ) = 1] ≤ ϵ(λ), where the

non-frameability experiment is defined in Fig. B.7.

Traceability. TABS traceability ensures that no efficient adversary can produce
a signature that cannot be traced. TABS traceability is modeled by the exper-
iment defined in Fig. B.8, in which the adversary has access to OKeyGenTABS,
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OSignTABS, and OProveTABS where identity revocation is restricted to signa-
tures generated by OSignTABS only. The Adversary wins if it outputs a verifiable
(m∗, σ∗TABS ,Υ

∗) under pkTABS , (m
∗,Υ∗) has been never queried to the sign-

ing oracle, and when (m∗, σ∗TABS ,Υ
∗) is traced back, either the ProveTABS or

JudgeTABS outputs ⊥.

Definition 13. (TABS Traceability) a TABS scheme is traceable if for any PPT

adversary A, Pr[ExpTraceability
A,TABS (λ) = 1] ≤ ϵ(λ), where the traceability experi-

ment is defined in Fig. B.8.

ExpTraceability

A,TABS (λ)

ppTABS ← ppGenTABS(1λ)

tsk
TA
TABS ← TAKeyGenTABS(ppTABS)

(pkTABS ,msk
AA
TABS)← AAKeyGenTABS(ppTABS)

M = SAdv = {}

(m
∗
, σ

∗
TABS ,Υ

∗
)← AOKeyGenTABS(.),OSignTABS(.),OProveTABS(.)

(pkTABS)

if VerifyTABS(ppTABS , pkTABS ,m
∗
, σ

∗
TABS ,Υ

∗
) ∧ (m

∗
, σ

∗
TABS ,Υ

∗
) /∈ M

(i
∗
, π

∗
)← TraceTABS(tskTA

TABS ,m
∗
, σ

∗
TABS ,Υ

∗
)

if i
∗
= ⊥ ∨ JudgeTABS(ppTABS , pkTABS ,m

∗
, σ

∗
TABS ,Υ

∗
, i

∗
, π

∗
) = ⊥

return 1

return 0

Fig. B.8: TABS traceability experiment.
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