206,843 research outputs found

    Generalized Discernibility Function Based Attribute Reduction in Incomplete Decision Systems

    Get PDF
    A rough set approach for attribute reduction is an important research subject in data mining and machine learning. However, most attribute reduction methods are performed on a complete decision system table. In this paper, we propose methods for attribute reduction in static incomplete decision systems and dynamic incomplete decision systems with dynamically-increasing and decreasing conditional attributes. Our methods use generalized discernibility matrix and function in tolerance-based rough sets

    Active Sample Selection Based Incremental Algorithm for Attribute Reduction with Rough Sets

    Get PDF
    Attribute reduction with rough sets is an effective technique for obtaining a compact and informative attribute set from a given dataset. However, traditional algorithms have no explicit provision for handling dynamic datasets where data present themselves in successive samples. Incremental algorithms for attribute reduction with rough sets have been recently introduced to handle dynamic datasets with large samples, though they have high complexity in time and space. To address the time/space complexity issue of the algorithms, this paper presents a novel incremental algorithm for attribute reduction with rough sets based on the adoption of an active sample selection process and an insight into the attribute reduction process. This algorithm first decides whether each incoming sample is useful with respect to the current dataset by the active sample selection process. A useless sample is discarded while a useful sample is selected to update a reduct. At the arrival of a useful sample, the attribute reduction process is then employed to guide how to add and/or delete attributes in the current reduct. The two processes thus constitute the theoretical framework of our algorithm. The proposed algorithm is finally experimentally shown to be efficient in time and space.This is a manuscript of the publication Yang, Yanyan, Degang Chen, and Hui Wang. "Active Sample Selection Based Incremental Algorithm for Attribute Reduction With Rough Sets." IEEE Transactions on Fuzzy Systems 25, no. 4 (2017): 825-838. DOI: 10.1109/TFUZZ.2016.2581186. Posted with permission.</p

    New Learning Models for Generating Classification Rules Based on Rough Set Approach

    Get PDF
    Data sets, static or dynamic, are very important and useful for presenting real life features in different aspects of industry, medicine, economy, and others. Recently, different models were used to generate knowledge from vague and uncertain data sets such as induction decision tree, neural network, fuzzy logic, genetic algorithm, rough set theory, and others. All of these models take long time to learn for a huge and dynamic data set. Thus, the challenge is how to develop an efficient model that can decrease the learning time without affecting the quality of the generated classification rules. Huge information systems or data sets usually have some missing values due to unavailable data that affect the quality of the generated classification rules. Missing values lead to the difficulty of extracting useful information from that data set. Another challenge is how to solve the problem of missing data. Rough set theory is a new mathematical tool to deal with vagueness and uncertainty. It is a useful approach for uncovering classificatory knowledge and building a classification rules. So, the application of the theory as part of the learning models was proposed in this thesis. Two different models for learning in data sets were proposed based on two different reduction algorithms. The split-condition-merge-reduct algorithm ( SCMR) was performed on three different modules: partitioning the data set vertically into subsets, applying rough set concepts of reduction to each subset, and merging the reducts of all subsets to form the best reduct. The enhanced-split-condition-merge-reduct algorithm (E SCMR) was performed on the above three modules followed by another module that applies the rough set reduction concept again to the reduct generated by SCMR in order to generate the best reduct, which plays the same role as if all attributes in this subset existed. Classification rules were generated based on the best reduct. For the problem of missing data, a new approach was proposed based on data partitioning and function mode. In this new approach, the data set was partitioned horizontally into different subsets. All objects in each subset of data were described by only one classification value. The mode function was applied to each subset of data that has missing values in order to find the most frequently occurring value in each attribute. Missing values in that attribute were replaced by the mode value. The proposed approach for missing values produced better results compared to other approaches. Also, the proposed models for learning in data sets generated the classification rules faster than other methods. The accuracy of the classification rules by the proposed models was high compared to other models

    Knowledge reduction of dynamic covering decision information systems with varying attribute values

    Full text link
    Knowledge reduction of dynamic covering information systems involves with the time in practical situations. In this paper, we provide incremental approaches to computing the type-1 and type-2 characteristic matrices of dynamic coverings because of varying attribute values. Then we present incremental algorithms of constructing the second and sixth approximations of sets by using characteristic matrices. We employ experimental results to illustrate that the incremental approaches are effective to calculate approximations of sets in dynamic covering information systems. Finally, we perform knowledge reduction of dynamic covering information systems with the incremental approaches
    corecore