2,171 research outputs found

    Control of quantum phenomena: Past, present, and future

    Full text link
    Quantum control is concerned with active manipulation of physical and chemical processes on the atomic and molecular scale. This work presents a perspective of progress in the field of control over quantum phenomena, tracing the evolution of theoretical concepts and experimental methods from early developments to the most recent advances. The current experimental successes would be impossible without the development of intense femtosecond laser sources and pulse shapers. The two most critical theoretical insights were (1) realizing that ultrafast atomic and molecular dynamics can be controlled via manipulation of quantum interferences and (2) understanding that optimally shaped ultrafast laser pulses are the most effective means for producing the desired quantum interference patterns in the controlled system. Finally, these theoretical and experimental advances were brought together by the crucial concept of adaptive feedback control, which is a laboratory procedure employing measurement-driven, closed-loop optimization to identify the best shapes of femtosecond laser control pulses for steering quantum dynamics towards the desired objective. Optimization in adaptive feedback control experiments is guided by a learning algorithm, with stochastic methods proving to be especially effective. Adaptive feedback control of quantum phenomena has found numerous applications in many areas of the physical and chemical sciences, and this paper reviews the extensive experiments. Other subjects discussed include quantum optimal control theory, quantum control landscapes, the role of theoretical control designs in experimental realizations, and real-time quantum feedback control. The paper concludes with a prospective of open research directions that are likely to attract significant attention in the future.Comment: Review article, final version (significantly updated), 76 pages, accepted for publication in New J. Phys. (Focus issue: Quantum control

    A Two-Step Adaptive Noise Cancellation System for Dental-Drill Noise Reduction

    Get PDF
    This paper introduces a two-step dental-drill Noise Reduction (NR) technique based upon the Adaptive Noise Cancellation (ANC) system. The proposed technique is particularly designed for the NR headphone, which the patients should be wearing while having their dental treatment. In the first step, a tone-frequency extraction algorithm is proposed to estimate the main sinusoidal frequency of the dental-drill noise. The estimated sinusoidal signal is therefore removed significantly from the dental-drill noise by the use of the ANC system. Then, by using another ANC system and a high-pass filter in the second step, the residual high-frequency components of the dental-drill noise are eliminated sufficiently. Computer simulations based on recorded dental-drill sounds and real speech signals demonstrate the efficiency of the proposed two-step ANC system for dental-drill noise reduction, both in terms of the noise attenuation performance and the speech quality of the enhanced speech signal, as compared to the conventional two-microphone ANC system under ideal situation. Moreover, results of a subjective listening test with 15 listeners are also given to guarantee satisfied speech quality of the enhanced speech signal employing the proposed two-step dental-drill NR technique

    High Power Microwave Operational Exposure Detection using Thermoacoustic Wave Generation in Lossy Dielectric Polymers

    Get PDF
    A feasibility analysis for the use of microwave-induced thermoacoustic (TA) wave generation in lossy dielectric media to detect pulsed high power microwave directed energy weapons in force health protection applications was conducted based on a series of empirical and computational investigations. A potential target volume material, carbon-loaded polytetrafluoroethylene, was identified for further study based on anticipated complex dielectric properties, with laboratory measurements of select electromagnetic (EM), thermal, and elastic material properties of relevance to the TA effect conducted to determine parameter values. A planar geometry TA-based signal chain model using thin film piezoelectric sensors was developed for both finite element method based numerical simulation and in-beam response testing, with TA signal output evaluated in the time and frequency domain using both approaches. Based on empirically-derived complex permittivity values, a single-term Cole-Cole dielectric relaxation model approximation was developed over the 2-110 GHz microwave frequency region to permit a more general evaluation of EM coupling efficiency of the material. Modeling and simulation of the idealized signal chain allowed the analysis of TA waveform dependency on microwave beam parameters not otherwise accessible during in-beam response testing. High frequency TA signal data was suitably fit to a pulse width sensitivity impulse response function model for the target geometry and found to be in good agreement for personnel exposure applications

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    Adaptive Signal Processing Techniques and Realistic Propagation Modeling for Multiantenna Vital Sign Estimation

    Get PDF
    Tämän työn keskeisimpänä tavoitteena on ihmisen elintoimintojen tarkkailu ja estimointi käyttäen radiotaajuisia mittauksia ja adaptiivisia signaalinkäsittelymenetelmiä monen vastaanottimen kantoaaltotutkalla. Työssä esitellään erilaisia adaptiivisia menetelmiä, joiden avulla hengityksen ja sydämen värähtelyn aiheuttamaa micro-Doppler vaihemodulaatiota sisältävät eri vastaanottimien signaalit voidaan yhdistää. Työssä johdetaan lisäksi realistinen malli radiosignaalien etenemiselle ja heijastushäviöille, jota käytettiin moniantennitutkan simuloinnissa esiteltyjen menetelmien vertailemiseksi. Saatujen tulosten perusteella voidaan osoittaa, että adaptiiviset menetelmät parantavat langattoman elintoimintojen estimoinnin luotettavuutta, ja mahdollistavat monitoroinnin myös pienillä signaali-kohinasuhteen arvoilla.This thesis addresses the problem of vital sign estimation through the use of adaptive signal enhancement techniques with multiantenna continuous wave radar. The use of different adaptive processing techniques is proposed in a novel approach to combine signals from multiple receivers carrying the information of the cardiopulmonary micro-Doppler effect caused by breathing and heartbeat. The results are based on extensive simulations using a realistic signal propagation model derived in the thesis. It is shown that these techniques provide a significant increase in vital sign rate estimation accuracy, and enable monitoring at lower SNR conditions

    Aeronautical engineering: A continuing bibliography with indexes (supplement 306)

    Get PDF
    This bibliography lists 181 reports, articles, and other documents recently introduced into the NASA STI Database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Directional Link Management using In-Band Full-Duplex Free Space Optical Transceivers for Aerial Nodes

    Get PDF
    Free-space optical (FSO) communication has become very popular for wireless applications to complement and, in some cases, replace legacy radio-frequency for advantages like unlicensed band, spatial reuse, and enhanced security. Even though FSO can achieve very high bit-rate (tens of Gbps), range limitation due to high attenuation and weather dependency has always restricted its practical implementation to indoor application like data centers and outdoor application like Project Loon. Building-to-building communication, smart cars, and airborne drones are potential futuristic wireless communication sectors for mobile ad-hoc FSO networking. Increasing social media usage demands high-speed mobile connectivity for applications like video call and live video stream on the go. For these scenarios, implementation of in-band full-duplex FSO (IBFD-FSO) transceivers will potentially double the network capacity to improve performance and reliability of the communication link. In this work, we focus on implementing prototypes of FSO transceivers on mobile platform using both off-the-shelf and customized components. Current goal is to implement a prototype of IBFD-FSO transceiver using VCSEL as transmitter and PIN photodiode as receiver at 900 nm wavelength. We are considering atmospheric attenuation, FSO beam propagation model, geometry, and tiling of the components to optimize the link performance while keeping the package low-cost and mobile, ensuring connectivity to mass population. Eventually, our goal is to have communication between multiple airborne drones through IBFD-FSO transceivers by discovering each other and maintaining established link. Applications of this research is not only limited to the conceived idea of smart cities, but it can also have real impact on disaster management in times of wildfire or hurricane
    corecore