2,291 research outputs found

    A general framework for implicit and explicit debiasing of distributional word vector spaces

    Get PDF
    Distributional word vectors have recently been shown to encode many of the human biases, most notably gender and racial biases, and models for attenuating such biases have consequently been proposed. However, existing models and studies (1) operate on under-specified and mutually differing bias definitions, (2) are tailored for a particular bias (e.g., gender bias) and (3) have been evaluated inconsistently and non-rigorously. In this work, we introduce a general framework for debiasing word embeddings. We operationalize the definition of a bias by discerning two types of bias specification: explicit and implicit. We then propose three debiasing models that operate on explicit or implicit bias specifications and that can be composed towards more robust debiasing. Finally, we devise a full-fledged evaluation framework in which we couple existing bias metrics with newly proposed ones. Experimental findings across three embedding methods suggest that the proposed debiasing models are robust and widely applicable: they often completely remove the bias both implicitly and explicitly without degradation of semantic information encoded in any of the input distributional spaces. Moreover, we successfully transfer debiasing models, by means of cross-lingual embedding spaces, and remove or attenuate biases in distributional word vector spaces of languages that lack readily available bias specifications

    On Measuring and Mitigating Biased Inferences of Word Embeddings

    Full text link
    Word embeddings carry stereotypical connotations from the text they are trained on, which can lead to invalid inferences in downstream models that rely on them. We use this observation to design a mechanism for measuring stereotypes using the task of natural language inference. We demonstrate a reduction in invalid inferences via bias mitigation strategies on static word embeddings (GloVe). Further, we show that for gender bias, these techniques extend to contextualized embeddings when applied selectively only to the static components of contextualized embeddings (ELMo, BERT)

    DebIE: A Platform for Implicit and Explicit Debiasing of Word Embedding Spaces

    Full text link
    Recent research efforts in NLP have demonstrated that distributional word vector spaces often encode stereotypical human biases, such as racism and sexism. With word representations ubiquitously used in NLP models and pipelines, this raises ethical issues and jeopardizes the fairness of language technologies. While there exists a large body of work on bias measures and debiasing methods, to date, there is no platform that would unify these research efforts and make bias measuring and debiasing of representation spaces widely accessible. In this work, we present DebIE, the first integrated platform for (1) measuring and (2) mitigating bias in word embeddings. Given an (i) embedding space (users can choose between the predefined spaces or upload their own) and (ii) a bias specification (users can choose between existing bias specifications or create their own), DebIE can (1) compute several measures of implicit and explicit bias and modify the embedding space by executing two (mutually composable) debiasing models. DebIE's functionality can be accessed through four different interfaces: (a) a web application, (b) a desktop application, (c) a REST-ful API, and (d) as a command-line application. DebIE is available at: debie.informatik.uni-mannheim.de.Comment: Accepted as EACL21 Dem

    An Empirical Study on the Fairness of Pre-trained Word Embeddings

    Get PDF
    Pre-trained word embedding models are easily distributed and applied, as they alleviate users from the effort to train models themselves. With widely distributed models, it is important to ensure that they do not exhibit undesired behaviour, such as biases against population groups. For this purpose, we carry out an empirical study on evaluating the bias of 15 publicly available, pre-trained word embeddings model based on three training algorithms (GloVe, word2vec, and fastText) with regard to four bias metrics (WEAT, SEMBIAS, DIRECT BIAS, and ECT). The choice of word embedding models and bias metrics is motivated by a literature survey over 37 publications which quantified bias on pre-trained word embeddings. Our results indicate that fastText is the least biased model (in 8 out of 12 cases) and small vector lengths lead to a higher bias
    corecore