16,075 research outputs found

    Towards binocular active vision in a robot head system

    Get PDF
    This paper presents the first results of an investigation and pilot study into an active, binocular vision system that combines binocular vergence, object recognition and attention control in a unified framework. The prototype developed is capable of identifying, targeting, verging on and recognizing objects in a highly-cluttered scene without the need for calibration or other knowledge of the camera geometry. This is achieved by implementing all image analysis in a symbolic space without creating explicit pixel-space maps. The system structure is based on the ‘searchlight metaphor’ of biological systems. We present results of a first pilot investigation that yield a maximum vergence error of 6.4 pixels, while seven of nine known objects were recognized in a high-cluttered environment. Finally a “stepping stone” visual search strategy was demonstrated, taking a total of 40 saccades to find two known objects in the workspace, neither of which appeared simultaneously within the Field of View resulting from any individual saccade

    Attend and Interact: Higher-Order Object Interactions for Video Understanding

    Full text link
    Human actions often involve complex interactions across several inter-related objects in the scene. However, existing approaches to fine-grained video understanding or visual relationship detection often rely on single object representation or pairwise object relationships. Furthermore, learning interactions across multiple objects in hundreds of frames for video is computationally infeasible and performance may suffer since a large combinatorial space has to be modeled. In this paper, we propose to efficiently learn higher-order interactions between arbitrary subgroups of objects for fine-grained video understanding. We demonstrate that modeling object interactions significantly improves accuracy for both action recognition and video captioning, while saving more than 3-times the computation over traditional pairwise relationships. The proposed method is validated on two large-scale datasets: Kinetics and ActivityNet Captions. Our SINet and SINet-Caption achieve state-of-the-art performances on both datasets even though the videos are sampled at a maximum of 1 FPS. To the best of our knowledge, this is the first work modeling object interactions on open domain large-scale video datasets, and we additionally model higher-order object interactions which improves the performance with low computational costs.Comment: CVPR 201

    A perceptual comparison of empirical and predictive region-of-interest video

    Get PDF
    When viewing multimedia presentations, a user only attends to a relatively small part of the video display at any one point in time. By shifting allocation of bandwidth from peripheral areas to those locations where a user’s gaze is more likely to rest, attentive displays can be produced. Attentive displays aim to reduce resource requirements while minimizing negative user perception—understood in this paper as not only a user’s ability to assimilate and understand information but also his/her subjective satisfaction with the video content. This paper introduces and discusses a perceptual comparison between two region-of-interest display (RoID) adaptation techniques. A RoID is an attentive display where bandwidth has been preallocated around measured or highly probable areas of user gaze. In this paper, video content was manipulated using two sources of data: empirical measured data (captured using eye-tracking technology) and predictive data (calculated from the physical characteristics of the video data). Results show that display adaptation causes significant variation in users’ understanding of specific multimedia content. Interestingly, RoID adaptation and the type of video being presented both affect user perception of video quality. Moreover, the use of frame rates less than 15 frames per second, for any video adaptation technique, caused a significant reduction in user perceived quality, suggesting that although users are aware of video quality reduction, it does impact level of information assimilation and understanding. Results also highlight that user level of enjoyment is significantly affected by the type of video yet is not as affected by the quality or type of video adaptation—an interesting implication in the field of entertainment
    • 

    corecore