5 research outputs found

    Reconciling Predictive Coding and Biased Competition Models of Cortical Function

    Get PDF
    A simple variation of the standard biased competition model is shown, via some trivial mathematical manipulations, to be identical to predictive coding. Specifically, it is shown that a particular implementation of the biased competition model, in which nodes compete via inhibition that targets the inputs to a cortical region, is mathematically equivalent to the linear predictive coding model. This observation demonstrates that these two important and influential rival theories of cortical function are minor variations on the same underlying mathematical model

    A Neural Model of Surface Perception: Lightness, Anchoring, and Filling-in

    Full text link
    This article develops a neural model of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models have clarified how the brain can compute the relative contrast of images from variably illuminate scenes. How the brain determines an absolute lightness scale that "anchors" percepts of surface lightness to us the full dynamic range of neurons remains an unsolved problem. Lightness anchoring properties include articulation, insulation, configuration, and are effects. The model quantatively simulates these and other lightness data such as discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, and the Craik-O'Brien-Cornsweet illusion. The model also clarifies the functional significance for lightness perception of anatomical and neurophysiological data, including gain control at retinal photoreceptors, and spatioal contrast adaptation at the negative feedback circuit between the inner segment of photoreceptors and interacting horizontal cells. The model retina can hereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A later model cortical processing stages, boundary representations gate the filling-in of surface lightness via long-range horizontal connections. Variants of this filling-in mechanism run 100-1000 times faster than diffusion mechanisms of previous biological filling-in models, and shows how filling-in can occur at realistic speeds. A new anchoring mechanism called the Blurred-Highest-Luminance-As-White (BHLAW) rule helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural images under variable lighting conditions.Air Force Office of Scientific Research (F49620-01-1-0397); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); Office of Naval Research (N00014-01-1-0624

    Probing for local synaptic connectivity in the adult mouse auditory cortex

    Get PDF
    Die grundlegenden Funktionsweisen wie unser Gehirn neue Informationen speichert beruht auf zwei Theorien. Erstens, Neuronen verbinden sich zu einem Netzwerk mit unterschiedlichen starken Verbindungen zueinander. Zweitens, Ă€ußere EinflĂŒsse können diese Verbindungen verĂ€ndern. Dadurch können sich neue Neuronen dem Netzwerk anschließen oder sich auch die StĂ€rke der Verbindungen von bereits im Netzwerk vorhandenen Neuronen Ă€ndern. Um mehr ĂŒber die Funktionsweise unseres Gehirns zu erfahren ist es absolut notwendig ein Schaltdiagramm corticaler Netzwerke zu haben der alle Verbindungen der Neuronen zueinander enthĂ€lt. In dieser Arbeit untersuchten wir die synaptischen Verbindungen im auditorischen Cortex, eine Hirnregion wichtig fĂŒr die Prozessierung von Tönen in verschiedenen assoziativen Lernparadigmen. Wir verwendete coronale Hirnschnitte von erwachsenen (8-14 Wochen alten) C57Bl6/6J MĂ€usen. Wir machten gleichzeitig ganz-Zell Ableitungen von vier Pyramidenzellen der Schicht 2/3 und der Schicht 5. Diese Methode erlaubt es die synaptische VerbindungsstĂ€rke zwischen diesen vier Neuronen zu messen. Wir fanden eine niedrige Verbindungswahrscheinlichkeit zwischen gleichzeitig gemessen Neuronen und weiters dass die Wahrscheinlichkeit einer bidirektionalen Verbindung zwischen zwei zufĂ€llig ausgewĂ€hlte Neuronen höher war als erwartet. Die Verteilung der StĂ€rken der synaptischen Verbindungen (der höchste Punkt der Amplitude des postsynaptischen Potentials (EPSP)) zeigte wenige starke Verbindungen. Dies deutet darauf hin, dass synaptische Verbindungen in lokalen Netzwerken von seltenen aber dafĂŒr starken Verbindungen dominiert werden. Wir fanden diese Verbindungen in beiden untersuchten Hirnschichten was darauf hindeutet, dass diese seltenen aber starken Verbindungen die Grundlage der Informationsverarbeitung in corticalen Netzwerken sein könnte. Wir fanden auch, dass die VariabilitĂ€t der EPSP Amplitude entweder durch die verĂ€nderte Wahrscheinlichkeit der Neurotransmitterfreisetzung oder durch eine verĂ€nderte Anzahl der freigesetzten Neurotransmittervesikel auf der praesynaptischen Seite entstehen kann. Dies deutet darauf hin, dass beide Parameter Wahrscheinlichkeit und Anzahl unabhĂ€ngig voneinander sind. Im zweiten Teil untersuchten wir den relativen Anteil des erregenden und inhibierenden Stroms zu Schicht 2/3 Neuronen mit prĂ€ziser zeitlicher Auflösung. Die strikte Balance zwischen diesen Strömen ist kritisch fĂŒr die Funktion corticaler Netzwerke und fĂŒr die Anpassung der Eigenschaften corticaler Neuronen. Daher ist es notwendig herauszufinden, wie diese Balance aufrechterhalten wird. Wir stimulierten extrazellulĂ€r zwei unabhĂ€ngige von einander zu Schicht 2/3 fĂŒhrende Nervenbahnen und maßen die synaptisch erregende und inhibierende LeitfĂ€higkeit von Schicht 2/3 Neuronen. Wir fanden das die Balance zwischen erregenden und inhibierenden Strömen gleich groß fĂŒr beide Nervenbahnen war und weiters, dass das Eintreffen der inhibierenden Ströme 2ms schneller war als das der erregenden Ströme. Dies deutet darauf hin, dass diese intercorticalen Nervenbahnen monosynaptisch mit Schicht 2/3 Neuronen verbunden sind. Interessanterweise fanden wir, dass fast 50 Prozent aller erregenden Ströme gleichzeitig mit zwei inhibitorischen Strömen eintrafen. Dies wurde vorher nicht beschrieben und könnte auf ein feedback oder feedforward Netzwerk lokaler Interneuronen zurĂŒckzufĂŒhren sein. In dritten Teil untersuchten wir ob optogenetische Manipulation wĂ€hrend eines Verhaltensexperiments die Eigenschaften lokaler corticaler Netzwerke verĂ€ndert. Wir expremierten Channelrhodopsin in Pyramidenzellen des auditorischen Cortex und photostimulierten diese Zellen wĂ€hrend eines Verhaltensexperiments. Dadurch ist es uns Möglich festzustellen ob diese Neuronen ein bestimmtes Verhalten auslösen können. Wir untersuchten auch, ob sich die spezifischen Verbindungen dieser Nervenzellen wĂ€hrend des Lernens einer Verhaltensaufgabe Ă€ndern. Wir fanden, dass die Stimulation durch Channelrhodopsin dazu verwendet werden kann, den Einfluss prĂ€zise getimter Aktionspotentiale auf das erlernen einer Verhaltensaufgabe zu untersuchen. Weiters fĂŒhrten wir ganz-Zell Ableitungen an Schicht 2/3 Neuronen von MĂ€usen die die Verhaltensaufgabe gelernt hatten durch. Wir fanden heraus, dass sich die Erregbarkeit von Neuronen in diesen MĂ€usen nicht von der Erregbarkeit von Neuronen in wildtyp MĂ€usen unterscheidet. Wir konnten keine Unterschiede in den EPSP Amplituden verbundenen Neuronen feststellen. Dies deutet darauf hin, dass die durch Channelrhodopsin ausgelöste Depolarisation nicht zu einer stĂ€rkeren Verbindung zwischen diesen Neuronen fĂŒhrt.The current mechanistic view on how the brain is able to store memories over long periods of time is based on two key concepts. The first is that memories are stored in the configuration of the connectivity of neurons in an assembly and in the set of synaptic weights of those connections; the second being that experience can mold and rewire the network connectivity and its synaptic weights. It becomes clear that the understanding of cortical function will always require the unraveling of synaptic connectivity in cortical circuits, that is, establishing the wiring diagrams between individual neurons. In the present work, a first effort was made in order to investigate the excitatory synaptic local circuitry in the adult mouse auditory cortex, a brain area critically involved in sound encoding required for proper associative motivational leaning. For this purpose, coronal whole-brain slices from adult (8-14 weeks old) C57Bl6/6J mice were used. Several simultaneous quadruple whole-cell recordings from layer 2/3 and layer 5 pyramidal neurons were made, a method that allows for quantitative functional measures of synaptic connectivity at the level of individually indentified neurons. It was observed that local circuitry is characterized by low connection probabilities between pairs of neurons, and that bidirectional connections are more common than expected in a random network. The distribution of synaptic connections strengths (defined as the peak of excitatory postsynaptic potential (EPSP) amplitude), has a heavier tail and implies that synaptic weight is concentrated among few synaptic connections. In both layers it was found the existence of rare but reliable large-amplitude synaptic connections, which are likely to contribute strongly to reliable information processing. Moreover, another central finding is that the EPSP amplitude variability can be ascribed to changes in the number of release presynaptic sites, or due to the probability of neurotransmission release, implying that modulations in synaptic transmission can be described by changes in both parameters independently. In the second part, the relative contribution, with precise temporal resolution, of excitatory and inhibitory drives that impinge onto layer 2/3 pyramidal neurons was investigated. The strict balance of these two synaptic conductances plays a critical role in cortical function and in the shaping of the tuning properties of cortical neurons. It is of utmost importance to describe how this balance is achieved and maintain. By means of intracortical extracellular stimulation of two independent but convergent input pathways into layer 2/3 neurons, synaptic conductances could be recorded and decomposed into their excitatory and inhibitory components. It was observed that excitatory/inhibitory balance is of equal magnitude in both stimulated pathways, and that on average a time difference less than 2 ms between the arrival of inhibition compared with the excitation favors for a monosynaptic nature of the stimulated intracortical projections that synapses onto the recorded layer 2/3 pyramidal neurons. On the other hand, it was observed that on almost half of the recorded neurons, the excitation conductance was flanked by two inhibitory barrages, a phenomenon never described so far. A possible feedback or feedforward inhibitory circuitry made by local interneurons could explain this observation. In the third part, one final question was posed: are the features that describe local synaptic circuitry changed upon optogenetic manipulation in a behavioural task? By means of combining expression of channelrhodopsin in auditory cortex pyramidal neurons, with their direct photostimulation in the context of a behaviour task, it was possible to assess the role of a subset of neurons in driving behaviour. Possible changes in their intrinsic interconnectivity were also studied upon learning. Though extremely labour intense, it was concluded that ChR2-based optical microstimulation can be used to dissect the impact of precisely timed action potentials in a subset of neurons in driving behaviour. Whole-cell recordings from layer 2/3 neurons from the subset of mice that reached correct performance levels were performed as before. It was observed that ChR2-expressing neurons in trained mice had similar intrinsic excitability features when compared with non-trained mice. The recorded EPSP amplitudes from pairs of connected neurons had similar rages among both groups of mice, indicating that periodic depolarizations of ChR2-positive neurons does not induce any synaptic scaling effect in these neurons
    corecore