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1. Abstract 

 

The current mechanistic view on how the brain is able to store memories over long 

periods of time is based on two key concepts. The first is that memories are stored in the 

configuration of the connectivity of neurons in an assembly and in the set of synaptic 

weights of those connections; the second being that experience can mold and rewire the 

network connectivity and its synaptic weights. It becomes clear that the understanding 

of cortical function will always require the unraveling of synaptic connectivity in 

cortical circuits, that is, establishing the wiring diagrams between individual neurons. 

In the present work, a first effort was made in order to investigate the excitatory 

synaptic local circuitry in the adult mouse auditory cortex, a brain area critically 

involved in sound encoding required for proper associative motivational leaning. 

For this purpose, coronal whole-brain slices from adult (8-14 weeks old) C57Bl6/6J 

mice were used. Several simultaneous quadruple whole-cell recordings from layer 2/3 

and layer 5 pyramidal neurons were made, a method that allows for quantitative 

functional measures of synaptic connectivity at the level of individually indentified 

neurons. It was observed that local circuitry is characterized by low connection 

probabilities between pairs of neurons, and that bidirectional connections are more 

common than expected in a random network. The distribution of synaptic connections 

strengths (defined as the peak of excitatory postsynaptic potential (EPSP) amplitude), 

has a heavier tail and implies that synaptic weight is concentrated among few synaptic 

connections. In both layers it was found the existence of rare but reliable large-

amplitude synaptic connections, which are likely to contribute strongly to reliable 

information processing. Moreover, another central finding is that the EPSP amplitude 

variability can be ascribed to changes in the number of release presynaptic sites, or due 

to the probability of neurotransmission release, implying that modulations in synaptic 

transmission can be described by changes in both parameters independently. 

In the second part, the relative contribution, with precise temporal resolution, of 

excitatory and inhibitory drives that impinge onto layer 2/3 pyramidal neurons was 

investigated. The strict balance of these two synaptic conductances plays a critical role 

in cortical function and in the shaping of the tuning properties of cortical neurons. It is 
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of utmost importance to describe how this balance is achieved and maintain. By means 

of intracortical extracellular stimulation of two independent but convergent input 

pathways into layer 2/3 neurons, synaptic conductances could be recorded and 

decomposed into their excitatory and inhibitory components. It was observed that 

excitatory/inhibitory balance is of equal magnitude in both stimulated pathways, and 

that on average a time difference less than 2 ms between the arrival of inhibition 

compared with the excitation favors for a monosynaptic nature of the stimulated 

intracortical projections that synapses onto the recorded layer 2/3 pyramidal neurons. 

On the other hand, it was observed that on almost half of the recorded neurons, the 

excitation conductance was flanked by two inhibitory barrages, a phenomenon never 

described so far. A possible feedback or feedforward inhibitory circuitry made by local 

interneurons could explain this observation. 

In the third part, one final question was posed: are the features that describe local 

synaptic circuitry changed upon optogenetic manipulation in a behavioural task? By 

means of combining expression of channelrhodopsin in auditory cortex pyramidal 

neurons, with their direct photostimulation in the context of a behaviour task, it was 

possible to assess the role of a subset of neurons in driving behaviour. Possible changes 

in their intrinsic interconnectivity were also studied upon learning. Though extremely 

labour intense, it was concluded that ChR2-based optical microstimulation can be used 

to dissect the impact of precisely timed action potentials in a subset of neurons in 

driving behaviour. Whole-cell recordings from layer 2/3 neurons from the subset of 

mice that reached correct performance levels were performed as before. It was observed 

that ChR2-expressing neurons in trained mice had similar intrinsic excitability features 

when compared with non-trained mice. The recorded EPSP amplitudes from pairs of 

connected neurons had similar rages among both groups of mice, indicating that 

periodic depolarizations of ChR2-positive neurons does not induce any synaptic scaling 

effect in these neurons. 
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2. Zusammenfassung 

 

Die grundlegenden Funktionsweisen wie unser Gehirn neue Informationen speichert 

beruht auf zwei Theorien. Erstens, Neuronen verbinden sich zu einem Netzwerk mit 

unterschiedlichen starken Verbindungen zueinander. Zweitens, äußere Einflüsse können 

diese Verbindungen verändern. Dadurch können sich neue Neuronen dem Netzwerk 

anschließen oder sich auch die Stärke der Verbindungen von bereits im Netzwerk 

vorhandenen Neuronen ändern. Um mehr über die Funktionsweise unseres Gehirns zu 

erfahren ist es absolut notwendig ein Schaltdiagramm corticaler Netzwerke zu haben 

der alle Verbindungen der Neuronen zueinander enthält. 

In dieser Arbeit untersuchten wir die synaptischen Verbindungen im auditorischen 

Cortex, eine Hirnregion wichtig für die Prozessierung von Tönen in verschiedenen 

assoziativen Lernparadigmen.  

Wir verwendete coronale Hirnschnitte von erwachsenen (8-14 Wochen alten) 

C57Bl6/6J Mäusen. Wir machten gleichzeitig ganz-Zell Ableitungen von vier 

Pyramidenzellen der Schicht 2/3 und der Schicht 5. Diese Methode erlaubt es die 

synaptische Verbindungsstärke zwischen diesen vier Neuronen zu messen. Wir fanden 

eine niedrige Verbindungswahrscheinlichkeit zwischen gleichzeitig gemessen Neuronen 

und weiters dass die Wahrscheinlichkeit einer bidirektionalen Verbindung zwischen 

zwei zufällig ausgewählte Neuronen höher war als erwartet. Die Verteilung der Stärken 

der synaptischen Verbindungen (der höchste Punkt der Amplitude des postsynaptischen 

Potentials (EPSP)) zeigte wenige starke Verbindungen. Dies deutet darauf hin, dass 

synaptische Verbindungen in lokalen Netzwerken von seltenen aber dafür starken 

Verbindungen dominiert werden. Wir fanden diese Verbindungen in beiden 

untersuchten Hirnschichten was darauf hindeutet, dass diese seltenen aber starken 

Verbindungen die Grundlage der Informationsverarbeitung in corticalen Netzwerken 

sein könnte. Wir fanden auch, dass die Variabilität der EPSP Amplitude entweder durch 

die veränderte Wahrscheinlichkeit der Neurotransmitterfreisetzung oder durch eine 

veränderte Anzahl der freigesetzten Neurotransmittervesikel auf der praesynaptischen 

Seite entstehen kann. Dies deutet darauf hin, dass beide Parameter Wahrscheinlichkeit 

und Anzahl unabhängig voneinander sind. 
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Im zweiten Teil untersuchten wir den relativen Anteil des erregenden und inhibierenden 

Stroms zu Schicht 2/3 Neuronen mit präziser zeitlicher Auflösung. Die strikte Balance 

zwischen diesen Strömen ist kritisch für die Funktion corticaler Netzwerke und für die 

Anpassung der Eigenschaften corticaler Neuronen. Daher ist es notwendig 

herauszufinden, wie diese Balance aufrechterhalten wird. Wir stimulierten extrazellulär 

zwei unabhängige von einander zu Schicht 2/3 führende Nervenbahnen und maßen die 

synaptisch erregende und inhibierende Leitfähigkeit von Schicht 2/3 Neuronen. Wir 

fanden das die Balance zwischen erregenden und inhibierenden Strömen gleich groß für 

beide Nervenbahnen war und weiters, dass das Eintreffen der inhibierenden Ströme 2ms 

schneller war als das der erregenden Ströme. Dies deutet darauf hin, dass diese 

intercorticalen Nervenbahnen monosynaptisch mit Schicht 2/3 Neuronen verbunden 

sind. Interessanterweise fanden wir, dass fast 50 Prozent aller erregenden Ströme 

gleichzeitig mit zwei inhibitorischen Strömen eintrafen. Dies wurde vorher nicht 

beschrieben und könnte auf ein feedback oder feedforward Netzwerk lokaler 

Interneuronen zurückzuführen sein.  

In dritten Teil untersuchten wir ob optogenetische Manipulation während eines 

Verhaltensexperiments die Eigenschaften lokaler corticaler Netzwerke verändert. Wir 

expremierten Channelrhodopsin in Pyramidenzellen des auditorischen Cortex und 

photostimulierten diese Zellen während eines Verhaltensexperiments. Dadurch ist es 

uns Möglich festzustellen ob diese Neuronen ein bestimmtes Verhalten auslösen 

können. Wir untersuchten auch, ob sich die spezifischen Verbindungen dieser 

Nervenzellen  während des Lernens einer Verhaltensaufgabe ändern. Wir fanden, dass 

die Stimulation durch Channelrhodopsin dazu verwendet werden kann, den Einfluss 

präzise getimter Aktionspotentiale auf das erlernen einer Verhaltensaufgabe zu 

untersuchen. Weiters führten wir ganz-Zell Ableitungen an Schicht 2/3 Neuronen von 

Mäusen die die Verhaltensaufgabe gelernt hatten durch. Wir fanden heraus, dass sich 

die Erregbarkeit von Neuronen in diesen Mäusen nicht von der Erregbarkeit von 

Neuronen in wildtyp Mäusen unterscheidet. Wir konnten keine Unterschiede in den 

EPSP Amplituden verbundenen Neuronen feststellen. Dies deutet darauf hin, dass die 

durch Channelrhodopsin ausgelöste Depolarisation nicht zu einer stärkeren Verbindung 

zwischen diesen Neuronen führt. 
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3. Introduction 

 

When David Hubel acknowledged Vernon Mountcastle, “…whose discovery of 

columns in the somatosensory cortex was surely the single most important contribution 

to the understanding of cerebral cortex since Cajal...”, during his Nobel lecture (1981), 

maybe he was not aware of the attractive fatalness of such concept. Nowadays, the 

cortical column has emerged as an imperative concept to explain the functional 

organization and the communication architecture of the neocortex. In fact, to Western 

eyes reared on classical and neoclassical forms, the columns seem an existential 

necessity to build the world. So convincing they are, and so central to our present day 

concepts, that vast resources in human and machine time are being devoted to defining 

every element and every connection in the cortical column so that a facsimile can be 

recreated in silico (Markram, 2006; Helmstaedter et al., 2007). 

However, how do cortical neurons organize themselves into the networks that express 

not only individual properties like orientation selectivity or ocular dominance, but 

arrange these circuits to express a precise mappa mundi of these properties? Nowadays, 

it is generally accepted that, in addition to its layered structure, the neocortex also 

organizes its functionality in the vertical dimension, but, as with the layers, the size and 

the shape of these vertical organizations vary greatly (e.g. Mountcastle et al., 1957; 

Hubel and Wiesel, 1974). Since recent times, a concept of a “canonical circuit” for the 

neocortex has been developed, which embodies the idea of a repeated local circuit that 

performs some fundamental computations that are common to all areas of the neocortex 

(Douglas et al., 1989; Douglas and Martin, 1991). The canonical circuit (Figure 3.1) is 

firmly based on statistical analysis of the connections between the different types of 

cortical neurons and their physiology. The vast majority of these connections are 

intracortical, interlaminar or within the same lamina. It captures some of the essential 

attributes of the rules that govern the connections between different cell types that allow 

the multiple functions of cortical circuits to be made. Phenomena such as recurrent 

excitation and inhibition, or amplification of weak inputs from thalamus, or even the 

balance between excitation and inhibition, are embedded in the cortical circuitry (e.g. 

Binzegger et al., 2004). How these attributes are employed and deployed depends, of 

course, on the demands of a specific cortical area. But to which extent can neocortical 

neurons and the circuits they form be considered canonical by themselves? One can 
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suggest that in the concept of a “canonical circuit” one can find the means to reconcile 

the structure of neocortex with its functional architecture. The canonical microcircuit 

respects the known connectivity of the neocortex, and it is flexible enough to change 

transiently the architecture of its network in order to perform the required computations. 

In a very simplifying view, the neocortex might consist of repeated copies of the same 

fundamental circuit. 

 

Figure 3.1. Diagram representing the dominant interactions between excitatory cell types in 

the canonical microcircuit. Ascending, thalamocortical input is perceived as entering layer 4 

(and layer 6), being then relayed from layer 4 to layer 3 (and thence to layer 2), from layer 3 to 

layer 5 and from layer 5 to 6. Modified or integrated versions of that information are sent to 

other cortical regions from pyramidal cells in all layers, particularly layer 2/3, and to other 

cortical and subcortical regions from the deeper layers. Neurons from different cortical layers 

are represented as circles, being “Lx” the layer in which its soma is located. Thal: thalamus; 

Sub: other subcortical structures, such as basal ganglia (adapted from Douglas and Martin, 

1991, 2004; for review see Thomson and Bannister, 2003) 

 

At the end, perhaps the most important feature of Mountcastle’s concept of functional 

columns was its ease of generalization. In spite of some opinions that the concept of 

column failed miserably as a unifying principle for the cerebral cortex (e.g. Horton and 

Adams, 2005) – mainly due to the fact that dendrites originating from the cells bodies 
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spread well beyond a given elementary column, so as their axonal arbors (Gilbert and 

Wiesel, 1979) - the idea of elementary modules that could, by repetition, generate an 

“entire” cortex is nowadays universal, and one has at his disposal a paradigm for 

probing the functional architecture and connectivity of any sensory area of the 

neocortex. 

 

3.1.  Neuronal circuits of the neocortex 

The neocortex can be defined as a thin, extended, convoluted sheet of tissue with a 

surface area of approximately 2600 cm2, and thickness of 3 to 4 mm, that varies over 

five orders of magnitude in volume from shrew to whale, that supports the processing of 

input from an unlikely range of sensory modalities allowing detection of vibration, 

temperature, sound and chemicals, and that then provides output to an equally unlikely 

range of motor structures, allowing an animal to fly, swim, walk, jump, and run. It 

contains up to 28×109 neurons and roughly the same number of glial cells. The neurons 

can be grouped into three major classes: pyramidal cells (present in all cortical layers 

except layer 1), spiny nonpyramidal cells (spiny interneurons, located in the middle 

layers, especially layer 4), and aspiny nonpyramidal cells (smooth interneurons, present 

in all layers). About 80% of neurons are spiny and excitatory and form 85% of the 

synapses, while about 20% of the neurons are smooth and inhibitory, forming only 15% 

of the overall synapses, because of their smaller ramifications (Jones, 1984; Lund, 1984; 

Mountcastle, 1997; Douglas and Martin, 2004; Markram et al., 2004). 

In the last decade, several new techniques have been developed to reveal synaptically 

connected neurons, including whole-cell paired recordings (Song et al., 2005; Thomson 

and Lamy, 2007), serial electron microscopy reconstructions (Bock et al., 2011), viral 

tracing (Wickersham et al., 2007), calcium imaging probing (Peterlin et al., 2000), 

reverse correlation imaging (Aaron and Yuste, 2006), and photostimulation with caged 

glutamate (Callaway and Katz, 1993; Yoshimura et al., 2005; Paker and Yuste, 2011). 

By using such a variety of methods, it is nowadays assumed that cortical neurons are 

connected with each other and with neurons in other parts of the brain by a vast number 

of synapses, of the order of 1012, in a nonrandom way. The cortex is organized vertically 

into six laminae, and horizontally into groups of cells linked synaptically across the 
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vertical laminae (but see Huntley and Jones, 1991 and DeFelipe et al., 2002 for 

exceptions in primates and nonprimates). The basic unit of the mature neocortex is the 

“minicolumn”, a narrow chain of neurons extending vertically across the cellular layers 

2/3 perpendicular to the pial surface (Mountcastle, 1978), and each “minicolumn” in 

primates contains ~80-100 neurons, except for the striate cortex where the number is 

~2.5 times larger. A cortical column is a complex processing and distributing unit that 

links a number of inputs to a number of outputs via overlapping internal processing 

chains. 

The enormous strides made in understanding the formation and operation of the 

neocortical circuits have been matched by the detailed analyses of the cellular and 

synaptic physiology of the elements that make up the neocortical circuits. Rapid 

advances in theory have also begun to clarify the nature of the computations carried out 

by the neocortical microcircuits. There are now many different models of cortical 

circuits, based on experimental data or theoretical considerations. For historical reasons, 

most models of biologically defensible circuits rely heavily on data from cat and 

primate visual cortex, but cell types and patterns of connections have also been 

described in many other cortical areas, with the contribution from rodent somatosensory 

and auditory cortex being perhaps the most prominent in recent years (Shen et al., 1999; 

Sato et al., 2007; Ohki et al., 2005; Anderson et al., 2006; Anderson et al., 2010; 

Atencio and Schreiner, 2010; for review Thomson and Bannister, 2003; Douglas and 

Martin, 2004; Petersen, 2007). 

 

3.1.1.  Excitatory circuits: pyramidal cells and their fundamental intrinsic 

communication 

The projection patterns of pyramidal axons and multiple-field potential recordings in 

vitro (for review see Thomson and Lamy, 2007) have provided the basis for an almost 

unidirectional flow of excitation within a cortical microcircuit. In its simplest form, 

specific thalamocortical input arriving in layer 4 (and 6) is perceived as being relayed 

from layer 4 to 3 (and hence to layer 2), from layer 3 to layer 5 and from 5 to 6, the 

processed information then leaving layer 3 for other cortical regions and from deeper 

layers to other cortical and subcortical areas. Excitatory connections to glutamatergic 
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cells in the opposite direction, from layer 3 to layer 4 and from 5 to 3 are infrequent and 

weak. In contrast, these “back projections” involve inhibitory interneurons, either via 

the axons of the inhibitory cells themselves, or via excitatory inputs to interneurons in 

the recipient layers. 

The principal neurons in the neocortex are excitatory pyramidal neurons receiving 

several thousand synaptic inputs and are found in layers 2 to 6 (Figure 3.2). Although 

pyramidal cells share many distinctive anatomical features, they are far from a 

homogeneous group. Even within a layer there are several morphological subtypes, 

often projecting to different cortical and subcortical regions. For instance, layer 5 

pyramidal neurons have longer apical dendrites and fewer oblique apical dendrites than 

layer 2/3 pyramidal neurons. Moreover, the apical tuft of pyramidal neurons receives 

excitatory synaptic inputs that have different presynaptic origins to those that form 

synapses onto more proximal apical dendrites or basal dendrites (Spruston, 2008; 

Douglas and Martin, 2004). 

 

3.1.1.1. Excitatory neurons in layer 5 

The predominant inputs to layer 5 (and to layer 5 pyramidal dendrites in layer 3) appear 

to be short and long range cortical projections. Layer 5 pyramidal neurons project to a 

wide range of subcortical targets including (depending on cortical region) ‘‘non-

specific’’ thalamic nuclei, superior colliculus, pons and spinal cord, as well as to other 

cortical regions and to the contralateral cortex. In cat visual cortex, corticotectal neurons 

(projecting to regions such as the superior colliculus) are large, with a well-formed basal 

dendritic arbor and a long apical dendrite that forms a well-developed tuft in layers 2 

and 1. In contrast, the apical dendrites of small to medium-sized CT layer 5 cells rarely 

extend beyond layers 2/3 (Hubener et al., 1990). Layer 5 pyramidal neurons display two 

distinct firing patterns first described in rat cortex (Connors and Gutnick, 1990) as 

“intrinsically burst firing” and “regular spiking” cells. The first ones are large pyramids 

with long apical dendrites whose axons project to the superior colliculus and /or pons, 

while the smaller, shorter layer 5 pyramids that project to the opposite hemisphere are 

“non-bursters” that appear to project inter-hemispherically. Layer 5 contains two main 

morphological types of pyramidal neurons on the one hand the thin untufted pyramids 
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that project to the opposite hemisphere, and on the other hand the thick tufted pyramids 

that project subcortically, such as the superior colliculus and the pons (Wang and 

McCormick, 1993), and are characterized by being large, burst-firing, and with long 

apical dendrites extending up to layers 2 and 1 (Connors et al., 1982; Chagnac-Amitai et 

al., 1990). It is only these larger pyramidal cells in layer 5 that could access directly the 

afferent inputs to the superficial layers, including the back projections from high 

cortical areas and inputs from calbidin-containing thalamic matrix cells. Moreover, 

layer 5 pyramidal axons arborize most densely within layer 5, but can also send 

projections to all other layers, as seen in rats and primates (for review see Markram, 

1997). It is also the large layer 5 pyramids that are the major recipient of a highly 

focused and extremely dense descending excitation from layer 3 pyramidal cells. The 

smaller, adapting cells appear to receive little or none of this input (Thomson and 

Bannister, 1998). For example, by simultaneously recording from (and stimulating) 

three or more neighbouring layer 5 pyramidal neurons, it was found that when two 

neurons are connected to each other, the probability that they will share input from a 

third neuron is higher than expected in a randomly connected network (Song et al., 

2005). 
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Figure 3.2. Simplified schematic representation of the neocortical main neurons. Pictures 

illustrates a six-layer cortical column, where Lx on the left indicate the cortical layer where a 

give neuronal somata is embedded in. Red indicates excitatory neurons, their dendrites and 

axons; blue indicates inhibitory neurons, their dendrites and axons. Inhibitory synapses are 

marked as blue dots and red forks are indicative for excitatory synapses. Axons projecting 

beyond the cortical dimensions are indicated by dotted lines. For the pyramidal cells, axons are 

thin lines relative to the dendrites; for the inhibitory neurons only axons are schematized. 

Legend: BP, bipolar cell; CCP, corticocortical pyramid; CHC, chandelier cell; CHP, cortico-

hemispheric cell; CLP, cortico-claustral pyramid; CRC, Cajal-Retzius cell; CSP, cortico-spinal 

pyramidal; CTP, cortico-thalamic pyramid; DBC, double bouquet cell; HAC, horizontal axon 

cell; LBC, large basket cell; MC, Martinotti cell; NBC, nest basket cell; HGC, neurogliaform 

cell; PC, pyramidal cell; SBC, small basket cell; SPC, star pyramidal cell; SSC, spiny stellate 

cell; DAC, descending axon cell; SAC, shot axon cell (adapted and based on Markram, 2010; 

Markram et al., 2004; Thomson and Larry, 2007). 
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3.1.1.2. Excitatory neurons in layer 4 

Layer 4 contains two broad classes of spiny excitatory cells: pyramidal cells with apical 

dendrites that extend into layer 1 and glutamatergic spiny stellate cells which lack 

prominent apical dendrites and are largely confined to layer 4, which receive most of 

their inputs within this layer (Lund, 1984), and are an important target population for 

direct thalamic innervations. The axons of layer 4 spiny neurons make a dense, 

topographically precise projection to layer 3 (and to upper layer 5) in rat and cat (e.g. 

Burkhalter, 1989) where they innervate pyramidal cells and (rather less commonly) 

interneurons (Thomson et al., 2002). Both pyramidal cells and spiny stellate cells 

contribute to these projections and both provide local and horizontal projections within 

layer 4. In layer 4 of cat visual cortex, some spiny cell axons make the majority of their 

synapses within layer 4, others form a larger proportion in layer 3 (Binzegger et al., 

2004), where it has been stated that each layer 4 spiny neuron converge to 300-400 layer 

3 pyramidal target cells. 

 

3.1.1.3.  Excitatory neurons in layer 2/3 

Superficial layer 2/3 pyramidal neurons constitute the majority of cells in the neocortex 

(Zilles, 1990), though they are not easily divisible into separate morphological classes, 

as in the case of neurons in layer 4. Their morphology is similar to layer 5 pyramidal 

neurons – namely, possessing a triangular-shape soma – but the apical dendrite is 

thinner and shorter (Larkman et al., 1992). These differences in dendritic length and 

diameter have implications for their electrical compactness and integrative properties 

(Larkman et al., 1992; Zador et al., 1995). They are thought to be fundamental for 

cortical tasks such as feature selection and perceptual grouping (Grossberg and Raizada, 

2000; Binzegger et al., 2004). Layer 2/3 neurons receive their inputs predominantly 

from other L2/3 pyramidal neurons and L4 spiny stellate neurons (Lubke et al., 2003; 

Binzegger et al., 2004). These inputs project almost exclusively to the basal and apical 

oblique dendrites. Inputs to the apical tuft are thought to be feedback connections from 

higher cortical areas and nonspecific thalamic nuclei (Felleman and Van Essen, 1991). 

These connections show synaptic depression, can elicit action potentials, and can be 

potentiated by theta-burst stimulation (Walcott and Langdon, 2002). 
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Pyramidal neurons in layer 2/3 collectively form a horizontal lattice of long-range, 

periodic axonal projections, known as the superficial patch system (Douglas and Martin, 

2004). Layer 2/3 pyramidal axons, in all species studied, arborize primarily in layers 

2/3, sending a descending axon towards layer 5, passing through layers 4 and 6, but 

ramifying little or not at all in these layers (Burkhalter, 1989). In so, monosynaptic 

recurrent connections between layer 2/3 pyramidal cells are likely to predominate more 

than in any other layer (e.g. Binzegger, 2004), which has been proposed to enhance the 

integration of stimulus features and to broad subthreshold receptive fields (Kaur et al., 

2004). Pyramidal cells in these superficial layers receive also a large proportion of 

trans-callosal inputs directly from the other hemisphere (Porter and White, 1986). It is 

also known that interconnectivity between pairs of pyramidal cells in layer 2/3 is 

spatially scaled. In so, it was demonstrated that connected pairs of excitatory neurons 

share common inputs from middle-layer 4 and within layer 2/3. When adjacent neurons 

are not connected to each other, there is a lack of sharing of common inputs (Yoshimura 

et al., 2005). On the other hand, they share common inhibitory input and excitatory 

input from layer 5 regardless of their connectivity. The excitatory neurons within layer 

2/3 therefore create preferentially connected subnetworks embedded within the laminar 

and columnar functional architecture. 

It is worth mentioning that, in primates, even though these superficial cortical layers are 

treated as one entity, there are considerable differences between the cytoarchitecture  

and the anatomical connections between layer 2 and layer 3. In fact, layer 2 has a dense 

population of small pyramidal cells in addition to a diverse group of stellate neurons, 

and seems to be involved mainly in local processing, since most of its input/output 

connections are with flanking layers. On the other hand, layer 3 has a sparser population 

of larger pyramidal cells, fewer stellate cells and direct connections with layer 4 

(Fitzpatrick wt al., 1983). More impressive is the fact that the anatomical distinctions 

between layers 2 and 3 are also reflected in single cell physiological properties. In 

accordance it was shown recently that in macaque monkeys engaged in a fixation task to 

sweeping visual stimuli, layer 2 neurons had smaller spikes, higher levels of ongoing 

activity, larger receptive field activating regions, and less finely tuned selectivity for 

stimulus orientation and length when compared to layer 3 neurons (Gur and Snodderly, 

2008). 
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3.2. Recurrent connectivity: local circuitry is the heart of cortical computation 

A surprising, but consistent pattern across all areas of neocortex examined is that the 

majority of synaptic inputs formed on the dendritic trees of any neuron originate from 

nearby excitatory neurons within the same cortical area, producing local microcircuits 

(Braitenberg and Schüz, 1998; Douglas and Martin, 2004; White, 2007). Very few 

synapses are contributed by long distance connections, whether they arise from neurons 

in subcortical nuclei (principally the thalamus) or other cortical areas. Thus, cortical 

neurons are connected in a series of nested positive and negative feedback loops, in a 

highly recurrent local circuitry. They provide the major excitatory input to neocortical 

principal neurons and are critically important for information processing (Douglas et al., 

1989; Douglas and Martin, 2004, 2007b; Douglas et al., 1995; Buonomano and Maass, 

2009). Recently, a comprehensive attempt to assign a source to every synapse in a 

single cortical area was made for the area 17 of the cat (Binzegger et al., 2004). It was 

shown that intralaminar excitatory connections are most prominent in layers 2 and 3, 

where the pyramidal neurons form most of their local excitatory synapses with each 

other, so much that their recurrent connections involve one-fifth of all the excitatory 

synapses. The consequence of this is that the recurrent connections between layer 2 and 

3 pyramidal neurons predominate, whereas for other layers the interlaminar recurrent 

connections may have a greater role (Figure 3.3).  
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Figure 3.3. Quantitative map of the connections between various classes of excitatory 

neurons and their targets in the cortex. Only the connections between the classes of the 

dominant excitatory neurons are shown in the diagram. Individual numbers that label each 

arrow indicates the proportion of all the excitatory synapses in area 17 of the cat that are 

formed between the various classes of excitatory neurons. A total number of synapses between 

excitatory neurons is estimated to be 13.6 × 1010. Circles represent neurons located in different 

cortical layers, being “Lx” the layer in which its soma is located. LGN: thalamic lateral 

geniculate nucleus (adapted from Binzegger et al., 2004) 

 

This and other quantitative anatomical circuit data suggest a number of intriguing clues 

to the fundamental properties of cortical processing. The first is the dominance of local 

cortical synapses over the ones provided by individual afferents of a given cortical area. 

Overall, the vast majority of cortical excitatory synapses and virtually all inhibitory 

synapses originate from neurons within the local cortical space. This means that each of 
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the afferent projections of the cortex, either from the thalamus or other individual 

cortical areas, renders a surprisingly small percentage of all excitatory synapses in the 

target area. In fact, in the case of the visual cortex, synapses from the lateral geniculate 

nucleus of the thalamus form only 5-10% of the excitatory synapses, even in their main 

target layer 4, as seen in cats and monkeys (Usrey et al., 2000; Alonso and Swadlow, 

2005). Yet these afferents clearly provide just enough excitation to drive the cortex. 

This raises three intriguing questions: first, why is the cortex connected to its principal 

thalamic nucleus by such a fragile and weak long-distance pathway? Second, how do 

the local cortical circuits reliably process the seemingly small input signals that arise 

from peripheral sensory organs, or within the cortex itself? And third, how is the fidelity 

of these signals retained as they are transmitted through the hierarchy of cortical areas? 

The answer might just lie in understanding the spatial and temporal relations of the local 

circuit, with its strong recurrent excitatory and inhibitory subcircuits. In fact, whether by 

single or by collective computation, recurrent local cortical connections provide the 

signal gain necessary for actively reorganizing the relatively small contributions of 

long-range afferents, by amplifying or suppressing those inputs (Douglas et al., 1995; 

Silberberg et al., 2005; Buonomano and Maass, 2009). This collective processing of 

transformations is thought to provide the signal restoration properties that allow 

significant signals to be “transformed” through many stages without detectable 

degradation (von Neumann, 2000). The positive feedback between neurons of one given 

population can be used to enhance the features of the input that match patterns 

embedded in the weights of the excitatory feedback connections. At the same time, the 

overall strength of the excitatory response of the population is used to suppress outliers 

via the inhibitory threshold imposed by interneurons, imposing in this way an 

interpretation on an incomplete or noisy input signal (Hahnloser et al., 2002; Douglas 

and Martin, 2007). 

A second clue is the large fraction of excitatory connections made between pyramidal 

cells of the superficial cortical layers (Figure 3.3). Although excitatory neurons in other 

layers also receive input from their neighbours, it is only in the superficial layers that 

the pyramidal neurons make very extensive arborizations within their same layer 

(DeFelipe and Fariñas, 1992). Indeed, nearly 70% of excitatory input to a superficial 

pyramidal neuron is derived from other cells of its own type (e.g. Thomson et al., 2002). 

Consequently, recurrent connections between layer 2 and 3 pyramidal neurons, in which 
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a target neuron projects back to its source neuron in a tight positive feedback loop, are 

more likely than in any other layer. In so, a positive feedback might play a crucial role 

in cortical computation by providing gain for active selection and re-combination of the 

relatively small afferent signals (Douglas et al., 1995; Douglas and Martin, 2007). 

The gain of a system is the (dimensionless) ratio of the magnitudes of two causally 

related signals. When considering a feedback system, like the one present in a given 

cortical layer, two different gains are usually considered. The first is the overall ‘system 

gain’. This is measured as the ratio of the output over the input of the system. The 

second is the ‘loop gain’. This is measured around the feedback loop, and can be 

expressed as the fraction of the output signal that is due to feedback. Thus, when the 

loop gain is zero, the system gain is entirely feedforward. As the loop gain approaches 

one, the system gain becomes dominated by its feedback. If the loop gain exceeds one, 

the system is unstable and its output diverges. The feedforward gain of individual 

neurons operating in rate mode is small. Typically, many input spike events must be 

applied to a neuron before it produces a single spike output. However, simulation 

studies and physiological evidence suggest that cortical circuits can generate significant 

system gain by the positive feedback excitation mediated by recurrent intracortical 

axonal connections (Hahnloser et al., 2000; Binzegger et al., 2004)  (Figure 3.3). 

Positive feedback amplification may seem intrinsically dangerous, but neurons arranged 

in a positive feedback loop can be stable if the sum of the excitatory currents evoked by 

the afferent input and the positive feedback excitatory currents is less than the total 

negative current dissipated though their membrane leak conductances. It is this positive 

feedback amplification that allows a small input signal, like the one arriving from the 

thalamus, to be ‘heard’ in the cortex. The question is, of course, how is this small signal 

ever distinguished from “spontaneous” cortical activity? Artificial network models have 

been invaluable in providing answers for the properties of recurrent networks. One of 

the most prominent of these is the auto-associative or “Hopfield network” model 

(Hopfield, 1982). In this model it is hypothesized that recurrent networks of ideal 

neurons are dynamical systems whose stable patterns of activation (or attractors) can be 

viewed as memories, which store externally presented sensory inputs through the 

modification of recurrent excitatory synapses, according to a Hebbian rule (see Chapter 

3.4).  
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Overall, the basic computation properties that a local recurrently connected circuit can 

perform is illustrated in Figure 3.4. The excitatory neurons receive feedforward 

excitatory connections that carry the input signal, feedback excitatory connections from 

other members of their population, and feedback inhibitory connections from the 

inhibitory neurons (see Figure 3.3). Often their recurrent connection strength is regular, 

which typically is expressed as a hill-shaped function of distance of a source neuron 

from its target. The properties illustrated in Figure 3.4 arise out of the interaction 

between the feedback excitation, which amplifies the inputs to the network, and the 

non-linearity introduced by the inhibitory threshold, which itself depends on the overall 

network activity. At the end, the important result to note here is that the positive 

feedback enhances the features of the input that match patterns embedded in the weights 

of the excitatory feedback connections, while the overall strength of the excitatory 

response is used to suppress outliers via the dynamical inhibitory threshold imposed by 

the global inhibitory neurons. In this sense, the network can actively impose an 

interpretation on an incomplete or noisy input signal by restoring it towards some 

fundamental activity distribution embedded in its excitatory connections - this is the 

cortical “hypothesis” (Douglas and Martin, 2007; 2007b). 
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3.3.  Overall anatomical model of cortical function 

A cortical column represents a distinct functional module that processes electrical 

signals arriving from sensory inputs (Mountcastle, 1997). A simplified but 

comprehensive model which tries to put forward a tentative hypothesis of how the 

generic circuits might express themselves functionally is the following: In a laminar-

temporal evolution of interactions between the main types of cortical neurons, it is 

generally assumed that thalamic afferents relay information onto glutamatergic spiny 

stellate and inhibitory small basket cells in layer 4 (Murray Sherman and Grillner, 

1996). Next, the stellates activate pyramidal neurons present in both layers 2 and 3, and 

basket cells present in layer 3. The superficial pyramidal cells activate the pyramidal 

cells of layer 5, the main output layer of the neocortex, which in turn activate those of 

layer 6. Importantly, they also activate the vertically disposed inhibitory double bouquet 

cells, which could dynamically determine the input-output relations, computed by the 

dendrites of various layer 2/3 pyramidal neurons that they contact. The layer 6 

pyramidal cells project to layer 4, where their wide arbors combine with the thalamic 

afferents to shape activation of layer 4 spiny stellates (see Douglas and Martin, 2004, 

2007; Thomson and Bannister, 2003; Thomson and Lamy, 2007). 

---------------------------------------------------------------------------------------------------------- 

Figure 3.4. Basic computations that a recurrent circuit formed by lateral connections could 

perform. Top left; Linear analog gain: above threshold, the network amplifies its hill-shaped 

input (dashed lines) with constant gain (output, solid lines). Top center; Gain invariance: this 

occurs when the gain remains the same across the map (provided that the connection weights 

are homogeneous across the array). Top right; Gain modulation: the gain of the network can be 

modulated by an additional constant input applied to all the excitatory neurons, and 

superimposed on the hill-shaped input. The gain is least when no constant input is applied 

(input, red dashed line; output, red solid line), and largest for a large constant input (blue 

lines). Bottom left; Winner-take-all: when two inputs of different amplitude are applied to the 

network, it selects the stronger one. Bottom center; Signal restoration: the network is able to 

restore the hill-shaped input, even when that input is embedded in noise. Bottom right; 

Bistability: when separate inputs have the same amplitudes, multistability is the operation that 

selects one input according to its initial conditions at the time the input is applied (adapted from 

Douglas and Martin, 2007; Maass, 2000; Hahnloser et al., 2000). 
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Clusters of superficial pyramidal neurons receive feedforward excitatory input from 

subcortical, inter-areal, and intra-areal sources. In addition to their interactions with 

their close neighbours within their patch, the members of this patch also receive 

feedback from a number of sources including deep pyramidal cells immediately beneath 

them or in close proximity within the superficial layers, and from subcortical inter-areal 

connections (Thomson et al., 2002). Thus, the neurons of a superficial cluster, taken as a 

group, receive a sample of thalamic inputs (some preprocessed by layer 4), a sample of 

inputs from surrounding and remote superficial neurons, and a sample of the output of 

their corresponding deep pyramidal neurons. All of these inputs are processed by the 

dendrites of the superficial pyramids whose signal transferring properties can be 

adjusted dynamically by the pattern of the vertical inputs from other interneurons (e.g. 

double bouquet cells). The superficial pyramids collectively participate in a selection 

network, mediated by the horizontal inputs from inhibitory cells that control their 

outputs (e.g. basket and chandelier cells). The selection mechanism is a soft winner-

take-all (or other integrative mechanism), which is an important element of many 

neuronal network models (Maass, 2000, Riesenhuber and Poggio, 1999). The outputs of 

the selected superficial pyramids feedback to adapt the pattern of vertical inhibitory cell 

activation (see Figure 3.3). In this way, the superficial layer neurons cooperate to 

explore all possible interpretations of input, and so select an interpretation consistent 

with their various subcortical inputs. The superficial layers are organized to distribute 

and explore possible interpretations, whereas the deeper layers are organized to exploit 

the evolving interpretations. The pyramidal neurons of layer 5 that drive subcortical 

structures involved in action (e.g. basal ganglia, colliculus, ventral spinal cord) decide 

the output of the cortical circuits (Kasper et al., 1994). The same layer 5 pyramidal 

neurons influence the ongoing input by their connection to layer 6 pyramidal cells that 

connect to the thalamic input layers. The explorative processing in the superficial layers 

is constrained via the recurrent projection from other layer 5 pyramidal cells to confirm 

the output that has already been decided on. These layer 5 pyramidal cells are also the 

origin of the feedback projections to the superficial layers of other cortical areas 

(Markram, 1997). In this way, they also provide additional contextual information to the 

evolving interpretations occurring in the superficial layers of other cortical areas. 
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3.4. Connectivity features of the mammalian auditory cortex 

 

Sensory cortical maps can be freely defined as systematic spatial distributions of 

sensory information within a cortical region, being representations of peripheral 

receptor epithelia, stimulus parameters, sensory objects, or events of the external 

environment. Fine-tuning the thalamic inputs via a variety of functionally different 

synapses across the columnar six layers is the way that sensory cortices perform 

sensory-guided sophisticated behavior tasks. 

The most widely recognized functional organization principle in mammalian primary 

auditory cortex (A1) is the representation of the auditory receptor surface, the organ of 

Corti in the cochlea (Merzenich et al., 1975) The orderly representation of frequency, 

sound location, amplitude, frequency modulation, or sharpness of tuning describes the 

tonotopic order seen in cochleotopic maps (for review see Schreiner and Winer, 2007). 

This systematic progression of neuronal response preferences to near-threshold pure 

tone frequencies across cortical space is part of a general topographic governing 

principle that has been also shown for other sensory modalities (e.g. visual, 

somatosensory) in all studied mammals so far (e.g. Wandell and Smirnakis, 2009; 

Petersen, 2007). 

In the mouse, high frequencies are represented in the rostral part of the cortex and low 

frequencies in the caudal (Stiebler et al., 1997). However, because the representation of 

sound frequency along the cochlea is intrinsically one-dimensional, the organization of 

auditory cortex along the axis orthogonal to the tonotopic cortical axis cannot 

immediately be inferred from the organization of the sensory periphery. The auditory 

cortex is thus functionally anisotropic: the functional organization along the tonotopic 

axis is qualitatively different from the organization orthogonal to the tonotopic axis 

(Oviedo et al., 2010). Nevertheless, the fact that smooth and orderly maps of the 

periphery are preserved throughout the chain of successive nuclei up to primary cortical 

areas seems to argue for their general usefulness. The efficiency of a given cortical map 

is that it minimizes connectivity, reduces redundancy and enhances computational 

power by eliminating conflicting demands and coordinating multiple algorithmic 

transformations (for review see Chklovskii and Koulakov, 2004). 
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But are neurons in auditory cortex organized into functional columns as the other 

sensory modalities counterpats? Recently it was suggested that auditory cortex might 

possess a fractured tonotopy (Rothschild et al., 2010; Bandyopadhyay et al., 2010). By 

using in vivo two-photon calcium imaging, a method previously used to map the fine-

scale organization of circuits in the visual (Okhi et al., 2005, 2006) and barrel (Sato et 

al., 2007) cortex, it was shown that tonotopy in A1 lacked the smooth, graded tiling, and 

single-cell gradations of tuning observed in visual cortex. However this does not imply 

that frequency is discarded as an organizing principle in A1. In fact, Rothschild et al. 

found that nearby neurons with similar patterns of driven, sound-evoked discharge also 

co-varied in their spontaneous activity. This result could be explained by the presence of 

partially overlapping subnetworks in A1 (Bathellier et al., 2012), or due to the presence 

of fine-scaled assemblies that process inputs in a different way. Such parallel and 

ascending auditory processing streams may be selective for different input features or 

specific stimulus attributes, recruiting different neuronal populations with different 

interconnectivity and possibly different synaptic strengths and dynamics 

(Bandyopadhyay et al., 2010). According to this view, similarly frequency tuned 

neurons (which probably receive common thalamic input) are distributed semi-

randomly in local patches of A1, and interdigitated with other such populations. In 

addition to sharing common input, members of each subnetwork may also be strongly 

and selectively interconnected (see Barbour and Callaway, 2008). This interpretation is 

by itself consistent with in vitro mapping studies of visual cortex that show selective 

synaptic connections between layer 2/3 pyramidal neurons with common layer 4 inputs 

(Yoshimura et al., 2005). Another explanation might reside in the fact that although 

thalamocortical projections are arranged tonotopically, tonotopy in A1 becomes 

fractured due to intrinsic intracortical processing (see Hackett et al., 2011). Taken 

together these studies point to the careful conclusion that although there is some degree 

of gross tonotopy in the rodent auditory cortex, neurons do not seem to be organized 

into functional columns: nearby neurons can respond quite differently to the same 

stimulus (Rothschild et al., 2010; Bandyopadhyay et al., 2010; Hromádka et al., 2008). 

And how is the functional anisotropy - that is, the spatial arrangement of tuned neurons 

- reflected at the microcircuit level? In many sensory cortices, the distinction between, 

for instance, pyramidal neurons in layer 2/3 are not properly made, giving rise to a 

misleading conception of a single homogenous functional “unit”. However in primary 
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auditory cortex neurons in these two layers are indeed distinct with respect to 

morphology, connectivity and function. Morphologically, layer 3 neurons have a classic 

pyramidal shape, while layer 2 neurons cells lack an elongated apical shaft, but both 

have dendrites that arborize in layers 2 and 1 (Barbour and Callaway, 2008). At the 

level of local connectivity, the pattern of intracortical synaptic input is also distinct 

between these layers, especially along the tonotopic axis: layer 2 receives intra-

columnar input, whereas L3 received out-of-column input (Oviedo et al., 2010). 

Furthermore, neurons in layer 3 but not in layer 2 project to the contralateral side of the 

cortex, as observed in the auditory cortex of the cat and rat (Imig and Brugge, 1978; 

Games and Winer, 1988). 

Finally, neurons in the two layers may be functionally distinct with respect to their 

responsiveness to simple auditory stimuli such as pure tones and white noise. Layer 2 

neurons are more responsive and show well-defined frequency tuning to pure tones, 

whereas layer 3 neurons are largely unresponsive (Oviedo et al., 2010). This difference 

in responsiveness is consistent with recent results, using photostimulation-assisted 

identification of neuronal populations, showing that contralaterally projecting layer 3 

neurons are not responsive to simple auditory stimuli (Lima et al., 2009). These 

observations are in agreement with the fact that nearby neurons are not driven by the 

same optimal stimuli, giving rise to the characteristic sparseness of representations in 

the auditory cortex (Hromádka et al., 2008). 

Generally, A1 is characterized by strong excitatory connections from the thalamic 

recipient layer 4 to layers 2 and 3, where a strong intracortical recurrent excitation 

exists. Current anatomical and physiological observations provide evidence that the 

inputs and outputs of layer 4 excitatory neurons in area A1 differ from those in 

somatosensory and visual cortices. In particular, pyramidal neurons from layers 2 and 3 

typically arborize their axons within layer 4, providing a fast intracolumnar feedback 

mechanism (Barbour and Callaway, 2008). Such connections may play an important 

role in rapidly creating auditory stimulus specificity in cortical neurons (Kaur et al., 

2004) or generating specialized receptive field structures not found in other sensory 

areas, such as intensity tuning (Wehr and Zador, 2003). Furthermore, nearly all layer 4 

spiny neurons project out of A1 to extrinsic targets, reflecting a direct feedback pathway 

form layers 2/3 to layer 4 that is extremely sparse or absent in other primary sensory 
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areas (e.g. Binzegger et al., 2004). This finding implies that these neurons provide a 

more direct and possibly more rapid relay between cortical input and output than layer 4 

neurons in other primary sensory cortical areas, which tend to have exclusively local 

projections (Lund, 1984). 

 

3.5.  Optogenetics and neural circuits 

Optogenetics, as the term has come to be commonly used, refers to the integration of 

optics and genetics to achieve gain- or loss-of-function of well-defined events within 

specific cells of living tissue (e.g. Scanziani and Häusser, 2009). Nowadays, proteins 

with engineered sensitivities to light (derived from microbial opsin genes) (e.g. Nagel et 

al., 2003) are infiltrating the biological mechanisms by which neurons generate and 

detect electrochemical signals. Encoded in DNA and active only in genetically specified 

target cells, these proteins provide selective optical interfaces for observing and 

controlling signaling by defined groups of neurons in functioning circuits, either in 

freely moving mammals (e.g. Huber et al., 2008) or other in vitro intact-system 

preparations (e.g. Petreanu et al., 2007; ). So routinely they are, they became ubiquitous. 

In fact, since the initial (unrelated) identification of bacteriorhodopsin as a microbial 

single-component light-activated ion pump (Oesterhelt and Stoeckenius, 1973), that 

new members of this microbial opsin family have been discovered. These include 

membrane-bound ion pumps and channels such as halorhodopsins (Matsuno-Yagi and 

Mukohata, 1977) and channelrhodopsins (Nagel et al., 2003) that transport various ions 

across the membrane in response to light. However, in neuroscience research, 

millisecond-scale precision is essential to true optogenetics, to keep pace with the 

known dynamics of the targeted neural events such as action potentials and synaptic 

currents. This obstacle was overcome recently, when it was successfully demonstrated 

that the introduction of a single-component microbial opsin gene into mammalian 

neurons can result in reliable sustained control of millisecond-precision action 

potentials (Boyden et al., 2005). This primordial discovery paved the way for the 

perfectioning of a new set of optogenetic tools used in the investigation of neural 

circuits. 
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The variety of optogenetic spectra available at the moment contains tools for four major 

categories of fast excitation, fast inhibition, bistable modulation, and control of 

intracellular biochemical signaling in neurons and other cell types (for review see 

Yizhar et al., 2011). This array of optogenetic tools, which is the result of molecular 

engineering and genomic efforts, allows experimental manipulations focused for 1) the 

desired physiologic effect, 2) the desired kinetic properties of the light-dependent 

modulation and 3) the required wavelength, power, and spatial extent of the light signal 

to be deployed. 

 

3.6. Channelrhodopsin as a tool to assess neural circuitry 

Channelrhodopsin-2 (ChR2) is a seven-transmembrane-helix protein from the 

unicellular green algae Chlamydomonas reihardtii that opens as a non-selective cation 

channel upon the concomitant binding of all-trans-retinal and activation by blue light 

photons (Nagel et al., 2003). In dissociated hippocampal neuron cultures, the rapid 

light-activated photocurrents, due to the influx of cations into cells expressing ChR2, 

leads to depolarization and initiation of action potentials with short delay and minimal 

jitter (Boyden et al., 2005; Gunaydin et al., 2010). ChR2 has been successfully used in a 

variety of model systems to investigate the function of complex neuronal networks by 

stimulation of genetically targeted neurons (Boyden et al., 2005; Cruikshank et al., 

2010; Petreanu et al., 2007; Adesnik and Scanziani, 2010; Choi et al., 2011). 

In mouse slice physiology, namely the interrogation of neuronal circuitry, ChR2 opens 

the door to novel types of experiments and greatly extends the technical possibilities 

offered by traditional electrophysiology. In this approach, the experimenter often tries to 

control firing of individual action potentials with high temporal precision to investigate 

processes that typically operate on millisecond time scales. ChR2-based stimulation 

opens the possibility to stimulate distributed populations of genetically defined neurons 

using light, allowing drawbacks of slowness of multiple intracellular recordings 

(Homlgren et al., 2003; Thomson and Bannister, 2003), or even the lack of neuronal 

specificity when using photoactivation of groups of neurons by glutamate uncaging 

(Yoshimura and Callaway, 2005), to be overcome. In ChR2-assisted circuit mapping, 

photostimulation is combined with whole-cell recordings. Circuits are mapped between 
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presynaptic neurons, defined by ChR2 expression, and postsynaptic neurons, defined by 

targeted patching. Remarkably, even ChR2-positive axons that are severed from their 

parent somata can be photostimulated to fire action potentials (Petreanu et al., 2007). 

This means that ChR2 can be used to map long-range projections. For example, ChR2 

has been used to map callosal projections linking left and right somatosensory cortex 

(Petreanu et al., 2007), or to map circuits from the olfactory bulb to the olfactory cortex 

in vivo (Arenkiel et al., 2007). ChR2 thus allows the mapping of synaptic connectivity 

over all spatial scales in the brain. 

When specific ChR2 expression in neuronal populations in vivo (e.g. Arenkiel et al., 

2007) is combined with behavioural studies, then ChR2 photostimulation allows precise 

tests of hypothesis about how patterns of action potential in genetically target neurons 

contribute to behaviour outputs. In so, the first approach to induce learning by 

optogenetically activating modulatory neurons has been made in Drosophila larvae 

(Schroll et al., 2006). Specific and combined activation of ChR2-expressing 

dopaminergic, or tyraminergic and octopaminergic neurons could be used to render an 

attractive / aversive behaviour towards a given odor. Recently, the behavior-reinforcing 

properties of dopaminergic neurons for aversive learning were demonstrated 

optogenetically in adult flies as well (Claridge-Chang et al., 2009). On the other hand, 

in mice, light-induced activation of dopaminergic neurons has been implicated in 

reward learning tasks (Tsai et al., 2009). Moreover, it has been shown that periform 

cortical neurons could be entrained to elicit different olfactory-based discrimination 

tasks (Choi et al., 2011), or even a sparse subset of supragranular cortical pyramidal 

neurons is sufficient to guide detection performances (Huber et al., 2008). Even more 

interesting, it was shown to be possible to elicit a freezing behaviour output by direct 

activation of a sparse but specific ensemble of hippocampal neurons that was previously 

active during learning (Liu et al., 2012). One can easily appreciate that the potential 

impact of ChR2 can hardly be overstated. 

If ChR2 is used to elicit action potentials in neurons, light-induced depolarization has to 

reach the firing threshold. Owing to the small single-channel conductance of ChR2 

(Bamann et al., 2008), expression levels required for reliable action potential induction 

are quite high. This small drawback can be overcome by substituting mammalian 

codons to replace algal codons in order to achieve higher expression levels (humanized 
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ChR2 or hChR2; e.g. Zhang et al., 2007), and this process is now typically applied to all 

new opsin genes. However, when ChR2 is expressed at high levels, extra spikes (for 

example, doublets), can occur in response to a single light pulse (Boyden et al., 2005), 

with potential implications as doublets may be important for neural coding. Second, 

many cells cannot follow ChR2-driven spiking above the gamma (~40 Hz) range) in 

sustained trains (Lin et al., 2009), preventing the access to a broad and important neural 

signaling band. Finally, rapid optically driven spike trains can cause incidental upstates 

with information-processing implications. The recently reported accelerated ChR2 

variants, with faster recovery kinetics from inhibition, could resolve the intrinsic 

disadvantages of the wild-type ChR2 construct (Gunaydin et al., 2010). These novel 

variants should thus enable for experiments attempting to mimic natural spiking. Since 

accelerated ChR2 variants typically produce smaller photocurrents (Gunaydin et al., 

2010), special care has to be taken to achieve high expression levels for reliable action 

potential induction. 

At the end, an important focus of current efforts is the engineering or identification of 

spectrally shifted channelrhodopsins (Zhang et al., 2008). Dual or even multicolor 

control of different optogenetic agents will allow probing of the contributions of distinct 

neuronal populations to phenomena ranging from dendritic integration to behaviour. 

The challenge will be to alter the action spectra without compromising channel 

conductance, kinetics or expression levels. Moreover, would be interesting to target 

ChR2 to specific regions of the cell (Lewis et al. 2009) or to intracellular organelles. 

Given the range of possibilities, the optogenetic revolution might have only just begun. 
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4. Aim 

The aim of the present study was to investigate the features of the excitatory synaptic 

local circuitry in the adult auditory cortex. Though extensive data have been produce, 

especially in juvenile / young animals, a hiatus of information is still present regarding 

the full mature cortex. 

Two major questions were posed in this thesis: what are the main features that can 

describe local synaptic connectivity in naïve mice? And to what extent is cortical local 

circuitry molded by optogenetic stimulation during a learning task? Currently, 

electrophysiological recordings in brain slices provide the highest-resolution technique 

for analyzing functional interactions between individual neocortical neurons. 

The aim of the first part was to provide a general quantitative description of intrinsic 

properties and connectivity features of pyramidal neurons in the adult mouse auditory 

cortex. It is important to study these features to obtain insight into possible circuit 

mechanisms leading to the emergence of sound-evoked activity patterns that are studied 

in our laboratory in vivo. Simultaneous quadruple whole-cell recordings from layers 2/3 

and 5 pyramidal neurons were made to describe features such as intrinsic excitability, 

connection probability, distribution of synaptic weights, variability in synaptic 

transmission, and patterns of connectivity of excitatory connections. 

The aim of the second part was to analyze the relative contribution of excitatory and 

inhibitory inputs to pyramidal neurons in the adult mouse auditory cortex. Extracellular 

stimulation of two independent but convergent input pathways onto layer 2/3 pyramidal 

neurons in combination with whole-cell voltage-clamp recordings at various holding 

potentials were used to disentangle excitatory and inhibitory synaptic components with 

high temporal precision. 

The aims of the third part were twofold: first, to establish a learning paradigm in mice 

that is based on cues delivered by direct optogenetic stimulation of auditory cortex 

neurons. Second, to use this paradigm to analyze possible effects of the optogenetic 

stimulation on intrinsic excitability and/or synaptic transmission in brain slices prepared 

from optogenetically trained mice.  
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5. Experimental Procedures 

 

5.1.  Experimental subjects 

A total of 92 in-house bred adult (8 – 12 weeks old) male C57Bl/6J mice were used for 

this study. After weaning on the 21st day mice were group housed (a total of 5 mice per 

cage), maintained on a 12 h: 12 h light/dark cycle with food and water ad libitum, 

except during the behaviour procedures. Constant background noise from radio 

broadcasting was present during the day. All experiments were conducted during the 

light phase cycle, starting time of one experiment being the same every day. All 

procedures were conducted in accordance with the Austrian laboratory animal law 

guidelines for animal research and have been approved by the Magistratsabteilung 58 of 

the Wiener Landesregierung, Vienna, Austria. 

 

5.2.  Slice preparation 

On a given day, one mouse was sacrificed by quick cervical dislocation, decapitated and 

the brain rapidly removed from the skull. The brain was then immersed (approximately 

for 1 minute) in ice-cold oxygenated (95% O2 / 5% CO2) dissection solution containing 

(in mM) 110 choline chloride, 25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 0.5 CaCl2, 7 

MgCl2, 11.6 ascorbic acid, 3.1 pyruvic acid and 25 D-glucose (final pH ≈ 7.4). Two 

coronal cuts were made to remove a small anterior portion of the brain and the 

cerebellum, respectively. The brain was then fixed, anterior surface down, to the 

specimen plate using cyanoacrylate glue (Roti coll 1) and submerged quickly afterwards 

in the buffer tray filled with ice-cold oxygenated (95% O2 / 5% CO2) dissection solution 

as previously. Acute coronal whole-brain slices (300 μm-thick) were made using a 

vibratome (Leica VT1200S, Germany) at a speed of 0.12 mm/second. Slices were then 

transferred to a resting chamber filled with standard artificial cerebrospinal fluid 

(ACSF) composed of (in mM) 118 NaCl, 2.5 KCl, 26.5 NaHCO3, 1 NaH2PO4, 1 MgCl2, 

2 CaCl2 and 20 D-glucose, aerated with 95% O2/ 5% CO2, for 30 minutes at a 

temperature of 33°C, and subsequently maintained at room temperature throughout the 

experiments.  
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5.3.  Electrophysiology 

One individual slice was transferred to a submerged slice recording chamber where it 

was gently immobilized by a silver grid with attached nylon mesh. The grid was placed 

orthogonal to the cortical layers to prevent damaged of the dendritic trees that run 

perpendicular towards the pia. Excitatory layer 2/3 and layer 5 pyramidal neurons 

(identified according to their morphology and laminar location) localized between 50 – 

70 μm below the surface of the brain slice were visualized with an upright microscope 

(Olympus BX51WI, Germany) equipped with infrared (IR) video microscopy and 

differential contrast optics, through a 40x/0,8NA water immersion objective. At this 

high magnification, excitatory pyramidal neurons were identified by a distinct apical 

dendrite that extended toward the pial surface parallel to the slice surface, indicative of 

a minimal damage of the dendritic arborizations during dissection. Patch pipettes were 

pulled from borosilicate glass (2.0mm outer and 1.16mm inner diameter glass, Warner 

Instruments) on a Flaming/Brown micropipette puller (Sutter Instrument, Novato, CA), 

yielding a final resistance of 3 – 5 MΩ. The pipette intracellular solution contained (in 

mM) 130 K-gluconate, 5 KCl, 2.5 MgCl2, 10 HEPES, 0.6 EGTA, 4 Na2ATP, 0.4 

Na3GTP and 10 Na2-phosphocreatine (pH = 7.25 adjusted with KOH; 290 mOsm) and it 

was kept frozen for a maximum period of two weeks until use. Simultaneous whole-cell 

patch-clamp recordings in current-clamp or voltage-clamp modes were acquired from 

the somata of up to four neurons with Multiclamp 700B amplifiers (Axon Instruments, 

Molecular Devices, Foster City, CA). In some cases, one or two breakthroughs failed, 

thus yielding triple or double recordings; synaptic connections found in these cases 

were included in the dataset. Neurons were excluded for further analysis if, after 

reaching whole-cell configuration, access resistance was higher than 20 MΩ, membrane 

potential higher than -55 mV and if did not presented characteristic firing patterns of 

pyramidal neurons (Agmon and Connors, 1992; Huggenberger et al., 2009). 

Electrophysiological data was low-pass filtered using the 10 and 3kHz four-pole Bessel 

filter, sampled at 10kHz (Digidata 1440A, Axon Instruments) and collected using 

pClamp10 software (Molecular Devices, Inc., USA). Offline analysis of the following 

intrinsic neuronal properties were made using the data analysis software Clampfit 10.2 

(Molecular Devices, Inc., USA): resting membrane potential (Vm), input resistance (Ri), 

action potential (AP) threshold, AP amplitude from threshold to peak, AP overshoot and 

AP half-weight width. To characterize neuronal AP firing patterns, a series of 500 ms 
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current pulses were applied in 20 pA steps starting at –40 up to a maximum of 340 pA. 

Membrane resistance (Rm) was measured at -20 pA current injection step using Ohm´s 

law. Membrane potential measurements were not corrected for the liquid junction 

potential and voltage drops across the patch pipette were compensated when recording 

in current-clamp mode. EPSP latency (in ms) was defined as the time difference 

between the presynaptic AP peak and the onset of the EPSP and the time-to-peak was 

taken as the time difference between EPSP maximum and its onset. All the recordings 

were carried out at room temperature and the slices were continually superfused in a 

closed circuit with ACSF oxygenated with 95% O2 /5% CO2. 

 

5.4. Measurement of synaptic connection strengths 

To determine whether pairs of neurons were monosynaptically connected, a precisely 

timed double AP was evoked in one neuron at a time by means of two suprathreshold 

depolarizing current pulses (2 ms pulse width, 50 ms interpulse interval, 3500 pA 

amplitude each), while recording the membrane potential of the other neurons. Each 

double AP stimulation impinged onto the neurons started 2 seconds after the end of the 

previous one, to avoid overlap of stimulation between the individual neurons (Figure 

5.1). Mean traces were obtained by averaging 60 consecutive 8 seconds-duration trials, 

and all the kinetics parameters from the EPSPs were obtained from the final averaged 

trace (only the 1st EPSP was considered for this purpose). In case of transient 

fluctuations of the seal, trials with depolarized traces were discarded before computing 

the averaged trace. 
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Figure 5.1. Stimulation and recording procedure. A) Schematic representation of the 

waveform used to probe for synaptic connectivity. By injecting two brief 5 ms depolarizing 

current pulses (grey traces), 50 ms apart, a double AP is evoked in each of these neurons in 

turn, while recording the membrane potential of the other neurons along a 8 second-duration 

trial. A total of 60 consecutive trials were considered for average. B) Inset from panel A: time-

locked EPSP (red trace) to the occurrence of the double presynaptic APs (grey trace), 

indicative of a pair of synaptically connected excitatory neurons. Note the difference in scale 

amplitude for both events. 

 

To assess if presynaptic stimulation successfully evoked a EPSP (and its amplitude), i.e. 

two neurons are connected, a comparison was made between the mean voltage across a 

2 ms-long time window around the maximum peak of the EPSP and the previously 

computed baseline (Figure 5.2) for all the 60 individual trials. The baseline consisted as 

the mean value (in mV) from a 2 ms time-window placed immediately before the first 

current injection. 
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Figure 5.2. EPSP amplitude and reliability measurements. Representative monosynaptic 

EPSP averaged trace (red) from an individual experiment. Three time-window events were 

considered for further analysis: “EPSP” denotes the maximum amplitude centered time-

window; “Baseline” is placed immediately before the onset of the presynaptic AP; “Noise” 

denotes a time-window used for assessment of the intrinsic electrophysiological variability in 

the recordings. All the three time-windows have the same 2 ms-width and the same gap interval 

between them, and were individually assigned for each of the experiments performed. The width 

of all three time windows was left unchanged for the entire 60 individual trials. 

 

The significance of the differences between the mean values (in mV) across the 60 

individual trials was evaluated by the paired Student’s t-test. Values of p < 0.02 were 

considered to represent statistically significant differences and indicative of a synaptic 

connection between a pair of neurons. An estimation of the intrinsic variability of the 

recording (“noise”) was assessed by another 2 ms-duration time window placed before 

the baseline event, and a comparison between the mean values (in mV) of both events 

was made. Care was taken that the time interval between baseline and the EPSP, and 

between baseline and the “noise” was exactly the same for both situations. When 

assessing about the coefficient of variation (CV; standard deviation divided by the 

mean) of EPSP amplitude, a comparison between the amplitude of the EPSP and the 

baseline was made across the individual 60 trials as well. As the averaged EPSP 

waveforms were time-locked to the presynaptic AP, the signal-to-noise ratio was good 

enough to allow for detection of synaptic connections with amplitudes as low as 0.01 

mV. 

The connection probability (CP), a measure of connection likelihood over all possible 

connections tested (assuming that they are independent events), was defined as: 
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where NC represents the total number of connections found, while NPC stands for the 

total number of possible connections, which ultimately depends on the number of 

neurons patched. 

An analysis of single trials was also performed to determine the failure rate of a given 

connection. A failed event was defined as such when a presynaptic AP fails to induce a 

postsynaptic response. A comparison was made between each individual trial across the 

“EPSP” and the “noise” time windows. If for a given trial the EPSP value (in mV) was 

below 2 standard deviations (SD) from the mean value (in mV) of the “noise” window 

across the entire 60 sweeps, that trial was considered to be a failed event. Failure rate 

(FR) was thus defined as: 

 

 

 

5.5. Spontaneous EPSPs analysis 

An analysis of amplitude and frequency of spontaneous excitatory postsynaptic 

potentials (sEPSPs) was carried out using the built-in pattern-matching Template Search 

from Clampfit 10.2 (Molecular Devices, Inc., USA). sEPSPs events vary mostly in 

amplitude, but not in shape, thus are suitable for detection by the scalable shape-based 

algorithm. For analysis, a template was made by averaging 100 representative hand-

picked spontaneous EPSPs randomly chosen (Figure 5.3). Approximately 1550–4200 

spontaneous events over a period of 1.5 min were analyzed in the different experimental 

groups of mice, from which the frequencies of occurrence (number of events/s) and 

amplitude (mV) were obtained. 

 
Figure 5.3. Spontaneous EPSP template. One hundred representative and randomly chosen 

spontaneous EPSPs were used to built the template used for detection of neuronal spontaneous 

activity 
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5.6.  Test for overrepresentation of reciprocally connected neurons 

To test for overrepresentation of reciprocal connections, a statistic was used based on 

how the observed counts compare with the expected counts, if an independent 

connection probability p between pairs of neurons is assumed. To generate a bootstrap 

distribution for the dataset with N total shuffled pairs of connected neurons tested, an 

ensemble of 10000 trials of N samples each from the dataset with replacement was 

made. The statistics from these trials formed the bootstrap distribution. 

 

5.7. Extracellular stimulation 

Postsynaptic currents (PSCs) were evoked with two bipolar platinum/iridium cluster 

microelectrodes (12.5 μm diameter; FHC, Bowdoin, USA), by stimulating two 

independent and convergent pathways into layer 2/3 pyramidal neurons. One electrode 

was placed vertically in relation to the recorded neuron, in cortical layer 4, while the 

other electrode was placed laterally, in layer 1, the upper most cortical layer consisting 

mostly of the distal tufts of pyramidal cell apical dendrites and many axons (Hubel, 

1982) (Figure 5.4).  

 
Figure 5.4. Extracellular stimulation configuration of two independent and convergent 

synaptic inputs into layer 2/3. IR-DIC image from a coronal whole-brain slice partially 

showing the auditory cortex, along with the two extracellular stimulation electrodes used to 

activate a lateral and a vertical input pathways that converge into the layer 2/3 (bounded by 

white dashed lines). Ctx: cortex; WM: white matter. 
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Electrical stimulation consisted of two 0.2 ms-long rectangular pulses (100 ms apart) 

delivered every 3 sec to each pathway in an alternate way, via two stimulus isolation 

units (ISO-STIM 01M, npi electronic, Germany). The final intensity of the stimulus 

(lateral input: 43.3 ± 6.5 V; vertical input: 15.4 ± 2.2 V) was adjusted in current-clamp 

mode in order to obtain a subthreshhold PSC, but weak enough to prevent spike 

contamination. When recording in voltage-clamp mode, the stimulus intensity was left 

unchanged. After a period of equilibration, the averages of 10 consecutive sweeps from 

each pathway were obtained. Off-line analysis of PSCs (Figure 5.5) was done using 

Clampfit 10.2 software (Molecular Devices, Inc., USA). Synaptic current amplitudes of 

neurons voltage-clamped through a series of holding potentials, typically from −90 to 0 

mV, in steps of 15 mV increments, were measured as the difference between the 

amplitude during a 2 msec window including the peak of the PSC and the amplitude 

during a window 2 msec before the stimulus, and further used to construct current-

voltage (I-V) curves. When the PSC was clearly biphasic at one or more holding 

potentials, measurements were made at both amplitude peaks. 

 

 
Figure 5.5. Postsynaptic currents measurements. Two rectangular electrical pulses (denoted 

by the stimulus artifact; 100 ms apart) reliably evoked synaptic currents in the postsynaptic 

neurons specifically located in layer 2/3. Shown are representative traces from one individual 

neuron whose membrane potential was clamped at -60 mv (inward current) or at -15 mV 

(outward current). The amplitude of the postsynaptic current was measured using a 2 ms-long 

time-window centred on the PSC peak, in relation with a 2 ms-long time-window before the 

stimulus (baseline). 

 

In a subset of experiments, the excitatory drive onto the L2/3 recorded neuron was 

isolated by continuous bath application of SR-95531 (10 μM) - a γ-aminobutiric acid 
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(GABA) receptor A antagonist - along with tetrodotoxin (TTX; 4nM; Tocris) - a 

voltage-activated fast sodium channel antagonist. The inhibitory input to the recorded 

neurons was studied by continuous superfusion of 6-cyano-7-nitroquinoxaline-2,3-dione 

(CNQX; 10 μM; Sigma) - the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA)/kainate receptor antagonist -, along with D(−)-2-Amino-5-

phosphonopentanoic acid (AP-5; 50 μM; Sigma) – a selective N-methyl d-aspartate 

(NMDA) receptor antagonist. All drugs used were previously added to the ACSF in 

perfusion to render the proper final concentration. 

 

5.8. Decomposition of the synaptic conductance 

The method used is based on the continuous measurement of conductance changes 

during stimulus-evoked synaptic response. This method was successfully used before on 

rat primary auditory cortex in vivo (Wehr and Zador, 2003), as well on slices of rat 

visual cortex (Le et al., 2006) and mice barrel cortex (Cruikshank et al., 2007; Zhang et 

al., 2011). Synaptic current was determined for each holding potential. Synaptic I-V 

curves were plotted at each time point (t) following the stimulation onset, for each 

holding potential, and fitted with best linear fit regression. Only cells showing a Pearson 

correlation coefficient > 0.95 for the I-V linear regression between -90 and -30 mV 

were considered when calculating the conductance change of the recorded pyramidal 

neuron. Based on the slopes and voltage-intercepts, synaptic conductances and reversal 

potentials were calculated, respectively, allowing to build continuous conductance plots 

for a given neuron. Because these calculations were made for every time point, 

continuous conductance could be constructed. For validating this method, the excitatory 

and inhibitory conductances were measured when the excitatory or inhibitory synapses 

were pharmacologically blocked (see above). Excitatory synaptic reversal potential for 

the stimulated lateral and vertical inputs were, respectively, 43.5 and 55.9 mV (n=8 

neurons). These values are considerably higher than the theoretically expected reversal 

potential for AMPA/NMDA PSCs of ~ 0 mV. This could be due to limited space clamp, 

which is particularly challenging to optimize in adult neurons with mature arborizations. 

The inhibitory synaptic reversal potential for the stimulated lateral and vertical inputs 

were, respectively, -67.0 and -65.8 (n = 5). These values for the reversal potentials are 

classically accepted (Wehr and Zador, 2003; Le Roux et al., 2006). The somatic reversal 

potential of the mixed synaptic responses, which was calculated from I-V plots, took an 
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intermediate value between -90 and -30 mV, and between the respective values of the 

excitatory and inhibitory reversal potentials. In so, the mixed reversal potentials for the 

lateral and vertical inputs were, respectively, -40.6 and -44.1 mV (n = 20 neurons). 

 

5.9. Drugs 

Choline chloride, NaH2PO4, CaCl2, MgCl2, ascorbic acid, KCl, pyruvic acid, K-

gluconate, HEPES, EGTA, Na2ATP, Na3GTP, SR-95531, CNQX, AP-5 and Na2-

phosphocreatine were purchased from Sigma (St. Louis, MO). D-glucose was from 

Amresco (Solon, OH), NaHCO3 was from Roth (France), NaCl and KOH were 

purchased from Merck (USA), and TTX from Tocris Bioscience (USA). 

 

5.10.  Plasmid constructs 

In this study, two ChR2 constructs were used to render photosensitivity to neurons in 

the auditory cortex. In the first one, denoted “Syn-ChR2”, the ChR2 sequence carries 

the H134R point mutation, and its expression is under the control of the synapsin-1 

promotor. The ChR2 is fused to an enhanced yellow fluorescent protein (EYFP) (see 

Figure 6.13A). The second one, denoted “CamKII-ChETA-P2A-H2B-mCherry”, the 

ultra-fast ChR2 variant (ChETA) carries the point mutation E123T in a H134T 

background. The ChETA sequence is fused to the self-cleavable peptide 2A (P2A), and 

to the histone 2B sequence (H2B). ChETA expression is under the control of the 

CamKII promoter and it is made visible by the concomitant expression of mCherry. 

All plasmids (except the one for Syn-ChR2-EYFP, which was obtained from the Penn 

Vector Core (University of Pennsylvania, USA)) were made by Jiss John. 

The double point mutation (E123T and H134R) variant in the ChR2 sequence was 

obtained by a Quick Change Site directed mutagenesis PCR (Stratagene) on pAAV-

CamKII-ChR2-EYFP plasmid (in-house made). The primers used for the mutagenesis 

PCR were CAG TGG CTG CGC TAT GCA ACC TGG CTG CTC ACT TGT CC 

(forward) and GGA CAA GTG AGC AGC CAG GTT GCA TAG CGC AGC CAC TG 

(reverse). All correct clones with the proper two-point mutation were confirmed by 
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DNA sequencing. Next, the EYFP was replaced with a small peptide of 18 amino acids 

(P2A) fused to H2Bm-Cherry, using standard molecular cloning techniques, giving rise 

to the final construct pAAV-CamkII-ChETA-P2A-H2B-mCherry. 

 

5.11.  Preparation and delivery of adeno-associated virus 

All viruses (except the one encoding for Syn-ChR2-EYFP) were prepared, purified and 

concentrated by Jiss John. The method for packaging plasmids in recombinant AAV 

was based on Stratagene’s AAV Helper-Free System. Human embryonic kidney 293 

cells were cotransfected with the AAV-2 terminal repeat-containing plasmid (CamKII-

ChETA-P2A-H2B-mCherry or CamKII-EGFP) and packaging plasmid pDP8 (Plasmid 

factory). After 40 – 48 hours post transfection, cells were harvested and lysated by a 

series of freeze and thaw cycles which release virus particles from cells into the cell 

lysate. The cell lysate was further digested for 1 hour with Benzonase (Novagen) to 

remove unpackaged plasmid DNA and centrifuged to remove the cell debris. This clear 

lysate was applied to a CsCl gradient which enables the physical separation of full 

particles (AAV containing a genome) from empty particles based on their differences in 

density, and centrifuged (~23 hours, 45000 rpm, 21°C). After the centrifugation, the 

proper fractions containing the virus were collected and a dialysis (Pierce Slide-A-Lyzer 

dialysis cassette; Thermo Scientific, USA) was done using 1xPBS to remove CsCl . The 

AAV was then concentrated and washed using AmiconUltra Centrifugal Filter Units 

(Millipore; MWCO-100K). The concentrated virus is then washed 5× with 10mL of 

PBS. Finally, to determine the titer of the viruses, viral DNA is prepared using 

ViralXpress Nuclei Acid Extraction Kit (Milipore, USA), and quantitative PCR is 

performed suing FastStart SYBR Green Master Mix (Roche). For the AAV-2/8-

CamKII-ChETA-P2A-H2B-mCherry virus the final titer used was 4.6×1011 viral 

particles/mL. For the AAV-2/8-CamKII-EGFP the titer used was 1.3×1012 viral 

particles/mL. The AAV-2/9-Syn-ChR2(H134R)-EYFP virus was obtained from the 

Penn Vector Core (University of Pennsylvania, USA) at a final titer of 3.7×1013 viral 

particles/mL. 
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5.12.  Stereotaxic viral injections 

Mice were anesthetized with a 0.2 mL i.p. injection of pre-made mixture of ketamine 

(10 mg/mL) / medetomidine (0.08 mg/L). The eyes were protected from dehydration 

and intensive light exposure using vaseline and a small piece of aluminium foil above it. 

After proper head immobilization, the scalp was washed with 70% alcohol and a flap of 

skin (~ 1cm2) covering the skull of both hemispheres was gently removed. Care was 

taken to expose only the temporal, pariental and parts of the occipital bones, leaving 

completely untouched the musculus temporalis covering the temporal bone. The 

anterior-posterior, dorsal-ventral, medial-lateral and coronal planes were adjusted after 

stereotaxic calibration of the alignment apparatus. Microinjections were made using 

pipettes (pulled from borosilicate 1.14 mm outer and 0.5 mm inner diameter, WPI) 

connected to a nanoliter injector (Nanoliter 2000, WPI). A stereotaxic motorized drill 

(Model 1911 Stereotaxic Drilling Unit, Kopf Instruments) was used to open a small 

hole in the mouse skull directly above the auditory cortex following the coordinates 

from Bregma (in mm) -2.7 posterior and +4.3 medium-lateral. Care was taken to avoid 

damage of the dura. A coordinate from Bregma of -2.5mm dorso-ventral was used to 

reach primarily the upper layers of the auditory cortex. A total volume of 80 nL of 

purified and concentrated AAV encoding Syn-CHR2-EYFP (or CamKII-

ChETAmCherry) was used. The injections were made at a rate of 20 nL/min followed 

by additional 5 min in rest to allow diffusion of the viral particles away from the 

injection site. The micropipette was then gently removed to avoid leakage of the viral 

solution out of the tissue. Small drops of Vetbond glue were delivered solely on the 

edges of the skin to attach it to skull and thus avoiding direct infiltration of the wound. 

By means of a fine dentist drill the exposed skull was smoothened and two additional 

miniature screws were attached lateral to Bregma directly over the frontal bones to 

allow better adhesion of the black dental cement. A small magnetic metal round piece 

was embedded in the fresh and liquid dental cement layer where only the upper surface 

was made visible. Afterwards, the mouse was allowed to recover in its cage after a 0.02 

mL i.p. injection of atipamezole (5 mg/mL; Antisedan, Pfizer). 
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5.13.  In vitro characterization of ChR2-expressing neurons 

Four to five weeks after viral injection, whole-brain coronal slices (300 µm-thick) were 

prepared as described previously. Before the beginning of the recordings, all slices were 

inspected with epifluorescence (Olympus BX51WI upright microscope equipped with a 

100-W power range mercury short-arc lamp (USHIO, Tokyo, Japan)) to ascertain the 

location and the quality of the viral transfection. Only slices that showed a prominent 

and robust YFP expression were considered for further characterization. mCherry 

expression was visualised using a 575DCXR (AHF, Germany) dichroic mirror, thus 

minimizing channelrhodopsin activation. Recording from layer 2/3 pyramidal were 

made as before. To characterize the responses of ChR2-expressing neurons, current-

clamp recordings were conducted in the presence of the synaptic transmission blockers 

CNQX (10 μM), AP-5 (50 μM) and gabazine (10 μM) (Sigma). Light stimulation was 

delivered using full-field epifluorescence through a fluorescence mirror unit (U-

MWIB3, Olympus) equipped with a blue excitation bandpass filter (460 – 495 nm) via a 

water immersion objective (40x/0,8NA, Olympus). The timing, duration and frequency 

of the individual light stimulus were controlled via a shutter driver (model VCM-D1, 

UniBlitz, USA) and triggered using Clampex 10.2 software (Molecular Devices). Light-

evoked APs were induced by a train of five light pulses, 5 ms duration each, at different 

frequencies (from 1 to 80Hz, in some cases up to 200Hz). The percentage of successful 

APs that a given neuron could reliably fire upon a given train of light pulses was 

defined as follows: 

 

 

where 100% corresponds to 5 time-locked APs induced by 5 individual blue light 

pulses. It was observed that in all tested Syn-ChR2-expressing neurons (n = 10), and in 

a minor subset of CamKII-ChETA-positive neurons (3 out of 9), photostimulation 

induced doublets or triples of APs, per each light pulse. For sake of clarity these 

doublets or triplets were considered as one AP. The average of ten consecutive sweeps 

(5 sec long) was considered for further analysis. Photocurrents were evoked by 

delivering one 1 sec-long light pulse in voltage-clamp mode at -65 mV holding 

potential. Two consecutive sweeps were separated by a gap of 3 seconds. The average 
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of 10 consecutive sweeps was considered for further analysis. The amplitude of the 

photocurrents was measured in the stationary portion of the trace, taking as comparison 

the baseline immediately before the delivery of the light pulse. 

 

5.14.  Chronic cranial window implantation 

After 3 weeks post-injection, mice were anesthetized with a 0.2 mL i.p. injection of 

ketamine/medetomidine mixture. Dexamethasone (4 mg/mL dose) was administered by 

an intramuscular injection (0.02 mL) to the quadriceps for reducing the cortical stress 

response during the surgery and preventing cerebral edema. A 0.2 mL i.p. injection 

(from a 0.50 mg/mL stock) with carprofen prior to surgery was given to reduce 

inflammation. The eyes were protected from dehydration and from intensive light 

exposure as before. After washing the remaining scalp with 70% ethanol a flap of skin 

covering the right lateral part of the head was removed. The right temporal bone was 

unveiled by gentle removal of a small part of the musculus temporalis (previously 

injected with 1% Xylanest (lidocaine with epinephrine 1:200.000)) with a blunt spatula. 

Using a fine motorized drill, the bones were smoothened, and a part of the zygomatic 

process was removed and covered with a thin layer of 3M Vetbond glue as well as the 

remaining musculus temporalis to prevent blood capillary seepage. A thin layer of black 

dental cement (Lang Dental) was applied on top of the glue after it has dried, avoiding 

the area over the temporal bone. Next, a rectangular groove in the skull around the part 

of the brain containing the auditory cortex was made using a dental drill, leaving an 

island of skull (~2 mm × 3 mm dimensions) intact in the centre. The island of remaining 

temporal bone was carefully removed with blunt a forceps to expose a part of the brain 

containing the auditory cortex. Special care was taken to leave the dura intact. Small 

focal bleeding, due to the rupture of superficial cranial capillaries, was controlled by 

applying Gelfoam (Pfizer) previously soaked in a buffer of solution containing (in mM) 

125 NaCl, 5 KCl, 10 D-glucose, 10 HEPES, 2 CaCl2 and 2 MgSO4 (pH = 7.4). The 

exposed dura was then kept wet by the use of a soaked Gelfoam as well. Optical cranial 

window was completed by covering the craniotomy with a drop of pre-warmed liquid 

1.2% agarose (Sigma, St Louis, Misouri) followed by a small circular cover glass (5mm 

diameter, Electron Microscopy Sciences). The cranial window was afterwards sealed 
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with black dental cement over the cover glass´s contour and exposed skull. At the end, a 

small round metallic piece was placed, using dental cement around its periphery, on top 

of the mouse head for later magnet attachment of the miniature blue LED (see section 

5.15.3). 

 

5.15.  Behaviour procedures 

All components of the behaviour setup were controlled by a personal computer with 

Windows XP (Microsoft) operating system running custom Matlab software 

(Mathworks) written by Dr. Brice Bathellier. Naïve mice with implanted LEDs had free 

access to food but had restricted drinking water availability. Water was only available 

during and immediately after the behaviour sessions for a maximum of 10 minutes. The 

behavioural box consisted of a white Plexiglas chamber (25×25×42cm dimensions, 

model H10-11M-TC, modified, Coulborn Instruments), a removable metal grid floor 

and a single rectangular water delivery port mounted in one wall. The port was 

equipped with a water delivery tube (connected to a water reservoir placed outside the 

behaviour box, above the port) and placed in front of an infrared (IR) phototransistor-

photodiode pair that signalled the interruption of the infrared beam when the mouse 

entered its snout. Water was delivered due to gravitation and the drop size was 

controlled with solenoid valves. Before the initiation of the daily experiment, the water 

valve connecting the water reservoir and the licking tube was open to prevent the 

formation of any air bubble in the licking tube and thus clogging it. The excessive water 

was then thoroughly cleaned, making the port completely devoid of water prior to the 

behavioural session. A bright blue masking light (high-power LEDs) was mounted 

immediately above the port to mask any scattered light potentially reaching the retina of 

the mouse. The masking light consisted of a 225 ms pulse of bright blue light 

illuminating the entire port and was presented during every trial independently of 

whether photostimulation was presented or not. The behavioural box was inserted in a 

sound- and light-proof cabinet which was equipped with white LEDs as constant house 

light (placed above the behavioural box), and a CCD KB-R3138 camera with infrared 

LEDs (LG electronics) which was connected to a Cronos framegrabber (Matrox). 
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Training consisted of two phases, and the transition from the first, - Habituation – to the 

second, - Perceptual task

 

 -, was only allowed if mice performed at least at 75% correct 

or above. A total of two sessions were performed daily, 30 minutes maximum duration 

each. After each session, the mice were put back to their home cages. Within a session a 

given trial is initiated when the mouse snout enters the port and starts licking the water 

delivery tube. Immediately after the IR beam-break, a photostimulation (PS) trial 

(delivered by the LED place above the cranial window) or a no-photostimulation (NPS) 

trial is initiated in a random way along the entire session. After successful training, the 

mice are expected to continue licking at the tube and break the IR beam during a certain 

period of time (Reward Delay; 2.5 sec duration) after the end of the NPS trial to collect 

a water reward (Reward Duration; 0.5 sec), or to leave the port after the end of the PS 

trial to avoid a time out (7 sec duration) that can be accompanied by an aversive air puff 

(pressure = 10psi; Air Compressor, Silent Air Technology, Germany) (Figure 5.6). 

 

 
 

 

A positive trial (NPS) is considered correct if the mouse licks during more than 75% of 

the Check bin duration (1 sec-long), and a negative trial (PS) is correct if the mouse 
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licks less than 75% of the Check bin duration. No reward is delivered for a correct 

negative trial (head retraction upon photostimulation) and no other punishment is given 

for an incorrect positive trial (water available and no lick). No further trial can be 

restarted before the end of the Refractory Time (3 sec duration). 

 

5.15.1. Habituation 

Naïve mice that have been water deprived for 24h prior to the first habituation session 

were put individually in the behaviour box inside the sound- and light-proof cabinet. 

Mice were then trained in order to get water from the water port by breaking the IR 

beam inside the port. A drop of water was made available for every trial initiated after a 

given Refractory Time (3 seconds) for every time the mouse entered his snout in the 

port. Neither acoustic cue, neither photostimulation event was presented during the 

habituation sessions. In order to faithfully train the mice to perceive that there’s a time 

window (Reward delay) between the initiation of the trial and the delivery of the water 

reward, the Reward delay and the Check bin duration are automatically augmented 

during the habituation session every time the mouse has been able to receive 10 

successful rewards. After a certain number of consecutive steps (6), the final Reward 

delay (2.5 s) and Check bin duration (1 s) are reached. The Habituation sessions were 

repeated until mice had on average 75% chance of getting the water reward on the last 

step (i.e. with 2.5 s Reward delay) and get approximately 100 rewards in one session. 

--------------------------------------------------------------------------------------------------------- 

Figure 5.6. Timeline of the trials in the Perceptual task. When a given mouse enters its 

snout in the water port and starts licking at the water delivery tube, it is detected by an 

infrared (IR) beam placed in front of the tube. Immediately after this event, either a A) 

train of 5 light pulses (5 ms width pulse) at 20 Hz is presented (Photostimulation, PS), 

or B) no light signal is delivered (No-Photostimulation). After successful training, the 

mice are expected to continue licking at the tube and break the IR beam during a 

certain period of time (Reward Delay) after the end of the NPS to collect a water 

reward, or to leave the water port after the end of the PS to avoid a time out that can be 

accompanied by an aversive air puff 
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The water Reward duration consisted of 500ms time window, formed by 100 ms of 

valve opening followed by a 400ms time period when the valve is closed. In some 

cases, mice that eventually obtained the least number of rewards were put together in 

the same behaviour box with the ones which obtained the most. This was done to 

improve the number of visits to the water port in less motivated (or frightened) mice. 

On average, a total of 4 to 5 habituation sessions were performed before allowing the 

mice to transit to the Perceptual task. 

 

5.15.2.  Perceptual task 

After chronic window implantation and LED assemblage, mice were allowed to recover 

for 24h before going into the Perceptual task. On a given day, mice were put 

individually in the same behaviour box as during the previous Habituation phase. The 

LED was connected to the behaviour control system before the mouse was placed in the 

box. The cable to the LED controller ran freely through the roof of the box, but care was 

taken to prevent tangling of the wires. After the initiation of a given trial, a no-

photostimulation or a photostimulation (5 light pulses, 5ms width pulse, 20Hz) event 

was presented in a pseudo-random order with a 0.5 probability Mice are expected to 

continue licking at water tube during the Check bin duration for a (positive) no-

photostimulation (No-PS) trial, and to retract their head from the water port if a 

(negative) photostimulation (PS) trial occurs. If in a PS trial the mouse continues licking 

at the water tube during the Check bin duration time window an aversive air-puff (1 bar 

pressure) delivered via an air-pump (Silent Air Technology, Germany) directly to the 

mouse’s snout. At the end, mice are expected to perceive the photostimulation event as 

predictive for a punishment and retract their head in order to prevent it in time. After the 

end of a given Detection task session the LED assemblage was detached from the 

mouse head and the animal was put back in his home cage. 

 

5.15.3.  In vivo photostimulation 

One day after cranial window implantation mice were anesthetized using an isoflurane-

oxygen mixture (1.4% isoflurane/O2 by volume) delivered by an anaesthesia regulator 

(Univentor 400 Anaesthesia Unit, High Precision Instruments) and mounted on a 
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stereotaxic apparatus over a heating pad to keep body temperature. Eyes were again 

protected against dehydration by using a layer of vaseline. A sheet of cellophane paper 

was placed above the mouse head (acting as a physical barrier between the mouse head 

and the dental cement forming the LED cap), and a miniature blue high power light-

emitting diode (LED, 470 nm peak wavelength, NFSB036BT, Nichia, Tokyo, Japan) 

was mounted centred on the cranial window. An extra layer of vaseline was place aver 

the cellophane coverage to allow its later detach from the LED-dental cement assembly. 

A round magnet was then placed above the metallic piece previously placed above the 

mouse skull (see section 5.14). The assembly was then covered with black dental 

cement to prevent leakage of light. After complete drying of the dental cement the 

assembly was carefully lifted from the mouse head and the animal was allowed to 

recover in its cage. The photostimulation consisted on the delivery of five light pulses, 5 

ms duration each at 20Hz. All LEDs (average light intensity ~ 30 mW) were tested 

before implantation and before initiation of the individual behaviour training. 
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6. Results 

A total number of 92 inbred wild-type C57Bl/6J mice were used, with 8 to 12 weeks of 

age, a period where full brain development has been achieved (Kobayashi, 1963), 

including adult-like hearing abilities (Song et al., 2006). Recordings were made 

specifically from pyramidal neurons in supragranular layer 2/3 and infragranular layer 

5. To target for these individual neurons, 300 µm-thick coronal whole-brain slices were 

prepared, and the primary auditory cortex was identified in the slice according to the 

coordinates given in recent literature (Paxinos and Franklin, 2001). Care was taken to 

record from neurons that presented a prominent apical dendrite oriented towards the pia, 

indicative of minimal dendritic arborization damage, as confirmed by DIC microscopy 

beforehand. On a first approach, the neurons were selectively targeted for recording 

based on their pyramidal-like shaped soma. The boundaries of the supragranular layer 

2/3 and infragranular layer 5 were assigned based on high-contrast infrared pictures 

taken during the electrophysiology experiments (Figure 6.1). Starting from the slice pial 

surface, layer 2/3 was identified as being the first level of the slice that contains 

identifiable neuronal somata below layer 1, a cell-sparse layer containing mostly non-

pyramidal neurons (Hestrin and Armstrong, 1996). On the other hand, the identification 

of infragranular layer 5 was made by the size of the soma of the neurons present in this 

region, which when compared with layer 2/3 are noticeable larger (see Introduction). 

Overall, and based in previous comparable studies made in the mouse somatosensoty 

cortex (Lefort et al., 2009; Oswald and Reyes, 2008), the following subpial distances for 

the layer lower boundary was taken into account when identifying the layers of interest: 

300 µm for layer 2/3 and 850 µm for layer 5. Moreover, the intrinsic excitability of the 

recorded neurons was also used as an additional criterion to distinguish between the 

precise laminar locations of the neurons. In so, it is known that neuronal excitability of 

layer 5 pyramidals is prominently influenced by the hyperpolarization-activated inward 

cation current (Ih), which contributes to several basic physiological processes including 

resting membrane conductance and stabilization of resting potential (Magee, 1998). Ih is 

a prominent current with increasing channel density along the dendrites of layer 5 

pyramidal neurons, as compared with layer 2/3 neurons (Kole et al., 2006; Larkum et 

al., 2007). This current makes itself “visible” as a prominent “sag” in the voltage trace 

as a result of a subthreshold current injection step (see Magee, 1998; Kole et al., 2006; 

Huggenberger et al., 2009). This “sag” in the voltage trace was then used to confirm that 
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a given neuron was indeed properly located in infragranular layer 5 (see Figure 6.2). 

 

6.1. Features of local cortical connectivity in the adult naïve mice 

In the first part of this study, one main question was made: what are the properties that 

characterize local synaptic connectivity in the auditory cortex from adult naïve mice? 

To probe for local synaptic connectivity between pairs of pyramidal neurons, somatic 

whole-cell patch-clamp recordings in current clamp mode were made from two to four 

neurons simultaneously. In this way, one neuron is stimulated in turn while recording 

intracellularly from another three neurons that potentially receive input from the 

stimulated neuron. With this approach, one can have a full handle on the intrinsic 

electric properties of the targeted neurons, and an evaluation of their synaptic 

connectivity. In the example experiment seen in Figure 6.1, four pyramidal neurons 

were successfully recorded simultaneously. By injecting two brief 5 ms-duration 

depolarizing current pulses, a double action potential (AP) is evoked in each of these 

neurons in turn, while recording the membrane potential of the other neurons. For 

monosynaptically connected neurons, a presynaptic AP evokes release of the excitatory 

neurotransmitter glutamate, which opens ionotropic glutamate receptors present in the 

postsynaptic neuron, resulting in a time-locked unitary excitatory postsynaptic potential 

(EPSP) for each of the evoked AP. For every presynaptic neuron in a local microcircuit 

containing 4 neurons, there are 3 possible target neurons, giving a total of 12 possible 

synaptic connections. The recording of several individual pairs of potentially connected 

excitatory neurons enables the comparison of the overall pattern of functional 

connectivity between neurons in two cortical layers in the adult auditory cortex in a 

statistically meaningful way. Care was taken to record from excitatory neurons close to 

each other (< 50 µm apart). 

. 
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Figure 6.1. In vitro whole-cell recordings targeted to the adult mouse auditory cortex. A) IR-

DIC images from a coronal whole-brain slice partially showing the auditory cortex and four 

individual patch pipettes (top; numbered 1 to 4) and the corresponding four individual neurons 

(bottom; numbered 1 to 4) present in layer 2/3 that were targeted for a simultaneous quadruple 

patch-clamping experiment. B) Schematic synaptic connectivity diagram from a representative 

experiment. Each red arrow represents an observed monosynaptic connection between a pair of 

neurons (triangles). Membrane potential traces are shown for each of the 4 connections found 

(in a total of possible 12), showing presynaptic APs (black) and EPSPs (red) in the depicted 

synaptically connected neurons. The EPSPs exhibited a remarkable variability in terms of their 

amplitudes. Lx indicates the individual x cortical layer; WN, white matter. 
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6.1.1. Intrinsic electrophysiological properties of pyramidal neurons in the 

adult mouse auditory cortex 

As shown in Table 6.1, the resting membrane potential (Vm) and the membrane 

resistance (Rm) of the recorded neurons differed significantly between both cortical 

layers (p < 0.001). Neurons that needed to be injected with a compensatory current to 

maintain a constant Vm level were rejected from this particular analysis. On average, 

layer 2/3 pyramidal neurons (n = 289) had, when compared with layer 5 neurons (n = 

215), a significant lower Vm value (average ± s.e.m.: -74.2 ± 0.88 versus -67.7 ± 0.56 

mV, respectively). Moreover, the Rm value for layer 2/3 (126.2 ± 5.7 MΩ) was also 

smaller when comparing with the Rm for neurons in layer 5 (176.1 ± 9.81 MΩ). These 

observations are in accordance for what has been reported either in the developing mice 

(L2/3: Vm = -81 mV; Rm = 139 MΩ; Oswald et al., 2008) and adult rat auditory cortex 

(L2/3: Vm = -76 mV; Rm = 55 MΩ; L5: Vm = -74 mV ; Rm = 114 MΩ;   

Huggenberger et al., 2009), as well as in other sensory cortical areas (L2/3: Vm = -72 

mV ; Rm = 188 MΩ; L5: Vm = -63 mV ; Rm = 162 MΩ; Lefort et al., 2009). In 

summary, pyramidal neurons in layer 2/3 are in a more hyperpolarized physiological 

state and have lower membrane resistance values - a measure of the overall contribution 

of the membrane ion channels and transporters to the movement of ions across it - when 

compared with its layer 5 neurons counterparts. These intrinsic properties seem to be 

fully achieved already 2 weeks postnatal in mice (Oswald et al., 2008; Lefort et al., 

2009). 

To assess about AP intrinsic properties, a brief 5 ms-duration suprathreshold 

depolarizing current step was injected somatically in the recorded neurons (the same 

experimental procedure used to assess about synaptic connectivity). A random sample 

of neurons was considered for analysis. Neurons that needed to be injected with a 

compensatory current to maintain a constant Vm level were rejected from this analysis. 

The APs elicited in neurons from both cortical layers were virtually indistinguishable 

(Table 6.1). 
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Table 6.1. Intrinsic membrane and action potential properties of the recorded pyramidal 

neurons. Values are mean ± standard error of the mean (s.e.m.); Vm, resting membrane 

potential; Rm, membrane resistance; n, number of neurons; Statistically significant differences 

(*p < 0.05) between cortical layers were assessed by using the unpaired Student´s t test. 

 

 Layer 2/3 n Layer 5 n 

Vm (mV) -74.2 ± 0.88 289 -67.7 ± 0.56 * 215 

Rm (MΩ) 126.2 ± 5.70 289 176.1 ± 9.81 * 215 

AP threshold (mV) -32.4 ± 1.69 52 -33.0 ± 1.21 60 

AP amplitude (mV) 91.8 ± 1.13 52 95.9 ± 0.82 * 60 

AP overshoot (mV) 58.8 ± 1.99 52 61.8 ± 1.60 60 

AP half-height width (ms) 1.6 ± 0.04 52 1.7 ± 0.03 * 60 

 

AP threshold (the membrane potential that must be achieved for AP burst to occur) was 

not statistically different (p > 0.05) between pyramidal neurons in either layer 2/3 (n = 

52) and layer 5 (n = 60).  The overshoot (defined as the peak relative to 0 mV) was also 

similar between both cortical layers. On the other hand, the average AP amplitude 

(measured from AP threshold to peak) and the AP half-height width (width at half-

maximal AP amplitude) were different between cortical layers (p < 0.05). On average 

the amplitude of the APs elicited in layer 5 was higher (95.9 ± 0.82 mV) when 

compared with the APs elicit in layer 2/3 (91.8 ± 1.13 mV). Contrary, the average AP in 

layer 2/3 was narrower (1.6 ± 0.04 ms) than its counterparts in layer 5 (1.7 ± 0.03 ms). 

These observations are in line with what has been seen for other glutamatergic 

pyramidal neurons in other cortical areas in the brain slice preparation (for review see 

Bean, 2007). 

In the plots of the number of APs (mean ± s.e.m.) as a function of injected current 

(input/output curve), a significant difference was also observed between neurons from 

either cortical layers (Figure 6.2). The number of APs that on average pyramidal 

neurons from layer 5 (n = 206) could fire was significantly higher (p < 0.05) in the 

majority of the input current range used, as compared with pyramidal neurons form 

layer 2/3 (n = 201). A minor number of neurons were rejected from this particular 

analysis due to unreliable count of AP numbers in the most depolarized current injection 

steps. In the range from 60 to 280 pA of injected current, an average difference of 2.7 ±  
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Figure 6.2. Differential intrinsic excitability features of auditory cortex pyramidal neurons. 

A) Left: schematic diagram depicting the injected current steps (-60, -20, 0, 20 and 60 pA); 

Middle and right: Representative voltage traces evoked by the injected command steps from 

individual pyramidal neurons located in layer 2/3 and layer 5. APs were virtually 

indistinguishable when comparing both cortical layers. Note the marginal “sag” in the control 

trace as an indication of Ih activation. B) Relationship between the number of APs that neurons 

from layer 2/3 (n = 201; black circles) or layer 5 (n = 206; red circles) could fire upon 

increasing input current (input/output curve). On average, it was observed that layer 5 neurons 

revealed high firing rates for the majority of input current when compared with layer 2/3 

neurons. Values are mean ± s.e.m.. Statistically significant differences (*p < 0.05) were 

assessed using the two-way ANOVA test. 

 

0.25 APs was observed between layer 2/3 and layer 5 neurons. Since the AP threshold 

does not vary between both cortical layers (see Table 6.1), these changes in intrinsic 

excitability likely reflect the differences observed in resting membrane potential and 

membrane resistance between layer 5 and 2/3 neurons, namely the more depolarized 

state and high membrane resistance that layer 5 pyramidals have, making them more 
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prone to fire on a given input current. Interestingly, the observed differences in intrinsic 

excitability between layer 2/3 and layer 5 neurons are in accordance to the reported 

differences in spontaneous and evoked population activity in the rat auditory cortex in 

vivo (Sakata and Harris, 2009). 

 

6.1.2.  Features of EPSP amplitudes, kinetics and reliability 

As stated in Table 6.2, there was a significant (p < 0.05) difference between several 

EPSP intrinsic properties recorded in the two cortical layers. The EPSP amplitudes 

observed in layer 2/3 ranged from 0.02 to 3.37 mV (see also Figures 6.1 and 6.3), 

whereas in layer 5 this interval was remarkably shorter (from 0.01 to 0.9 mV). There 

was also a significant difference in the average EPSP amplitude between layer 2/3 (0.38 

± 0.06 mV; n = 80) and layer 5 (0.21 ± 0.06 mV; n = 15). Using developing rodents  

generally higher average EPSP amplitudes have been observed (L2/3: 0.2 – 1 mV, 

Holmgren et al., 2003; L2/3: 0.71 mV, L5: ~ 0.7 mV, Lefort et al., 2009; L2/3: 0.6 mV, 

Oswald et al., 2008; L5: 0.3 – 0.5 mV, Song et al., 2005). These discrepancies might 

reflect a characteristic feature of the mature cortex towards low amplitude synaptic 

connections. The latency (defined as the time difference between the presynaptic AP 

peak and the onset of the EPSP) and the average time-to-peak of the EPSPs (taken as 

the time difference between EPSP maximum and its onset) were also distinct (p < 0.05) 

between neurons in layer 2/3 and layer 5 (Table 6.2). The average EPSP latency in layer 

2/3 was 1.6 ± 0.1 ms (n = 80), while for layer 5 was significantly higher (2.3 ± 0.44 ms; 

n = 15). This discrepancy was also observed for the EPSPs time-to-peak (compare 4.2 ± 

0.32 and 7.8 ± 1.46 ms for layer 2/3 and layer 5, respectively). Similar features in the 

mouse developing barrel cortex were reported previously (Lefort et al., 2009). 
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Table 6.2. Excitatory synaptic connectivity features and kinetics of EPSPs. Values are mean ± 

s.e.m.; P, probability of connection; CV, coefficient of variation; n, number of found EPSPs; 

Statistically significant differences (*p < 0.05) between cortical layers were assessed using the 

unpaired Student´s t test 

 

 Layer 2/3 n Layer 5 n 

P (found /tested) 11.7 % (80/682)  3.01 % (15/498)  

Mean EPSP amplitude (mV) 0.38 ± 0.06 80 0.21 ± 0.06 * 15 

Range (mV) 0.02 – 3.37 80 0.01 – 0.9 15 

Latency (ms) 1.6 ± 0.1 80 2.3 ± 0.44 * 15 

Time-to-peak (ms) 4.2 ± 0.32 80 7.8 ± 1.46 * 15 

CV 1.3 ± 0.08 80 3.0 ± 0.83 * 15 

Failure rate 0.61 ± 3.3 80 0.64 ± 7.7 15 

Paired-pulse ratio 1.1 ± 0.16 80 0.8 ± 0.14 * 15 

 

Across the entire data set, few large-amplitude connections were found, but many small 

amplitude ones, which gives rise to a skewed distribution of EPSP amplitudes in layer 

2/3 and layer 5 (Figure 6.3) (Brunel et al., 2004; Frick et al., 2008; Lefort et al., 2009; 

Song et al., 2005; Ikegaya et al., 2012). Plotting the dataset for layer 2/3, which has a 

sufficient number of detected connections, on a semilog scale, it can be well 

approximated by a normal distribution (Figure 6.3) (Song et al., 2005; Ikegaya et al., 

2012). 
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Figure 6.3. Long-tailed distribution of EPSP amplitudes. A) Distribution of the average EPSP 

synaptic connection amplitudes found across the entire data set for layer 2/3, binned at 0.02 mV 

intervals. Note the long tail, indicating rare high-amplitude synaptic connections. Inset: the 

data set can be well approximated with a normal function (green curve) when plotted on a 

semilog scale (Lilliefors test for normality (p < 0.05)). B) Distribution of the average EPSP 

amplitudes for layer 5, binned at 0.05 mV intervals. Due to the limited amount of connections 

found (n = 15), a reasonable fit is not possible. 
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6.1.3.  Variability in postsynaptic transmission 

It is known that for individual central synapses, identical presynaptic electric 

stimulations results in variable evoked postsynaptic potentials. This fact is due mainly 

to the probabilistic exocytosis of glutamate and the variable timing and amplitude of the 

postsynaptic response itself (see Ribrault et al., 2011). On a trial-to-trial basis, in a 

single experiment, it was observed variable EPSP responses due to the same presynaptic 

AP stimulation. As can been appreciated in one example experiment shown in Figure 

6.4 (and see also Figure 6.1) - which depicts two independent connections recorded 

from two layer 2/3 neurons -, a double presynaptic AP can evoke both a high and 

reliable EPSP in another layer 2/3 pyramidal, as well as a smaller and highly variable 

EPSP. 

To further characterize the variability of EPSP amplitude across the 60 trials in a single 

experiment, the coefficient of variation (CV = standard deviation/mean) was calculated. 

As can be seen in Table 6.2, the CV of EPSP amplitudes (defined as the standard 

deviation of peak amplitudes divided by the average amplitude) differed significantly (p 

< 0.05) from a value of 1.3 ± 0.08 in layer 2/3, to 3.0 ± 0.83 in layer 5, which indicates a 

lower trial-to-trial variability of the EPSPs in layer 2/3 as opposite with a much higher 

variability of the synaptic connections found in layer 5. Another feature that can be 

appreciate easily in Figure 6.5 (and Figure 6.4) is the very low trial-to-trial variability of 

high-amplitude EPSPs compared with the highly variable responses found for small-

amplitude synaptic connections. This remarkable relationship between the decreases in 

CV with increasing synaptic strength can be better visualised and quantified by plotting 

the CV as a function of mean EPSP amplitudes for both cortical layers (Figure 6.5). The 

increased reliability of high-amplitude EPSPs, measured as a reduction in the CV, held 

true for both cortical layers tested. 
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Figure 6.4. Variability in EPSP amplitudes on a trial-to-trial basis. A) Ten representative 

individual and consecutive traces (black) from the highest EPSP amplitude found across the 

entire data set (3.37 mV) showing negligible trial-to-trial variability in a single experiment. B) 

Ten individual and consecutive traces (black) from one low amplitude EPSP connection (0.89 

mV) showing considerable trial-to-trial variability. Depicted in red for both panels are the 

superimposed 60 traces for each connection. Both examples are from pyramidal neurons 

recorded in layer 2/3. Arrows indicate the time points of presynaptic stimulation. 

 

Moreover, the failure rate (number of trials that failed to evoke an EPSP, divided by the 

total number of trials) was evaluated for each of the functional connections found. As 

shown in Table 6.2, the average failure rate for layer 2/3 (0.61 ± 3.4) and layer 5 (0.64 ± 

7.7) was not statistical different from each other (p > 0.05). Interestingly also to note the 

decrease in failure rate with the increase of the individual EPSP amplitudes (Figure 6.5), 

which indicates that synapses with low failure rates (and low CV) tended to be the ones 
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with high-amplitude EPSPs than those with high failure rates (and high CV). In 

summary, although rare, these high-amplitude reliable synaptic connections may 

dominate the entire network activity, assuming a critical role in the formation of 

interconnected clusters of neurons, as has been also suggested previously (Song et al., 

2005). 

 

 
Figure 6.5. Rare high-amplitude connections are more reliable than low-amplitude ones. A) 

Distributions of coefficient of variation (CV) as a function of mean EPSP amplitude (only 1st 

EPSP pulse shown) of each single connection found in this study for neurons from layer 2/3 

(top; black) and layer 5 (bottom; red). B) Distribution of percentage of failure rates as a 

function of the mean ESP amplitude for every functional detected connection. Note that 

although rare, the high-amplitude connections are the more reliable and less variable ones 

which may have important role in the overall network connectivity. Each circle represents a 

single functional connection (layer 2/3: n = 80; layer 5: n = 15). 

 

It is known that central synapses differ considerably in their response to repetitive and 

closely spaced afferent stimulation, some showing synaptic depression and others 

showing facilitation (for review Zucker and Regehr, 2002). These phenomena are 
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believed to depend on residual calcium concentrations in the presynaptic terminal, 

and/or the depletion of readily releasable vesicles. As stated in Table 6.2, the paired-

pulse ratio to two consecutive 50 ms-apart pulses across both cortical layers was 

marginally different (p < 0.05). On average, the second EPSP showed a smaller 

amplitude as compared with the first EPSP, which resulted in synaptic depression in 

layer 5 (0.8 ± 0.15; n = 15). On the other hand, synapses from layer 2/3 did not show 

significant short-term plasticity (paired-pulse ratio: 1.1 ± 0.16; n = 80). 

 

6.1.4.  Explanation of the variability in mean connection strengths with a 

binominal model of transmitter release 

The wide range of EPSP amplitudes observed (L2/3: 0.03 – 3.37 mV; L5: 0.01 – 0.9 

mV) could potentially be accounted for by differences in all three parameters of the 

quantal model of synaptic transmission, i.e. the number of synaptic contacts (n), 

probability in the neurotransmitter release (p) and the size of the postsynaptic response 

to a quantum of transmitter (q) (del Castillo and Katz, 1954). In this quantal model of 

synaptic release, a synaptic connection is assumed to be composed of n independent 

release sites, from where a single vesicle, at most, is released with a probability p upon 

the arrival of an AP, thus contributing with a quanta q to the postsynaptic response. If 

one assumes that the intrinsic variability of synaptic transmission can be described by a 

binomial distribution, then synaptic amplitudes could potentially be explained by 

differences in all three parameters, in the following manner: 

 

 

However, can the wide range of observed average EPSP strengths be largely explained 

by the variability in only one of the above parameters, as has been previously suggested 

(Loebel et al., 2009)? In order to assess what characterizes synaptic connections in the 

adult auditory cortex, several simulations were made, where two of the above 

parameters were kept constant, while varying the third one. The outcome of this 

binomial distribution for the several tested scenarios was then compared with the 

original relation between CV (and failure rates) and mean EPSP amplitude for both 

cortical layers. For a binomial process, the following equations apply: 
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As showed in Figure 6.5, one can easily appreciate that changes in q alone cannot 

explain the dependences of both CV and failure rates with mean connection strengths 

(Figure 6.5A, left); in essence, when varying the size of the quantal units, there is only a 

scaling along the mean EPSP amplitude axis, not remotely representing the actual data. 

However, changing only the release probability (p) from small to high values, while 

keeping q and n constant, can account for much of the variability observed in the dataset 

(Figure 6.5A, middle). Moreover, changing p was not the only way of capturing the 

variability in the dataset: fixing q and p, and only changing n, could also lead to an 

appreciable fit (Figure 6.5A, right), which implies that for the observed high amplitude 

connections (with low failure rate and low CV) a very large number of presynaptic 

release sites need to be accounted for - approximately 100 -, which is in accordance 

with has been previously reported in somatosensory cortex (range 1 – 170 release sites; 

Loebel et al., 2009). However, this good fit, was only possible when p was fixed to a 

low value (0.08), as this was essential to capture the high CV (and high failure rates) 

values associated to low mean amplitude connections. 

In summary, it was observed that differences in the number of release sites and in 

probability of release can both explain the observed systematic decrease in response 

variability, as the synaptic efficacy increases. This observation also held true for the 

data in cortical layer 5 (Figure 6.5B). 
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6.1.5.  Patterns of synaptic connectivity 

The probability of connectivity (total number of functional connections divided by the 

total number of connections tested) suffered from variability when comparing 

individual experiments and so, in order to obtain significant quantitative information, it 

was of utmost importance to record from many pairs of neurons. A total number of 340 
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neurons from layer 2/3, and 290 neurons from layer 5 were recorded. For the 

supragranular layers 2/3 a total of 682 possible synaptic connections were tested, among 

which 80 were functional ones, giving a value of 11.7% as the average probability of 

any two excitatory layer 2/3 neurons being monosynaptically connected. For 

infragranular layer 5, a connection probability of 3.01% was found, which represents a 

total of 15 functional connections among 498 possible ones (Table 6.2). One can easily 

appreciate that local synaptic connectivity was not uniform: in layer 2/3 the connectivity 

is higher when compared with layer 5. Similar observations were reported previously 

for the rat layer 2/3 (P = 9%; Holmgren et al., 2003; in the range of 9 to 12%; Lefort et 

al., 2009) and layer 5 (P = 9.2%; Thomson et al., 2002; P = 11.6%; Song et al., 2005) 

somatosensory cortex. 

A given simultaneously recorded pair of neurons can be generally classified into three 

different classes: unconnected, unidirectionally connected, or bidirectionally connected. 

Assuming that the existence of a connection between any two neurons is independent of 

each other, that P defines the connection probability and N the total number of pairs of 

neurons tested, then the expected number of unconnected pairs should be N(1 – P)2, the 

unidirectionally connected pairs should be 2NP(1 – P), and the expected number of 

bidirectionally connected pairs is defined by NP2. In layer 2/3, a total of 40 pairs of 

connected neurons were found. Among those, 31 were connected unidirectionally and 9 

via a bidirectional connection. 

By assuming independent connection probabilities between pairs of neurons, one can 

appreciate that the observed number of bidirectionally connected pairs of neurons is 

---------------------------------------------------------------------------------------------------------- 

Figure 6.6. Low probability of neurotransmitter release and small quantal units account for 

the variability in individual connections in the adult auditory cortex. Top row: plot of CV in 

dependence of mean EPSP amplitude in A) layer 2/3 or B) layer 5  for binomial distributions 

with increasing q (left), p (middle) or n (right), while keeping the other two quantal parameters 

unchanged (stated in each panel).; Bottom row: plot of failure rate (%) in dependence of mean 

EPSP amplitude in layer 2/3 for binomial distributions with increasing q (left), p (middle) or n 

(right), while keeping the other two quantal parameters unchanged (stated in the corresponding 

panel above); For every graph, black crosses correspond to one individual functional 

connection described before (layer 2/3: n = 80; layer 5: n = 15) 
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twice of the expected one (4.7) from a randomly wired network (given by 0.117 × 0.117 

× 341; Figure 6.7). On the other hand, the observed number of neuronal pairs that are 

unidirectionally connected is significantly less (p < 0.05) when compared with the 

expected one (265.9). These observations argue for an overrepresentation of 

reciprocally connected pairs of neurons in layer 2/3 in the mouse adult auditory cortex, 

confirming also previous reports for the rat somatosensory cortex (Holmgren et al., 

2003; Song et al., 2005). Not enough data was gathered from layer 5 to make any 

reliable analysis. 

 



Results 
 

 

61 
 

There was no significant difference (p > 0.05; unpaired Student’s t test) between the 

mean EPSP amplitude for the bi- and unidirectional connections (compare 0.50 ± 0.19 

and 0.34 ± 0.05 mV, respectively), nor there was a significant linear correlation between 

the EPSP amplitudes for either the connections in a given pair (R = 0.13). This is in 

contrast with previous reports done with developing animals where reciprocity of 

connections is greater for stronger connections (Markram et al., 1997; Holmgren et al., 

2003; Song et al., 2005). Nonetheless, it holds true that if neuron A synapses onto 

neuron B, then the probability of B synapsing onto neuron A is several times greater 

than chance. As cortical excitatory synapses are weak and stochastic, a neuron cannot 

fire an AP unless it receives a significant number of synaptic inputs in a narrow time 

window. In so, what is the minimal number of presynaptic inputs that a neuron needs to 

receive to reach AP threshold? Knowing the range of AP threshold, and EPSP 

amplitudes (including the unconnected (EPSP amplitude = 0 mV) connections tested) 

for both cortical layers (Tables 6.1 and 6.2), it is possible to assess how many randomly 

chosen EPSPs should be added up to reach a given AP threshold. Assuming random 

firing and independent connection probabilities between pairs of neurons, an average of 

~900 presynaptic neurons (Figure 6.8A; point a) are require to drive a postsynaptic 

neuron to fire an AP in layer 2/3. This estimation is significantly higher for layer 5 

(~2400 presynaptic inputs; Figure 6.8B, point a). Interestingly, and taken into account 

the strongest connection found for either layer 2/3 (3.37 mV) and layer 5 (0.9 mV), the 

AP threshold could also be reached by a minimal number of ~25 presynaptic neurons 

for L2/3 (Figure 6.8A, point b), and ~100 presynaptic inputs for L5 (Figure 6.8B, point 

b). 

-------------------------------------------------------------------------------------------------------------------- 

Figure 6.7. Overrepresentation of bidirectional connection in cortical layer 2/3. A) 

Independent probabilities of connections within a given pair of recorded neurons (triangles) are 

assumed. B) Distribution of counts of bidirectional connected pairs of neurons estimated by the 

bootstrap method. To notice that reciprocal connections are two times more likely to occur (red 

line) than predicted if independent probabilities of connections are assumed (green line); C) 

Cumulative density distribution of the mean EPSP amplitudes of the uni- (blue) and 

bidirectionally (red) connected pairs of neurons. 
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Figure 6.8. Estimation of the number of randomly chosen presynaptic inputs required to 

reach AP threshold. Normalized distribution of number of presynaptic inputs required to drive 

a given postsynaptic neuron to reach action potential threshold in A) layer 2/3 (black; binned at 

25 intervals) and B) layer 5 (red; binned at 100 intervals), estimated by the bootstrap method. 

Random firing and independent connection probabilities between pairs of neurons were 

assumed. Points a and b in both panels indicate, respectively, the average and the minimal 

(taken into account the largest EPSP amplitude found in both datasets) number of required 

presynaptic inputs to reach AP threshold. 

 

6.1.6.  Cortical differences in spontaneous neuronal activity 

One useful tool in assessing about the basic mechanisms of neurotransmission is the 

study of the spontaneous excitatory postsynaptic events. Due to the infrequent 

spontaneous spiking by cortical neurons (Hromádka et al., 2008; O’Connor et al., 2010) 

and their highly asynchronous states (Ecker et al., 2010; Renart et al., 2010), some of 

these events occur spontaneously in an AP-independent manner. The properties of these 

events, in particular frequency of occurrence and relative amplitude, offer a means to 

study the otherwise inaccessible presynaptic and postsynaptic terminals (e.g. Ribrault et 

al., 2011). The analysis of spontaneous excitatory postsynaptic potentials (sEPSPs) was 

made for both cortical layers, using a Template-based search method (see Methods). For 
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this purpose, the frequency of occurrence and the sEPSPs intrinsic amplitudes were 

assessed in parallel during the local connectivity experiments in only a subset of 

randomly chosen neurons (except for the ones where compensations in Vm had to be 

done). As can be observed in Figure 6.9, there was significant difference (p < 0.05) in 

the average frequency of these spontaneous events between layer 2/3 (1.4 ± 0.2 

events/s; n = 34 neurons) and layer 5 (2.3 ± 0.2 events/s; n = 18 neurons). Moreover, 

there was a significant (p < 0.05, unpaired Student’s t test) difference between the 

number of spontaneous events recorded in the individual neurons across layers (L2/3: 

123.3 ± 15.4 events / neuron; L5: 207.8 ± 16.7 events / neuron). As showed in Figure 

6.9C, the sEPSP amplitude was significantly higher in pyramidal neurons from layer 2/3 

(0.83 ± 0.06 mV / neuron), as compared with layer 5 pyramids (0.44 ± 0.03 mV / 

neuron) (p < 0.001; unpaired Student’s t test). Alterations in both the frequency and 

amplitude of sEPSPs suggest a bidirectional contribution of both presynaptic release 

and postsynaptic responsiveness mechanisms in global neurotransmission within these 

cortical layers. 
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Figure 6.9. layer 2/3 and layer 5 sEPSs features. A) Five representative whole-cell current-

clamp recordings of sEPSPs from one layer 2/3 (left) and one layer 5 pyramidal neuron (right). 

Asterisk (*) denotes sEPSPs in either traces. B) Average sEPSP frequencies (number of 

neurons in brackets) and C) sEPSP amplitudes in layer 2/3 and layer 5. For all panels, colour 

scheme: black (layer 2/3), red (layer 5); All values are mean ± s.e.m.; * p < 0.001, unpaired 

Student’s t test. 
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6.2.  Relative contribution of excitation/inhibition drive onto layer 2/3 

pyramidal neurons with temporal resolution 

In the second part of this work, the relative contribution of excitatory and inhibitory 

drives that impinge onto pyramidal neurons, with precise temporal resolution, was 

assessed. It is known that mature neocortical neurons form a dense mosaic that contains 

lateral and vertical connections travelling within and between the cortical layers (e.g. 

Douglas and Martin, 2004; see Introduction), where cortical excitability is determined 

by the influence of both excitatory (glutamatergic) and inhibitory (GABAergic and 

glycinergic) synaptic inputs that originates in dynamic local recurrent networks (e.g 

Binzegger et al., 2004). A delicate balance between excitation and inhibition that a 

neuron receives is thus maintained within a narrow window to avoid excessive 

excitation, or neuronal quiescence, in response to alterations in ongoing neuronal 

activity. In sensory cortices, a balance between feedback or feedforward inhibition and 

recurrent excitation reduces the randomness of cortical operation and increases temporal 

precision (e.g. Wehr and Zador, 2003; Le et al., 2006; Zhang et al., 2011). 

In order to characterize the relative contribution of synaptic excitatory and inhibitory 

conductances onto layer 2/3 pyramidal neurons, synaptic currents were evoked by 

minimal intracortical extracellular electrical stimulation of two independent and 

convergent cortical pathways. One stimulation electrode was placed vertically to the 

targeted neuron directly in layer 4 in order to stimulate the known strong vertical 

columnar input from layer 4 neurons, while the second electrode was situated laterally 

to the recorded neuron to selectively activate the robust lateral recurrent intracortical 

input which is known to shape layer 2/3 pyramids responsiveness (see Introduction). 

Both pathways were alternatively stimulated with a double squared pulse, 100 ms apart 

(see Methods). Whole-cell recordings under voltage-clamp mode at varying holding 

potentials (from -90 to -30 mV, in some cases up to -15 mV holding potential; Figure 

6.10) were made, followed by the determination of the associated excitatory and 

inhibitory conductances using previous linear methods (see Methods for details; Monier 

et al., 2003; Wehr and Zador, 2003; Le et al., 2006; Shu et al., 2003; Cruikshank et al., 

2007).  
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The responses of the recorded pyramidal neurons to the stimulation of the lateral and 

vertical inputs had a weak excitatory conductance (Ge), followed by a statistically 

significant (p < 0.05; n = 20) stronger inhibitory conductance (Gi), as can be appreciated 

for an example in Figure 6.11A. On average, the maximum Ge and Gi for the lateral 

stimulated pathway were, respectively, 2.08 ± 0.6 and 7.22 ± 1.4 nS. For the vertical 

input the observation was similar (Ge = 2.0 ± 0.4 nS; Gi = 8.11 ± 1.6 nS). This 

discrepancy between Ge and Gi maxima was also observed for the 2nd pulse situation 

(Figure 6.11B). Moreover, it is known that in adult cortices, the ratio of excitatory and 

inhibitory conductances (E/I ratio) is presumably balanced across a wide variety of 

stimulus conditions. The establishment of E/I balance in adult cortical neurons may 

result from developmental and experience-dependent co-regulation of developing 

glutamatergic and GABAergic synapses (see Turrigiano and Nelson, 2004). In so, the 

---------------------------------------------------------------------------------------------------------- 

Figure 6.10. Determination of the synaptic excitatory and inhibitory reversal potentials. A) 

Top: representative synaptic postsynaptic currents (PSCs) evoked by two 1ms-duration (100 ms 

apart) pulses extracellular stimulation of a lateral and vertical independent and convergent 

intracortical synaptic pathways to layer 2/3 pyramidal neurons at six different holding 

membrane potentials (from -90 to -15 mV). At depolarized holding potentials (from -45 mV, i.e. 

between reversal potentials for excitation and inhibition) the response was biphasic: initially 

inward, then turning outward in a few milliseconds. The overall synaptic currents amplitudes 

for a given individual neuron were similar when comparing both stimulated pathways. Bottom: 

corresponding synaptic current-voltage (I-V) curves for both stimulated inputs (n=20). The 

linear regression slope and x-intersect give, respectively, the synaptic conductance and mixed 

synaptic reversal potential. B) Top: representative pharmacologically isolated inhibitory PSCs 

(bath perfusion of CNQX (10 μM) and AP-5 (50 μM)) recorded at different holding membrane; 

Bottom: corresponding I-V plot used to calculate the inhibitory reversal potential for both 

stimulated inputs (n=5). C) Top: representative pharmacologically isolated excitatory PSCs 

(bath perfusion of SR-95531 (10 μM) and TTX (4nM)) recorded at several holding potentials. 

Bottom: corresponding I-V plot used to calculate the excitatory reversal potential, by linear 

extrapolation of the regression line (n=8). For all the panels, arrows indicate the double-pulse 

extracellular stimulation, and each PSC trace corresponds to the average of 10 consecutive 

repetitions at the same holding potential; (•), lateral input; () vertical input. Each point in the 

I-V curve corresponds to the averaged (± s.e.m.) PSCs amplitudes for the 1st pulse only, plotted 

against the holding potential. 
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E/I ratio was directly measured for the layer 2/3 pyramidals when the two cortical inputs 

were stimulated. Overall, the E/I ratios for the lateral and vertical inputs were low 

(lateral: 0.33 ± 0.04; vertical: 0.5 ± 0.17), consistent with the notion of a general 

decrease in E/I ratio after the critic developmental period (Zhang et al., 2011), and were 

not significantly different from each other, arguing for a constant E/I ratio within and 

across cortical layers. Similar conclusions can be drawn for the 2nd pulse situation. 

Furthermore, to test if there was a significant difference in excitatory-inhibitory delays 

for both stimulated pathways, the latencies between Ge and Gi peaks were measured 

(Figure 6.11C). For this purpose, the first derivative was applied to either the excitatory 

and inhibitory individual trace conductances, in order to assess about points of 

maximum conductances. On average, it was observed that the separation of excitation 

and inhibition (i.e. the delay of inhibition from excitation; n = 20 neurons) was 1.62 ± 

0.8 ms for the lateral stimulated pathway, and 0.78 ± 0.4 ms for the vertical input. When 

analyzing the 2nd pulse situation, the observation was similar (Figure 6.11D). These 

excitatory-inhibitory delays were similar when compared both stimulated pathways (p > 

0.05). The very narrow range of latencies between Ge and Gi (less than 2 ms) argues for 

a monosynaptic nature of the stimulated intracortical projections onto the recorded layer 

2/3 pyramidal neurons (Cruikshank et al., 2007; Zhang et al., 2011). 
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Figure 6.11. Temporal resolution of vertical and lateral excitation/inhibition drives onto layer 

2/3 neurons. A) Representative example of the temporal evolution of the underlying excitatory 

(green) and inhibitory (red) conductances after decomposition of the total conductance (black), 

from the same neuron as in Figure 6.10A. The decomposition of the total conductance was done 

by comparing the measured reversal potential for the mixed synaptic conductance to the 

previously calculated reversal potentials for excitation and inhibition, using conventional linear 

methods (e.g. Cruikshrank et al., 2007). B) Quantification of the average (± s.e.m.) maximum 

excitatory (green) and inhibitory (red) conductances after decomposition of the total trace 

(black), for both stimulated pathways (L, lateral; V, vertical) and for both delivered pulses. C) 

Expanded traces of the initial time period highlighted in panel A (dashed boxes), showing the 

time latency between the inhibitory peak conductance and the excitatory conductance (vertical 

dashed lines), after the stimulation onset, in both pulses delivered. D) Quantification and 

comparison between the peak time differences between inhibitory and excitatory conductances 

for both stimulated pathways. Thin grey lines connect the 1st and 2nd pulse for a given recorded 

cell, while the thick black line connects group means. For all the panels, arrows indicate the 

double-pulse extracellular stimulation; (*), p < 0.05, paired Student’s t test. 
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In addition to the amplitudes of the intracortical conductances, the kinetics of these 

conductances was also examined. As showed before, on average, excitatory 

conductances preceded inhibitory conductances by less than 2 ms. Interestingly, 

however, and in opposition with previous reports (e.g. Wehr and Zador, 2003; Le et al., 

2006; Cruikshank et al., 2007; Zhang et al., 2011), in almost half of the recorded 

neurons (8 out of the total 20 neurons), the inhibitory trace presented a two-wave 

barrage conductance, which can be fully appreciated in Figures 6.12A and 6.12B. It was 

observed that, on average, in these cases, the first inhibitory wave came on average 1.4 

± 1.0 ms before the maximum of the excitatory conductance peak for the lateral input, 

and 0.12 ± 0.6 ms for the vertical input (Figure 6.12C). Similar finding was observed 

for the 2nd pulse situation. It was also observed that the latencies of the inhibitory 

second wave were surprisingly bigger: 3.4 ± 1.7 ms for the lateral pathway, and 6.0 ± 

1.4 ms. Similar latencies were also seen for the 2nd pulse situation for both stimulated 

pathways. This surprisingly finding is consistent with a view of a possible disynaptic 

feedback or feedforward inhibitory mechanism (Cruikshank et al., 2007; Zhang et al., 

2011; see Discussion, section 6.5). 
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6.3. Features of local cortical connectivity upon the acquisition of an artificial-

driven behaviour 

In the third part of this study, one final question was made: how is neuronal 

connectivity affected after the acquisition of a learned behaviour? It is known that 

learning and perceptual guided behaviours in mammals can be driven by artificial 

activation of cortical neurons (Houweling and Brecht, 2007; Huber et al., 2008; Wang 

et al., 2012). In fact, the induction of perception-guided behaviours (Huber et al., 2008; 

Otto et al., 2005; Wang et al., 2012) can be achieved by the activation of a relative small 

number of neurons (e.g. ~700, Huber et al., 2008; ~300, Choi et al., 2012), and that 

decision making occurs in the timing of the intrinsic cortical activity (as short as 3 ms; 

Yang et al., 2008).However, to address the initial question, one should develop a 

strategy to precisely control and activate defined groups of neurons, assess about their 

relevance in driving a given behaviour and finally to determine if a given acquired 

behaviour is translated in alterations in synaptic connectivity between those specific 
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neurons that were engaged in the task. Although cortical electrical microstimulation can 

establish possible relationships between the activity of groups of neurons and perceptual 

and discriminatory behaviours (e.g. Houweling and Brecht, 2008; Otto et al., 2005; 

Rousche et al., 2003), it encompasses several disadvantages, namely, it excites local and 

long-range axons non-discriminately. Therefore, the cell types and precise cell locations 

that drive behaviour in classical microstimulation experiments are poorly defined. This 

drawback can at least partially be overcome by direct photostimulation of genetically 

defined neural populations. 

 

6.3.1. Characterization of light-induced responses in channelrhodopsin-

expressing pyramidal neurons 

In this strategy, groups of neurons are genetically rendered with photosensitivity by 

means of expression of the transmembrane light-gated algal channel channelrhodopsin-

2 (ChR2). The activation of ChR2 with blue light (~470 nm wavelength) is sufficient to 

produce rapid light-activated cationic photocurrents (Nagel et al., 2003), which allows 

neurons to be engaged in single and in complex trains of action potentials in a precise 

---------------------------------------------------------------------------------------------------------- 

Figure 6.12. Two-wave inhibitory patterns. A) Representative example of the temporal and 

kinetic evolution of the underlying excitatory (green) and inhibitory (red) conductances after 

decomposition of the total conductance (black) For a total of 8 (out of the 20 neurons total; 

Figure 6.11), a two-wave inhibitory pattern barrage was observed, as a two distinct inhibitory 

peak conductances (denoted by asterisk). B) Expanded traces of the initial time period 

highlighted in panel A (dashed boxes), where vertical dashed lines indicate the time of 

maximum conductances for the inhibition and excitation, after the stimulation onset. Two 

inhibitory peak conductances were clearly observed, with different latencies towards the 

excitation maximum conductance. C) Quantification and comparison of the peak time 

differences between the two-wave barrage inhibition and excitation, across the stimulated 

pathways, and the double extracellular stimulation pulses. For all cases, the first wave of 

inhibition came before the excitatory peak conductance, while the 2nd wave always followed the 

excitation. Thin grey lines connect the 1st and 2nd inhibitory waves for a given recorded cell. A 

thick black line connects group means For all the panels, arrows indicate the double-pulse 

extracellular stimulation; (*), p < 0.05, comparison between means; paired student’s t test. 
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temporal mode (Boyden et al., 2005).In the present study, two ChR2 constructs were 

tested for their ability to render light sensitivity to neurons, and possible suitable use 

during in vivo photostimulation-driven behaviour (see later). In the first construct used, 

denoted “Syn-ChR2”, the H134R mutation present in the ChR2 sequence can give rise 

to larger stationary photocurrents in comparison to the wild-type ChR2 (Zhang et al., 

2007). In this case, the expression of the ChR2, and the reporter fluorescent protein 

(EYFP), were under the control of the synapsin-1 promoter (Figure 6.13A), which 

allows the exclusive expression of ChR2 to neurons (Kügler et al., 2002). By using 

confocal microscopy, it was possible to conclude that ChR2-EYFP invaded the soma, 

dendrites and axons of neurons (Figure 6.13B). In the second construct used (denoted 

“CamKII-ChETA”), neurons were rendered photosensitive with an ultra-fast ChR2 

variant (ChETA). This fast kinetic mutant of ChR2 carries the point mutation E123T in 

a H134T background and it is engineered to render a more precise temporal resolution 

in the light-induced APs over sustained trains of light due to its intrinsic faster 

deactivation kinetics (Gunaydin et al., 2010). The ChETA sequence was fused to the 

self-processing peptide 2A (P2A), and to the histone 2B sequence (H2B), and further to 

the red fluorescent protein mCherry (Figure 6.13D). After P2A self-cleavage (Tang et 

al., 2009), ChETA-specific membrane expression is made “visible” by the 

correspondent nuclear red label, which has the advantage of proper visualization of 

infected neurons in the brain slice (Figure 6.13E), while minimizing ChETA activation 

with a different light wavelength. The genetic construct was under the control of the α-

calcium/calmodulin-dependent protein kinase II (CaMKII) promoter, allowing specific 

targeting of excitatory neurons (Burgin et al., 1990). 

By means of stereotaxic injections, in separate mice, of recombinant adeno-associated 

virus (AAV), which carries the different ChR2 constructs, it was possible to target for 

neocortical neurons present in the upper cortical layers of the auditory cortex (Figure 

6.13B and 6.13E; see Methods). To characterize the responses of the ChR2-expressing 

neurons to photostimulation, coronal brain slices from naïve mice were made, 4-5 

weeks post-viral injection. A specific and prominent fluorescent expression was 

observed in the primary injection site in the auditory cortex (Figure 6.13B and 6.13E), 

as well in axonal callosal projections into the contralateral side, and even retrograde 

projections into the auditory thalamus for the Syn-ChR2 construct (Figure 6.13B). This 

indicates the correct targeting of auditory cortex for viral infection. 
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Whole-cell recordings were made specifically from ChR2-positive layer 2/3 cortical 

pyramidal neurons, as before. Photosimuli consisted of trains of 5 individual light 

pulses (5 ms width pulse), delivered at different and increasing frequencies (from 1 to 

80Hz), via full-field epifluorescence microscopy (bandwidth 460 - 495 nm using a blue 

excitation bandpass filter U-MWIB3 and 100W mercury lamp; 12.02 mW light-

intensity). Light-induced APs were pharmacologically isolated by continuous 

superfusion of the synaptic transmission blockers CNQX (10 μM), AP-5 (50 μM) and 

gabazine (10 μM). This characterization had the purpose to assess up to which light-

pulse frequency a ChR2-positive layer 2/3 pyramidal neuron could reliably follow the 

light train. On average, it was observed that neurons expressing Syn-ChR2 (n = 10), or 

CamKII-ChETA (n = 9), can fire one AP in response to each of the single light pulses 

reliably in the range between 1 to 20 HZ of light frequency (Figures 6.13C, 6.13F and 

6.13G). However, there was an improved performance from CamKII-ChETA-

expressing neurons over a broader frequency range (up to 40Hz), also in accordance 

with previous reports (Gunaydin et al., 2010). In this regard, ChETA-expressing 

neurons considerably outperformed the Syn-ChR2-positive neurons (Figures 6.13G). 

Furthermore, the photocurrents amplitudes elicited by one long (1 sec) pulse of blue 

light were recorded from neurons expressing both genetic constructs. It was observed 

robust inward photocurrents in Syn-ChR2-positive neurons (655.4 ± 92.0 pA measured 

at the steady-state level; n = 15) with rapid kinetics (Figure 6.13H). These photocurrents 

initially peaked, then decreased to a sustained level, and lasted only during the light 

pulse duration. In all Syn-ChR2-expressing pyramidal neurons recorded from (15/15) it 

was possible to observed light-induced APs mediated by inward photocurrents, which 

argues that possibly all the neurons infected in the primary injection site are ChR2-

positive neurons, with minor differences in ChR2 expression levels due to the narrow 

range of photocurrent amplitudes across individual neurons. On the other hand, the 

ChETA-mediated photocurrents were statistically (p < 0.05) smaller (82.5 ± 7.6 pA; n = 

9/9) when compared with the photocurrents in Syn-ChR2-expressing neurons (Figure 

6.13H), and also compared with previous reports in hippocampal cultures, where 

photocurrents of ~ 650 pA were observed (Gunaydin et al., 2010). Although ChETA-

expressing excitatory neurons outperformed their Syn-ChR2-expressing counterparts in 

the undeniable ability to reliably fire APs in a broader frequency range (from 1 to 

40Hz), the significant lower amplitude of its photocurrent could in part explain the 
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inefficacy of the use of ChETA for in vivo photostimulation-dependent task. In fact, 

originally intended to pursue behaviour photostimulation experiments, it did not prove 

to be the best suitable approach to do so. One possible explanation might be an 

incomplete cleavage of the linking self-processing peptide 2A, resulting in insufficient 

ChETA expression at the neuron’s membrane, which would result in low amplitude 

photocurrents. No major differences (p > 0.05) were observed in resting membrane 

potential and membrane resistance in neurons expressing either of the channelrhodopsin 

variants (Syn-ChR2: -59.0 ± 2.7 mV and 248.2 ± 21.4 MΩ, n = 15 neurons, 

respectively; ChETA: -61.0 ± 2.4 mV and  252.5 ± 39.7 MΩ, n = 9 neurons, 

respectively).
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Figure 6.13. Rendering of photosensitivity to neurons in layer 2/3 by expressing ChR2. A) 

Drawing of the genetic construct used to express ChR2 into neurons. ChR2 carrying one point 

mutation (H134R), fused to an enhanced yellow fluorescent (EYFP) marker, and under the 

control of the synapsin-1 promoter. B) Top: Full-field epifluorescence coronal slice image 

showing the primary injection site (arrow), as well as contralateral colossal axonal projections 

(black arrowhead) and thalamic projections (white arrowhead). Green: EYFP expression; 

Blue: nuclear marker DAPI; Bottom: Confocal microscopy pictures of ChR2 expression (EYFP 

fluorescence; green) in the primary injection site of slice depicted above, revealing somatic, 

dendritic and axonal specific expression. C) Current-clamp recordings illustrating light-

induced APs in one representative Syn-ChR2-EYFP-expressing neuron, in response to trains of 

5 light pulses (5 ms pulse width; blue mini-bars on top of the traces) at varying frequencies 

(left). D) Schematic drawing depicting the construct used to expressing the ultra-fast ChR2 

version (ChETA) into neurons. ChETA, carrying the point mutation E123T in H134T 

background was fused to the auto-cleavable peptide 2A (P2A), histone 2B (H2B) sequence and 

the red fluorescent protein mCherry, under the control of the CamKII promoter. E) Top: Full-

field epifluorescence image depicting the primary injection site for ChETA expression (mCherry 

fluorescence; red) specifically in the auditory cortex of a mouse previously injected with the 

construct depicted in C); Blue: nuclear marker DAPI as a counterstaining; Ctx: cortex; Hip.: 

hippocampus; Bottom: Representative DIC and fluorescence images of individual layer 2/3 

neurons taken from the slice depicted above. F) Same as C), for a representative neuron 

expressing CamKII-ChETA. Note the reduced AP’s plateau potential which allows the neuron 

to reliably follow the light train up to 50Hz, as compared to the example in C). G) Summary of 

the percentage of successful light-evoked APs as a function of light-pulse frequency (1, 2, 5, 10, 

20, 40, 50 and 80Hz) for the recording neurons expressing Syn-ChR2 (orange; n = 10) or 

CamKII-ChETA (blue; n = 9). Note that above 40Hz, on average, neurons cannot reliably 

follow the light trains. H) Left: photocurrents induced by 1 sec-long blue light pulse (horizontal 

bar) in representative pyramidal neurons expressing Syn-ChR2 (top trace) or CamKII-ChETA 

(bottom trace). Neurons were voltage-clamped at -65 mV; Right: quantification summary of the 

photocurrents amplitudes in Syn-ChR2 (orange) and CamKII-ChETA (blue) expressing 

neurons, represented by mean ± s.e.m. Values in brackets are the total number of recorded 

neurons. (*) p < 0.05, unpaired Student’s t test. 
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6.3.2. Optical photostimulation in auditory cortex can drive behaviour in 

freely moving mice 

The next main question is: can freely moving mice learn to report photostimulation of 

layer 2/3 neurons in the auditory cortex? To answer this, light-pulses were delivered to 

Syn-ChR2-expressing neurons in awake and freely moving mice. For this purpose, a 

small and permanent cranial window was implanted above the auditory cortex, which 

provided optical access for further photostimulation via a miniature blue LED placed in 

the centre of the window (Huber et al., 2008; Figure 6.14A). The miniature LED was 

further connected to a controller during the entire behaviour session. When there was a 

deterioration of the optical path due to thickening of the dura, and bone growth, among 

others, over the long time spans required for the behavioural training, the mice were 

immediately removed from the experiments, and were not considered for further 

analysis. 

Mice were initially habituated to the training chamber, for a period that on average 

lasted 4 to 5 days (Figure 6.14B). During the habituation, no photostimulation was 

delivered (see Methods). Afterwards, mice were trained in a task to associate 

photostimulation of Syn-ChR2-expressing neurons in the auditory cortex (one train of 5 

light-pulses, 20Hz, 250 ms total duration) to an aversive stimulus (air puff), or to a 

water reward when no photostimulation was delivered. In such a task, mice should be 

able to retract its head from the water delivery port upon auditory cortex 

photostimulation, and thus avoiding punishment, or get a water reward by not removing 

its head in the non-photostimulation situation (Figure 6.14C). It was observed that on 

average, after five to ten training sessions, a subset of mice (7 out of a total of 13 mice) 

expressing Syn-ChR2 in the auditory cortex reliably reported photostimulation; in the 

presence (absence) of a photostimulus, mice retracted (stayed in the port) its head form 

the water port (Figures 6.14C and 6.14E, range 69.7 – 96.5% correct performance). 

Moreover, mice reached a plateau of 90 to 160 trails per session. Asymptotic correct 

performance levels were reached only after the 30th session, in contrast with previous 

reports (4th to 7th session, Huber et al., 2008). Control mice (n = 3), previously injected 

with a genetic construct that does not render photosensitivity to neurons (expression of 

EGFP only), performed only at change levels (50%), even after 35 sessions (Figures 

6.14D and 6.14E). In the future, it is of utmost importance to increase the number of 
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Syn-ChR2-injected mice that are due to be trained. Nevertheless, these experiments 

demonstrate that photostimulation of supragranular layers of the auditory cortex can 

drive perceptual-guided behaviour. Due to the light scattering effects in the brain tissue, 

it argues that cortical upper layers are mainly activated in detriment of infragranular 

ones (Huber et al., 2008).  

 

6.3.3. Impact of artificial-guided behaviour in local synaptic connectivity 

To assess how patterns of local synaptic connectivity are affected by the learned 

acquisition of the previous photostimulation-guided task, in vitro whole-cell recordings 

were made from mice that reached asymptotic correct performance levels (n = 7; see 

Figure 6.14D). For this purpose, mice were trained in a last behaviour session and, less 

than 24 h after, coronal whole-brain slices were made as previously described from 

those specific mice. For all the mice that were used for electrophysiology recordings, it 

was possible to observe a remarkable Syn-ChR2 expression (via EYFP fluorescence) in 

approximately 2 to 3 slices that contained the auditory cortex. As a control, mice were 

used which did not go along the training procedures (n = 7), and so, were not subject of 

any behaviour contingency. These non-trained mice were only subjected to the virus-

mediated Syn-ChR2 expression, and care was taken to choose mice with similar virus 

expression timelines for proper comparison. On average, for both trained and non-

trained mice, the age of the animals was in the range of 12 – 13 weeks, and 6 to 8 weeks 

after virus injection. As can be appreciated in Table 6.3 and Figure 6.15A, the neurons 

from trained and non-trained mice were virtually indistinguishable from each others, 

presenting comparable resting membrane potential, membrane resistance, and several 

AP features, including spiking threshold, AP amplitude and overshoot (p > 0.4; 

unpaired Student’s t test). 
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Figure 6.14. Photostimulation of the auditory cortex in freely moving mice performing a 

perceptual task. A) Schematic of the photostimulation apparatus. After a small craniotomy, a 

small cover glass is apposed to the exposed cortical area previously injected with Syn-ChR2 

construct (green), and stably fixed with dental cement. A removable miniature blue LED is 

placed over the cranial window to selectively activate neurons expressing Syn-ChR2. Ctx: 

cortex; Hip.: hippocampus. B) Detailed timeline of the experimental procedure. C) Schematic of 

the behaviour apparatus and reward contingencies. The mouse initiates a trial by introducing 

its snout into the water port and breaking the infrared (IR) beam. Photostimulation (PS) 

consists of one train of 5 blue light pulses (5ms pulse width), delivered at 20Hz. The mouse then 

decides to either retract its head to avoid a punishment (air puff and 7s timeout period), or to 

wait for a water reward by licking the water delivery tube. For every trail initiated, a blue 

masking light placed immediately above the water port is presented (one light pulse; 250ms 

duration) to mask possible scattered light into the retina by the removable blue LED. PS and 

non-photostimulation (NPS) trials were presented pseudo-randomly with a probability of 0.5 

throughout the entire 30 minutes behaviour session. D) Individual behaviour performance data 

from 7 mice previously injected with Syn-ChR2. Represented is the percentage of average 

correct performance (orange lines) throughout individual sessions. Note the variability in the 

time (sessions number) that a given mouse needs to perform correctly task. Dashed line 

corresponds to change levels (50%). E) Behaviour performance (green lines) in 3 mice 

previously injected with CamKII-EGFP virus. F) Group data for the behaviour performance for 

mice injected with Syn-ChR2 (orange; n = 7) and with CamKII-EGFP (green; n = 3) along 

individual behaviour sessions. Thick line: mean ± s.em; dashed black line: chance levels (50%). 
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Table 6.3. Intrinsic membrane and connectivity properties of the recorded pyramidal neurons 

in trained and non-trained mice. Values are average ± s.e.m.; Vm, resting membrane potential; 

Rm, membrane resistance; n, number of neurons 

 Trained n Non-trained n  

Vm (mV) -66.1 ± 1.9 26 -64.2 ± 2.0 16  

Rm (MΩ) 262.5 ±27.1 26 289.3 ± 45.8 16  

AP threshold (mV) -29.1 ± 3.5 26 -25.3 ± 4.0  16  

AP amplitude (mV) 97 ± 1.8 26 98.6 ± 2.4 16  

AP overshoot (mV) 67.2 ± 3.9 26 72.8 ± 5.9 16  

AP half-height width (ms) 1.7 ± 0.03 26 1.6 ± 0.07 16  

P (found /tested) 7.0 % (6/86)  2.8 % (2/72)   

Mean EPSP amplitude (mV) 0.23 ± 0.07  0.31   

Range (mV) 0.03 – 0.39  0.04 – 0.59   

 

 

Neurons that needed to be injected with a compensatory current to maintain a constant 

Vm level were rejected from this particular analysis. Interestingly, it was observed that, 

on average, ChR2-expressing neurons from trained (n = 26) and non-trained (n = 16) 

mice, were more depolarized and had higher membrane resistance values when 

compared with their counterparts from naïve mice that were not injected with ChR2 

(Naïve: Vm = -74.2 ± 0.88 mV, Rm = 126.2 ± 5.70 MΩ; p < 0.05, one-way ANOVA; 

see Tables 6.2 and 6.3). Moreover, there was no significant difference in the AP 

threshold between groups (Trained: -29.1 ± 3.5; Non-trained: -25.3 ± 4.0; Naïve: -32.4 

± 1.69; p = 0.2135; one-way ANOVA). However, ChR2-positive neurons from trained 

and non-trained mice presented APs with higher amplitudes and overshoots, as 

compared with layer 2/3 neurons from non-injected mice (Naïve: AP amplitude = 91.8 

± 1.13 mV, AP overshoot = 58.8 ± 1.99 mV; p < 0.012, one-way ANOVA). 

Furthermore, when the number of APs that a given neuron from trained and non-trained 

mice groups were plotted in relation with the input injected current (Figure 6.15B), it 

was observed that in general, neurons from the trained group have a tendency to fire less 

APs (for the same input current level) as compared with its non-trained counterparts 

neurons (p = 0.01; two-way ANOVA). 
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Figure 6.15. Intrinsic excitability features of pyramidal neurons from trained and non-

trained mice. A) Left: schematic diagram depicting the injected current steps (from -40 to 100 

pA); Middle and right: Representative voltage traces evoked by the injected command steps 

from individual pyramidal neurons from a trained and non-trained mouse. APs were virtually 

indistinguishable when comparing both behaviour situations. B) Relationship between the 

number of APs that neurons from trained (n = 24 neurons; 7 animals; orange circles) or non-

trained mice (n = 16 neurons; 7 animals; black circles) could fire upon increasing input current 

(input/output curve). A significant difference was observed between trained and non-trained 

mice (p = 0.01; two-way ANOVA test). All values are mean ± s.e.m 

 

As shown in Table 6.3, there was not a significant difference in the average EPSP 

amplitude between trained and non-trained mice (and even when comparing with naïve 

mice data; Tables 6.2 and 6.3). Synaptic connectivity between pairs of Syn-ChR2-

positive neurons was assessed as described before. It was observed that the probability 

of a given pair of ChR2-expressing neurons of being connected was, on average, for 
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trained and non-trained mice, low (Table 6.3). A total number of 48 neurons from 

trained and 40 neurons from non-trained mice were recorded from. A total of 86 

possible synaptic connections were tested, among which 6 were functional ones, in the 

sum of trained mice used (n = 7), giving a value of 7.0% as the average probability of 

any two excitatory layer 2/3 neurons being monosynaptically connected. For the non-

trained mice a connection probability of 2.8% was found, which represents a total of 

just 2 functional connections among 72 possible ones. No significant difference was 

found between probability of connection among trained and non-trained mice (tow-tail 

Fisher’s exact test; p = 0.292). Due to the technically demanding nature of the 

experiments, it was not possible to obtain a data set that would be large enough to 

adequately pursue proper analysis. 

 

6.3.4.  Comparable spontaneous neuronal activity in trained and non-

trained mice 

The analysis of spontaneous excitatory postsynaptic potentials (sEPSPs) was made in 

layer 2/3 pyramidal neurons from trained and non-trained mice, using a Template-based 

search method (see Methods). As before, the frequency of occurrence and the sEPSPs 

amplitudes were assessed in parallel during the connectivity experiments in a subset of 

randomly chosen neurons (except for the ones where compensations in Vm had to be 

done). As shown in Figures 6.16A and 6.16B, it was observed that the average 

frequency of these spontaneous events was similar (p > 0.05, unpaired Student’s t test) 

between these two groups of mice (Trained: 2.3 ± 0.3 events/s; n = 11 neurons; Non-

trained: 2.2 ± 0.4 events/s; n = 10 neurons). Moreover, the number of spontaneous 

events recorded in the individual neurons from trained (200.6 ± 28.2 events / neuron) 

and non-trained (155.6 ± 26.7 events / neuron) mice were also similar (p > 0.05).. 

Furthermore, as showed in Figure 6.16C, the sEPSP amplitude was as well similar (p > 

0.05) between both groups of mice (Trained: 0.41 ± 0.03 mV / neuron; Non-trained: 

0.49 ± 0.08  mV / neuron).  It is concluded that the active engagement of a mouse in a 

behaviour task do not have any effect on the on-going neuronal activity in pyramidal 

neurons in layer 2/3. 
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Figure 6.16. Increase in layer 2/3 sEPSP frequencies and decrease in sEPSP amplitudes in 

Syn-ChR2-expressing layer 2/3 neurons in trained/non-trained mice. A) Seven representative 

whole-cell current-clamp recordings of sEPSPs from one layer 2/3 pyramidal neuron in trained 

(left) and non-trained (right) mice. Asterisk (*) denotes sEPSPs in either traces. B) Average 

sEPSP frequencies (number of neurons in brackets) and C) sEPSP amplitudes (number of 

events in brackets) in trained and non-trained mice. For all panels, colour scheme: orange 

(trained), black (non-trained). All values are mean ± s.e.m. 
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7. Discussion 

The main goal of this study was the characterization of local synaptic connectivity in the 

adult mouse auditory cortex, a brain region critically involved in the proper encoding of 

external auditory cues. For this purpose, two initial questions were made: 1) which 

features can describe local connectivity in the adult auditory cortex, and 2) does cortical 

local circuitry changes upon artificial activation during a learning task? To answer these 

questions, multiple simultaneous quadruple whole-cell recordings were made in vitro 

from excitatory pyramidal neurons from supragranular layer 2/3 and infragranular layer 

5, either in naïve or in trained mice. These two cortical layers have distinct local 

processing features, which allow shaping the flow of information in the canonical 

columnar auditory microcircuit (Atencio and Schreiner, 2010). This 

electrophysiological method has the advantage of incorporating information about the 

intrinsic properties of specific neurons and the signs and strengths of the synapses that 

connect them (e.g. Thomson and Bannister, 2003). 

 

7.1. Sparse connectivity and long-tailed distribution of synaptic weights 

The majority of the studies that made attempts to characterize and quantify the synaptic 

circuits within well-defined cortical columns (e.g. Binzegger et al., 2004; Yoshimura et 

al., 2005; Ohki et al., 2006; Lefort et al., 2009; Mao et al., 2011), or within specific 

cortical layers (e.g Holmgren et al., 2003; Song et al., 2005; Barbour and Callaway, 

2008; Oswald and Reyes, 2008; Avermann et al., 2012), relied on developmentally 

immature cortical neurons (animals with 10 to 31 days of age). The question arises: can 

that body of information be reliably transposed to the adult and fully mature cortex? Are 

the features that characterize local synaptic circuitry universal throughout development? 

Adult mice have the advantage that they can be engaged in several training and learning 

paradigms, from which post-weaned mice are kept away due to their on-going 

development changes in sensory processing. Although the developmental maturation of 

cortical neurons has been analysed (Oswald and Reyes, 2008), it never reached adult 

stages. Here, it was made a first attempt to characterize and quantify the excitatory local 

circuitry at a single-cell resolution in the adult mouse (with more than 8 weeks of age). 

The major findings of this study are related with several nonrandom features of synaptic 
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connectivity. It is concluded that the network consists of sparse synaptic connections 

characterized by low synaptic weights that tend to cluster together in the form of 

overrepresented bidirectional motifs. This sparseness of the network is in good 

accordance with recent experimental evidence showing sparse cortical activity in vivo 

(Ecker et al., 2010; O’Connor et al., 2010; Renart et al., 2010). 

The distribution of connection strengths - which can be fitted by a lognormal 

distribution - has a heavy tail and implies that synaptic weight is concentrated among 

few, but powerful, synaptic connections. These recurrent networks with a long-tailed 

distribution of synaptic weights exhibit stability and flexibility among diverse activity 

patters (Ikegaya et al., 2012). In fact, a computational study has shown that spontaneous 

self-organization of a recurrent neuronal network through spike timing-dependent 

plasticity leads to many weak synapses and a few synapses that produce > 5 mV 

depolarization (Izhikevich et al., 2004). Moreover, the lognormal distribution of spine 

sizes is reported to emerge spontaneously when the magnitude of the changes in spine 

size during synaptic plasticity is proportional to the size of the spine (Loewenstein et al. 

2011). Therefore, the long-tailed distribution of synaptic weights is likely a natural 

consequence of neuronal networks with synaptic plasticity. Consistent with this notion, 

the long-tailed distribution dominates among synapses in various regions that exhibit 

synaptic plasticity, including the neocortex (Markram et al., 1997; Holmgren et al., 

2003; Song et al. 2005; Lefort et al. 2009), hippocampus (Hanse and Gustafsson, 2001), 

and cerebellum (Brunel et al. 2004). However, a point should be made that a great sum 

of the excitatory axons and dendrites are likely to be truncated during slicing, affecting 

in this way connection probabilities, but also the true estimation of synaptic weights 

between pyramidal neurons, especially in distant pairs. This phenomenon can be 

minimized by recording deep in the coronal slice. Nonetheless, it is noteworthy that the 

large range of EPSPs found in the dataset could also be easily approximated with a 

lognormal distribution, as well as it was the case for acute slices (Song et al., 2005; 

Lefort et al., 2009) or slice cultures (Ikegaya et al., 2012). 

 

7.2.  Network of few “strong” and many “weak” excitatory connections 

Another major conclusion was that the adult local recurrent circuitry is formed by a few 

large amplitude connections embedded among an overwhelming large number of low 
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amplitude synaptic connections. In line with previous reports (Binzegger et al., 2004; 

Song et al., 2005; Lefort et al., 2009; Ikegaya et al. 2012), it seems that also in the adult 

cortex, the map of the recurrent excitatory connectivity can be described as being 

formed of many “weak” and a very few “strong” excitatory projections. The large-

amplitude EPSPs observed in the present dataset can be explained by 3 plausible (not 

exclusive) mechanisms. First, the large EPSPs could be generated by structurally large 

synapses. The size of dendritic spines correlates with synaptic strengths (Matsuzaki et 

al., 2001) and is lognormally distributed (Loewenstein et al., 2011). Second, the large 

EPSPs could occur at dendrites proximal to the soma. Indeed, larger EPSP had faster 

waveform kinetics (~2 ms time to peak), consistent with cable theory. Finally, large 

EPSPs could arise from multiple synaptic sites between pairs of connected neurons 

(Sorra and Harris, 1993; Markram et al., 1997). In so, the few low-variance and large-

amplitude EPSP found in the dataset, could be envisaged as linking neurons into 

strongly connected functional cell assemblies, where the dynamic strengthening of 

synapses through correlated activity in presynaptic and postsynaptic neurons (Hebb, 

1949; Markram et al., 1997; Feldman, 2000; Sjöström et al., 2001; Song et al., 2005; 

Lefort et al., 2009) is likely to contribute to the formation of these large synaptic 

connections. The many unreliable small-amplitude EPSPs might primarily offer 

neuronal networks opportunities for synaptic plasticity. Indeed, weaker connections can 

be strengthened easily through a variety of activity-dependent learning rules (e.g. 

Sjostrom et al., 2001). Therefore, in a network formed by a great number of weak 

connections, a few strong connections could define stable trajectories through which the 

majority of information might flow. Future studies are required to see if stronger 

connections are distributed uniformly among neurons, of if they belong to “hub” 

neurons. Also, studies involving larger networks of cortical neurons will be needed to 

provide a more complete understanding of the network structure and function itself.  

Moreover, it is known that spontaneous spiking by the majority of cortical neurons in 

vivo is infrequent, usually with a frequency of less than 1 Hz (Hromádka et al., 2008; 

O’Connor et al., 2010), and highly asynchronous (Ecker et al., 2010; Renart et al., 

2010). This sparseness of recurrent network might be stabilized by the reliability of 

large amplitude connections in eliciting spikes in the postsynaptic neuron, thus 

stabilizing sparse spiking and augmenting the power of single neurons (Ikegaya et al., 

2012). In a computational analysis, it was concluded that a key feature that might 
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maintain infrequent activity seems to be a highly inhomogeneous distribution of 

synaptic weights (Ikegaya et al., 2012). Namely, a network provided with large 

amplitude EPSPs could be maintained at low network activity level, through a 

mechanism where the strongest fraction of synapses could trigger APs in postsynaptic 

neurons, in the critical presence of the dominant weak amplitude synaptic connections 

(London et al., 2010; Ikegaya et al., 2012). In this view, weak synapses could be 

envisaged as a background noise provider that modulates the efficiency of spike 

transmission by changing the overall activity level and thereby defining the network 

state. Moreover, such sparse network dynamics mediated by rare large-amplitude 

EPSPs are compatible with observations in the somatosensory cortex of awake, 

behaving mice (Poulet and Petersen, 2008). Finally, it would be interesting to assess 

about the functional role of these potent synaptic connections in the freely learning mice 

(Barkat et al., 2011), especially to examine any potential subnetworks, which might for 

example link neurons with the same tonotopic preferences (Bandyopadhyay et al., 2010; 

Rothschild et al., 2010). 

 

7.3.  The variability in mean connection strengths can be largely captured by 

differences in neurotransmitter release probability and number of release 

sites 

According to the quantal hypothesis (del Castillo and Katz, 1954), the efficacy of a 

given connection can be described by the product of the presynaptic neurotransmitter 

release probability (p), the number of release sites (n), and the size of the postsynaptic 

response to a quantum of transmitter (q). Describing the mechanisms underlying 

synaptic transmission is thus crucial to understand the neural code. One such property 

which is repeatedly observed in the neocortex and across cortical layers, and also 

confirmed in the present study, is the wide distribution of synaptic efficacies (Markram 

et al., 1997; Holmgren et al., 2003; Song et al., 2005; Feldmeyer et al., 2006; Lefort et 

al., 2009). The wide range of EPSP amplitudes observed in the data set could potentially 

be explained by differences in all three parameters. In this study, synaptic connections 

within layer 2/3 pyramidal neurons, with EPSP amplitudes ranging from 0,02 and 3,37 

mV, as well excitatory connections within layer 5 pyramidal neurons (0,01 – 0,9 mV 

EPSP range) were observed. By means of selectively keeping one parameter of the 

quantal model constant, while varying the remaining two, one question was made: 
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which of the parameters best explains the wide EPSP ranges observed in both cortical 

layers? In the neocortex, it has been observed that though excitatory connections at 

layer 2/3 present a high release probability (~0.8), yet they are maintain by a uniquantal 

release mechanism (Silver et al., 2003). Moreover, it has been proposed, in theoretical 

arguments, that the distribution of synaptic efficacies in layer 5 pyramidals can be 

explained by just attributing increasing numbers of release sites to the stronger 

amplitude connections, suggesting the involvement of simultaneous release of several 

vesicles (Loebel et al., 2009). From the two examples stated above, it seems that 

synaptic neurotransmission cannot be universally confined to a single model, even 

within cortical layers in the same cortical column. 

In the present thesis I observed, similarly as in the above mentioned studies, a wide 

range of mean connection strengths for the various pairs of connected neurons. The 

mean connection strength of a given connection was strongly correlated with the trial-

to-trial variability (CV), as well as with the failure rate. To test if the wide range of the 

connection strengths in the dataset, as well as their relationship to CV and failure rate, 

could be explained by variation of only one of the three parameters n, p, or q, the 

theoretical mean connection strength was calculated in dependence for only one of the 

parameters while keeping the others fixed (see Figure 6.6). The variability of mean 

connection strengths could be well approximated either by assuming a wide range of 

different release probabilities with a fixed relatively low number of release sites (~8) or 

it could be approximated well with a fixed low release probability of ~0.08 and a wide 

range of release sites ranging from very few to several tens. Changes in quantal size 

only were not able to capture the distribution of mean connection strengths. 

It is believed that, in the neocortex, excitatory connections between pyramidal neurons 

make on average 5 functional synaptic contacts (Markram et al., 1997; Silver et al., 

2003; Feldmeyer et al., 2006; Bremaud et al., 2007) and that their synaptic contacts 

could have more than one active zone, each of which charged with 5 to 15 readily 

releasable docked neurotransmitter vesicles (see Ribraut et al., 2011). Moreover, 

stronger synaptic connections between pyramidals have more synaptic contacts than 

weaker ones (Markram et al., 1997; Feldmeyer et al., 2006; Loebel et al., 2009). The 

results stated here do in fact confirm this observation, in the sense that since the 

majority of connections that build up the network have low efficacy (low EPSP 
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amplitude / high-variance), these are in fact characterized by a low number of release 

sites (up to 10). Moreover, one should add the low probability of release as a general 

feature that might describe the recurrent connectivity in the adult auditory cortex. 

Modulating the synaptic efficacy via the release probability has a limited range, as it is 

constrained by the number of available vesicles. Furthermore, modulating synaptic 

efficacy via the number of release sites has a potentially wider range, and it preserves 

the temporal response structure, for instance, to a train of incoming APs (Le Be and 

Markram, 2006; Loebel et al., 2009). That one found in the present study between the 

synaptic efficacy and the estimated number of release sites, as well as with the release 

probability, might suggest that both modulatory mechanisms interact together in giving 

synapses multiple possibilities to adjust to incoming inputs, as has been described for 

other highly plastic synapses (e.g. Oertner et al., 2002). In the future, would be 

interesting to understand the functional implications of such differences in synaptic 

transmission reliability on the neural code, especially in such infrequent firing rate 

cortical neurons. 

 

7.4.  Large fraction of presynaptic inputs required to reach spiking threshold 

It is known that cortical neurons form a dense network that contains horizontal and 

vertical connections traveling within and between the cortical layers (Szentagothai, 

1978; Douglas and Martin, 2004). These connections are both convergent and 

divergent, such that the response of any individual neuron is believed to be determined 

by the constant bombardment of synaptic inputs (DeFelipe et al., 2002; Binzegger et al., 

2004). Moreover, the total number of synapses that a neuron receives can be quantified 

by summing the synaptic inputs from axons in the cortical layers through which its 

dendrites pass. For instance, in the area 17 of the cat, in general the total number of 

synapses on a given neuron type can range between 2981 and 13075 (Beaulieu and 

Colonnier, 1985; Binzegger et al., 2004). Pyramidal neurons in layer 5 are the ones 

presenting the highest number of synapses due to their extensive dendritic branching 

along the cortical column: in layer 2/3, the dendrites of layer 5 pyramidals receive a 

total of ~1400 synapses, and in layer 5 soma and dendrites they receive a total of ~4900 

synapses. Also, a massive number of synapses these dendrites receive come from layer 
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1 (~5600). On the other hand, pyramidal neurons in layer 2/3, due to a lesser extent of 

their dendrites (mainly confined to layer 2/3 itself and into upper layer 1), receive a 

smaller number of synaptic inputs: each neuron in layer 2/3 receives on average 2094 

synapses from other pyramidal in layer 2/3, the major source of synaptic input in this 

cortical layer. On the other hand, a recent report on juvenile rats (Feldmeyer et al., 

2006) concluded that a single layer 2/3 pyramidal receives synaptic inputs from only 

270 other layer 2/3 pyramidals. In the dataset presented here, the largest depolarization 

that could be observed was up to 3 mV in layer 2/3, and 0,9 mV in layer 5, which are 

both significantly smaller than the largest postsynaptic depolarizations observed in the 

immature cortex, which in rare cases reached 8 to 12 mV amplitudes (Holmgren et al., 

2003; Song et al., 2005, Lefort et al., 2009), and in agreement with a general decrease of 

EPSP amplitudes with age (Reyes and Sakmann, 1999). Moreover, in juvenile animals, 

the average EPSP amplitudes can easily reach 1 mV (Feldmeyer et al., 2006). The 

immediate functional implication is that for a given postsynaptic neuron to reach AP 

threshold it requires a larger fraction of convergent presynaptic inputs, as compared 

with immature cortex. In the present study it was confirmed that in the adult auditory 

cortex, pyramidal neurons in both cortical layers do require a larger extent of 

presynaptic inputs to reach threshold, do to their intrinsic low EPSP amplitudes. These 

findings and the differences observed between layers 2/3 and 5 are not surprising. 

Intracellular recordings from multiple neurons have shown that different types of 

neurons have different connection probabilities and different numbers and distributions 

of synapses (Thomson et al., 2002; Thomson and Bannister, 2003; Thomson and Lamy, 

2007). Furthermore, as stated and verified in the present study, connection probabilities 

between neocortical neurons also vary according to the layer in which they reside (e.g. 

Bannister et al., 2002; Holmgren et al., 2003; Yoshimura et al., 2005; Song et al., 2005; 

Lefort et al., 2009), the brain regions to which they project, and the brain regions from 

which they receive input (e.g. Kasper et al., 1994; Anderson et al., 2010). 

 

7.5. Excitatory / inhibitory balance in the adult auditory cortex 

A recent body of evidence has lead to the conclusion that the concomitant occurrence of 

synaptic excitation and inhibition in primary sensory cortices can be accounted even by 

the simplest sensory stimulus like a whisker deflection (Okun and Lampl, 2008), a brief 
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acoustic tone (Wehr and Zador, 2003), an odor (Poo and Isaacson, 2009), or a grading 

bar in the visual field (Monier et al., 2003). The combination of these two synaptic 

conductances, namely their relative strength and temporal relationship, can critically 

influence cortical function in space and time. In general, studies have greatly relied on 

pharmacological blockade of those two synaptic conductances in controlled voltage-

clamp experiments (e.g. Wehr and Zador, 2003). However, acute experimental 

manipulations that selective decrease either inhibition or excitation, have the ultimate 

outcome to shift cortical activity to a hyperexcitable (epileptiform) or silent (comatose) 

state, which precludes an reliable assessment of which cortical properties (e.g. tuning) 

are being affected by the shutdown of inhibition or excitation. In so, many reported 

studies rely on correlative evidence substantiated by computation models (e.g. 

Cruikshank et al., 2007; Luz and Shamir, 2012). 

In this thesis, the relative contribution of synaptic excitatory and inhibitory 

conductances, with precise temporal resolution, that impinge onto excitatory principal 

neurons in layer 2/3 was made. These pyramidal neurons project their axons laterally 

within their own layer, as well vertically, toward layer 5, and present biased signal flow: 

in a recent report, it was shown that activity of layer 2/3 principal neurons generates an 

excitatory/inhibitory (E/I) ratio that differs between layers, being inhibition favored 

within its own layer but is biased toward excitation in layer 5 (Adesnik and Scanziani, 

2010). However, in the present study, the determined E/I ratios between the vertical and 

lateral stimulated inputs were similar between both pathways. It should be noted that so 

far, studies have been focused on developing, immature sensory cortices, where a great 

degree of synaptic plasticity occurs, and where both excitatory and inhibitory synapses 

are still under development, opening the possibility that during maturation, phenomenon 

as biased signal flow towards a given cortical layer, might be an intrinsic event helping 

shaping future excitatory and inhibitory connections. 

Since in this study the afferents to layer 2/3 pyramidals were stimulated via extracellular 

electrodes, one cannot make a reliable argument on which type of inputs are being 

stimulated, not even on the specificity of the presynaptic neurons (inhibitory and 

excitatory neurons cells) that are being recruited to the observed synaptic events. Based 

solely on the average latencies differences between the excitatory and inhibitory peak 

conductances (< 1ms), one can convincingly report that cortical transmission onto layer 
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2/3 pyramidals via ascendant and lateral axonal projections is extremely fast, in a direct 

monosynaptic pathway. It is known that within individual neurons, the ratio between 

incoming excitation and inhibition can change rapidly and dynamically according to 

behavior demands, on a millisecond basis. This basic cortical operating principle 

controls not only the neurons participation in networks but also define the networks 

themselves. In principal neurons of the rodent auditory cortex, brief tones can lead to an 

increase in synaptic excitation that is followed by a surge of inhibition (Wehr and 

Zador, 2003; Wu et al., 2008). Similarly, whisker deflections lead to a rapid sequence of 

excitation followed by inhibition in neurons of the somatosensory cortex (Okun and 

Lampl, 2008). Hence, in these cortical areas, in response to impulse-like stimuli, 

inhibition and excitation occurs in a precise and stereotyped temporal sequence: an 

initial barrage of excitatory input is rapidly quenched by inhibition, truncating the 

spiking response within extremely brief temporal window, increasing temporal 

precision and thereby reducing the randomness of cortical operation (Pouille and 

Scanziani, 2001). Interestingly, and in opposition with has been reported before (Wehr 

and Zador, 2003; Chruikshank et al., 2007; Zhang et al., 2011), it was observed for a 

subset or recorded neurons, that the excitatory conductance was flanked by a two-wave 

separate inhibitory barrages (see Figure 6.12). To one’s knowledge, this observation has 

never been previously documented. In contrast to their counterparts glutamatergic 

principal cells, GABAergic interneurons do not generally form long range axonal 

projections (however see exception e.g Melzer et al., 2012). In so, the main interaction 

between these types of cortical neurons happens locally: individual interneurons can 

inhibit >50% of pyramidal cells located within ~100 μm and receive excitatory input 

from a large fraction of them (e.g. Holmgren et al., 2003; Silberberg et al., 2005; 

Yoshimura and Callaway, 2005; Yoshimura et al., 2005; Packer and Yuste, 2011). Thus 

not only are interneurons excited in proportion to the level of local network activity, but 

they directly influence it through their inhibitory feedback recurrent inhibition (Figure 

7.1A), a connectivity pattern  that is ubiquitous in the cortex. On the other hand, cortical 

cells can receive excitatory inputs via long-range axons originating from other cortical 

or subcortical areas; these inputs can then diverge onto both excitatory cells and 

interneurons, giving rise to feedforward inhibitory circuits (Buzsaki, 1984) (Figure 

7.1B). Moreover, it is know that in layer 2/3, at least four different types of interneurons 

have been found to form reciprocal connections with pyramidal neurons, that a 
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pyramidal cell might be simultaneously connected with more than one type of 

interneuron, and importantly, the properties of pyramidal–interneuron synaptic 

transmission differ considerably depending on the interneuron type (see Markram et al., 

2004 for review). Taken all of this information into account, it is reasonable to speculate 

that the first (and faster) inhibitory barrage that preceded the excitatory conductance, 

might be due to the local recruitment of interneurons positioned in the immediate 

vicinity of the recorded layer 2/3 pyramid neurons, consistent with the general notion 

that pyramidal neurons may form functionally distinct microcircuits with various types 

of local interneurons. The specific identity of such interneurons that contributed for the 

observed two-wave inhibitory pattern is, at this point, unknown. Moreover, the specific 

postsynaptic target of a given interneuron onto the pyramidal neuron (either the soma, 

or the axon initial segment, or even the apical dendrites) and its role in shaping cortical 

inhibition is obscure. In the future, powerful genetic tools (Luo et al., 2008) can be 

deployed to singly isolate each subtype of interneurons and investigate not only their 

identity, but also the role how synaptic inhibition could play, for instance, in the tuning 

of cortical neurons in the adult brain (e.g. O’Connell et al., 2011). 

The time gap between these two opposing conductances is not the only way in which 

the ratio between excitation and inhibition can be relevant for cortical processing. In the 

rodent auditory cortex the E/I ratio in a given cortical neuron also depends on the 

property of the sensory stimulus, like its frequency. It was shown that intracortical local 

inhibition can laterally sharpen the frequency tuning of neurons, ensuring their highly 

selective representation (Wehr and Zador, 2003; Wu et al., 2008). It is known that local 

populations in the auditory cortex are highly heterogeneous in their gradient of 

frequency selectivity (tonotopy), in which neighboring neurons are not necessarily 

tuned to the same frequency (Bandyopadhyay et al., 2010, Rothschild et al., 2010), and 

due to that, the E/I ratio between nearby neurons vary significantly. In this study, the E/I 

ratios of the individual layer 2/3 pyramidal neurons recorded from are very similar 

among them, arguing for a homogenous population of neurons that may receive similar 

inputs. The two-wave barrages of inhibition that was observed in almost half of the 

recorded neurons cannot be assigned to a supposed heterogeneity in the local 

population, but due to differential ways of synaptic communication that impinge onto 

cortical supragranular layers. 
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Figure 7.1 Feedback and feedforward inhibitory mechanisms that can account for the 

observed two-wave barrages. A) Simplified schematic representation of a feedback inhibitory. 

Extracellular stimulation drives activation of both pyramidal principal cells (green triangles) 

and interneurons (red circles) that impinge their axons into the recorded L2/3 neuron. The first-

wave of inhibition is faster when compared with its excitation counterpart. Delayed feedback 

inhibition arises when cortical L2/3 pyramid makes excitatory contact (green lines) with local 

interneurons that in turn makes inhibitory synapses (red lines) on the same pyramidal neuron. 

B) Feedforward inhibition is generated when stimulated long-range excitatory afferents diverge 

onto both principal cells and local interneurons. 

 

7.6.  Optical stimulation of the auditory cortex can drive behaviour in the 

adult mouse 

Casual relationships between the activity of groups of neurons and a given behavioural 

output are abundant. In monkeys, perception of skin flutter (Romo et al., 1998), 

perceptual judgments on motion direction (Salzman et al., 1990), or even face 

perception (Afraz et al., 2006), all could be accomplished by selective somatosensory 

microstimulation. Moreover, electrical stimulation of single neuron in the barrel cortex 

(Houweling and Brecht, 2008), or small populations in the auditory cortex (Otto et al., 

2005), have been proven to be sufficient to drive behaviours in rats, in the millisecond 

time-scale that neural activity operates (Yang et al., 2008). With the possibility of 

selectively expressing channelrhodopsin in a limited subpopulation of cortical neurons, 

optical microstimulation has been used to dissect the impact of precisely timed APs in 

guiding behaviour and learning in a diversity of model organisms (see Introduction). 
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In the present study, auditory cortical neurons in the adult mouse were also rendered 

with light sensitivity by means of AAV-mediated ChR2 expression. The high titer virus 

production allows the long-term gene expression without significant toxicity effects in 

the non-dividing neurons – a critical feature for use in the nervous system (Kootstra and 

Verma, 2003). AAV vectors were produced using helper virus-free systems, which 

insure that they act as delivery vehicles for genetic material without the potential to 

replicate or express genes that induce cytotoxic effects. This method allowed expression 

of ChR2 in a broad population of neurons along the cortical column, especially in the 

supragranular layers. The ChR2 expression was confined to the injection site and could 

be broadly detected (due to the concomitant EYFP expression) under the cranial 

window. Although the use of light-mediated stimulation of sensory cortices in driving 

behaviour has been proven as a suitable approach (see above), here in the present study 

one also was able to recapitulate previous reports (e.g. Huber et al., 2008), and extended 

those considerations towards the auditory cortex, namely the advantage of using ChR2-

based optical stimulation to study the impact of precisely defined APs in cortical 

neurons in guiding behaviour. After reaching stable and functional expression of ChR2 

(confirmed by the reliable light-evoked responses from layer 2/3 neurons in slices), 

mice were entrained in a perceptual task. At the end, mice were able to report 

photostimulation of the auditory cortex as a signal for an aversive stimulus, as 

demonstrated by their later acquired avoidance behaviour. Though extremely labor 

intense, one could observe that Syn-ChR2 injected mice reached asymptotic correct 

performance levels (above 95%) by the end of the last training session Although the 

time required to reach correct performance levels above chance was highly variable 

from mouse to mouse, and the fact that only half of the mice were able to correctly 

report cortical photostimulation, this should not obscure the effectiveness of such 

behaviour training. In the future would be interesting to assess the specific impact of 

activating only a small subset of cortical neurons of a given tonotopic area of the 

auditory cortex, since the results presented here are due to a broad, indiscriminate 

activation of several tonotopic areas of the cortex. 

However, in a group of preliminary experiments, the use of an ultra-fast ChR2 variant 

(ChETA; Gunaydin et al., 2010) to render photosensitivity only in excitatory neurons 

(via the CamKII promoter; see Figure 6.13) proven not to be suitable for behavioural 

trainings, since no mice expressing ChETA was able to report cortical photostimulation, 
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as opposite with the mice injected with Syn-ChR2. Speculations on why this was the 

case might be the ChETA-mediated photocurrents elicit in slices were of considerable 

smaller amplitude as compared with previous studies (Gunaydin et al., 2010), and even 

compared with the amplitude of photocurrents in Syn-ChR2-expressing pyramidal 

neurons (see Results, Figure 13), though both constructs were very effective in inducing 

reliable and time-precise APs in the recorded pyramidal neurons. 

 

7.7. Intrinsic properties of optogenetically stimulated neurons in vivo 

Neurons possess homeostatic mechanisms which integrate activity levels and alter 

network and cellular properties to counteract long-term perturbations (Turrigiano et al., 

1998; Desai et al., 1999). Several reports have described changes in intrinsic excitability 

after chronic alteration in activity, such as long periods of depolarization (Desai et al., 

1999; Kim et al., 2008; Goold and Nicoll, 2010; O’Leary et al., 2010), which ultimately 

have the goal to stabilize neuronal firing. Here, one could appreciate that ChR2-

expressing pyramidal neurons, as compared with non-infected control neurons from 

naïve mice, did not present statistical differences in AP threshold, though a small and 

clear trend for higher threshold levels could be seen in ChR2-positive neurons. This is 

indicative that ChR2-expressing neurons, regardless of the past training history of the 

mouse, could have comparable depolarization levels to fire APs. However, recent 

reports have found opposite effects (Goold and Nicoll, 2010). Nevertheless, pyramidal 

neurons expressing ChR2 possess higher AP amplitude and AP overshoots. This 

observation is in line with a recent report (Goold and Nicoll, 2010) that found that 

chronic cell-autonomous optogenetic depolarization of CA1 pyramidal cells results in 

changes in intrinsic AP properties of ChR2-expressing neurons. This change in AP 

features such as threshold (Goold and Nicoll, 2010), or even amplitude and overshoot 

(present study) agrees with a recent study (Grubb and Burrone, 2010) in which it was 

observed that a change in the axon initial segment position during burst patterns of 

activity, which in turn correlates with changes in APs features. This phenomenon is 

related to the active relocation of sodium and calcium voltage-dependent channels upon 

intense depolarization epochs, influencing in this way the overall neuronal ionic 

conductances (O’Leary et al., 2010; Kim et al., 2008). 
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As stated before, network-wide (Turrigiano et al., 1998) as well as cell-autonomous 

(Goold and Nicoll, 2010; Grubb and Burrone, 2010) increases in excitation initiates 

homeostatic synaptic changes, which is translated in alterations in all of a neuron’s 

excitatory synaptic strengths to compensate for deviations from optimal levels of neural 

activity (Turrigiano, 1999). More specifically, in chronic depolarization events, 

mediated by the constant activation of ChR2 with blue light in pyramidal neurons, a 

compensatory synaptic depression of both AMPA and NMDA response amplitudes has 

been reported, with concomitant elimination of synapses (Goold and Nicoll, 2010). In 

the present study, it was observed that the average EPSP amplitude between pairs of 

connected ChR2-expressing neurons, from both trained and non-trained mice, is 

comparable to their non-expressing neurons from naïve mice. On average, mice that 

were engaged in behaviour trainings were subject to 2 training sessions per day, one 

hour duration total. These episodes of ChR2-mediated depolarization were thus not 

enough to cause any synaptic depression mechanism between neurons. 

Finally, it is widely accepted that midbrain dopaminergic neurons can encode reward 

prediction errors, by supposedly computing temporal differences between the values of 

current and previous states/actions (Schultz, 1998; Claridge-Chang et al., 2009). Since 

in the present study mice learned to perceive direct cortical photostimulation with an 

aversive stimulus, and the absence of it with a positive water drop reward, it is feasible 

to speculate about the role of such dopaminergic neurons is the overall perception-

guided behaviour. The selective activation by ChR2 expression of subsets of 

dopaminergic neurons in different brain regions, combined with a Cre-dependent viral 

strategy (Kravitz et al., 2012), would be possible to tackle how dopamine signaling is 

implicated in perceptual-drive reinforcement learning, as well as the specific cortical 

substrates targeted by the dopamine signals. 

At the end, the main question is no longer about the necessity or sufficiency of cortical 

neuronal groups in eliciting behaviours, but rather inside the properties that govern the 

(re)arrangement of groups of individual neurons that can give rise to such remarkable 

output. 
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7.8. Local synaptic connectivity features upon photostimulation-driven 

behaviour 

Can local cortical circuitry be changed by the active acquisition of a learned behaviour? 

According to Hebb’s neuronal plasticity rules (Hebb, 1949), yes. Donald Hebb was 

among the first thinkers who tried to put in motion a hypothesis in which there would be 

a correlation between neuronal function and psychological processes. He stated (Hebb, 

1949) that the brain’s ability to generate coherent thoughts derives from the 

spatiotemporal orchestration of neuronal activity, and that a discrete, strongly 

interconnected group of active neurons, the “cell assembly”, would represent a distinct 

cognitive entity. Because of their supposed high degree of interconnectivity, the 

stimulation of a sufficient number of assembly members can activate the entire 

assembly. The temporal evolution of such assemblies by some internal mechanisms 

(Hebb’s “phase sequences”), would, in turn, provide the basis by which complex 

cognitive processes, such as memory recall, thinking, or even decision making, could 

flow independently of direct control from external sensory inputs (e.g. Harris, 2005). At 

the end, Hebb’s cell assembly is essentially a graph of synaptically interconnected 

excitatory neurons, in which a readable output should be possible to accomplish 

(Wennekers et al., 2003). Hebb’s cell assembly hypothesis is a prominent hypothesis 

that attempting to comprehensively link internal cognitive and physiological processes. 

However, it has been difficult to convincingly identify the hypothesized cell assemblies 

due to also recent conceptual doubts about it (Harris et al., 2003; Harris, 2005; Truccolo 

et al., 2010). 

In the present study, a first attempt was made to directly assess about local connectivity 

between pyramidal neurons that became active during the photostimulation-guided 

behaviour. Care was taken to record from layer 2/3 pyramidals, and not from deeper 

layers, due to the light scattering through the brain tissue, not enabling in this way the 

activation of neurons in deeper cortical layers. Although recent breakthroughs have 

been developed that could allow for a improved spatial resolution of neuronal activation 

in ChR2-expressing neurons along the cortical column using two-photon excitation 

(Andrasfalvy et al., 2010), they still do not offer a convincing alternative for neuronal 

activation in freely behaving animals (due to current technical limitations), as compared 

with other methods that made use of small LED’s (Huber et al., 2008), or laser 
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photostimulation (Choi et al., 2010) to drive behaviours. A future combination between 

advanced microscopic techniques, coupled with non-invasive methods for selectively 

activating a desired population of cortical ChR2-expressing neurons would be of great 

importance. Although in the present study a broad range of cortical neurons along the 

cortical column were stably infected with ChR2, and hence could participate in the 

photostimulation–based behaviour (but see previous comment), recent reports, in which 

activation of solely ChR2-positive layer 2/3 pyramids was made, convincingly proved 

about the sufficiency of these supragranular neurons in driving behaviour (Huber et al., 

2008). At this point one could only speculate about the truthiness of such finding 

translated to the present auditory cortex activation experiments. 

Also, according to Hebb’s definition (Hebb, 1949), an assembly is characterized as well 

by the potentiation of synaptic weights between assembly members than with other 

neurons, which became weaker, thus reinforcing useful pathways in the brain (for 

review see Abbot and Nelson, 2000). Not only the hardwire of connections between 

neurons in an assembly is important, but their relative weight as well. Moreover, strong 

and immutable connectivity might not be a good way for the proper segregation of 

neurons into groups, since synaptic weight distributions are in constant change in an 

activity-dependent manner (Reyes and Salzmann, 1999; Holmgren et al., 2003; Sakata 

and Harris, 2009). So, the knowledge of spiking profile is insufficient to properly 

describe the state of the cortical network unless the moment-to-moment distribution of 

synaptic weights is also known. Naturally, if the transiently formed assembly members 

are anatomically interconnected, their co-activation can strengthen their membership 

and facilitate their future joint recurrence. However, this correlation-based plasticity 

(named Hebbian plasticity) between pre- and postsynaptic neurons in an assembly is 

prone to instability: synapses that are strengthened become more effective at 

depolarizing the postsynaptic neuron and will continue to be strengthened in an 

unconstrained positive feedback cycle, eventually driving neuronal activity to saturation 

(Abbot and Nelson, 2000; Miller, 1996). However, neurons can sense how active they 

are and adjust their properties to maintain stable function (Turrigiano, 1999), 

circumventing the initial stability problem inherent to Hebb’s proposals. Through a 

homeostatic mechanism, neurons can adjust their synaptic weights up or down to keep 

their activity close to some set-point value. In neocortical neurons, such mechanism is 

termed “synaptic scaling”, because it was observed to globally scale all of a neuron’s 
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excitatory synapses up or down in strength in the correct direction to stabilize neuronal 

firing (Turrigiano et al., 1998). In so, upon the active acquisition of the 

photostimulation-driven behaviour, three possible scenarios are in play: first, one in 

which there’s an increase in neuronal connectivity, at the expense of a low amplitude of 

synaptic weights; second, one in which local connectivity is kept low, but there is a 

localized increase in synaptic weights in particular excitatory connections; third, a joint 

combination of the first two scenarios. However, mainly due to the surprisingly low 

number of connections detected in slices from trained and non-trained mice, one should 

be careful in drawing strong conclusions at this point. Nevertheless, as stated before, the 

average amplitude of the EPSP responses in trained and non-trained mice were the same 

magnitude as its counterparts from naïve mice, which might be an indication that if 

changes in local circuitry do really happen, it might not be at the expense of increases in 

synaptic weights. 

Here, for the first time a in vitro analysis of previously photostimulated neurons was 

made. It was found that, in the regime of 1 to 2 training sessions per day, neither 

aberrant plasticity that might lead to an overpotentiation of synaptic inputs, nor 

triggering of homeostatic processes that would lead to silencing of neurons. 
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