112 research outputs found

    Fast and Accurate Machine Learning-based Malware Detection via RC4 Ciphertext Analysis

    Get PDF
    Malware is dramatically increasing its viability while hiding its malicious intent and/or behavior by employing ciphers. So far, many efforts have been made to detect malware and prevent it from damaging users by monitoring network packets. However, conventional detection schemes analyzing network packets directly are hardly applicable to detect the advanced malware that encrypts the communication. Cryptoanalysis of each packet flowing over a network might be one feasible solution for the problem. However, the approach is computationally expensive and lacks accuracy, which is consequently not a practical solution. To tackle these problems, in this paper, we propose novel schemes that can accurately detect malware packets encrypted by RC4 without decryption in a timely manner. First, we discovered that a fixed encryption key generates unique statistical patterns on RC4 ciphertexts. Then, we detect malware packets of RC4 ciphertexts efficiently and accurately by utilizing the discovered statistical patterns of RC4 ciphertext given encryption key. Our proposed schemes directly analyze network packets without decrypting ciphertexts. Moreover, our analysis can be effectively executed with only a very small subset of the network packet. To the best of our knowledge, the unique signature has never been discussed in any previous research. Our intensive experimental results with both simulation data and actual malware show that our proposed schemes are extremely fast (23.06±1.52 milliseconds) and highly accurate (100%) on detecting a DarkComet malware with only a network packet of 36 bytes

    Energy Efficient Security Framework for Wireless Local Area Networks

    Get PDF
    Wireless networks are susceptible to network attacks due to their inherentvulnerabilities. The radio signal used in wireless transmission canarbitrarily propagate through walls and windows; thus a wireless networkperimeter is not exactly known. This leads them to be more vulnerable toattacks such as eavesdropping, message interception and modifications comparedto wired-line networks. Security services have been used as countermeasures toprevent such attacks, but they are used at the expense of resources that arescarce especially, where wireless devices have a very limited power budget.Hence, there is a need to provide security services that are energy efficient.In this dissertation, we propose an energy efficient security framework. Theframework aims at providing security services that take into account energyconsumption. We suggest three approaches to reduce the energy consumption ofsecurity protocols: replacement of standard security protocol primitives thatconsume high energy while maintaining the same security level, modification ofstandard security protocols appropriately, and a totally new design ofsecurity protocol where energy efficiency is the main focus. From ourobservation and study, we hypothesize that a higher level of energy savings isachievable if security services are provided in an adjustable manner. Wepropose an example tunable security or TuneSec system, which allows areasonably fine-grained security tuning to provide security services at thewireless link level in an adjustable manner.We apply the framework to several standard security protocols in wirelesslocal area networks and also evaluate their energy consumption performance.The first and second methods show improvements of up to 70% and 57% inenergy consumption compared to plain standard security protocols,respectively. The standard protocols can only offer fixed-level securityservices, and the methods applied do not change the security level. The thirdmethod shows further improvement compared to fixed-level security by reducing(about 6% to 40%) the energy consumed. This amount of energy saving can bevaried depending on the configuration and security requirements

    Settling the mystery of Zr=rZ_r=r in RC4

    Get PDF
    In this paper, using probability transition matrix, at first we revisit the work of Mantin on finding the probability distribution of RC4 permutation after the completion of KSA. After that, we extend the same idea to analyse the probabilities during any iteration of Pseudo Random Generation Algorithm. Next, we study the bias Zr=rZ_r=r (where ZrZ_r is the rr-th output keystream bit), which is one of the significant biases observed in RC4 output keystream. This bias has played an important role in the plaintext recovery attack proposed by Isobe et al. in FSE 2013. However, the accurate theoretical explanation of the bias of Zr=rZ_r=r is still a mystery. Though several attempts have been made to prove this bias, none of those provides accurate justification. Here, using the results found with the help of probability transition matrix we justify this bias of Zr=rZ_r=r accurately and settle this issue. The bias obtained from our proof matches perfectly with the experimental observations

    Plaintext Recovery Attacks Against WPA/TKIP

    Get PDF
    We conduct an analysis of the RC4 algorithm as it is used in the IEEE WPA/TKIP wireless standard. In that standard, RC4 keys are computed on a per-frame basis, with specific key bytes being set to known values that depend on 2 bytes of the WPA frame counter (called the TSC). We observe very large, TSC-dependent biases in the RC4 keystream when the algorithm is keyed according to the WPA specification. These biases permit us to mount an effective statistical, plaintext-recovering attack in the situation where the same plaintext is encrypted in many different frames (the so-called ``broadcast attack\u27\u27 setting). We assess the practical impact of these attacks on WPA/TKIP

    Directional Dark Matter Detection Beyond the Neutrino Bound

    Get PDF
    Coherent scattering of solar, atmospheric and diffuse supernovae neutrinos creates an irreducible background for direct dark matter experiments with sensitivities to WIMP-nucleon spin-independent scattering cross-sections of 10^(-46)-10^(-48) cm^2, depending on the WIMP mass. Even if one could eliminate all other backgrounds, this "neutrino floor" will limit future experiments with projected sensitivities to cross-sections as small as 10^(-48) cm^2. Direction-sensitive detectors have the potential to study dark matter beyond the neutrino bound by fitting event distributions in multiple dimensions: recoil kinetic energy, recoil track angle with respect to the sun, and event time. This work quantitatively explores the impact of direction-sensitivity on the neutrino bound in dark matter direct detection.Comment: matches the published version, figure 4 updated plus extended discussion about neutrino flux uncertainties and detector resolutions, 13 pages, 11 figure

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Tornado Attack on RC4 with Applications to WEP & WPA

    Get PDF
    In this paper, we construct several tools for building and manipulating pools of biases in the analysis of RC4. We report extremely fast and optimized active and passive attacks against IEEE 802.11 wireless communication protocol WEP and a key recovery and a distinguishing attack against WPA. This was achieved through a huge amount of theoretical and experimental analysis (capturing WiFi packets), refinement and optimization of all the former known attacks and methodologies against RC4 stream cipher in WEP and WPA modes. We support all our claims on WEP by providing an implementation of this attack as a publicly available patch on Aircrack-ng. Our new attack improves its success probability drastically. Our active attack, based on ARP injection, requires 22500 packets to gain success probability of 50\% against a 104-bit WEP key, using Aircrack-ng in non-interactive mode. It runs in less than 5 seconds on an off-the-shelf PC. Using the same number of packets, Aicrack-ng yields around 3\% success rate. Furthermore, we describe very fast passive only attacks by just eavesdropping TCP/IPv4 packets in a WiFi communication. Our passive attack requires 27500 packets. This is much less than the number of packets Aircrack-ng requires in active mode (around 37500), which is a huge improvement. Deploying a similar theory, we also describe several attacks on WPA. Firstly, we describe a distinguisher for WPA with complexity 2^{42} and advantage 0.5 which uses 2^{42} packets. Then, based on several partial temporary key recovery attacks, we recover the full 128-bit temporary key of WPA by using 2^{42} packets. It works with complexity 2^{96}. So far, this is the best key recovery attack against WPA. We believe that our analysis brings on further insight to the security of RC4
    • …
    corecore