406 research outputs found

    Resource-aware Cyber Deception in Cloud-Native Environments

    Full text link
    Cyber deception can be a valuable addition to traditional cyber defense mechanisms, especially for modern cloud-native environments with a fading security perimeter. However, pre-built decoys used in classical computer networks are not effective in detecting and mitigating malicious actors due to their inability to blend with the variety of applications in such environments. On the other hand, decoys cloning the deployed microservices of an application can offer a high-fidelity deception mechanism to intercept ongoing attacks within production environments. However, to fully benefit from this approach, it is essential to use a limited amount of decoy resources and devise a suitable cloning strategy to minimize the impact on legitimate services performance. Following this observation, we formulate a non-linear integer optimization problem that maximizes the number of attack paths intercepted by the allocated decoys within a fixed resource budget. Attack paths represent the attacker's movements within the infrastructure as a sequence of violated microservices. We also design a heuristic decoy placement algorithm to approximate the optimal solution and overcome the computational complexity of the proposed formulation. We evaluate the performance of the optimal and heuristic solutions against other schemes that use local vulnerability metrics to select which microservices to clone as decoys. Our results show that the proposed allocation strategy achieves a higher number of intercepted attack paths compared to these schemes while requiring approximately the same number of decoys

    Microservice Architecture Reconstruction and Visualization Techniques: A Review

    Full text link
    Microservice system solutions are driving digital transformation; however, fundamental tools and system perspectives are missing to better observe, understand, and manage these systems, their properties, and their dependencies. Microservices architecture leads towards decentralization, which implies many advantages to system operation; it, however, brings challenges to their development. Microservice systems often lack a system-centric perspective that would help engineers better cope with system evolution and quality assessment. In this work, we explored microservice-specific architecture reconstruction based on static analysis. Such reconstruction typically results in system models to visualize selected system-centric perspectives. Conventional models involve 2D methods; however, these methods are limited in utility when services proliferate. We considered various architectural perspectives relevant to microservices and assessed the relevancy of the traditional method, comparing it to alternative data visualization using 3D space. As a representative of the 3D method, we considered a 3D graph model presented in augmented reality. To begin testing the feasibility of deriving such perspectives from microservice systems, we developed and implemented prototype tools for software architecture reconstruction and visualization of compared perspectives. Using these prototypes, we performed a small user study with software practitioners to highlight the potentials and limitations of these innovative visualizations used for common practitioner reasoning and tasks

    Microvision: Static analysis-based approach to visualizing microservices in augmented reality

    Full text link
    Microservices are supporting digital transformation; however, fundamental tools and system perspectives are missing to better observe, understand, and manage these systems, their properties, and their dependencies. Microservices architecture leans toward decentralization, which yields many advantages to system operation; it, however, brings challenges to their development. Microservices lack a system-centric perspective to better cope with system evolution and quality assessment. In this work, we explore microservice-specific architecture reconstruction based on static analysis. Such reconstruction typically results in system models to visualize selected system-centric perspectives. Conventional models are limited in utility when the service cardinality is high. We consider an alternative data visualization using 3D space using augmented reality. To begin testing the feasibility of deriving such perspectives from microservice systems, we developed and implemented prototype tools for software architecture reconstruction and visualization of compared perspectives

    An In-Switch Architecture for Low-Latency Microservices

    Get PDF
    In recent time, there is has been a movement away from standard monolithic architecture in cloud and web services towards what is known as a microservice architecture. Microservice architecture decomposes the previous monolithic architecture into multiple independent services called "microservices". Examples of applications that use a microservice architecture include Netflix and Amazon. These applications typically send large numbers of microservice requests, which go through the OSI network layers to establish a client server connection. This trend towards microservices has developed interest by other researchers to make improvements in this field, due to the growing reliance importance on such architectures by consumers. There have been studies regarding the security of these microservices, performance analysis of various applications, and the use of these microservice applications in cloud technology. Any improvements in the speed, security, or organization of such network architecture would be very beneficial of these popular API's, and their user base. This project's objective is to investigate the potential of moving some of the processing that is done for these microservices within a network switch, and as a result the performance at the application level, by alleviating network communication. We formulate a high-level design for an in-switch architecture for low-latency microservice leveraging existing programmable-switches support. We investigate the implementation of NetCache as a microservice in our model and predict a significant latency reduction and subsequent performance increase

    International conference on software engineering and knowledge engineering: Session chair

    Get PDF
    The Thirtieth International Conference on Software Engineering and Knowledge Engineering (SEKE 2018) will be held at the Hotel Pullman, San Francisco Bay, USA, from July 1 to July 3, 2018. SEKE2018 will also be dedicated in memory of Professor Lofti Zadeh, a great scholar, pioneer and leader in fuzzy sets theory and soft computing. The conference aims at bringing together experts in software engineering and knowledge engineering to discuss on relevant results in either software engineering or knowledge engineering or both. Special emphasis will be put on the transference of methods between both domains. The theme this year is soft computing in software engineering & knowledge engineering. Submission of papers and demos are both welcome

    Blockchain-Based Services Implemented in a Microservices Architecture Using a Trusted Platform Module Applied to Electric Vehicle Charging Stations

    Get PDF
    Microservice architectures exploit container-based virtualized services, which rarely use hardware-based cryptography. A trusted platform module (TPM) offers a hardware root for trust in services that makes use of cryptographic operations. The virtualization of this hardware module offers high usability for other types of service that require TPM functionalities. This paper proposes the design of TPM virtualization in a container. To ensure integrity, different mechanisms, such as attestation and sealing, have been developed for the binaries and libraries stored in the container volumes. Through a REST API, the container offers the functionalities of a TPM, such as key generation and signing. To prevent unauthorized access to the container, this article proposes an authentication mechanism based on tokens issued by the Cognito Amazon Web Service. As a proof of concept and applicability in industry, a use case for electric vehicle charging stations using a microservice-based architecture is proposed. Using the EOS.IO blockchain to maintain a copy of the data, the virtualized TPM microservice provides the cryptographic operations necessary for blockchain transactions. Through a two-factor authentication mechanism, users can access the data. This scenario shows the potential of using blockchain technologies in microservice-based architectures, where microservices such as the virtualized TPM fill a security gap in these architectures.Infineon TechnologiesProgram “Digitalisierung der EnergiewendeBundesministeriums für Wirtschaft und EnergieTrusted Blockchains fur das offene, intelligente Energienetz der Zukunft (tbiEnergy)FKZ 03EI6029DEuropean Health and Digital Executive Agency (HaDEA) program under Grant Agreement No 101092950 (EDGELESS project)FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades under Project B-TIC-588-UGR20

    The Role of a Microservice Architecture on cybersecurity and operational resilience in critical systems

    Get PDF
    Critical systems are characterized by their high degree of intolerance to threats, in other words, their high level of resilience, because depending on the context in which the system is inserted, the slightest failure could imply significant damage, whether in economic terms, or loss of reputation, of information, of infrastructure, of the environment, or human life. The security of such systems is traditionally associated with legacy infrastructures and data centers that are monolithic, which translates into increasingly high evolution and protection challenges. In the current context of rapid transformation where the variety of threats to systems has been consistently increasing, this dissertation aims to carry out a compatibility study of the microservice architecture, which is denoted by its characteristics such as resilience, scalability, modifiability and technological heterogeneity, being flexible in structural adaptations, and in rapidly evolving and highly complex settings, making it suited for agile environments. It also explores what response artificial intelligence, more specifically machine learning, can provide in a context of security and monitorability when combined with a simple banking system that adopts the microservice architecture.Os sistemas críticos são caracterizados pelo seu elevado grau de intolerância às ameaças, por outras palavras, o seu alto nível de resiliência, pois dependendo do contexto onde se insere o sistema, a mínima falha poderá implicar danos significativos, seja em termos económicos, de perda de reputação, de informação, de infraestrutura, de ambiente, ou de vida humana. A segurança informática de tais sistemas está tradicionalmente associada a infraestruturas e data centers legacy, ou seja, de natureza monolítica, o que se traduz em desafios de evolução e proteção cada vez mais elevados. No contexto atual de rápida transformação, onde as variedades de ameaças aos sistemas têm vindo consistentemente a aumentar, esta dissertação visa realizar um estudo de compatibilidade da arquitetura de microserviços, que se denota pelas suas caraterísticas tais como a resiliência, escalabilidade, modificabilidade e heterogeneidade tecnológica, sendo flexível em adaptações estruturais, e em cenários de rápida evolução e elevada complexidade, tornando-a adequada a ambientes ágeis. Explora também a resposta que a inteligência artificial, mais concretamente, machine learning, pode dar num contexto de segurança e monitorabilidade quando combinado com um simples sistema bancário que adota uma arquitetura de microserviços

    GA-Par: Dependable Microservice Orchestration Framework for Geo-Distributed Clouds

    Get PDF
    Recent advances in composing Cloud applications have been driven by deployments of inter-networking heterogeneous microservices across multiple Cloud datacenters. System dependability has been of the upmost importance and criticality to both service vendors and customers. Security, a measurable attribute, is increasingly regarded as the representative example of dependability. Literally, with the increment of microservice types and dynamicity, applications are exposed to aggravated internal security threats and externally environmental uncertainties. Existing work mainly focuses on the QoS-aware composition of native VM-based Cloud application components, while ignoring uncertainties and security risks among interactive and interdependent container-based microservices. Still, orchestrating a set of microservices across datacenters under those constraints remains computationally intractable. This paper describes a new dependable microservice orchestration framework GA-Par to effectively select and deploy microservices whilst reducing the discrepancy between user security requirements and actual service provision. We adopt a hybrid (both whitebox and blackbox based) approach to measure the satisfaction of security requirement and the environmental impact of network QoS on system dependability. Due to the exponential grow of solution space, we develop a parallel Genetic Algorithm framework based on Spark to accelerate the operations for calculating the optimal or near-optimal solution. Large-scale real world datasets are utilized to validate models and orchestration approach. Experiments show that our solution outperforms the greedy-based security aware method with 42.34 percent improvement. GA-Par is roughly 4× faster than a Hadoop-based genetic algorithm solver and the effectiveness can be constantly guaranteed under different application scales
    • …
    corecore