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ABSTRACT

An In-Switch Architecture for Low-Latency Microservices

Jackson Petroll
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Riccardo Bettati
Department of Computer Science and Engineering

Texas A&M University

In recent time, there is has been a movement away from standard monolithic architecture

in cloud and web services towards what is known as a microservice architecture. Microservice

architecture decomposes the previous monolithic architecture into multiple independent services

called "microservices". Examples of applications that use a microservice architecture include Net-

flix and Amazon [1]. These applications typically send large numbers of microservice requests,

which go through the OSI network layers to establish a client server connection. This trend to-

wards microservices has developed interest by other researchers to make improvements in this

field, due to the growing reliance importance on such architectures by consumers. There have

been studies regarding the security of these microservices, performance analysis of various appli-

cations, and the use of these microservice applications in cloud technology. Any improvements

in the speed, security, or organization of such network architecture would be very beneficial of

these popular API’s, and their user base. This project’s objective is to investigate the potential of

moving some of the processing that is done for these microservices within a network switch, and

as a result the performance at the application level, by alleviating network communication. We

formulate a high-level design for an in-switch architecture for low-latency microservice leverag-
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ing existing programmable-switches support. We investigate the implementation of NetCache as a

microservice in our model and predict a significant latency reduction and subsequent performance

increase.
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1. INTRODUCTION

As cloud computing has become more pervasive, designers have been on the lookout for

software and systems architectures that allow computing applications to grow more scalably, both

in terms of numbers of clients as well as numbers of developers and users. One popular such ar-

chitecture is microservices, where the application is partitioned into a set of interoperable services

called microservices, each with a well defined application program interface (API). A microser-

vice is an alternative to monolithic architectures, where the codebase is hosted on one singular

server. Microservices give rise to a software cloud architecture structure whereby applications are

constructed as a collection of services or API’s. These microservices can be deployed, scaled, and

tested independently, as each of them maintains a single responsibility or function [2]. In recent

times, there has been a growing movement away from monolithic applications and towards a mi-

croservice architecture as modern cloud applications evolve [3]. The microservice architecture has

become popular and used in large web applications such as Netflix, Amazon, and Ebay being used

by millions of users making billions of API calls [1].

Figure 1.1: Gateway Microservice Architecture.
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Microservices vary in network architectures, most use either gateways, service meshes, or

a combination of the two [4]. In a basic gateway topology, there is a host machine, the gateway,

and a client for each microservice. The host application sends requests over the internet to the

gateway, whereby the requested microservice then enters a gateway [2]. The gateway is its own

separate instance that receives API request from users and retrieves results to return. Depending

on the service being requested, the gateway will send the request to the associated microservice to

perform the associated function. Microservices are typically hosted on server rack clusters host-

ing virtual machines that run these microservices. The microservice itself is composed of one set

service. This service could vary from taking inventory too managing account information, so long

as it provides one service. This microservice may potentially communicate with other microser-

vices and servers through API calls as depicted in Figure 1.1. Upon completing the request, the

gateway retrieves the result and sends it back to the client. The service mesh differs from the

gateway topology. The service mesh network pattern creates an interconnecting ’mesh’ between

the various micro-service proxies called ’sidecars’. Sidecar proxies are essentially service prox-

ies that are hosted in a container that runs alongside the service container providing security and

various other control functions between the associated microservice and network mesh [5]. The

network mesh enables microservices to communicate with one another while maintaining secu-

rity. While mesh architecture is a relevant architecture, it is rarely seen implemented stand alone,

and is usually integrated with the gateway architecture. Figure 1.1 depicts a typical microservice

application layout. As described, there is a client/user that communicates to a gateway and then

to the subsequent microservice. This microservice may utilize a database and may communicate

with other microservices depending on its design. In comparison microservices divide monolithic

applications into individual microservices that are hosted on separate servers. While there are

many benefits to microservice applications, the network architecture suffers from a variety of dif-

ferent issues namely centered around complexity. A set of solution criteria can be defined from

the issues present in microservices, and we hypothesize in-switch computation as a way to address

this criteria specifically in the context of low latency microservices. There has been similar work
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done utilizing in-switch computing to address latency issues, but none specifically in the context

of microservice applications.

1.1 Microservice Drawbacks

While addressing the problems related to monolithic applications, microservice applica-

tions suffer from a variety of different issues namely centered around complexity. Microservices

suffer in terms of network and system complexity, security, and end-to-end system latency [1].

Dividing monolithic components into smaller services means that the interconnection complexity

of communication, security, and error handling of the system is increased. Having many differ-

ent microservices means having a more points of failure. The computational model for the average

failure rate of a microservice application is defined by the number of microservices for the applica-

tion, the failure rate of each microservice, and the number of request being made to a microservice.

Thus, increasing the number of microservices inherently increases the average failure rate of the

application. In the case of a failure or error in a microservice application, if one microservice

stops working the other microservices still work. Handling this situation makes the development

of these microservices more complex. With movement from monolithic to microservice architec-

ture, code that was once never accessible from the outside is now exposed through API’s. This

creates multiple venues for cyberattacks on the service, virtualization, and network levels [6]. Ser-

vice level security problems such as broken authentication, SQL injection, and others, can affect

each microservice individually. The increased number of microservices increases the likelihood

of service specific attacks occurring. Virtualization and deployment of individual microservices

affect security as well. Most microservices are deployed on top of operating systems with multiple

services on the same system. These services are separated by containers and VMs. While this

does offer more protection again compromised services on the same system, a variety of attacks

exists to harm the system still. Example of these attacks include Hypervisor compromise, shared

memory attacks, and the use of harmful images [6]. Virtualization of many microservices on one

system increase the likelihood of being affected by these threats. Finally, each microservice is

also subject to communication level threats. This includes attacks on network stacks and proto-
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cols specific to the API the microservice is using for communication such as REST, SOAP, and

others. Attacks such as spoofing, eavesdropping, Man-in-the-Middle and Denial of service can all

affect a single microservice [6]. These threats are all the result of dividing monolithic services

into individual microservices and exposing more avenues of attack. Dividing Monolithic appli-

cations into microservices introduces performance overhead on the communication done over the

network. In services using REST API, for example, the calls add over head to the network latency

of inter-service communication. The more complicated the microservice application, the higher

the network complexity and subsequent number of network jumps being performed. Finally, there

is end-to-end network latency incurred from traveling the OSI layers of the Host machine.

1.2 Addressing Microserivces

In this work we focus on architectural support to improve the performance of microservices.

As we identify a solution, we need to keep in mind a set of criteria:

1. Reduce the end-to-end system latency of microservice invocation. There is latency incurred
from the system that a microservice is hosted on as packets travel up the OSI layer and kernel
of a microservice. Reducing the end-the-end system latency would mean reducing the time
spent from the source to the host and up the host machine’s system.

2. Reduce network communication overhead. There is communication overhead generated
from the complex network interconnections formed in a microservice architecture. Reduc-
ing the communication overhead would mean reducing the overhead generated traversing
through this complex network connection.

3. Transparent to the user. A microservice must be transparent to the user, meaning that it is
hidden from the user. The whole microservice application will appear as one application to
the user despite being divided into individual services.

4. Maintain the benefits of a microservice application over monolithic application. Any im-
provement to a microservice application will maintain the previous benefits that it had over
monolithic applications.

1.3 Supporting Microservices Through In-Switch Computing

Our paper proposes a possible solution to these issues through the use of in-switch com-

puting. In-switch computing is a method of performing application-level functions within network
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switches. Instead of the typical rerouting, our model of a switch would now have the role of per-

forming basic micro-service computations, by reading the payload of an HTTP protocol used by

REST, SOAP, and other API’s. We argue that a significant number of these microservice functions

are so simple one can implement them on a network switch directly. The in-switch model we

propose has the potential to reduce latencies end-to-end service request latency by reducing the

required number of network jumps and latency incurred by the server.

1.4 Related Work

Transitioning computation workloads from computing nodes to the network infrastructure

has been used in many different forms under many settings.

1.4.1 In Switch Computing and Accelerated Distributed Reinforcement Learning

In a recent study [7] by the authors introduced a model of in-switch computing for Ac-

celerating Distributed Reinforcement Learning. They presented an in-switch accelerator model,

whereby the gradient aggregation, a common step in the development of machine learning models,

is moved into a network switch. As a result, the authors are able to reduce the network and server

latency that would otherwise be incurred if the gradient aggregation was computed on a compu-

tational node. For the synchronous approach there was a speed up of 1.72–3.66×; similarly, the

asynchronous approach provided a speed up of 3.71× for distributed training.

1.4.2 Programmable Switches

Software-defined networks rely on the ability to flexibly deploy forwarding and control

plane capabilities onto some form of programmable switch. P4[8] and PISCES[9] are examples

of such Programmable switch architecture. P4 was a language protocol developed to support SDN

and programmable switches, and it allows a programmer to define the forwarding plane in a switch.

Subsequent simulators for SDN have been developed to help model and test these SDN switches.

To name a few: PFPSIM [10], NS4 [11], and Druzhba [12] are simulators that have all been de-

veloped to test programmable switches in some manner. PFPSIM is a programmable forwarding

plane simulator for software defined networks. It uses leverages P4 as described to run and sim-

8



ulate the architecture of programmable switches. PFPSIM advertises automatic model generation

of complex switches, fast and scalable host-complied simulation for pre-silicon analysis, and easy

debug and optimization of the application on a target model. NS4 is similar to PFPSIM, however,

it allows the entire emulation of P4-enabled networks. Finally, Druzhba is a simulator like NS4

and PFPSIM, but focuses on modeling low-level details of the switch pupline instruction set for

testing compliers.The low-level modeling allow Druzhba to simulate machine code. P4 also of-

fers simulation of through the use of mininet network simulator, a p4 compiler, and python. The

p4 code can be compiled to target a specific SDN architecture. Our implementation of a switch

give the switch more processing capability around specific API calls. This is where our switch

implementation differs from the current switch models out there.

In recent years, network designers and operators have acknowledged the need for a more

flexible control plane in the network, in order to accommodate needs across a wide area of data-

center networks. This has given rise to so-called software-defined networks (SDNs) [8], which

allow many network operations to be flexibly implemented in software. Programmable switches

are used to implement more functionality to existing switches. The primary benefit of software

defined networking it that it enables centralized network control by physically separating the con-

trol plane from the forwarding plane. This enables changes in the networking control data-plane

to occur without a redesign on silicon that would previously occur.
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2. IN-SWITCH COMPUTING FOR MICROSERVICES

As we pointed out earlier, a user-transparent way to reduce the latency of microservice

invocation is to eliminate the majority of the non-core portions of the microservice processing

(i.e, request routing, forwarding, protocol processing). One way to achieve this is to move the

microservice processing into the network switching, with the use of in-switch processing.

2.1 Design Criteria

The creation an implementation of such an in-switch processing capable switch needs to

meet the following design criteria:

1. Identify and forward packets to local processing unit. API call headers for the given mi-
croservice are able to be extracted and identified. Once Identified the packet is forwarded to
a processing unit where the microservice is performed.

2. Standard forwarding of non-identified packets. The inclusion of standard forwarding of Non-
identified packets should incur minimal delay from the addition of microservice processing.
The switch should effectively still act as a switch for non-identified packets.

3. Transparent processing of identified packets and generation of response packets. Identified
packets should add minimal latency to standard switch processing, effectively being invisible
to switch users. Identified packets should be packaged back together into a packet to forward
the response appropriately.

2.2 In-Switch Solution to Microservices

In switch computing is a form of in-network computation that is localized within a net-

work switch. In-switch computation is typically used to perform specific packet level processing

that benefits from localization within a switch. The typical in-switch model, for example, queues

incoming packets from the MAC port, and then allows for definition of parsing, match-action ta-

bles, and deparsing. In-switch computation has been applied to higher level packet processing as

well. We describe above how In-switch computing has been exploited and applied to other appli-

cations such as gradient aggregation of distributed reinforce learning [7] and we will describe in

the following how programmable switches have been used to host simple Netcached server [13].

In both of these papers, the switch acts as the host machine for processes that would otherwise run
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on server or more complicated machine. In-switch computing is done on programmable switches

with the intention of enabling users to change how the switch processes packets. The advantage of

this is that the programmers are able to change the way switches process packets, makes switches

more generalized and not tied to one specific protocol, and have target independence. Target in-

dependence means that the programmer is able to describe packet functionality independent of

hardware. The introduction of programmable switches are what facilitate in-switch computation.

Prior to programmable switches, switches were defined in hardware and did not allow for changes

in the switch packet processing to occur without the redesign and testing of the silicon [2].

We hypothesize that an in-switch computation can be applied to meet the solution criteria

for low latency microservices. This is because of the inherent advantages of switches in the net-

work model. Network switches are in a position in the network model where all of the network

traffic that travels is processed and directed right before reaching the target machine. It has been

observed in other uses of in-switch computation that in-switch application models can be used

to solve network communication overhead, are easily scalable, utilize rack-scale network architec-

ture, and reduce end-to-end system latency. In the context of microservices, in-switch computation

fits the solution criteria that is proposed.

2.2.1 OS Delay

Microservices are typically hosted on server rack clusters hosting virtual machines that run

these Microservices. These virtual machines utilize some form of operating system that contains

a kernel. Gan et al. [14] analyze the end-to-end latency of microservices by creating a movie

streaming service application. This sample application makes use of 33 unique microservices,

which make use of popular open source microservices including nginx, memcached, mongoDM,

xapian, and node.js [14]. The authors analyzed the os vs. user-level cycle breakdown of their

test application. They found that a large fraction of the execution occurred in kernel mode and

another fraction going towards other libraries like libc, libgcc, and others. This is because mi-

croservices such as memcached and MongoDB spend a majority of their execution time in the

kernel, handling interrupts, processing TCP packets, and scheduling request [14]. At low loads,
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the TPC processing and network traversal would take a majority of the execution time. This is

because the microservices are sufficiently simple that there is hardly any processing done. Be-

cause a significant number of request to different microservices are invoked in sequence to satisfy

as single user request, in-switch computation solves this problem by effectively eliminating the

OS and associated virtualization elements as well as packet forwarding to the servers hosting the

microservices. Packets would be identified as microservice requests and immediately processed in

the switch. The end-to-end latency would be significantly reduced due to the lack of system layers

and network elements to traverse to traverse, and allow for this low latency microservices to be

optimized.

2.2.2 Network Delay

Microservices communicate between the gateway, servers, and other microservices using

API calls. This subsequently results in a high network communication overhead and makes up

a majority of the latency for simple microservices. By localizing the microservices within the

switch, this intuitively reduces the number of network hops required to communicated between

gateways, servers, and other microservices. In a network model, packets typically go through a

gateway through a switch, and then to the service. However, in an in-switch computation model,

the packets travel to the switch, are processed, and then rerouted back to the client or to another

microservice. This would reduce the number of jumps performed in the network communication

between microservices by one jump per microservice. This would make a big difference in la-

tency especially for simple low latency microservices where the network overhead makes up the

majority of the latency besides the end-to-end system latency. This can be depicted mathemati-

cally through the equation of the Network transmission Latency among microservices [15]. This

equations shows that the network transmission latency among microservices is related to four key

factors: (1) The number of requests between the two microservice instances, (2) the bandwidth,

(3) network distance between edge node microservices, and (4) the size of the data transmission in

a request between two microservice instances [15].
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transLatency =
m∑
k=1

n∑
q=1

yk,q

m∑
i=1∧mskεpreseti

n∑
p=1

yi,p ∗ lc(i, k, p, q), (Eq. 2.1)

lc(i, k, p, q) =
link(msi,msk)

scalei ∗ scalek
∗ (trans(msi,msk)

bq,p
+

dq,p
c

) (Eq. 2.2)

Refer to Appendix A for variable descriptions of this equation. The application model is

modeled as a graph Ga =< msSets,msRelation > where msSets is the microservices of the

micoservice and msRelation is the dependencies between the microservice applications. The mi-

croserivce msi is defined as a tuple of the required computation resources, storage resources, and

maximum number of request the microservice can manage < calcNeedi, strNeedi,maxLinki >.

In the underlying network model of a microservice, the environment is defined by fully-connected

directed graph of nodes Ge =< nodeSet, linkSet > where nodeSet is the set of nodes and link

set is the set of links between these nodes. Each link between two nodes has a related bandwidth

and network distance. A node is characterized as a tuple of the the computing capacity, the storage

capacity, and the failure rate < calcj, strj, failj >. lc(i, k, p, q) is the latency between two mi-

croservices deployed on two network nodes. We can include switches in this model in two ways

depending on the assumptions made. If the network model considers switches to be a node, then

by moving a microservice within the switch node, we effectively reduce the number of nodes and

subsequently the overall latency of the application. If switches are not considered a node, then

the latency is apart of the the communication link between each node. In this instance, when a

microservice is moved within a switch, the network distance is reduced. In any case, moving mi-

croservices within a network switch reduces the network transmission latency and overall latency

of the application.

2.2.3 User Transparency

An in-switch implementation for microservices would supply user transparency for the

application by containing the microservice within the switch. while the microservices would be

debuted in switches, the entire application would be appear as one to the user.
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2.2.4 Maintain the Benefits of a Microservice Application Over Monolithic Applications

An in-switch implementation would maintain the benefits of a microservice application

over monolithic applications so long as it provides ease of deployment, testing, and scalable. This

means easy access to the individual microservice codebase on the switch.

2.2.5 Netcache: An In-Network Key-Value Store on a Network Switch

Switches have been recognized as a solution to solve low latency in-network computation

in areas similar to microservices. Netcache is one such implementation, whereby a programmable

switch is utilized as an in-network cache to handle queries on hot items [13]. Netcache is essen-

tially a simpler implementation of memcached that targets hot items in an attempt to solve load

imbalance in other key-value store implementation. Memcached is an in-memory key-value store

for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or

page rendering. Switches are optimized for data input-output and maintain lower latencies when

compared to tradition network caches and servers. Netcache is implemented on a programmable

network switch through the use of P4. P4 allows for easy implementation of packet format, cus-

tom processing graphs, and the ability to specify the match fields and actions of tables within the

switch. For these reasons, the developers of netcache utilized P4 to compile their program onto a

programmable switch. The implementation of Netcache on a switch effectively reduced the load

imbalances and improved the throughput. Overall, NetCache improved the throughput by 3.6×,

6.5×, and 10× over the NoCache implementation under Zipf 0.9, 0.95 and 0.99, respectively. The

implementation of NetCache is significant to our hypothesis, because Netcache could essentially

be used as a function for a microservice. The only requirement for a microservice is that it per-

forms some form of set function, and one microservice could simply be a form of Netcache on

the switch. This Netcache could be extended to fit within the microservice architecture and use

API calls for communicate with other microservices. The Netcache paper does not analyze the

Netcache implementation in the context of microservices, and still requires adjustements to meet

the solution criteria that we proposed. The implementation of multiple Netcaches, or a Netcache
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with another API would also better satisfy the description of a microservice implementation on a

switch.

2.3 In-Switch Computing Architectures

There two primary routes for this in-switch computation: purely hardware description,

or using P4 and a programmable switch implementation. The purely hardware design approach

has the benefit of being much more capable in terms of hardware. We can design a switch that

has the most ideal hardware which is required to support the various microservices that might be

implemented on this switch. The programmable switch route has the benefit of being software

defined. This would allow changes to be made to the switch without having to completely redesign

the hardware. Considering how microservices are ideally easily updated and scalable, this may be

preferable long term and more realistic route for hosting microservices on switches. The primary

downside of this form of implementation is that the implementation will be heavily dependent on

the hardware capabilities of the switch architecture. Programmable switch architecture targets for

P4 are broken down into various pipe section that perform functions as information flows. These

pipe have limited memory and processing capabilities. We describe the layout of both of these

architectures as well as what implementation on a programmable switch will look like on them.

Figure 2.1 depicts our proposed high-level architecture of a hardware design approach to

In-switch microservices. This design was informed by the previous in-switch architecture de-

scribed by the authors of an in-switch computing and accelerated distributed reinforcement learn-

ing. The authors propose an in-switch accelerator that performs gradient aggregation for a machine

learning model in the switch. The design was created with the intention of identifying microservice

packets, and rerouting them to the processing unit portion of the switch. Incoming packets would

enter through the physical transceiver of the switch, and then move through the Media Access Con-

trol (MAC). The packets are subsequently added to the ingress queues. These queue act as buffers

and feed the packet into the Filtration and Arbitration Unit in the appropriate order. Here packet

header information is processed and then fed into either the Processing Unit or Packet Processing

Unit depending on the read packet information. The Processing Unit executes the microservice
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application and the Packet Processing Unit contains the header parser, ethernet lookup tables, and

IP lookup tables. Recognized API call packets will be filtered into the Processing Unit to perform

the microservice API call within the switch, and unrecognized packets will be sent straight into the

Packet Processing Unit. The Processing Unit performs the API call for the particular microservice

that is being hosted within the switch and compiles the resulting data into a packet to be sent back

to the host. The compiled packet will subsequently be sent back into the Filter and Arbitration Unit,

which then reroutes the packet to the Packet Processing Unit. The header information is parsed

and compared to the lookup tables for the appropriate destination. Packets are then forwarded

accordingly to the corresponding TX Queue, MAC, and PHY Transceiver.

Figure 2.1: In-Switch API handling model.

The Processing Unit used in the switch would consist of one multi-core CPU. This CPU

would have a small cache, memory, and program memory. There would be no kernel nor operating

system, as assessed, in order to reduce the end-to-end system latency. One of the cores would be

assigned as the ’control’ core, which manages the other CPU’s. This Processing Unit would repet-

itively run a program checking a software queue for a received packet. It would then appropriately

place the packet information in memory for the other CPU cores to access and process. The pro-

gram for running the respective microservice would already be in program memory and ready to

execute the associated API call. The management CPU would take resulting data and recompile it
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into packet format to be forwarded out. It would send this packet into a software output queue that

would output into the Packet Processing Unit. This Architecture has the benefit of being able to

explicitly defined processing unit to meet the hardware requirements of the hosted microservice.

The primary issue with this architecture is that designing hardware around a specific microservice

would take much more time to implement and update.

2.3.1 Programmable Switch Architecture

To understand how a microservice might be implemented on a programmable switch, we

first analyze the target architectures for the P4 as well as its software capabilities. Current net-

work switches that support P4, such as the Barefoot Tofino, utilize Protocol Independent Switch

Architecture (PISA). PISA is the hardware architecture of the programmable switch being used,

however, there can be specific architectures such as PSA, V1, and SimpleSwtich that can be pro-

grammed into this architecture.

Figure 2.2: PISA high-level architecture [16].

The layout of the PISA architecture is depicted on a more abstract level in Figure 2.2 and is

elaborated further in Figure 2.3. The PISA Architecture is a pipeline that can be divided up into 5
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main sections: The Parser, The Ingress Checksum and Match-Action Pipe(s), The Traffic Manager,

The Egress Checksum and Match-Action Pipe(s), and the Deparser. The Parser, Traffic Manager,

and Deparser are fixed function and specific to the hardware of the Switch. These parts cannot be

changed by the programmer. The Parser simply extracts headers from the incoming packets, these

packets are then sent to the next pipeline stages to be processed. The Ingress and Egress Checksum

and Match-Action are the programmable sections of the network switch. The number of pipes is

defined by the programmable and limited based on the switch hardware and the resources available.

There are parallel memory and ALU components for each match action pipe. This allows for

parallel match action execution, however, depending on the program there may be match or action

dependencies. Match dependencies will result in a full unit of latency (Considering one match

action as one unit of time), whereas action dependencies can have staggered execution and result in

a half latency. This is because the match will occur prior to the action, so a staggered execution can

occur. This is important to note in the context of this paper for optimizing microservice execution.

Another important note is that the Ingress and Egress Match-Action have a shared memory. This

allows for data to be easily accessible further down the pipeline, and supports continuous flow of

data and execution.
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Figure 2.3: PISA detailed architecture [16].

The specific layout of PISA that describes all switch architectures can be observed in Fig-

ure 2.3. This figure depicts a number of MAC ports feeding packets into the Ingress buffer before

proceeding to the same number of Parsers on the switch. These Parsers then direct traffic to the

Ingress Match-Action stage, which executes the programmed logic prior to entering the Ingress

Deparser. The Deparser send the processed information to the Ingress Packet Constructor which

recreates a packet to output. The Headers are then sent to the Egress processing portion of the

switch, where a similar process occurs. Notice how the memory between the Ingress and Egress

is shared, so the information is essentially sent back to the same pipes to be executed. This al-

lows for efficient use of hardware resources on the switch. This hardware architecture enables

developers to easily define the specific switch architecture that they would like to implement on

top. The primary difference between the switch architectures being implemented is simply the

number of pipes for the Match-Action stages. Considering this, we are able to develop a the-

oretical switch architecture on top of this hardware. The P4 Language allows the developer to
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easily define the number of pipes, actions, and a variety of other networking components. P4 pro-

gramming is best described as C, but remove loops, pointers, malloc, and free. Programmers can

define tables, actions, metadata, headers, and offers enough flexibility and resources to implement

C-like programs. Looping can be resolved by using one of the rerouting lines within the switch,

these line vary from switch to switch. Using P4, a developer can define a microservice within the

switch and using the different pipeline stages do the Parsing, processing, and deparsing. Using

programmable switches offers a software route to implementing an In-switch microservice. The

primary drawback is that the microservice will be limited to two constraints: The P4 programming

language, and the programmable switch architecture. As mentioned P4 is a limited version of C,

so programmers will have to programmable the microservice to fit the P4 format. Depending on

the programmable switch architecture being used, there will be certain hardware constraints placed

onto the microservice.
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3. ANALYSIS

The possible architectures for an In-switch microservice implementation have different ad-

vantages and disadvantages. The Hardware Architecture approach follows a more standard im-

plementation of a switch with the exception of the added hardware elements. Our architecture

model is based on the previous implementation of an In-switch computation model for Acceler-

ated Distributed Reinforced Learning, whereby a processing unit is added to the current hardware

of switches. This architecture had the advantage of being able to explicitly define supporting hard-

ware and capable of utilize other multi-core processor models. The downside of this model is

that it would be more complicated to update the codebase of this model when compared to Pro-

grammable Switches. We found that the Programmable Switch Architecture is preferable in the

context of an in-switch implementation of microservices in the current space. While this architec-

tural route has the downside of hardware and software limitations, it has the benefit of extensive

documentation and support of other sources along side these ease of implementing existing mi-

croservices in P4. To analyze in-switch microservices, we would only need to analyze multiple

services being performed within a switch. A switch capable of hosting multiple services would

qualify as a microservice since a microservice is considered to host one or more services within

itself.

For our analysis we observe data from the implementation of NetCache: Balancing Key-

Value Stores with Fast In-Network Caching, which is written in P4 and implemented on a pro-

grammable switch and analyze it in the context of microservices. Netcache is essentially a simpler

implementation of memcached that targets hot items in an attempt to solve load imbalance in other

key-value store implementation. The only requirement for a microservice is that it performs some

form of set function, and one microservice could simply be a form of Netcache on the switch. This

Netcache could be extended to fit within the microservice architecture and use API calls for com-

municate with other microservices. If two Netcaches were to be hosted on a switch, this would
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qualify as a microservice. NetCache has an average latency of 11- 12 microseconds per query

when implemented on one 6.5Tbps Barefoot Tofino switch [13]. NetCache is also able to run on

the Tofino at line rate at 2.24 BQPS. Netcache functions close to the latency and line rate of this pro-

grammable switch. This means that the NetCache application is contained within the switch node

in the context of a network model. The PISA model for programmable switches, has resources that

adjust according to the switch model. A theoretical model can then be made of two NetCaches on

such a switch. This is feasible, considering how the memory and processing power can be defined

for each pipe of the architecture. These resources are in parallel, meaning a separate NetCache

could be hosted alongside another. This would define a microservice of two NetCaches running

separately with the latency value of one NetCache. With this in mind, we have formed a theoretical

model for an in-switch microservice with supported theoretical latency value. This implementation

of multiple NetCache’s on a SDN switch fits the design criteria we set. The header of the packet is

identified as being NetCache in the Ingress Parser portion of the PISA pipeline. These packets are

subsequently forwarded to the next pipeline stages to be processed. Non-identified packets pass

straight through the other pipes without being processed. The standard NetCache Implementation

runs at the line rate of the switch, meaning it maintains transparent processing and generation of

packets within the switch. Because of the localization of NetCache within the switch, a node can

be taken out of the graph of a microservice application. What would normally be a separate node is

now contained within the network latency of a switch. This effectively reduced the communication

overhead while also eliminating the end-to-end system latency that might otherwise be generated

from system traversal. User transparency and previous benefits of microservice applications over

monolithic applications are also maintained via P4. Because NetCache is software defined using

P4, it is capable of being changed, scaled, and tested while providing an individual service.
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4. CONCLUSION

In this paper we presented a set of criteria that addresses the drawbacks of microservices

and hypothesized a potential in-switch model to low latency microservices. The in-switch model

would reduce end-to-end service request latency by reducing the required number of network

jumps and latency incurred by the server. We then defined the set of design criteria that this

in-switch model would have to meet in order to address the drawbacks of the current microser-

vice architecture. This criteria was centered around resolving the latencies incurred from the OS

and Network communication done in a microservice architecture. We then gave a hardware and

SDN model based on previous research. In our analysis, we found that multiple NetCache’s are

theoretically capable of being implemented in a programmable switch as a microservice and meet

the defined design criteria. This implementation of NetCache as a low latency microservice in a

switch, reduces the end-to-end and network latencies by being hosted on a switch. This would be a

solution the drawbacks of a microservice as we defined and increase performance of microservices.
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APPENDIX A: MICROSERVICE PARAMETER DESCRIPTION

A.1: Microservice Parameter Descriptions [15]
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