24,462 research outputs found

    The determination of major and some minor constituents in lead zirconate-titanate compositions by x-ray fluorescence and atomic absorption spectrometry

    Get PDF
    An accurate X-ray fluorescence spectrometric method is described for the determination of lead, zirconium and titanium in lead zirconate-titanate ceramics. Careful matching of samples and standards by a borax fusion method resulted in a relative standard deviation of about 0.2% for the major constituents. The determination, after separation, of the unreacted oxide of lead by atomic absorption spectrometry, and of the unreacted oxides of zirconium and titanium by X-ray fluorescence spectrometry is also described. An X-ray fluorescence spectrometric method is proposed for the determination of dope elements (K, La, Sm, Yb) with internal standards (Ca, Ce, Cr, Ni respectively). The magnesium dope is determined by atomic-absorption spectrometry with standard addition

    Atomic Absorption Spectrometry (AAS)

    Get PDF

    Cloud Point Extraction Used for Separation and Preconcentration of Trace Elements in Food Samples: A Review of Recent Applications

    Get PDF
    Food safety analysis involves many subfields. One of them is inorganic analysis aimed to the quantification of various trace elements. The main attention in this field is paid to toxic, potentially toxic, and essential trace elements. However in many cases, direct quantification of trace elements in a complex food matrix is almost impossible. To resolve this problem, a combination of a suitable separation procedure with a reliable quantification method is required to deliver accurate results. One of the separation techniques that is currently receiving considerable attention is cloud point extraction (CPE). The use of optimized CPE procedures with commonly available spectrometric methods (e.g., UV-Vis spectrophotometry, flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry, hydride generation atomic absorption spectrometry, cold vapor atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry) provides the powerful tool for reliable quantification of many trace elements (e.g., Al, As, Cd, Cu, Hg, Pb, Mn, Ni, Sb, Se, Sn, Zn, and many others) in various types of food matrices (e.g., fresh vegetables, ground grain samples, canned food samples, various powdered food samples, and many others), as documented by studies included in this review

    Atomic Absorption Spectrometry - Present and Future

    Get PDF
    The development of analytical chemistry methods is mainly prompted by three aims: (a) an improvement of the power of detection (b) increase in analytical reliability in terms of freedom from systematic errors and optimal analytical precision, (c) and cost reduction

    Energy Dispersive X-Ray Microanalysis, Neutron Activation Analysis and Atomic Absorption Spectrometry - Comparison Using Biological Specimens

    Get PDF
    X-ray microanalysis, neutron activation analysis and atomic absorption spectrometry were performed on normal and injured skeletal muscle. X-ray microanalysis of tenotomized rat soleus muscle showed significantly elevated levels of sodium and chlorine and lower potassium compared with normal muscle. Similar ion shifts could be demonstrated by neutron activation analysis and atomic absorption spectrometry. The concentrations of sodium and chlorine obtained by these techniques were somewhat higher and that of potassium lower than the values obtained by X-ray microanalysis. This can probably be attributed to the fact that in atomic absorption spectrometry and in neutron activation analysis the entire muscle biopsy contents are measured while in X-ray microanalysis only the contents of muscle cells unaffected by extracellular, non-muscular components are determined. It can be concluded that X-ray microanalysis is a reliable technique to study the elemental content of biological tissue, especially tissue undergoing pathological changes affecting the extracellular spaces. Other types of analysis should be used when elements not detectable by X-ray microanalysis are of interest

    Determination of Bi in complex oxide samples by atomic absorption spectrometry by using ordinary acetylene – air flame atomization

    Get PDF
    In the present work the air/acetylene flame atomic absorption spectrometry was used for bismuth determination in complex oxides. Interference studies were carried out, and interference with vanadium and molybdenum was detected. The method of standard additions and traditional calibration curve method were used. Calibration and standard addition curves were fitted with linear and polynomial functions. It was shown that using polynomial function gives better results for the standard additions method for determination of bismuth by acetylene/air flame atomic absorption spectrometry. The calibration curve method was shown to be correct at low ( 10mg/L) concentration of an interferent

    Aspects of flow injection atomic absorption spectrometry

    Get PDF
    The literature relevant to the generation of volatile hydrides for analytical atomic spectroscopy has been reviewed, with particular reference to atomic absorption spectrometry (AAS). This reveals some conflicting information concerning the nature of various interference effects and strategies to overcome them. The use of flow injection (FI) procedures has been demonstrated by several research groups, to be beneficial. A review of the literature concerning the application of FI techniques to AAS shows that there is a sustained interest in the use of such a combination for analytical purposes. In particular, an interest in the on-line coupling of chemical pretreatment of samples is evident. Atomic absorption spectrometry has a limited working range and requires frequent calibration, consequently, there is a need for a rapid, precise on-line dilution procedure. The potential of FI systems with wide bore manifold tubing for on-line dilution was assessed and found to be limited by variations in dispersion coefficient arising from differences in specific gravities between the sample and carrier fluids. This could be overcome only by the use of unrealistically high flow rates. The use of FI procedures for the generation of volatile hydrides of selenium and arsenic was investigated. Optimization studies of system parameters, including the atomization step, were undertaken which demonstrated the benefits in applying FI in hydride generation atomic absorption spectrometry (HGAAS). Analytical methods were devised and evaluated for the determination of Se in copper metal and As in nickel alloy. These procedures involved the use of an on-line matrix removal step in which potentially interfering matrix elements were retained on a strong cation exchange resin (Dowex 50W). The manifold was designed so that the FI value acted as the interface between the matrix isolation stage and the vapour generation stage, a strategy which allowed independent optimization of each stage. Location of the ion exchange resin in the sample loop of a six-port rotary valve allowed the resin to be regenerated easily and rapidly, with a throughput capability of the order of 50 h⁻¹ and permit the proposed full automation of the whole analytical procedure. In the determination of As in nickel alloy a novel stopped-flow pre-reduction step was developed to permit AsIII quantification, therefore, achieve optimum sensitivity. The two systems permitted limits of detection for Se and As of 2.1 and 3.9 ng ml⁻¹ respectively. Direct comparisons were made with existing matrix isolation systems to emphasise the benefits of system design

    Automated online preconcentration system for the determination of trace amounts of lead using Pb-selective resin and inductively coupled plasma-atomic emission spectrometry

    Get PDF
    An automated sequential-injection online preconcentration system was developed for the determination of lead by inductively coupled plasma - atomic emission spectrometry (ICP-AES). The preconcentration of lead was performed with a minicolumn containing a lead-selective resin, Analig Pb-01, which was installed between a selection and a switching valve. In an acidic condition ( pH 1), lead could be adsorbed on the resin. The concentrated lead was afterward eluted with 25 mu L of 0.06 M nitrilotriacetic acid (NTA) solution ( pH 9) and was subsequently transported into the nebulizer of ICP-AES for quantification. The selectivity of the resin toward lead was examined using a solution containing a mixture of 61 elements. When a sample volume of 5 mL was used, the quantitative collection of lead ( &#62;= 97%) was achieved, along with an enrichment factor of 19, a sampling frequency of 12 samples hr(-1), a detection limit of 70 pg mL(-1), and a lowest quantification limit of 100 pg mL(-1). The linear dynamic range was 0.1 to 5 ng mL(-1), and the relative standard deviation (n = 9) was 0.5% at a 5 ng mL(-1) Pb level. The detection limit of 30 pg mL(-1) and lowest quantification limit of 50 pg mL(-1) could be achieved when 10 mL of sample volume was used. The accuracy of the proposed method was validated by determining lead in the standard reference material of river water (SLRS-4), and its applicability to the determination of lead in environmental river water samples was demonstrated.</p

    Environmental implications of phytoextraction for mercury and gold : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Earth Science

    Get PDF
    The overall objective of this study was to investigate how plants could be used to harvest gold (phytomining) and at the same time remove mercury (phytoremediation) from auriferous mercury-contaminated soils. This study was undertaken to find appropriate plants that could be used to harvest gold, residual in mine tailings or in uneconomic low-grade ore, and at the same time remove residual mercury, commonly used to extract the gold in artisanal mining areas. Different procedures involving analytical methodology, leaching of acid mine tailings and the growing of plants in both gold and mercury-bearing substrates were undertaken. The analytical methods involved in the analysis of gold in the laboratory using the modern instruments were Flame Atomic Absorption Spectrometry (FAAS) and Graphite Furnace Atomic Absorption Spectrometry (GFAAS). The determination of mercury involved using Flameless Atomic Absorption Spectrometry. To understand the induced solubility of metals in phytoextraction, Tui mine tailings were leached with several chemicals known to solubilise gold: ammonium thiocyanate, ammonium thiosulphate and urea. The pH of the tailings material was varied through amendment with lime to examine the effect of this geochemical parameter on metal solubility and thus the potential for both plant uptake and leaching. The Tui mine tailings were chosen because of their geochemistry; these are highly weathered sulphide-ore tailings that leach heavy metals into adjacent water systems. The induced-phytoextraction potential of root crops was also examined in this thesis. Five root crops were grown in an artificial substrate consisting of 3.8 mg/kg (ppm) of elemental gold dispersed in sand. The possibility of using these root crops for phytomining was determined by separately adding chelating agents ammonium thiocyanate and ammonium thiosulphate to the substrate. In most cases there was a higher gold concentration in the roots than in the shoots. The highest mean gold concentrations were found in carrot roots and in roots of two radish cultivars. It was concluded that there was some potential for the use of carrot to grow an economic crop of gold from mine tailings. Results obtained from experiments where plants were grown in Tui tailings indicated that both chicory and Brassica juncea could be used for the phytoextraction of gold and mercury in the same crop. Under acidic conditions thiocyanate induced the uptake of gold by Brassica juncea and the uptake of mercury by chicory; and thiosulphate induced the uptake of mercury by chicory, but it did not induce the uptake of gold by the same plant. Under alkaline conditions, treatment with ammonium thiosulphate induced the uptake of gold and mercury by Brassica juncea; and treatment with thiosulphate induced the uptake of mercury by chicory but it did not induce the uptake of gold. It was therefore concluded that, Brassica juncea could be used for phytoextraction of gold and mercury when ammonium thiosulphate is applied to the substrate. Results from the root-crop experiment indicate that, carrots could supersede most of the plants used due to the greater apparent metal-uptake potential. Finally, a model is proposed for field trials to examine the potential of phytoextraction for gold and mercury in Tanzania. The aim of this model is to examine how the positive results obtained from research conducted in the laboratory and greenhouse can be put into practice. The use of similar plants as well as traditional tropical species (e.g. wild cassava - a known accumulator of cyanide) is suggested along with suitable chemical amendments
    corecore