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Abstract. 

The literature relevant to the generation of volatile hydrides for analytical atomic spectroscopy ~ 

been reviewed, with particular reference to atomic absorption spectrometry (AAS). This reveals 

~nflicting information concerning the nature of various interference effects and strategies to 

overcome them. The use of flQ)Y..inj€etien-{EI) procedures has been demonstrated by several 

research groups, to be beneficial. A review of the literature concerning the application of FI 

te~::::q.::u.::es~to:_:_AA:::.::_S:_:s:::h:..ow;;.:.s .:th"'a"'t~t=h~eruii.J!_ sustained interest in the use of such a combination for 

analytical purposes. In particular, an interest in the on-line coupling of chemical pretreatment of 
-----·--------~ 

samples is evident. 

Atomic absorption spectrometry has a limited working range and requires frequent calibration, 

consequently, there is a need for a rapid, precise on-line dilution procedure. The potential of FI 

systems with wide bore manifold tubing for on-line dilution was assessed and found to be limited 

by variations in dispersion coefficient arising from differences in specific gravities between the 

sample and carrier fluids. This could be overcome only by the use of unrealistically high flow rates. 

The use of FI procedures for the generation of volatile hydrides of selenium and arsenic was 

investigated. Optimization studies of system parameters, including the atomization step, were 
~ 

undertaken which demonstrated the benefits in applying FI in hydride generation atomic absorption -spectrometry (HGAAS). Analytical methods were devised and evaluated for the determination of 
--~ __ ,_,.., _ _., .... ,.,--....... - .... --... ---••"'"'--~'N----hoo ....... ~ ... 

Se in copper metal and As in nickel alloy. These procedures involved the use of an on-line matrix 

removal step in which potentially interfering matrix elements were retained on a strong cation 

exchange resin (Dowex 50W). The manifold was designed so that the FI value acted as the interface 

between the matrix isolation stage and the vapour generation stage, a strategy which allowed 
--------------------~~ ~ independent optimization of each stage. Location of the ion exchange resin in the sample loop of 

_,_,..,.,,._...,...,_,,,,.,_.,..,-o,,.-,, ... ~......._._.,,...,... 

a six-port rotary valve allowed the resin to be regenerated easily and rapidly, with a throughput 

capability of the ~;;;~;~{'5()-h-l~;;d·~;rmh~h-;;;;;~;;;;-dfulj-;~-;;,;tio7~~7e~alytical 
procedure. inille~deterii'ii;;'~tio~ ofA~kkel alloy a no~el stoppe<F-flow pre-reductio;;;-;;; 

--~--~- ·-,,. 
develop'ed to permit Aslll quantitation, therefore, achieve optimum sensitivity. The t~~!'Y~_t!'.~~-. 

permitted limits of detection for Se and As of 2.1 and 3.9 ng mr1 respectively. Direct comparisons 
_. . ,_, _____ ._'""·'·'•····--~----__::,......,. 

were made with existing matrix isolation systems to emphasise the benefits of system design. 

Keywords: Atomic absorption spectrometry; flow injection; hydride generation; interference 

removal; on-line matrix isolation; on-line dilution. 
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CHAPTER ONE 

HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY. 

1.1 INTRODUCTION. 

The concept of atomic absorption spectrometry (AAS) was first introduced by Walsh (1) at 

CSIRO in Australia in 1955. Since its birth some 35 years ago the technique of AAS has now 

become widely accepted and used for the analysis of 67 mainly "metallic" elements at the trace 

and ultra-trace level. The technique of AAS is now sufficiently well known that numerous text 

books exist covering its use including those of Ebdon (2) and Cantle(3). At present over 1000 

publications covering the whole spectrum of AAS appear in a variety of journals each year (4). 

Reviews appear in Analytical Chemistry [5) every two years and yearly in the Journal of 

Analytical Atomic Spectrometry (6). 

Sample introduction and subsequent atomization in AAS is achieved by three main methods, 

flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry 

(ETAAS) and hydride generation atomic absorption spectrometry (HGAAS). Each method has 

its respective advantages and disadvantages. 

Flame atomization is currently perhaps the most used and understood method of atomization. 

The combustion flame proposed by Walsh (1) provides a remarkably simple means of converting 

inorganic analytes in solution into free atoms. The major advantage of the technique is the rapid 

rate of analysis obtained making routine analysis quick and cheap. Disadvantages of the 

technique include limited sensitivity and chemical interference effects. The sensitivity of F AAS 

is restricted due to the inefficient performance of the nebulizer and spray chamber system which 

delivers only about 10% of the sample solution to the flame, and the low atom number density 

attained in the flame due to the dilution effects of flame support gases. 

The. electrothermal atomization procedure was first proposed by L'vov (7) in 1961. A relatively 

small volume of solution was applied to the tip of a resistively heated carbon electrode which 

was introduced into a cylindrical electrically heated furnace. Electrothermal atomization offers 

vastly superior sensitivity over FAAS with detection limits normally in the low ng mr1 range. 

The inherent atomization efficiency of ETAAS is though to some extent obtained at a cost to 

analysis time. A typical cycle time of 2 minutes is significantly longer than in F AAS which takes 

in the order of 15 seconds. Operation and optimization of ETAAS is far more complicated than 

FAAS and even with automatic sampling, precision is inferior to that of FAAS. 
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Hydride generation was developed in response to a need for the determination of 

"environmentally" important elements, such as As, Ge, Sb, Se and Te. Such elements had proved 

difficult to measure accurately using both F AAS and ET AAS. The main difficulty faced in 

determining these elements is that their optimum analytical lines are in the low ultraviolet 

(between 190 and 230 nm). The background absorption in a flame atomizer at such wavelengths 

is high. Kahn and Schallis [8] reported a 62% background absorption by the air-acetylene flame 

at the arsenic 193.7 nm line. Alternative flames such as the argon-entrained air-hydrogen flame 

can reduce the background absorption. However, use of this very low temperature flame 

( -300°C) can result in greater interferences caused by incomplete salt dissociation and 

molecular absorption. In ET AAS the use of short wavelengths causes other specific problems. 

Light scattering by particulate matter is severe and molecular absorption is a serious problem. 

For relatively volatile elements such as Se, matrix modification procedures are necessary to 
or 

reduce analyte loss during the charing-aa<l ashing steps. 

Hydride generation overcomes the problems faced in the determination of such elements (As, 

B~ Ge, Pb, Sb, Se, Sn and Te) by FAAS and ETAAS through the formation of volatile hydride 

species which are separated from the sample matrix prior to determination by AAS. The 

hydride generation process, used for years in the classical Marsh reaction and Gutzeit method 

[9], for the determination of As, was first applied to AAS by Holak [10] in 1969. The hydride 

generation system described can be divided into three steps: (i) the generation and volatilization 

of the hydride; (ii) transfer of the hydride including collection and (iii) the atomization of the 

hydride in the light beam of the spectrometer. Holak [10] reported that the major advantage 

of his gas sampling technique was its suitability to trace analysis. In comparison with liquid 

sample introduction, the methodology allowed preconcentration of the sample from a relatively 

large volume of solution into a relatively small volume of vapour and sample transport was 

accomplished with an efficiency approaching 100%, compared with 1-10% typical of FAAS. 

Applying the method of hydride generation a detection limit of 0.04 1-1g of As was achieved, 

(preconcentration of hydride over 30 minutes). Holak [10] also reported that since the element 

was isolated from the matrix, interference associated with the nebulization of solutions of high 

dissolved solids (such as light scattering) as well as chemical interferences were eliminated. No 

data was presented though as evidence for the rather optimistic postulation that chemical 

interferences were eliminated. Clearly the major disadvantage of the hydride generation process 

is its limited application to only eight elements making it a very specific technique in 

comparison with FAAS and ETAAS. In its early days the technique was very labour intensive, 

tedious and with a low throughput capability [10,11]. This drawback has been overcome to an 

extent through the application of both continuous flow [12] and flow injection [13] methodology. 

Although reported by Holak [10] to be virtually interference free, later work has shown that the 
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technique is susceptible to numerous effects both in the aqueous and gas phases (14,15). A 

possible drawback of the technique, if care is not taken is that its performance is affected by 

the chemicaf nature of the analyte [11,16). However, the ability of the technique to permit 

chemical speciation in samples is very beneficial because toxicity, bioavailability, 

bioaccumulation and transport of a particular element depends critically on the chemicaf form 

(17,18). Such information is less available using FAAS or ETAAS without extensive sample 

pretreatment. 

1.2 BACKGROUND AND DEVEWPMENT. 

To date a number of reviews have been made of hydride generation atomic absorption 

spectrometry (17-22). Of these three are of particular note. Godden and Thomerson (19) 

provided an excellent coverage of the development and growth of HGAAS in its early years. 

Nakahara (21) reviewed the application of hydride generation, not only to atomic absorption but 

atomic fluorescence and plasma atomic emission spectroscopy. Excellent detail was given of its 

application to real sample analysis. Dedina (22) reviewed hydride generation and atomization 

in AAS. Great detail was paid to the theoreticaf aspects of both the generation and atomization 

processes. 

1.2.1 Chemistry. 

In the first reported application of hydride generation to atomic absorption by Holak (10) 

the covalent hydride (arsine) was formed using the zinc-hydrochloric acid reduction 

system. The reaction proceeds according to the following equation 1.2.1, 

Zn + 2HCI --~---- ZnCI 2 + 2H 

(1.2.1) 

(m may or may not equal n), where E is the element of interest. 

The zinc-hydrochloride acid system was restricted though to the formation of AsH3, 

SbH3 and H2Se. In later work (11) a zinc column was used in the formation of hydrides 

3 
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as shown in Fig. l.l(a). The acidified sample was injected through the septum cap at the 

top of the column and the resulting hydride was carried in the nitrogen stream out at the 

bottom of the column to the atomization cell. 

Other metal-acid reactions have been investigated for the formation of covalent hydrides 

including AI powder and HCI [23] and a mixture of Mg metal and titanium(III)chloride 

reacted with HCI [24]. The major drawbacks of the metal-acid reaction were that it could 

only be used for As, Sb and Se and the long time reqnired for the completion of the 

reaction, in some cases approaching 10 minutes. This kinetic feature prevented 

automation of the procedure. 

The first reported use ofthe presently accepted HGAAS reduction system was published 

in 1974 by Thompson and Thomerson [11]. Methods for the determination of eight 

elements (As, Bi, Ge, Pb, Sb, Se, Sn, Te) were described. The hydrides were generated 

by adding the acidified sample to a dilute sodium tetrahydroborate (1% m/v) solution. 

Hydride generation proceeds according to the following equation 1.2.2, 

NaBH 4 + 3H 
2
o + HC I 

(1.2.2) 

(m may or may not equal n) where E is the element of interest. 

The NaBH4 system was reported to give improved sensitivity over the previous zinc 

reduction system. The design of a typical batch hydride generation cell used for the 

sodium tetrahydroborate procedure is shown in Fig. l.l(b). 
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Fig. 1.1. Methods of Hydride Generation[ll]. 

(a) Zinc column reduction unit. 
(b) NaBH4 reduction hydride generator cell. 

~=-'\.In 

The generation efficiencies and relative rates of formation for the sodium 

tetrahydroborate system have been studied by a number of groups [15, 22, 25, 26, 27], 

but have been restricted solely to the formation of hydrogen selenide. Hydride generation 

efficiencies have been determined through the use of a 75Se radio tracer [15,25]. The rate 

of formation of the hydride has been investigated in most cases indirectly through 

measuring the rate of decomposition of sodium tetrahydroborate [26, 27]. The amount 

of undecomposed tetrahydroborate was measured by iodometric titration at intervals 

after the mixing of reagent with acidified sample. Sodium hydroxide was added to the 

reaction mixture, to stop the decomposition reaction, and permit the measurement of 

sodium tetrahydroborate concentration under static conditions. Direct comparison of the 

results from these investigations though is very difficult due to the variety of different 

hydride generation devices, varied reagent concentrations and system variables used. One 

of the most comprehensive studies of the hydride generation process to date was that 

made by Narsito et al. [27] in 1990. Reaction rates of the formation of hydrides and the 
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decomposition rate of the reducing agent sodium tetrahydroborate in alkaline and acidic 

media were studied in a continuous flow system. The hydride formation was assumed to 

be a simple second-order reaction of the type, 

(1.2.3) 

where A • + was the analyte used and AHn the analyte hydride formed. 

The formation rate constant ~ was therefore given by equation 1.2.4. 

(1.2.4) 

Following the manipulation of equation 1.2.4 the formation constant kr was simplified to 

equation 1.2.5, 

k =- k ([Hp•]) IIif 
"I d [B] 

(1.2.5) 

where [B] was the initial molar concentration of NaBH4, f the fraction of analyte left in 

the waste after reduction and kd the decomposition rate constant for NaBH4• A summary 

of the results obtained in the study are shown in Table 1.1. The concentration of NaBH4 

required for the conversion of analyte increased in the order Sbiii<Se1Y <Asiii<Asv. 

The order of reaction rate was Sbiii>SeiV >Asiii>Asv. Evidence for the rapid rate of 

hydride formation was given by the observed rapid decomposition rate of NaBH4• 

Agterdenbos and Bax [26] previously reported that NaBH4 was completely decomposed 

within 10 ms of mixing with acidified sample, therefore, the hydride formation reaction 

time was assumed to be below 10 ms. 
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Table 1.1. Fraction of Sb, As and Se left in the liquid waste after 
hydride generation from Sbm, Asm, As V and SeiV as a function of NaBH4 
concentration and the calculated formation rate constant kr of the hydrides 
(27]. 

NaBH4 Fraction of Analyte in Waste log !kr (mol dm-3 min-1)] 
%mfv (%) 

Sbm Asiii Asv se IV Sbm As m Asv se IV 

0 100 100 100 100 -
0.001 12 - - % 12.4 10.7 

0.01 3 - - 59 11.6 10.8 

0.02 2 - - 37 11.3 10.7 

0.05 1 47 94 14 11.0 10.2 9.1 10.6 

0.10 0 30 82 2 10.1 9.3 10.6 

0.20 0 17 53 0 10.0 9.5 

0.50 0 3 10 0 9.9 9.7 

1.0 0 0 0 0 

1.2.2 Methods of Hydride Generation. 

There are two basic modes of hydride generation (See Fig. 1.2). In the direct mode, 

hydride released from the sample solution is directly transported to the atomizer cell. In 

the collection mode, the hydride is collected until the evolution is completed and then 

released and transported to the atomizer. 

HYDRIDE GENE~ATION 

Fig. 1.2. Methods of Hydride Generation. 

The direct transfer mode of hydride generation has been reported employing batch (11], 

continuous flow (12] and flow injection (13] methodologies. 
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In the collection mode pressure collection (28) or cold trap (29) procedures have been 

developed. In the pressure collection [28) approach the hydride released from the sample 

solution is collected under pressure together with hydrogen resulting from sodium 

tetrahydroborate decomposition. Cold trap collection [29) is carried out using a U·tube 

immersed in liquid nitrogen. Hydrogen passes through and is not collected. The trapped 

hydride is most often purged into an atomizer in an open system following evaporation 

in a heating bath (cold trap collection and open system heating) but it can also be 

evaporated in a closed volume of the collection device and purged into the atomizer after 

evaporation has been completed, (cold trap collection with closed system heating). The 

advantages of cold trap collection are that the hydride can be collected from a virtually 

unlimited volume of sample and the procedure is not limited by the kinetics of the 

formation and separation processes. 

A third and most recent method of hydride collection is in-situ trapping in a graphite 

furnace (30,31). 

1.2.3 Methods or Hydride Atomization. 

In the first reported application of hydride generation to AAS by Holak (10) a 

conventional air-acetylene flame was used for the atomization of arsine. Since that first 

reported method a number of different flames have been used as atomization sources, 

including dinitrogen oxide-acetylene (32), argon-hydrogen [33) and nitrogen-hydrogen [34) 

flames. 

The "flame-in-tube" atomizer was first reported by Siemer and Hagemann (35) in 1975. 

Excess hydrogen generated in the hydride generation process was used to carry the 

hydride to the T-shaped quartz tube. A small amount of oxygen was added to support 

combustion and atomization of the hydride. The "flame-in-tube" atomizer has since been 

reported with the application of oxygen-hydrogen (36) and air-hydrogen (37) flames. A 

diagram of the flame-in-tube atomizer used by Dedina and Rubeska (36) in 1980 is 

shown in Fig. 1.3(a). 

The externally heated quartz tube atomizer is probably now the most popular 

atomization procedure. Schmidt and Royer (38) first reported the use of a quartz furnace 

tube externally heated by an argon-hydrogen flame. Thompson and Thomerson (ll)later 

applied the same procedure with a stoichiometric air-acetylene flame. A diagram of the 

8 



silica atomization tube is shown in Fig. 1.3(b). 

Port 
I~ 

Fig. 1.3. Hydride atomization cells. 

(a) The flame in tube atomizer [36] 

_j L._r 

'1r'"~ 
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(b) Externally heated silica atomizer tube [11]. 

The first reported application of electrical heating of the silica atomization tube was 

made by Chu et al. [39] and applied to the decomposition of arsine in an argon 

atmosphere. The advantages reported for the externally heated quartz atomizer over the 

argon-hydrogen flame were improved sensitivity due to a longer residence time of the 

atom cloud in the optical path and its lower dilution and much reduced noise levels. 

More recently the use of graphite furnace atmoizers has been documented [30,31,40,41]. 

Use of this atomization procedure is increasingly becoming more and more popular, not 

only to achieve sample preconcentration [30,31] but as a means of overcoming mutual 

interferences among hydride forming elements that have hindered previous atomization 

methods [40,41]. 

1.3 INTERFERENCE EFFECTS. 

1.3.1 Mechanistic Studies. 

In most of the early published work on hydride generation, the technique was assumed 

to be interference free, making it superior to both FAAS and ETAAS. The assumptions 

were made generally without experimental evidence however and so, until the work of 
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Smith [14) in 1975, little was known about the limitations of the technique for the 

analysis of real samples. 

Smith [14) made an in-depth study of the interferences of 48 elements in HGAAS, with 

a system based on a batch sodium tetrahydroborate reduction and an argon-hydrogen 

flame. From the study it was shown that copper, silver, gold, platinum, rhodium, 

ruthenium, nickel and cobalt (except for silver with germanium) interfered with the 

determination of all the hydride forming elements. Another observation made was that 

all the volatile hydrides formed interfered with all the other volatile hydrides, (except for 

the hydrides of bismuth and tellurium with those of antimony and selenium). Many of 

the elements that interfered formed precipitates or coloured solutions after the addition 

of NaBH4• Smith postulated, therefore, that the preferential reduction of the metal ion 

interferent in solution to a different valency state or to the free metal could cause 

precipitation of that valency species that could either eo-precipitate the metal of interest, 

adsorb the volatile hydride formed, catalytically decompose it or slow down or completely 

stop its evolution from solution. Another possibility considered was that due to the 

preferential reduction of the interferent, insufficient NaBH4 was available for the 

generation of the hydride. 

Following the work of Smith [14), Pierce and Brown [42) investigated the interference 

of a range of cations and anions in the determination of both As and Se, using an 

automated hydride generation system. An interesting observation was made that the 

degree of interference was highly dependent on the order of reagent addition. Addition 

of hydrochloric acid prior to sodium tetrahydroborate was shown to significantly improve 

the interference tolerance when compared with the reverse order of addition. In several 

cases, as reported by Smith [14), dark precipitates were observed. It was proposed that 

the interfering cations were competing with As and Se for the reducing agent. The 

decrease in interference observed with hydrochloric acid addition prior to sodium 

tetrahydroborate was explained by the increased solubility of the interfering cations. 

The effect of acid on the interference of hydride generation was further studied by 

Kirkbright and Taddia [43). In an investigation of the nickel interference on As, an 

increase in acidity appeared to decrease the interference observed. The reasons given for 

this were the more violent reaction of sodium tetrahydroborate and subsequent more 

rapid evolution of hydride at higher acidities and the increased solubility of the reduced 

metal in concentrated acid. Interference in the determination of As by Ni, Pt and Pd, all 
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hydrogenation catalysts, therefore capable of hydrogen absorption, was suggested to be 

due to the capture and decomposition of the evolved arsine by fmely dispersed metal, as 

proposed by Smith (14). Interference due to such mechanisms was shown though to be 

not applicable to all precipitated metals, due to the observed negligible interference in 

the presence of copper. The addition of copper powder (700 mg) during the hydride 

generation process produced only a 20% suppression of the observed As signal response. 

Meyer et al. (44) in contrast to all previous work, in the determination of Se made no 

mention of any interferent precipitation. They proposed that the hydrogen selenide, after 

its generation, forms insoluble selenides or stable complexes with the free ions or the 

interfering metals in a secondary reaction when it is transported through the sample 

solution by the carrier gas. Interference was observed to be independent of analyte to 

interferent ratio but dependent on the fmal interferent concentration in the analysed 

sample. These workers also found that the transition metal interferences observed for 

Se depended very strongly on the acid concentration of the sample solution. 

Welz and Melcher [ 45) investigated the mechanism of interference on Se of cobalt, 

copper, iron and nickel. Hydrogen selenide was passed directly through solutions of these 

cations. Only at high concentrations (above 10-100 11g mr1) was any significant 

interference observed. The mechanism of interference proposed was the formation of 

insoluble selenides or complexes between the hydrogen selenide and interfering ions, as 

postulated by Meyer et al. (44). The severe interferences reported in all earlier work were 

postulated to be due to the capture and decomposition of hydrogen selenide by fmely 

dispersed metal precipitate, obtained after sodium tetrahydroborate reduction of the 

cationic species. Evidence for the mechanism was provided by the substantial increase 

in concentration of the interferent which could be tolerated in the determination of Se 

at high acid concentrations, because of the increased solubility of the reduced metal as 

suggested by Kirkbright and Taddia (43) in the determination of As. The suggestion that 

inference was caused by competition of the interferent with Se for sodium 

tetrahydroborate (14,42) was dismissed on the grounds that the sodium tetrahydroborate 

was present in a large excess. 

Yamamoto et al. (28) provided further evidence for the mechanism of interference 

proposed by Welz and Melcher (45). On decreasing the sodium tetrahydroborate 

concentration, an increase in the concentration range of interference free determination 

of As was observed which was attributed to the selective reduction of Asiii to AsH3, over 

the interferent species, by the dilute sodium tetrahydroborate solution. These 
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observations clearly dismissed the proposed interference through competition for the 

reducing agent [14, 42). 

Taking this work a step further, Welz and Schubert-Jacobs [46) investigated the influence 

of hydroehloric acid and sodium tetrahydroborate concentrations on the interferences in 

As and Se determinations. The proposed mechanism given for the reduction in 

interference with higher acid and lower sodium tetrahydroborate concentrations was that 

the interferent was reduced to a lesser extent to the metal owing to: 

i. better solubility of the metal in concentrated acid; 

ii. the formation of chlorocomplexes, thus reducing the concentration of free ions, 

and 

iii. a larger percentage of sodium tetrahydroborate being consumed by acid. 

In the case of copper interference on Se a decrease in interference was observed with 

increased hydroehloric acid and sodium tetrahydroborate concentrations respectively, 

contradicting all other observations. The interference meehanism in this case was 

reported to be the formation of relatively insoluble copper selenide as proposed by 

Meyer et al. [44). Improved interference tolerance at high hydrochloric acid 

concentrations was explained by increased solubility of the selenide and the formation 

of chlorocomplexes. The increased interference tolerance with increased sodium 

tetrahydroborate concentrations was explained by two observations. Increased sodium 

tetrahydroborate concentration was reported to increase the rate at whieh the gaseous 

hydride diffused through the reaction solution to the gas-liquid interface, therefore, 

limiting its residence time and so the degree of copper selenide formation. A change in 

colour of the reaction solution to reddish was observed on the addition of sodium 

tetrahydroborate. This was postulated to be due to the reduction of Cu11 to Cu1, resulting 

in a depletion in the relative concentration of interfering ions, particulary at high sodium 

tetrahydroborate concentrations. 

In contrast to early proposals Bye [47] suggested that interfering bivalent cations in the 

determination of Se, actually reacted with sodium tetrahydroborate to form metal borides 

[48), which being highly reactive in character decomposed the hydrogen selenide. This 

proposal in many respects was rather speculative though since rather limited practical 

evidence was given in its defence. Only in the case of nickel was boron positively 

identified within the precipitate formed and no attempt was made to identify the 

stoichiometry of the metal boride in question. The proposal to a degree solely relied on 
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the observations of others and particulary the reported use of sodium tetrahydroborate 

in the synthesis of metal borides [48]. 

In 1986 Agterdenbos and Bax [26] proposed a further possible interference mechanism. 

In a study of the effects of cobalt, copper and nickel on SeiV determination, observations 

were made indicating that the interference arose partly from the decomposition of 

sodium tetrahydroborate. Corrections to the mechanism proposed by Welz and Melcher 

[45] were outlined. It was postulated that the reaction between metal ions and sodium 

tetrahydroborate in several cases resulted in the formation of metal borides (as proposed 

by Bye [47]) and not simply a metal precipitate, which were in part attributed to be the 

cause of interference. No attempt was made though to prove the formation and identify 

any metal boride species. As in the work of Bye [47] the proposed formation of borides 

was based solely on the observations of others. 

In further work Bax et al. [ 49] proposed that the decomposition of the sodium 

tetrahydroborate reagent was catalysed by interferent metal ions or their reaction 

products (metal and metal boride). This decomposition was so rapid that there was 

insufficient time for the reagent to convert the analyte completely into its hydride. A 

combination of the catalytic decomposition of sodium tetrahydroborate and the 

elimination of hydride by reaction products [26] was given as an explanation for the 

interferences observed. The mechanisms proposed by Meyer et al. [44] for interference 

in the determination of Se were dismissed with the exception of that for copper for which 

the authors were in agreement with Welz and Schubert-Jacobs [46]. On the basis of the 

proposed catalytic decomposition reaction the reported increase of interference with 

increasing concentration of sodium tetrahydroborate [ 46] was explained by the promotion 

of the formation of the metal borides. Independent evidence for the proposed catalytic 

decomposition mechanism [26, 49] was later provided by Aggett and Boyes [50]. The rate 

of hydrolysis of sodium tetrahydroborate was shown to be significantly increased in the 

presence of cobalt and nickel, but affected only slightly by copper. The interference 

mechanism was postulated to be determined by the method used for the determination 

of Asm. In continuous flow methods, acceleration ofthe hydrolysis reaction by cobalt and 

nickel was shown to be significant. In the manual method, however, the major 

contribution to interference was identified as being the loss of hydride after its 

generation as reported by others [14,44,45, 47]. 

13 



Narsito et al. [51)later investigated the interference mechanism for the determination of 

Sb in the presence of cobalt, copper, iron and nickel. It was reported that the 

interference was at least partly due to the capture of analyte hydride by precipitate 

formed by the reaction of reagent and interferent [45). No evidence for the catalytic 

decomposition of sodium tetrahydroborate reagent was given . This observation was 

explained by the fact that the reagent concentration was about 1000 times more than 

reqnired for the complete formation of stibine. This reagent excess was significantly 

higher than that used in previous work [26,49). 

In 1987 Aggett and Hayashi [52) made a comprehensive study into the interference of 

copper, cobalt and nickel in the determination of As m and As v. The previously proposed 

interference mechanism of arsine adsorption on metals [45,46] was rejected in favour of 

a new mechanism involving the formation of soluble species. The new mechanism was 

proposed in an attempt to explain the observations that, in the copper(II)-arsenic system 

precipitation occurred without interference whereas in the nickel(II)-arsenic system 

interference occurred without precipitation. Similar observations had been made in 

numerous earlier works but without full explanation [14, 43). Evidence for the rejection 

of the arsine adsorption on precipitated metal interference mechanism [45,46) was 

obtained from the analysis data for the nickel precipitate, formed in a minute quantity. 

The arsenic content of the insoluble nickel precipitate was found to be only 6% of the 

arsenic present in the initial hydride generation reaction. This low percentage did not 

account for the observed 78% loss in signal response. Evidence for the formation of 

soluble interferent species was obtained by the observed quantitative arsine generation 

from the spent reaction mixture containing nickel, (waste reaction mixture after initial 

hydride generation process) after the addition of thiourea and a second volume of 

sodium tetrahydroborate. In conclusion it was suggested that lower oxidation states of 

nickel could form compounds with arsine which could exist temporarily during the early 

stages of reaction with sodium tetrahydroborate. 

The effect of oxidation state on the interference of hydride generation was reported by 

two independent groups. Welz and Melcher [53) observed during the investigation of 

copper, iron and nickel interference on As that As v experienced a higher degree of 

interference thanAsm. This phenomena was explained by the slower formation of arsine 

from Asv in comparison with that from Aslll, and therefore the more complete 

precipitation of the interfering metals by the time the hydride was formed. Castillo et al. 

[54) made similar observations in an investigation of the interference of iron, nickel, 

cobalt and copper in the determination of Sblll and Sb v. 

14 



1.3.2 Interference Removal. 

1.3.2.1 Masking and Releasing Agents. 

The use of masking agents to remove interferences associated with hydride generation 

is well documented. Belcher et al. [55] as early as 1975 reported the benefits of EDTA 

as a masking agent in the determination of As and Sb by molecular emission cavity 

analysis (MECA). The masking agent prevented or at least slowed down the reduction 

of the interfering ions and thus prevented the elimination of the generated hydride. 

As the generation procedure was common to both MECA and atomic absorption 

spectrometry, the releasing effect of EDTA was postulated to be equally applicable 

toAAS. 

A thorough investigation into the use of masking agents to eliminate the interference 

on As was made by Peacock and Singh [56]. A study of KCN, KCNS, KF, dipyridyl, 

1,10-phenanthroline, diethylammonium dithiocarbamate and thiourea showed that 

thiourea was the most effective masking agent. Thiourea has since been reported for 

interference reduction by other authors for the determination of As, Sb and Se in the 

presence of such interferents as cobalt, copper, iron and nickel [51, 52, 57]. Bye et al. 

(57] postulated that the beneficial use of thiourea in the reduction of copper 

interference in the determination of SeiV was not solely attributed to its ability to 

form copper complexes but also the reduction of eu11 to Cu1 by this reagent. 

Although the quantitative determination of SeiV with up to 75 Jlg mr1 Cu11 was 

achieved a standard additions procedure was required to compensate for the 

reduction in sensitivity observed at that copper concentration, even in the presence 

of thiourea. 

To date the application of numerous individual and combinations of making agents 

have been reported for interference removal in HGAAS. These masking agents 

include thiosemicarbazide (43], KI (50, 58, 59], KI-NH20H (59], KI-ascorbic acid (60], 

1,10-phenan throline (43, 51, 56, 61, 62], citric acid [63] and L-cystine (64]. 

Welz and Melcher [ 65] in 1984 reported the use of iron(III) as a releasing agent for 

the elimination of the nickel interference on As and Se. The releasing effect was 

explained by the preferential reduction of iron(III) to iron(II) which inhibited the 

precipitation of the interfering nickel as the metal. The use of iron(III) as a releasing 

agent has subsequently been reported by others [66-68]. 
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Welz and Melcher [ 69] studied the effect of copper on the interference of 

selenium(IV) in the determination of As111 and As v. It was observed that copper at 

low concentrations prevented evolution of hydrogen selenide but not that of arsine, 

thus removing the mutual gas phase interference between Se and As hydrides. An 

identical approach was later applied to a flow injection system by Wang and Fang [70] 

in 1988. 

Marshall and van Staden [71] reported the in-line addition of tellurium to overcome 

interference from noble metals using a flow injection system. The application of 

tellurium as a releasing agent was shown to be beneficial in decreasing the extent of 

the palladium interference on SelV, As111 and Bi111 and the platinum interference on 

seiV. 

The use of masking agents although reported to be successful in the reduction of 

interference in HGAAS have a number of inherent disadvantages. As yet a universal 

masking agent capable of eliminating a wide range of interferences in the 

determination of hydride forming elements has not been reported, although thiourea 

goes some way to meeting this criteria [51, 52, 57]. The required introduction of 

additional steps of sample manipulation and the use of standard additions [57, 64] 

reported to be necessary for quantitative analysis, extends the length of analysis, 

therefore expense, over and above the cost of the chemical reagents themselves. 

1.3.2.2 Matrix Isolation. 

To overcome the major interferences of HGAAS a number of matrix isolation 

techniques have been reported. Bedard and Kerbyson [72] applied a eo-precipitation 

procedure employing a lanthanum hydroxide collector, to the determination of Bi in 

copper. To reduce the copper concentration though to a level at which interference 

was eliminated a double precipitation was necessary. In later work, Bedard and 

Kerbyson [73] extended the eo-precipitation procedure to the determination As, Se, 

Sn, and Te in copper. The multi-step sample preparation procedure outlined was 

manually undertaken, therefore, clearly tedious and time consuming if applied on a 

routine basis. Welz and Melcher [74] reported a matrix isolation procedure for the 

determination of Se in nickel based materials. Instead of eo-precipitating the 

determinand, the nickel interferent was precipitated with sodium hydroxide and 

removed by filtration. In very recent work the same precipitation procedure was 
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applied to the determination of Se in both nickel and copper standard reference 

materials by Wickstrom et al. [75). The detection limit of the method was 

approximated to 11-'g g·1, but as appears to be the case in most reported precipitation 

methods (72-74], the procedure was rather slow and drawn out. Without any 

consideration of sample digestion the time required for the precipitation step of the 

method was reported to be in excess of an hour. 

A novel method for the removal of copper interference in the determination of Se 

was reported by Bye [76] in 1985. The copper interferent was removed electrolytically 

from the sample solution using a traditional electrogravimetric method for the 

determination of Cu. The method reported although required a total sample 

preparation time in excess of 4 hours was successfully applied to the analysis of an 

unalloyed copper standard reference material (NBS 498). 

Ion exchange as a means of matrix isolation for HGAAS was demonstrated by Jones 

et al. [77]. Acid digested plant and animal tissue sample solutions were passed down 

a Chelex 100 resin column manually. Trace elements including cadmium, copper, 

molybdenum, nickel, vanadium and zinc were quantitatively retained. The subsequent 

determination of unretained As, Se and Sb was reported to be interference free. 

Narasaki and Ikeda [78] used a cation exchange resin Dianion SKlB and the chelate 

resin_ Chelex 100 for the isolation of both As v and SeiV from copper and nickel 

matrices. Recovery of As V and SeiV following the use of the cation exchange resin 

though was reported as being non-quantitative. The reason for this was postulated as 

being the mutual interaction between anion (AsO/" or Seal") and cation (Cu2+ or 

Ni2+). 

Narasaki [79]later applied the same Chelex 100 resin to the determination of As and 

Se in copper and nickel powders. Recoveries of As and Se added to copper powders 

though were observed to be non-quantitative without the application of masking 

agents. This was postulated to be due to the partial elution of copper from the resin 

due to the interaction between anions and eu2+ as proposed in earlier work [78]. 

A thorough investigation into the use of ion exchange resins to reduce the inter

element interferences in HGAAS was carried out by Hershey and Keliher [80]. Three 

resins were investigated Chelex 100, Dowex 50WX16 and AG 50WX16 (purified 

Dowex 50WX16) for the determination of As and Se in the presence of the most 
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severely interfering elements, (Sb, As, Bi, Co, Cu, Ge, Sb, Mo, Pd, Pt, Rh, Ag and 

Te) identified in an earlier study [81). In the analysis of real samples, such as coal fly 

ash leachates, the AG 50WX16 resin was found more beneficial than the Chelex 100 

resin. For the Chelex 100 resin it was reported that nearly 75% of the arsenic present 

was lost on the resin. This effect was attributed to the chelating ability of the resin 

and the retention on it of arsenic complexes formed with certain metals. Other resins 

used for the removal of nickel and copper/nickel interferences in the determinations 

of Se and As respectively have been Muramac A-1 [82) and SCX [83]. 

1.3.2.3 Optimization of System Design. 

Developments in HGAAS instrumentation from the original manual batch system [84) 

through automated [78] and continuous flow [85] systems to the flow injection [13, 86) 

methods, currently under study, have been reported which include a significant 

improvement in interference tolerance, (Table 1.2). 

Table 1.2 Comparison of permissible levels• of interfering ions in 
the determination of seiV by various hydride generation techniques. 

Interfering Manual Automated Continuous Flow 
Ion Batch Method [78) Flow Method Injection 

Method [84) [85) Method 
[86] 

Cu2+ 30 2.5 50 1000 

Co2+ 60 500 50 1000 

Ni2+ 30 50 50 1000 

Pb2+ 330 15,000 100 1000 

H~+ - - 10 1000 

Sn2• 30 5 5 500 

mm - 100,000 5 100 

As m - - 10 100 

Sbiii - 50 10 10 

a Permissible amounts (mass ratio) correspond to the concentrations that give 10% 
or less negative error. [78)8 ng ml"1 Se1v [84-86)10 ng ml"1 SeiV. 
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Continuous flow techniques enabled optimization studies to be made of system 

interference tolerance. Variables such as reagent concentrations [13,87), order of 

reagent addition [42,87], manifold dimensions and pumping rates [13) were all 

reported to effect significantly the interference tolerance. 

An explanation for the superior interference tolerance observed with FI-HGAAS 

[13,58,86,88,89) was first given by Astrom [13) in 1982 and confirmed later by other 

independent workers [86, 88, 89) due to the short residence time of the reaction 

mixture in the flow injection system. In 1989 Fang [90) reviewed and discussed the 

mechanisms proposed. It was concluded that the major reason for higher interference 

tolerance was the short residence time of the reaction mixture in the flow injection 

system, favouring the faster formation of hydrides, over the slower interfering 

reactions. Irrespective of the interference mechanism involved, reduction of the 

residence time was considered beneficial in decreasing the probability of contact of 

hydrides with interfering species, present in the system. A second reason proposed 

was the significant reduction in sample volume and therefore absolute amount of 

interferent introduced in FI-HGAAS [44). With a smaller absolute amount of 

interfering species being introduced into the system, it was proposed that there was 

- less chance for their accumulation in the reactor and separator and hence less chance 

of their contact with the hydride. Although the proposed mechanism was very feasible, 

evidence in its defense was restricted to the observations of Meyer et al. [44) reported 

for a batch hydride generation procedure. No systematic study of the effect of sample 

injection volume on interference tolerance in FI-HGAAS as yet appears to have been 

undertaken. 

1.4 HYDRIDE ATOMIZATION AND GAS PHASE INTERFERENCE EFFECTS. 

In 1980 Dedina and Rubeska [36) made one of the first in depth investigations into the 

mechanism of hydride atomization. The decomposition of hydrogen selenide in a cool, highly 

fuel-rich, hydrogen-oxygen combustion flame burning in the inlet of aT-shaped quartz tube was 

investigated. It was concluded that atomization proceeded most probably by two consecutive 

reactions with prevailing H radicals. 
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SeH2 + H ~ SeH+H2 
(1.4.1) 

SeH + H ~ Se + H2 
(1.4.2) 

The formation of H radicals was proposed to have occurred within the reaction zone of the 

diffusion flame according to the following reactions 1.4.3-1.4.5. 

H + 0 2 .. OH+ 0 (1.4.3) 

0 + H2 .. OH+ H (1.4.4) 

OH + H2 .. H20 + H (1.4.5) 

It was observed that the hydride was atomized with close to 100% efficiency at the inlet part 

of the atomization T-tube. The decay of selenium atoms was reported to start after entering the 

optical tube, mainly due to reactions on the tube walls. These reactions were observed to be 

affected by the quality of the quartz surface. 

Using the same atomization procedure Dedina (15] later investigated the interference of other 

hydride forming elements in the determination of SeiV. An interference mechanism scheme was 

proposed as shown in Fig. 1.4 to outline the various interference reactions that could be 

observed both in the liquid and gas phases. 

Arsenic, bismuth, tin and tellurium interfered strongly. Two mechanisms were proposed; the 

gaseous interferent accelerated either the decay of hydrogen radicals responsible for atomization 

or the decay of free analyte atoms in the quartz tube, either by modification of the surface or 

by direct vapour-phase reaction. Decreased gas-phase interference was achieved through control 

of the atomization conditions. A small T -cell gave better suppression of analyte decay 

interferences, negligible memory interferences and decreased direct interference, but at the 

expense of sensitivity. Analyte decay interferences were decreased further by increasing the 

hydrogen and oxygen flow rates, thereby lowering the probability of free analyte atom contact 

with the T -cell surface. As the quartz T -cell played no beneficial role in the atomization process 

and was identified as being responsible for interference effects Dedina (15) proposed that quartz 

could be replaced by other materials. No suitable replacement for quartz though was suggested. 
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Generation kinetics 
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lside atomiser 

Analyte decay 

Fig. 1.4. Schematic diagram of possible liquid and gas phase interferences. 

Welz and Melcher (91]later in 1983 postulated that the atomization mechanism proposed by 

Dedina and Rubeska [36] could be applied almost directly to the externally heated quartz 

atomizer. Atomization was proposed to be by interaction with hydrogen radicals, formed in a 

reaction with oxygen above 600'C (see equations 1.4.3-1.4.5) according to the following 

reactions. 

MH X + H --·~-MH + 
X· 1 

• • • 
~ MH + H--•.--M + H

2 
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Hydrogen radical formation was proposed through the decomposition of hydrogen molecules, 

bound at the quartz surface which had a strongly catalytic effect at temperatures around 

1000° C. This active participation of the T ·cell surface was used to explain the depressing effect 

on signal responses by surface contaminants, through decreased radical formation and increased 

radical recombination. 

Although it was suggested that the externally heated quartz atomizer cell, in the presence of a 

small amount of air or oxygen, behaved in the same way as the flame-in-tube atomizer [36), the 

clear difference between the two was the different roles of the atomizer cell surface in the 

radical formation reactions. The lack of any involvement of the quartz cell in the formation of 

radical species in the flame-in-tube atomizer [36) may account for its more robust and efficient 

atomization performance in comparison with that reported for the externally heated atomizer 

cell [91). 

In the absence of hydrogen AsH3 was thermally decomposed in the heated quartz cell but not 

atomized. The species formed during the thermal decomposition was initially postulated to be 

A~ and or As4 but later formation of ~03 was also proposed [92). This decomposition 

product was re-volatilized and partly atomized on the introduction of hydrogen to the quartz 

cell. 

Criticising the work of Welz and Melcher [91) evidence for the atomization mechanism 

proposed in many respects was rather limited. A lot of assumptions appear to have been made, 

based on the observations of Dedina and Rubeska [36) without quantitative support, as 

commented upon by Bax et al. [94). Proof for the active participation of hydrogen radicals 

according to equations 1.4.6-1.4.7 for example was limited to the fact that radical scavengers had 

a severe depressing effect on signal response. No comment was made though to the fact that 

this observation could also have been explained by the assumption that radicals catalyse the 

atomization reaction, according to some other mechanism [%). 

Agterdenbos et al. [93) studied the atomization mechanism of selenium in an electrically heated 

atomization T·cell. The formation of Se2 and other polymeric species, predicted on the basis 

of thermodynamic calculations on the decomposition of SeH2 into Se and H2, was investigated. 

A test for the presence of Sez was the measurement of the light absorption at 334 nm, where 

Sez has an absorption band. The presence of Sez within the quartz atomization cell was shown 

by this method at high SeiV concentrations (5 11g ml"1 SeiV) and increased residence times 

within the atomizer. In subsequent investigations similar dimer species were identified in the 

determination of As [%,97) and Sb [27). 
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Bax et al. [94] continuing the work of Agterdenbos et al. [93] dismissed the atomization 

mechanism proposed by Welz and Melcher [91] for selenium. The argument given against the 

mechanism was that the reaction reqnired that the pressure of H radicals be at least twice as 

high as the pressure of SeH2 molecules (approx. 10'7 atm). However, at T= 650 - 7oo•c 
atomization already occurred and at this temperature the equilibrium concentration for H, 

calculated from thermodynamic data for the H2 <# 2H equilibrium, was about 100 to 100 times 

lower. The involvement of hydrogen radicals in the atomization mechanism was not rejected 

totally but were assumed to play more of a catalytic role in the decomposition of SeH2• The 

presence of H2 and 0 2 was shown to be necessary for the decomposition of SeH2, indicating 

a possible involvement of OH radicals [95]. A decrease in signal response though was observed 

at excessively high 0 2 concentrations. This effect was explained by the possible inadequate 

concentration of essential radicals present under the experimental conditions or the formation 

of Se02, but no attempt was made to identify which. 

For the decomposition of arsine, Bax et al. [96] rejected the mechanism proposed by Welz and 

Melcher [91] on the grounds of an insufficient concentration of hydrogen radical species as they 

had in the case of selenium [94]. Atom formation due to the thermodynamic decomposition of 

arsine according to reaction 1.4.8 was also rejected. Thermodynamic data predicted that 

atomization according to reaction 1.4.8 would not occur at temperatures below soo• C but 

experimental results showed appreciable atomization at 700• C. 

2 AsH3 - 2As + 3H2 
(1.4.8) 

An atomization mechanism, catalysed by both H and OH radicals, was postulated (reaction 

1.4.9). 

(1.4.9) 

Further evidence for this mechanism was later reported by Narsito and Agterdenbos [97]. In 

the presence of excess hydrogen addition of air, and therefore of oxygen, was reported to favour 

the formation of arsenic atoms in the cuvette. Parisis and Heyndrickx [98] independently 

reported the benefits of adding oxygen on sensitivity and precision in HGAAS, explained by the 

accelerated production of radicals. 
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In one of the most recent studies, Welz et al. [99] used mass spectrometry to identify active 

species in a heated quartz atomization tube, and therefore clarify possible atomization 

mechanisms. Products identified within the reacted quartz atomizer tube gave evidence for the 

equilibrium reaction (1.4.10) at 600• C and the back reaction (1.4.11) at 900• C. 

(1.4.10) 

(1.4.11) 

The formation of molecular arsenic species (ASz and/or arsenic clusters) in agreement with the 

findings of Bax et al. [96] was detailed. These forms of arsenic were only retained in the heated 

quartz tube to a small extent and were reported to be transported over relatively long distances. 

Arsenic species containing oxygen were not detected in any of the experiments thereby 

eliminating the previously proposed formation of A5z03 [92]. 

The active role of the surface of the atomization cell in both atomization and analyte decay 

reactions has been reported widely [15,36,91,92,100]. Deteriorations in system performance 

through surface contamination by NaOH [44], N~04 [101], interferent metal salts [46,49], 

hydrides [15,101,102] and other metals [91] have been reported. To overcome these 

contamination processes and optimize the atomization process a variety of different cleaning 

and conditioning procedures have been used. These procedures include acid washing [101], 

soaking in HF solutions [46,49,69,61,%,100,101,103], prolonged hydride introduction 

[49,93,100,103], prolonged heating at elevated temperatures [91,93], polishing with alumina [102] 

and scouring [101,102]. 

Agterdenbos and Bax [100] proposed that conditioning of the T-cell in many cases removes 

active sites on the silica surface and so prevents both the recombination of radical species and 

analyte dimerization. 

Conditioning procedures have also been reported for the hydride generator [98,103,104]. In 1981 

Reamer et al. [104] reported that, in the determination of seN, performance was significantly 

affected by the choice of material used in the manufacture of the reaction vessel. Adsorption 

of selenium on glass and polypropylene was eliminated by conditioning the system with high 

concentrations of the hydride. It was proposed that available adsorption sites were filled 

deactivating the surface to further SeH2 adsorption. The surface of the glass was also 

deactivated to SeH2 adsorption by coating it with a silanizing agent (dimethyldichlorosilane). 
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The severe gaseous phase interference effects reported for both flame-in-tube and externally 

heated atomization cells [15,102) have not been observed for graphite furnace atomization 

(40,41). Krivan and Petrick (41) reported an increase in the acceptable concentration range of 

interfering elements of up to three orders of magnitude using atomization temperatures of 1800 

- 2300• C. At such temperatures atomization was achieved by thermal dissociation without any 

requirement for the presence of hydrogen radicals. Clearly for this reason the severe gas-phase 

interferences reported in both flame-in-tube (15) and externally heated atomizers (91), due in 

part to hydrogen radical decay were eliminated and the formation of diatomic molecules such 

as AsSe, AsSb etc. prevented (40). Drawbacks of the use of graphite furnaces though, clearly 

evident from the work, were high background absorption, limited precision, relatively long 

process cycles (- 2 minutes) and the rapid deterioration of the graphite tube furnace. The 

background absorption and deterioration of the graphite tube furnace were attributed to the 

reaction of water vapour and hydrogen, formed as byproducts of the hydride generation 

reaction, with the graphite tube furnace itself. Carbon monoxide and acetylene were postulated 

to be the reaction products for water vapour and hydrogen respectively. Akman et al. (105) 

reported that in the introduction of arsine into a graphite furnace the AsH3 is decomposed on 

the graphite furnace wall before the atomization tern perature is reached. The elemental arsenic 

is vapourized as As4 which is then decomposed to A~ and fmally atomized by gas phase 

dissociation as shown in reaction scheme 1.4.12. 

As H 
3 
DQ.:~Itlon ~ As(s) Vll.p()trl$.11tlon .. As Lj(g) O&.:._osluon .. As

2 
(g) 

t 
As (g) 

(1.4.12) 
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CHAPTER 1WO 

FLOW INJECTION ANALYSIS. 

2.1 INTRODUCTION. 

In the chemical laboratory any analytical measurement involving liquid materials comprises the 

following operations: solution handling, analyte detection, data collection and computation of 

results. Although today there is no shortage of computers and sophisticated detectors to aid the 

analytieal chemist, solution handling in many cases is considerably outdated. Mixing, decanting, 

pipetting and other volumetric operations are still manual tasks and in many cases are carried 

out with tools designed more than 200 years ago. Irrespective of the quality of the detection 

system the accuracy, precision and speed of analysis is dependent on the dexterity of the analyst 

at carrying out the manual sample preparations. For many analyses, sample preparation is the 

rate determining step. Often skilled chemists are employed to carry out repetitive and tedious 

sample preparations thereby increasing analysis costs considerably. For the reasons discussed 

significant interest has been shown in the automation of analytical procedures particulary over 

the last three decades. Developments in the automation of such procedures have been reviewed 

in some depth [106, 107). 

Attempts have been made to automate analysis through mechanisation of each manual sample 

preparation task, for which various approaches have been developed, including the use of 

robots. Robots, though, require extensive programming and, due to cost, are justified only if 

large numbers of repetitive operations are to be handled over prolonged periods. 

' A particulary successful approach for the automation of batch operations has been the use of 

flow operations which have been shown to be much easier to automate. Flow systems are easier 

to miniaturise and to control in space and time, since using closed tubing avoids evaporation 

of liquids, provides exactly repeatable paths through which measured solutions move, and 

provides a mechanism for the highly reproducible mixing of components and formation of 

reaction products. 

A breakthrough in the automation of analytical methods was made by Skeggs [108] in 1957 with 

the introduction of 'segmented flow analysis' (SFA). Air-segmentation of the flow stream was 

used to overcome the sample carryover problems, previously reported in continuous flow 

analysis (CFA), whilst still retaining the benefits of flow operation. 
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The term "flow injection analysis" (FIA) was first introduced by Ruzicka and Hansen (109] in 

1975. The technique has now gained widespread acceptance in academia and its use in the 

industrial community is increasing. 

The subject of flow injection analysis has been covered in some depth since its birth in a 

number of reports and reviews, (110-118], five books [90,119-122] and the Journal of Flow 

Injection Analysis (123], published by the Japanese Association for Flow Injection Analysis since 

1984 (Japanese). Along with published work a biennial conference concerned predominantly 

with flow injection development, "Flow Analysis", has been held regularly since 1979 (124]. 

2.2 PRINCIPLES AND INSTRUMENTATION. 

2.2.1 Definition. 

Flow injection, as defined by Ruzicka and Hansen (109], is based on the injection of a 

liquid sample into a moving, non-segmented continuous carrier stream of a suitable 

liquid. The injected sample forms a zone, which is then transported toward a detector 

that continuously records the absorbance, electrode potential, or other physical 
•. 

parameter as this continuously changes due to the passage of the sample material 

through the flow cell. 

The essential features of FIA can be summarised as follows: 

(i) The flow is not segmented by air bubbles, which is a 
fundamental difference from CFA methods. 

(ii) The sample is injected or inserted directly into the flow 
stream instead of being aspirated into it. 

(iii) The injected plug is transported within the system. A 
physicochemical process (chemical reaction, dialysis, liquid
liquid extraction, etc.,) may occur in addition to transport. 

(iv) The partial dispersion or dilution of the analyte during transport 
operation can be manipulated by controlling the geometric and 
hydrodynamic characteristics of the system. 

(v) A continuously sensing system yields a transient signal which is suitably 
recorded. 

(vi) Chemical equilibrium need not have been attained when the signal is 
detected. 
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(vii) The operational timing must be highly reproducible because 
measurements are made under non-steady state conditions. 

2.2.2 Instrumentation. 

The basic PIA system (Fig. 2.2.1) consists of four major components. Although over the 

years the manifolds reported have become more complicated, in general they still contain 

these simple components. 

Pump/P~opel ling unit 

Sarrple 

t Inject 1 on Va I ve 

r----+---+---1( \}-------1 
"' ~Reaction Zone 

Waste 

L.. __ .JReagent or Carrier 

Fig. 2.2.1. Basic schematic diagram of a PIA system. 

A propelling unit is used to produce a constant flow rate of either reagent or carrier 

solution. Peristaltic pumps are most commonly used for this purpose, but syringe [125) 

and gas-pressurised or constant head vessels have also been used [126,127). An injection 

system is used to insert reproducibly an accurately measured sample volume into the 

carrier stream, without having to stop it. Methods of injection may be divided into two 

main categories: time and volume - based injection. In time-based injection, a sample is 

loaded for a precise time at a given flow rate [128). Volume-based injection is the most 

common method of injection for which rotary valves [129), slider (or commutator) valves 

[130) and hydrodynamic injection (131) have been used. Timed injection benefits over 

fiXed volume injection in that the volume of sample used can be controlled continuously 

through adjustment of either flow rate or sampling time, with ease and speed. Fixed 

volume injection as its name suggests generally is applied using a single predetermined 

injection volume. Control of sample volume is achieved in discrete steps through 

interchanging sample loops of different dimensions, but this is slow and tedious. A 
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benefit of fiXed volume injection is its high precision since it is not affected by 

imprecision in sample pumping rate as is the case in timed-injection. Transport of the 

sample zone along an enclosed length of PTFE tubing (0.3-l.Omm i.d.) or channels in 

a polymethylmethacrylate (PMA) "chemifold" block enables chemical reaction, dispersion 

etc. to be performed reproducibly. A flow-cell, accommodated in a detector transduces 

some property of the analyte into a continuous signal which is fed into a recorder and/or 

microcomputer. 

Increase in demand and interest in FIA has resulted, particulary over the last few years, 

in the production of a number of commercially available flow-injection analyzers. At 

present Tecator Control Equipment Corporation, Eppendorf (Fiatron), Hitachi Ltd and 

Lachat Instruments all produce FIA systems. A number of these include their own built

in UV /VIS and other detectors and specifically designed interchangeable manifold 

blocks, permitting a large number of different analyses to be undertaken. 

More recently specifically designed flow injection systems for application to AAS have 

been introduced. Perkin-Elmer have introduced the FIAS-200, a fully automated 

computer-controlled system, designed for application to both FAAS and HGAAS. GBC 

Scientific have introduced a commercial unit for the analysis of samples containing high 

dissolved solids by FAAS applying flow injection. 

2.2.3 FIA Signal Response. 

The response of the detection unit of a FIA system is a transient signal peak (Fig. 2.2.2) 

of which height, H, width, W, and area, A, are related to the concentration of the 

analyte. The time span between sample injection, S, and the peak maximum is the 

residence time, T, during which dispersion and/or chemical reaction takes place. 
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Fig. 2.2.2. Typical transient signal response peak for a FIA system (Fig. 2.2.1) 
compared with steady state instrument response. 

H 0 - height corresponding to steady state 

H m· peak height maximum 

S - time of injection 

A - peak area 

2.2.4 Sample Dispersion 

C 0 - original analyte concentration 

C nr concentration at peak maximum 

T - residence time 

tb -peak width at base line 

When the sample zone is injected into a carrier stream it forms a dispersed zone whose 

shape depends on the geometry of the channel and flow velocity. In order to quantify 

the degree of dilution of the injected sample on its way toward the detector the term 

dispersion coefficient, D, has been defined [120] as the ratio of concentrations of sample 

material before and after the dispersion process. 

(2.2.1) 

Where C0 is the original analyte concentration and Cm is the analyte concentration at 

peak maximum after dispersion, (Fig. 2.2.2). 

If the instrument response is directly proportional to the analyte concentration, 
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Where A0 , L\,, H0 and Hm are steady state absorbance, peak absorbance, steady state 

recorder height and recorder peak height respectively, (Fig. 2.2.2). 

Through manipulation of flow velocity, sample injection volume and manifold dimensions 
-Ion-• 

the dispersion coefficient can be classified as.[120]. 

1. 

2. 

3. 

4. 

preconcentration 

Limited sample dispersion 

Medium sample dispersion 

Large sample dispersion 

2.2.5 Benefits of FIA in comparison with CFA 

(D < 1) 

(D= 1-3) 

(D= 3-10) 

(D > 10) 

Although FIA and SPA are both flow systems, there are significant differences between 

the two, accounting for the inherent advantages of FIA over SF A. A detailed comparison 

between the technical features of FIA and SPA is given in Table 2.2.1. The major 

difference between the two is the segmentation of flow by air bubbles in the SPA system. 

There is no need for air segmentation in FIA since the use of non-wettable narrow bore 

tubing eliminates sample carryover problems in FIA. 

Table 2.2.1 Comparison of the technical features of SPA and FIA 

Parameter SPA PIA 

Sample introduction aspiration injection 

Sample volume 0.2-2ml 10 - 500 Ill 

Response time 2- 30 min 3-60 s 

Bore of tubing 2mm 0.3- 1.0 mm 

Detection at equilibrium with controlled dispersion 
(homogeneity) 

Sample throughput < 80 h"1 < 300 h"1 

Precision 1-2% 1-2% 

Reagent consumption high low 

Wash-out cycle essential not required 

Continuous kinetic analysis not feasible stopped-flow 

Data peak-height peak-heigh\ ar~a, width 
peak-to-pea dtstance. 

31 



Flow injection analysis is therefore more advantageous for the following reasons: 

(i) More reproducible flow rates are achieved. 

(ii) The apparatus required is uncomplicated, and hence inexpensive. 

(iii) The system is readily miniaturised. 

(iv) The sampling rate is high. 

(v) The analytical potential and scope of application are very wide. 

In SPA quantitative readings are made under steady state conditions (usually when at 

least 95% of the maximum signal has been attained) and the plug passing through the 

detector is homogeneous, resulting in a flat-topped signal response. In PIA on the other 

hand the plug is not homogeneous and equilibrium has not been reached by the time the 

measurement is made. Consequently less reaction time is required during transport to 

the detector in PIA and so a higher sample throughput is obtained with reduced reagent 

and sample consumption. 

2.3 APPLICATIONS OF FIA TO ATOMIC ABSORPTION SPECTROMETRY 

2.3-1 Introduction 

The application of flow injection techniques to AAS, first reported in 1979 [132, 133], is 

generating widespread interest. The subject has now been reviewed in depth both in 

regular AAS reviews [5,6] and in more specific FI-AAS reviews [134-140]. A book 

directed solely to flow injection atomic spectroscopy was published in 1989 covering work 

reported prior to 1986 [90]. 

2.3.2 Discrete Nebulization and Flow Injection Performance. 

The advantages of discrete nebulization over continuous nebulization was identified in 

the work of Cresser [141] as early as 1975. In addition to the obvious reduced sample 

volume requirement, the tendency of burners to clog during the analysis of sample 

containing high dissolved solids was eliminated, and the use of organic solvents was 

possible without the danger of the flame being extinguished or vast generation of toxic 

combustion products. Rocks et al. [142]later identified similar benefits for micro-volume 

sample introduction but reported PIA to be superior to discrete nebulization. Use of a 

continuously pumped aqueous carrier in the FI-FAAS system was shown to both remove 

erratic flame conditions and the effect of sample viscosity and aspiration rate on signal 

response, experienced with the discrete nebulization technique. The precision of the PIA 

technique was also shown to be superior to that of discrete nebulization. For discrete 
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nebulization the determination of Cu and Zn gave precisions of 4.4% and 8% 

respectively. In the case of FIA precisions were 2.1% for Cu and 1.7% for Zn. Superior 

precision achieved with the use of an aqueous carrier in FIA was subsequently confirmed 

by Attiyat and Christian (143) but at the expense of throughput. 

In the literature opinions are divided as to the best operating conditions for the flow 

injection atomic adsorption spectrometry. Brown and Ruzicka (144) in a study of the 

sensitivity and precision of FIA showed that for optimum performance the rate of flow 

of the carrier stream pumped into the nebulizer should always be greater than the 

natural aspiration rate of the nebulizer. A further observation made was that sensitivity 

was a function of both the natural aspiration and FIA flow rate into the nebulizer. 

Precision obtained when a peristaltic pump was used to deliver the carrier was 

comparable with that of continuous aspiration. 

Harnly and Beecher (145) following the work of Brown and Ruzicka (144) investigated 

the signal to noise ratio for FI-FAAS. The signal to noise ratio for FI-FAAS was 

compared with conventional nebulization for a number of sample volumes and flow rates. 

In conclusion to the work it was reported that by reducing the sample flow rate (with a 

constant nebulizer gas flow rate) an improvement in the nebulization efficiency of 

between 4 and 12 times could be obtained, in agreement with the earlier work of Wolf 

and Stewart [133). Peak area signal to noise ratios were reported to be better than for 

peak height in every instance but increased with a reduction in flow and increase in 

injection volume. The signal to noise ratio for FI-FAAS peak height and peak area 

approached but never exceeded the ratio for conventional nebulization. FI-FAAS with 

peak area measurement achieved a detection limit for Cu only a factor at two worse than 

conventional nebulization but requiring just 13% of the sample volume. 

In contrast to the work ofHarnly and Beecher (145), Tyson et al. (138,146) reported that 

for best detection limits peak height measurements should be used and that the flow rate 

should be that at which the flow injection response is maximal and without 

air-compensation. Tyson et al. (138, 146) postulated that the confusion into the benefits 

of low flow rate, peak area measurement was possibly due to the individual nature of 

performance characteristics of atomic absorbtion nebulizers and spray chambers. 

Confusion also appears to exist over the benefits of the application of air or solvent 

compensation to FI-FAAS. In one of the earliest reported studies Yoza et al. (147] 
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showed water and air-compensating methods to be effective in obtaining sensitive and 

reproducible measurements of Mg, but air-compensation gave higher peak responses. 

Garcia et al. (148]later showed that air-compensation improved sensitivity in Fl-FAAS, 

particularly at low carrier flow rates, due to an increase in nebulization efficiency. The 

reproducibility obtained for peak height and peak area was comparable with that given 

by conventional FAAS. These results were not in agreement with the fmdings ofSweileh 

and Cantwell (149] who reported that use of air-compensation yielded a variable baseline 

and poor reproducibility of the AA Signal. 

In addition to increased sensitivity Garcia et al. (148] reported with air-compensation a 

reduction in the phosphate interference on Ca as a result of greater nebulizer efficiency, 

therefore, higher rate of atomization. Similar observations were also made by Tyson et 

al. (146] and Adeeyinwo and Tyson (150] respectively. Fang and Welz (151]later though 

dismissed this proposed mechanism for the elimination of phosphate interference on Ca 

and attributed the observations to simply the dilution of interferent concentration, 

through sample dispersion, during transport to the nebulizer. 

Fang and Welz (151] made a thorough investigation into the optimization of experimental 

parameters for FI-FAAS using the Perkin-Eimer 3030 atomic absorption spectrometer. 

Employing sufficiently large samples ( -400 f.LI) it was shown that FI-FAAS systems could 

be optirnized to operate at carrier flow rates much lower than the nebulizer uptake rate. 

In contradiction to Brown and Ruzicka (144], the use of pumping rates below the uptake 

rate of the nebulizer, without air-compensation, produced sensitivities, precisions and 

detections limits comparable with or slightly better than conventional nebulization. 

Air-compensation produced lower sensitivity but at low pumping rates it gave better 

precision than the non-compensating system. Although better precision was obtained at 

lower flow rates when air-compensation was used the detection limits were inferior 

compared with those obtained at higher carrier flows without air-compensation as 

reported by Tyson et al. (138, 146]. An interesting observation made by Fang and Welz 

(151] was the influence the presence of a flow spoiler had on results obtained. This gives 

further evidence to the critical role nebulizer and spray chamber design has on system 

performance characteristics for FI sample introduction, as proposed by Tyson et al. (138, 

146]. 

In one of the most resent studies Fang et al. (152] extended the investigation into the 

optimization of experimental parameters for FI-FAAS (151] to the contribution of system 

components to dispersion. The use of short length (s 150 mm) small bore conduits 

(0.35 mm i.d.) was reported to achieve signal responses relative to steady state analysis 
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of 90 and 98% for 45 and 65 Ill sample volumes respectively. Precision and detection 

limits for Pb identical to those of conventional aspiration were also achieved using FI 

under optimum conditions. Peak area measurement was shown to give optimum 

detection limit at flow rates less than 2.5 ml min"1 only. Optimum detection limit overall 

was reported using peak height m~asurements at a carrier flow rate of 4 ml min-1 

(35 111, 0.09 Ill mr1 Pb, natural uptake rate 7.2 ml min"1) in agreement with previous 

work (138, 146, 151). The successful application of short, small bore conduits in the work 

of Fang et al. (152) it is suggested may though be limited in other systems simply due to 

physical dimension restrictions faced coupling the FI system to the spectrometer. 

2.3.3 Dilution and Calibration 

Since its conception the technique of flow injection has been shown to be very versatile 

particulary in the area of on-line sample dilution and novel calibration procedures. In 

1988 Tyson (153) reviewed the subject of flow injection calibration techniques with 

particular reference to atomic spectroscopy. 

Early concepts - One of the most beneficial features of FIA is its ability to produce 

reproducible sample dilution. Ruzicka and Hansen (120) have reported in depth on the 

control of sample dispersion through the manipulation of such parameters as injection 

volume and manifold dimensions. Tyson et al. (154) made similar observations for 

FI-FAAS. More recently McGowan and Pacey (155) extended investigation to large bore 

flow injection systems. Use of wide bore manifold tubing of diameters up to at least 

1.3 mm permitted relatively high values of dispersion coefficient (D > 20, L = 300 mm, 

1.3 mm i.d.). Rocks et al. (156), in one of the earliest applications of FI-FAAS to real 

sample analysis, used a dispersion coefficient of 12 for the determination of Li in serum. 

For the determination of Mg in serum, Rocks et al. (157) later reported a dispersion 

coefficient of 100 for a single line manifold ( 4 Ill injection volume, 2 m 1.0 mm i.d. 

tubing, 3.5 ml min"\ 

Zagatto et al. (132) described a dilution system incorporating merging zones (Fig. 2.3.1). 

Merging the injected sample zone with an injected lanthanum reagent zone prior to a 

dispersion coil produced a 1:13 dilution. Splitting the flow before measurement directed 

only a fraction of the sample zone to the burner. A total dispersion coefficient of 40 was 

obtained for a sample throughput of 300 h-1. Reis et al. (158)later reported a 

zone-sampling process capable of even high dispersion coefficients. The system described 
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(Fig. 2.3.1) involved sampling a small portion of a dispersed zone and injecting it into a 

second carrier, for which a dispersion coefficient of 130 and throughput of 120 h"1 was 

achieved. The proposed method was claimed to be more efficient in achieving a high 

degree of dispersion than the use of small injected volumes, long coils or even more 

complex systems. As for the system of Zagatto et al. [132] the performance of the system 

was clearly though critically reliant on exact timing, synchronisation of injections as well 

as smooth reproducible carrier flow, which is difficult without the use of expensive 

apparatus. 
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Fig. 2.3.1. Early Fl systems used for on-line dilution. 
(i) Merging Zone manifold [132] 
(ii) Zone sampling manifold [158] 

(i) 

Network System - Tyson et al. [159] in 1986 described a novel network system capable 

of variable sample dilution and single standard calibration in FAAS. Dispersion 

coefficients ranging from 5.93 to 38.8 in six discrete stages were reported for replicate 

injections of 12.5 111 volumes into an aqueous carrier stream flowing down lines of 

different lengths (600 mm 0.7 mm i.d.- 2290 mm 1.1 mm i.d.). Single standard calibration 

was achieved simply by directing the injected stock standard down each of the lines in 

turn. Dispersion coefficient showed no dependency on the concentration and relative 

standard deviations ranged from 0.75 to 3.1 %. Limitations of the procedure evident from 

36 



the work were though, the need for extensive calibration of dispersion coefficient for 

each manifold line and the requirement for accurate and precise control of carrier flow. 

A similar procedure was later applied by Tyson et al. (160) based on the system of 

Fernandez et al. (161). The system worked on the division of the injected sample, with 

each sub-sample resulting from the division passing through reactors with different 

characteristics (dimensions) and the confluence of these channels before their arrival at 

the detector. A two-peak output (Fig. 2.3.2) was obtained as a consequence of the 

different residence times of each sub-sample, so different degrees of dispersion, 

producing three points of calibration. For the two maxima and the minimum between the 

partially overlapping peaks dispersion coefficient of 3.4, 20 and 77 were obtained. With 

the manifold a concentration range for magnesium of 0.2-100 11g mr1 was covered with 

a relative standard deviation of about 2%. A three branch network was also investigated 

but rejected due to observed fluctuations in flow rate which gave poor day to day 

reproducibility. 
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Fig. 2.3.2. Network manifold employed for splitting the sample zone (160). 

P1 peak from L1, P2 peak from~ 

Mixing chambers- One of the first reported applications of a mixing chamber in FAAS 

was made by Tyson et al. (162-164) following reported success in PIA with other 

detection systems (165). A mixing chamber was used to obtain a concentration gradient 
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using a single concentrated standard solution. The basic system consisted of a water-filled 

ideally stirred tank, into which a stream of stock solution was switched to produce an 

effluent concentration, which was an exponential function of the time elapsed after 

switching. 

The exponential concentration - time profile was described by the equation 

c, = cm [ 1 - exp ( -ut' I V )] (2.3.1) 

where Cx is the effluent concentration at time t after the start of the concentration 

gradient, Cm is the concentration of stock calibrant solution, u is the flow rate and V 

is the volume of the mixing chamber. The absorbance - time proftle was generated and 

then a sample was admitted directly to the nebulizer at the same flow rate as the 

calibrant and its absorbance was noted. By interpolation a corresponding value of t• was 

obtained which was substituted into equation 2.3.1, giving the concentration of the 

sample. The continuous-dilution calibration procedure was reported to extend over the 

entire working concentration range of the analyte with an uncertainty of less than 1%. 

Subsequent use of similar mixing chambers have been reported with FI sample 

introduction [166, 167). De la Guardia et al. [166) demonstrated the successful dilution 

of samples through the introduction of a discrete sample slug (100 ~I) into a continuously 

stirred mixing chamber (827 and 2245 ~1). A single standard calibration procedure was 

discussed using the trailing edge of a concentrated standard peak absorption proflle and 

the exponential relationship between concentration and time (equation 2.3.1), as reported 

by Tyson et al. [162-164). The system was successfully applied to the determination of Ca, 

Mg, Na and K in waters with a throughput of 180 h-1• Beinrohr et al. [167) used a 

variable volume (0.1 - 10 ml) dilution chamber and varied sample injection volume to 

control dilution in the determination of Cu. The lack of any stirring mechanism within 

the dilution chamber though was reported to have no detrimental effect on system 

performance. Since peak area quantitation was used, it was reported that the significance 

of mixing efficiency was limited. An increase in the linear dynamic range of FAAS of 2-3 

orders of magnitude was achieved with a reproducibility of 2-4%. No indication of 

throughput capability though was given. 

On-line dilution systems - Following the successful early use of FI to obtain on-line 

dilution further more advanced systems have been developed. Bysouth and Tyson [168) 

demonstrated the use of a flow manifold for automated on-line dilution of standards for 

FAAS employing a null measurement method. The manifold (Fig. 2.3.3) was based on 
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a fiXed-speed pump, together with a computer controlled stream switching valve and 

pump. Operating the fiXed speed pump at 6 ml min-1 close to the natural aspiration rate 

of the nebulizer the diluent solution was pumped continuously into the nebulizer. The 

flow rate of standard delivered by the computer controlled pump, to be merged with the 

diluent flow prior to the nebulizer, was manipulated to give appropriate dilutions 

according to equation 2.3.2, 

(2.3.2) 

where eN is the concentration of the standard solution produced, CS is the concentration 

of the stock solution, pS is the flow rate of the stock standard solution and FN is the flow 

rate delivered to the nebulizer. The stock standard solution was automatically diluted by 

a known factor until its absorbance matched that of the sample. Limitations of the 

procedure were reported though due to problems with pulsations in flow caused by the 

peristaltic pump rollers and consequent difficulties in accurate flow rate measurements, 

an inherent draw back of the use of peristaltic pumps in on-line dilution procedures. 

V 
1 

SA 

BD WASTE 

ST 
'---------' p 

2 

Fig. 2.3.3 Schematic diagram of manifold used in a null measurement method of on-line 
dilution [168]. 
!'J• Fixed spee? pump; P2, Computer controlled pump 
V 1' V2, SW1tchmg valves; SA, Sample 
BD, Diluent; ST, Standard 

Sherwood et al. [128] in 1985 developed a system called controlled-dispersion analysis 

(CDA) to capitalise on the inherent control of sample dispersion possible through 

varying sample volume and overcome the wasteful nature of sample injection in FIA. The 

new approach dispensed with the need for injection septa or valves. Sample was aspirated 
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into a probe or pump tube by the precise rotation of a peristaltic pump, driven by a 

stepper motor. The advantage of the CDA system was the almost infinite number of 

different injection volumes that could be used simply by altering the number of rotations 

of the peristaltic pump, during the sampling procedure. Injection volumes of between 2.5 

and 200 111 produced dispersion coefficients of up to 80 for the manifold in question and 

permitted single standard calibration. The system was applied to the determination of Li, 

Mg, Zn, Cu and Ca with a precision of between 0.9 and 2.0% relative standard deviation 

and sample throughput of 120 h"1. A similar time controlled variable volume injector was 

later reported by Burguera et al. (169), capable of injection volumes of between 4-62 111 

with a precision of less than 0.9% (RSD). The system was applied to the determination 

of Mg by F AAS using a single standard calibration procedure. 

Peak-width calibration - The first reported use of peak width measurement for 

quantification in atomic spectroscopy was by Stewart and Rosenfeld (165) who applied 

the method to AES in 1982. Tyson (170)later demonstrated the same procedure in AAS 

using the previously developed well stirred tank model (162·164). The peak width of a 

PIA peak at any concentration was shown to be proportional to a logarithmic function 

of concentration according to equation 2.3.3, 

t'= vln(cm_l)-vln(D-1) 
u c' u 

(2.3.3) 

where Cm is the concentration of the stock standard, V is the volume of a well stirred 

mixing chamber, u is flow rate and t1 the peak width at concentration, cl. In subsequent 

work Bysouth and Tyson [171) demonstrated a microcomputer-based peak-width method 

to extend calibration for FI-FAAS based on the above expression (170). All data 

collection and reduction was done on a microcomputer interfaced to the spectrometer. 

The method produced an estimate of concentration, without dilution, of off-range 

samples. To obtain a calibration, data was converted from time and absorbance to 

peak-width and concentration as in Fig. 2.3.4. Plotting the calibration data t1 vs 

ln[(Cm/C1
)- 1) made possible the determination of unknown off-range samples knowing 

both ~ and cl. Calibrations covering the ranges 40-1000 jlg mi·I, 10-50 11g mr1 and 

20·1000 jlg mJ·1 were obtained for Cr, Mg and Ni respectively. Although the FI manifold 

was very simple the system was limited by the inadequate data acquisition rate of the 

microcomputer and poor reproducibility of the absorbance/time profile. Due to the 

logarithmic relationship between peak-width and concentration results showed a relatively 

poor precision of about 8% (RSD). 
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Fig. 2.3.4. Data conversion from time and absorbance to peak width and concentration 
in a peak width quantification method [171). 

Electronic dilution and calibration- Sperling et al. [172) as recently as 1991 demonstrated 

a flow injection gradient ratio calibration procedure permitting calibration with a single 

standard in FAAS. The procedure was adapted from the previously reported concept of 

electronic dilution [173). A computer run algorithm "CLAIR" (calibration graph 

Iinearisation and interfered signal reconstruction) was described, based on the calculation 

of the ratios of signal response for a reference solution and sample at delay times over 

the peak profile. Use of the CLAIR alogarithm was reported to significantly extend the 

linear working range of F AAS and correct for multiplicative matrix interference effects 

such as phosphate interference in the determination of Ca. The inherent advantage of 

the system was the necessity for only one standard reference signal to achieve calibration 

over the entire working range. Sophisticated computer data handing facilities though 

required for this process clearly were not cheap. 

Standard addition methods - In 1981 Tyson [174) described a Fl analogue of the 

standard addition method. The sample was used as the carrier stream into which 

standards of increasing concentration were injected. Standards of lower concentration 

than the sample were shown to give "negative" Fl peaks and those of greater 
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concentration "positive" peaks (Fig. 2.3.5). A plot of6A vs the concentration of standard 

produced a plot which intercepted the concentration axis (/lA= 0) at the concentration 

of the unknown (Fig. 2.3.5). As the method was interpolative rather than extrapolative 

as in conventional calibration it was shown that the curve slope did not have to be linear. 

In later work the standard additions procedure was applied to the determination of Cr 

in steel [162, 163, 175] and Ca in iron ore [176]. Although simple and rapid a slight 

limitation of the procedure was the requirement, relative to other FI procedures of a 

high sample volume due to its role as the carrier. In the determination of Cr in steel 

(175] a sample volume in excess of 40 ml was used. 

Modifications of the standards addition method of Tyson [174] have since been reported 

for use with !lame photometry [177,178]. 
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Fig. 2.3.5. Standard additions calibration method [ 175]. 
(i) Typical chart recording 
(ii) Plot of 6A against standard concentration. 

2.3.4 Matrix Isolation and Preconcentration 

A large number of publications, including review articles by Valcarcel and Luque de 

Castro [179] and Fang et al. [180] have appeared during the last decade describing the 

use of preconcentration in n()w injection analysis. 
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Liquid-Liquid extraction- Liquid-liquid extraction has been reported in FI-FAAS for 

both preconcentration and matrix isolation and a number of studies have been made into 

its theoretical and practical development (181, 182]. 

In 1981 Nord and Karlberg (183] described a manifold which allowed continuous 

liquid-liquid extraction of aqueous solutions of metal ions. Sample was pumped 

continuously and mixed with ammonium pyrrolidinedithiocarbamate (APDC) solution. 

Segmentation of the stream by isobutyl methyl ketone (IBMK) with the aid of a 

segmenter was followed by extraction in an extraction coil. A substantial fraction of the 

organic phase was separated from the aqueous phase by a membrane separator and 

passed through the sample loop of an injector. For the determination of copper a 

preconcentration factor of 5.5 was obtained in comparison with direct aspiration of 

aqueous samples. The advantage of the procedure was that it allowed the extraction 

system to work independently of the nebulizer feed system which required a high flow 

rate (6.0 m! min"1) to take full advantage of the FAAS sensitivity. The flow rate of the 

organic solvent in the extraction was less than 1 ml min"1• Later Nord and Karlberg (184] 

applied the same system to the determination of Cu, Ni, Pb and Zn. Increases in 

sensitivity of between 15 and 20 time were achieved. 

Extraction systems based on the design of Nord and Karlberg (183, 184] have 

subsequently been reported by other workers (180, 185] applying discrete nebulization. 

The organic sample was transported to the nebulizer either via the natural flow of air 

produced by the suction of the nebulizer (180] or by the use of an air carrier stream 

(185]. Improved sensitivity in comparison with the use of maqueous carrier was reported 

in both cases, no comment was made though to the evident deterioration in precision 

expected from the observations of others (142, 143]. 

The use of liquid-liquid extraction FI-FAAS to eliminate interferences was first reported 

by Sweileh and Cantwell (149]. The determination of Zn in iron, which suffers from a 

spectral overlap of the Zinc line at 213.856 nm by a weakly absorbing iron line at 213.859 

nm was achieved by selective extraction of Zn as Zn(SCN)2 into IBMK 

The indirect determination of both perchlorate (186] and diethyldithiocarbamate (187], 

based on the use of previously developed extraction manifolds, have recently been 

reported. The two systems were based on the extraction and detection by F AAS of the 

copper(I) /6-methylpicolinealdehydeazine/ perchlorate ion-pair and 

copper(II)/diethyldithiocarbamate complex respectively. 
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Solid phase extraction- The first reported on-line column preconcentration system was 

that of Olsen et al. [188] in 1983. A carrier solution of 0.06 mol dm·3 ammonium acetate 

into which a 1 ml sample was injected was pumped through a micro-column of Chelex 

100 resin. Metals retained from the neutral media were released on the injection of 

180 Ill of2 mol dm"3 HN03 solutions. The metals originally present in the 1 ml sample 

volume were therefore released into a much smaller volume of acid, facilitating 

preconcentration and transport to the nebulizer. Problems with resin swelling and column 

blocking experienced in a single-line manifold, were overcome by directing the 

preconcentration and elution steps in opposite directions through the column, in a 

two-line manifold. During the preconcentration step unretained sample matrix was 

pumped to waste rather than the nebulizer, so the necessity for any background 

correction was obviated. The work culminated in the development of a fully automated 

system for the preconcentration of Pb, Cd and Zn, capable of a sampling rate of between 

30 and 60 h"1. The use of Chelex 100 has subsequently been reported by other groups 

[189-191]. Lui and Ingle [189] demonstrated the use of complexing reagents such as 

cysteine and ethylenediaminetetraacetic acid (EDTA) as stripping agents to eliminate the 

resin swelling obtained with mineral acids. A stopped-flow technique was developed to 

allow complete elution of transition metals from the Chelex 100 resin that reacted more 

slowly with the stripping complexing ligands. Implementation of the stopped-flow elution 

step though must have contributed to the rather poor throughput capability reported. A 

typical analysis time of 2-3 m ins was quoted to obtain enrichment factors in the range 

6 to 8. 

To improve the inherent low throughput capability, therefore, overall efficiency of early 

preconcentration systems, Fang et al. [190, 191, 192] developed dual column 

preconcentration systems. Two such systems were reported separately, employing 

simultaneous [190, 191] and sequential [192] sampling procedures for which the 

preconcentration efficiency was claimed to be twice that of a single column system. 

Further improvements in system efficiency were restricted though since the two columns 

were shown to produce different signal peak heights, due to variations in the tightness 

of packing materials. This observation indicated the need for the construction of separate 

calibration curves for each of the columns, therefore, an increase in total analysis times. 

Irrespective of these requirements in the determination of Co in water an enrichment 

factor of 48 was achieved at a sampling frequency of 60 h"1 [191]. Fang and Welz (193] 

in 1989 made further improvements in system efficiency with a, high efficiency, low 

sample consumption, on-line ion exchange preconcentration system. Conical ion exchange 

columns and short, small bore conduits were used to achieve a sampling frequency of 
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120 h-1 and low sample volume requirement of 1_6 ml per determination. Enrichment 

factors of 25-31 (CE = 50-61 EF min-1) were reported for Cu, Cd and Pb with relative 

standard deviations of 1.2-1.8%. 

Recently, Ruzicka and Arndal (194] demonstrated a system to facilitate the extraction of 

metals as their chelates from aqueous samples. The chelates were formed in the flow 

stream, sorbed on C-18 bonded silica and then eluted with methanol. The proposed 

method was shown to be useful for the preconcentration of Cu and Pb by means of 

chelation with diethyldithiocarbamate or 8-quinolinol. The importance of the findings 

made was not though the degree of preconcentration achieved but an indication that the 

method would permit the development of truly selective methods of analysis. Fang et al. 

(195] later applied the same methodology to the determination of Cd, Pb and Cu in 

samples using diethylammonium diethyldithiocarbamate chelating agent. 

With the growth of interest in on-line preconcentration numerous other different resins 

and active groups attached to a variety of supports have been employed in AAS. These 

include N,N,N1-tri(2-pyridylmethyl)ethylenediamine (Tripen) (196], 8-hydroxyquinoline 

derivatives (197-203], activated alumina (204, 205] and poly(hydroxamic acids) (206]. 

The use of solid phase extraction has been shown to be beneficial in speciation work. 

Pacey and Bubnis (207] in one of the first applications used Dowex 1 anion exchange 

resin for the speciation of Fe11 and Fem. Procedures for the speciation of free and 

EDTA complexed copper ions (208], CrVI/Crlll (209] and ylY;yv (210] have 

subsequently followed. 

Along with preconcentration, solid phase extraction procedures have been reported for 

interference reduction in AAS with some success. Kamson and Townshend (211] used 

an Amberlite IRA-400 ion exchange resin filled column for the removal of phosphate, 

sulphate and silicate interferences in the determination of Ca. Attempts to remove the 

interference of aluminium by its conversion to hexafluoroaluminate and removal on the 

same anion exchange column were though unsuccessful. 

More recently a variety of resins have been applied to the elimination of interferences 

in FI-HGAAS including AG50W [71], Muromac A-1 (82] and SCX (83]. These are to be 

discussed in more detail in section 2.3.5. 
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A significant breakthrough made over the last couple of years, concerning on-line solid 

phase preconcentration and matrix isolation in AAS has been its successful reported 

application to ETAAS [212-215]. This combination has previously not been possible due 

to the absence of technology to permit the coupling of relatively high flow rates used in 

PIA (ml min-t) to the batch operated ETAAS system. 

Sperling et al. [215) in one of the most recently reported pieces of work described an 

on-line preconcentration system for the determination of ultratrace amounts of Cd, Cu, 

Ni and Pb in water samples by ETAAS. The sorbent extraction method used was based 

on that reported previously using a 15 J.Ll conically shaped micro-column of C-18 bonded 

silica [195). Metal diethyldithiocarbamate chelates were formed on-line, loaded onto the 

column for 60 s (3 ml min-t), washed with 0.02 % vfv HN03 and then eluted with 

ethanol using a 'time based' technique. The eluate pump was activated for a clearly 

defined time interval in order to transfer a 40 J.Ll segment of the total sample eluate 

volume (200 J.Ll) directly into the furnace. Precise timing ensured that only the centre of 

the eluate bolus was sampled. A complete cycle of preconcentration and eluate 

introduction into the furnace, consisting of seven stages took 145 s. Using this procedure 

for the preconcentration of a sample volume of 3 ml the sensitivity of the graphite 

furnace technique was enhanced 20 fold compared with a 40 J.Ll injection volume. 

Detection limits achieved were 0,.8, 6.5, 17 and 36 pg mrt for Cd, Pb, Cu and Ni 

respectively. Results presented indicated the successful analysis of water samples, 

including sea water, without any matrix interference effects. 

On-line precipitation - A preconcentration procedure for the determination of trace 

amounts of lead by continuous precipitation was demonstrated by Martinez-Jimenez et 

al. [216) in 1987. The procedure was based on previous methods for the indirect atomic 

absorption determination of chloride [217-219), iodide [218), hydroxide [219) and oxalate 

[219). A 10-250 ml volume of sample containing 0.3-15 J.Lg of Pb at pH 0.5-6.0 was 

continuously pumped and mixed thoroughly with the precipitating reagent (1.5 mol dm-3 

ammonia). The precipitated basic salt formed was retained on a stainless-steel filter 

before being dissolved in a stream of 2 mol dm-3 nitric acid, producing a signal response 

proportional to sample concentration. Although the system was successfully applied to 

the determination of Pb in water samples the use of masking agents was found necessary 

to eliminate the interferences of both iron and sulphide. In comparison with solid phase 

extraction [195) the system performance characteristics were significantly inferior. To 

achieve a detection limit of 3 ng mr1 of Pb a throughput of 4 h-t (sample volume 50 ml) 

and precision of 2.8% (100 ng mrt, n= 11) were quoted. These fmdings compared with 
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a throughput of 120 h"1 (sample volume 1.4 ml) and precision of 1% (200 ng ml"1 Pb, 

n= 11) for the solid phase extraction method [195]. 

Debrah et al. [220] later reported a similar procedure for the preconcentration of Cu 

through the precipitation of its hydroxide and subsequent collection on a cellulose acetate 

membrane filter. A detection limit of 0.01 !lg ml"1 of Cu (sample volume 11 ml) was 

obtained compared with 0.1 !lg ml"1 for normal aspiration. 

Along with preconcentration on-line precipitation has been successfully applied to 

interference removal through matrix isolation. Adeeyinwo and Tyson [150, 221] 

demonstrated one such method for the removal of aluminium interference in the 

determination of Ca. A two line manifold was developed in which calcium was 

precipitated as its oxalate and retained on a membrane filter, prior to dissolution by 

hydrochloric acid. In later work, after manifold optimization an enrichment factor of over 

650 was obtained and the interference free determination of Ca (10 !lg ml"1) in the 

presence of aluminium at concentrations up to 1000 !lg ml·1 was achieved [220, 222]. 

In recent work the use of glass bead filled and knotted rector coils [223, 224] have been 

shown to be an efficient alternative to the use of membrane filters. Fang et al. [224] 

demonstrated a procedure for the eo-precipitation of lead with the iron(II)

hexahydrozepinium hexahydroazepin-1-ylformate (hexamethyleneammonium 

hexamethylenedithiocarbamate) complex. The precipitate was collected in a knotted 

rector (150 cm x 0.5 mm i.d.) then dissolved in IBMK. A detection limit of 2 ng ml"1 of 

Pb was achieved with a sampling frequency of 90 h-1. These figures were significantly 

superior to the earlier work of Martinez-Jimenez et al. [216]. The method was also 

reported to be able to tolerate up to 2500 fLg ml·1 of iron in the sample solution 

indicating its further superiority. Efficiency of the system in comparison with on-line filter 

devices was postulated to be due to the minimisation of dispersion. 

Novel preconcentration methods- Along with the procedures already reviewed two very 

novel methods of preconcentration have been demonstrated through the use of 

electrochemical potentiometric stripping [225] and Donnan dialysis [226]. Although both 

procedures achieved high enrichment factors their major limitation was very poor 

throughput capability. Electrochemical preconcentration permitted in the determination 

ofPb an enrichment factor of30.4 but with a corresponding throughput of 12 h-1. In the 

case of Donnan dialysis in the determination of Cu 100 fold enrichment factors were 

reported for dialysis times of the order of 5 minutes. 
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2.3.5 Flow Injection Hydride Generation Atomic Absorption Spectrometry. 

Since 1982 the technique of flow injection hydride generation atomic absorption 

spectrometry (FI-HGAAS} has been researched in depth by many groups as a means 

of overcoming the limitations of HGAAS. Recently, a review of the subject was made 

in a book covering the subject of flow injection and its applications to atomic 

spectroscopy [90]. Particular interest into the technique has been shown by many 

Chinese groups. A percentage of the work published therefore is only available in 

Chinese, limiting the amount of information that can be attained and making a truly 

comprehensive review difficult. 

Development- The technique of FI-HGAAS developed from previous continuous flow 

systems which had evolved to overcome the tedious, slow and operator intensive 

nature of manual batch methodology. 

The first reported automated continuous flow system was demonstrated by Vijan and 

Wood (12] in 1974. A continuously pumped sample was merged with an air-segmented 

sodium tetrahydroborate reagent stream and Ar carrier gas, then passed through a 

reactor coil to the gas-liquid separator. A novel U-tube gas-liquid separator was used 

which allowed the aqueous reaction products to be drained to waste and the gaseous 

hydride to be transported by the Ar carrier gas to the electrically heated quartz 

atomization cell. The system was applied to the determination of As in atmospheric 

particulate matter, but results for the determination of Sb, Bi and Se were also given. 

Introduction of an air-line in the manifold was reported to increase sensitivity as well 

as smooth the peak shapes. A sensitivity of 1 ng mr1 was achieved in the 

determination of As for a sample volume of 4 ml. The most attractive feature of the 

system was its automatic, unattended operation which permitted the analysis of twenty 

samples in an hour. The same system was later applied to the determination of Sn 

(227] and Pb (228] respectively. For the determination of Pb no air-segmentation was 

used in the manifold. On-line addition of masking agents (KCN, citric acid) was used 

to improve interference tolerance. 

Other continuous flow analyzers have subsequently been reported by other groups, 

many based on the system of Vijan and Wood (12], for the determination of As 

(85, 87, 229] and Se [85] by HGAAS and Hg (230] by cold vapour atomic absorption 

spectrometry (CV AAS). Continuous flow hydride generation has been combined with 

a variety of hydride collection and preconcentration procedures including pressure 
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collection [78] and cryogenic trapping (231-233]. 

The first application of FIA to hydride generation was reported by Astrom (13] in 

1982 for the determination of Bi. A 700 Ill sample solution was injected into a 

continuous flowing stream of hydrochloric acid. After reaction with NaBH4 solution 

in a mixing coil the reaction mixture was merged with a nitrogen stream and the 

evolved hydride swept from a miniaturised version of the gas-liquid separator, 

reported by Vijan and Wood (12], into an electrically heated quartz tube. The 

dimensions of the miniaturised gas-liquid separator were though not included in the 

paper. The FIA system was reported to permit the interference free determination of 

Bi with about 100 to 1000 times higher concentrations of interferents in comparison 

with previous systems (42]. The superior interference tolerance was attributed to the 

controlled short reaction time favouring the main hydride generation reaction 

(Section 1.3.2.3). Evidence for this postulation was given by an observed reduction in 

interference with both reduced rector coil length (cobalt, copper, nickel) and 

increased pumping speed (cobalt). A rather critical absence from the paper though 

was the actual carrier and reagent flow rates used in the manifold. At a sample 

throughput of 180 h'1 the relative standard deviation was 0.8% for a solution 

containing 30 ng mr1 of Bi with a detection limit of 0.08 ng mr1, for the optimum 

conditions with respect to the suppression of interference effects. These figures were 

a significant improvement on those reported by Thompson and Thomerson (11] who 

used a manual batch HGAAS method. For the system in question a relative standard 

deviation of 3.9% (100 ng mr1 Bi, n= 10) and detection limit of 0.2 ng mr1 (sample 

volume 1 ml) were achieved. 

Yamamoto et al. (88] in 1985 reported the so called use of FIA in hydride generation. 

When considering though the definition of FIA (109] their system does not comply 

truly since it employed a gas·segmented carrier stream. The gas segmentation process 

was reported to be effective in minimising broadening of the sample zone and 

increasing sensitivity in the determination of As, Bi, Sb, Se and Te. A rather 

uncharacteristic feature of the manifold was that the nitrogen carrier gas was actually 

added prior to NaBH4• High interference tolerance was reported for the system and 

explained by the mechanisms proposed by Astrom (13]. No consideration was paid 

though to the fact that potassium iodide was added in the determination of As and 

Sb to permit the in-line pre-reduction of Asv and Sb v to Aslll and Sblll respectively. 

As later proposed by Pacey et al. [58] the high interference tolerance reported for the 

system must be due, in part, to the presence of Kl and its action as a masking agent 

(59]. 
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The beneficial coupling of FIA to HGAAS was further documented in the work of 

Fang et al. [86). In the determination of Se a detection limit of 0.06 ng ml"1 SeiV was 

reported for a 400 111 sample volume, giving a far improved absolute detection limit 

(2 x 10"11 g Se) over that of the manual batch method used previously. The benefits 

of reduced reagent consumption and superior interference tolerance were also shown. 

Wang and Fang [67, 70, 234) in later work miniaturised the gas-liquid separator which 

was based on the initial design of Vijan and Wood [12). The internal diameter of the 

separator bulb was decreased from 20 to 15 mm to increase sensitivity in the 

determination of As[70) and Se[67, 234). 

Ikeda [235) in 1985 described a pseudo PI type system for the determination of As, 

which was entitled "miniaturised suction-flow hydride generation". A 300 111 sample 

solution was dropped into a PTFE sample suction cup and pumped into an alkaline 

sodium tetrahydroborate stream which was acidified in a reaction coil. To prevent air 

entrainment a stream of argon was passed over the inlet of the sample suction cup, 

producing gas segmentation of the carrier stream. For this reason the system cannot 

be truly defined as using flow injection, as in the case of the system of Y amamoto et 

al. [88). Addition of sodium tetrahydroborate prior to hydrochloric acid and the use 

of an optimized reactor coil length of 1000 mm (3 mm i.d.) was shown to eliminate 

the difference in sensitivity between As v and As111 without any pre-reduction by 

potassium iodide. These system variables may though account for the rather poor 

interference tolerance of the system relative to other PI systems [ 58,88) and, therefore, 

the requirement for the in-line addition of potassium iodide and hydroxylamine 

interference suppressants in the analysis of low alloy steel standard reference 

materials. 

Membrane gas-liquid separators- A major development in PI-HGAAS was made by 

De Andrade et al. [236) in 1983 with the development of a PTFE membrane phase 

separator for use in CV AAS. The device was based on the permeability of PTFE tape 

to mercury vapour. Mercury vapour was formed in a carrier stream on one side of the 

PTFE membrane which then diffused directly into the absorption cell positioned in 

the light path of the spectrometer. A sampling rate of 110 h-1 was obtained and a 

detection limit of 1.4 ng ml"1 of Hg. Fang et al. [86)later modified the membrane 

phase separator through the inclusion of a nylon gauze to reinforce the PTFE 

membrane and optimization of separator dimensions, following which a detection limit 

of 0.06 ng ml"1 of Hg was attained. This value was observed though to be no better 

than that achieved with a miniaturised U-tube gas liquid separator[12). Fang et al. [86) 
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reported that although the membrane phase-separator gained sensitivity by eliminating 

the large dead volume of the conventional gas-liquid separator, it lost sensitivity 

through the incomplete transport of mercury through the membrane. Other 

PI -CV AAS methods have subsequently been reported with the application of various 

gas-liquid separator designs [237,238]. 

One of the first reported applications of a membrane gas-liquid separator to 

FI-HGAAS was made by Pacey et al. [58] in 1986. In the dual phase gas diffusion 

system (GD-FIA) described a liquid phase donor stream containing sample was 

passed on the underside of the membrane with a stream of gas (H2 (g)) on its reverse 

side (Diffusion area 70 mm2). The gaseous analyte was therefore passed through the 

membrane into the gas stream and transported to the detector. In the determination 

of As, the system although capable of a sample throughput of 180 h"1 exhibited a 

relatively poor detection limit of 10 ng ml"1 As. This value compared with 0.08 and 

0.2 ng ml"1 reported earlier by Ikeda [235] and Yamamoto et al. [88] respectively. 

Increase in the size of the gas-diffusion channel to permit the use of larger sam pie 

sizes and the use of stopped-flow, to increase diffusion efficiency, was postulated 

though to possibly reduce this figure. System interference tolerance was quoted to be 

superior to previously reported continuous flow methods. Some confusion appears to 

exist though since the performance data tabulated does not agree with the references 

given. In my opinion in Table I reference ten and eleven should read reference eleven 

and twelve. 

A very similar membrane gas-liquid separator to that demonstrated by Pacey et al. 

[58] has recently been applied by Chan et al. [239] to the determination of Bi by 

FI-HGAAS. A stainless-steel screen was used to back the membrane and so improve 

its working life time. 

Yamamoto et al. [89] reported the use of a novel membrane tube separator as a gas

liquid separator for FI-HGAAS. Microporous PTFE tubing was used as an inner tube 

and pyrex glass tubing as the outer tube of the separator . The mixture of AsH3, H2, 

Ar, air and the reacted solution were passed into the microporous PTFE tube and 

AsH3, Ar and air separated from the solution to the outer side of the microporous 

PTFE tube, diffusing through its wall. A characteristic concentration of 0.058 ng ml"1 

of As was obtained with a precision of 2.5% (3 ng ml"1 As, n = 10) and throughput of 

120 h-1• The improvement in sensitivity achieved in comparison with the previously 

used U-tube gas-liquid separator [88] was shown in part to be due to a reduced dead 
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volume of the gas-liquid separator. The design of separator achieved a total diffusion 

area of the PTFE tubing of 25, 000 mm2. This figure was significantly larger than the 

area of 70 mm2 used in the system of Pacey et al. [58] and would therefore account 

for its superior performance characteristics. 

In very recent work, Marshall and van Staden [240] described a perspex chamber 

gas-liquid separator incorporating a cotton gauze membrane. The role of the 

membrane was not though to allow the formed hydride to pass through it as in earlier 

systems [58, 89, 239] but to simply assist in stripping of the hydride from the effluent 

solution. Performance data was presented for the determination of As, Bi, Sb, Se and 

Te which was significantly poorer than that reported in earlier work [88]. Detection 

limits varied in the range of 2 to 10 ng ml·1 and precisions where quoted between 2.2 

to 3.7%. A rather uncharacteristic feature of the system which may account for its 

poor performance characteristics was the low carrier flow rates employed. The carrier 

flow rates in each case were restricted to below 3.0 ml min-1 but without explanation. 

Irrespective of the poor performance characteristics of the system a novel standard 

additions method was implemented with success in the determination of Bi in the 

presence of palladium and the determination of As in samples of industrial effluent. 

With the development of FI·HGAAS technology an increasing number of general 

application papers have been reported. These include the determination of Se in 

geological samples [61], bovine liver [241], blood plasma and serum [242], and the 

determination of As, Bi, Sb and Se in a variety of geological and environmental 

sample types [243, 244]. 

Preconcentration and matrix isolation- The application of column preconcentration 

procedures in FI-HGAAS to date has been limited. Fang et al. [180] in 1988 reported 

a dual column preconcentration system for the determination of Se and Hg. For Se 

determination a microporous anion exchanger (D-201} was capable of a concentration 

efficiency (CE) of 12, therefore, an improved limit of detection of 0.002 ng mr1 of 

SeiV with a sampling frequency of 50 h-1. Zhang et al. [203]later demonstrated the 

same system for the preconcentration of Bi using a chelating ion exchanger 

(CPG-80). A concentration efficiency (CE) of 24 with a precision of 1.1% at 0.5 ng 

ml'1 of Bi was achieved permitting a limit of detection of 0.001 ng mr1 of Bi. 

The first reported use of continuous flow matrix isolation in HGAAS was documented 

by Ikeda [82] in 1985. The previously described suction flow hydride 
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generation system (235] was applied to the determination of Se in which a micro

column of chelating resin was employed for the in-line removal of interferences. A 500 

Ill sample was injected manually into a PTFE suction cup and carried to the top of 

the column with a continuous flow of water. The effluent of the column was 

subsequently introduced directly into the HGAAS manifold. A 500,000 fold excess of 

either copper or nickel could be tolerated in the determination of Se permitting the 

successful analysis of copper and nickel based alloys. A sample throughput of 30 h"1, 

detection limit of 0.2 ng ml"1 of Se and precision of 3.8% (5 ng m!"1 SeN, n = 10} was 

reported. The fact that the system relied on manual sample pi petting may explain the 

rather limited precision achieved. As implemented in the earlier system (235] sodium 

tetrahydroborate addition was carried out prior to acidification but without full 

explanation, and possible deterioration in the interference tolerance of the system 

(42, 87]. Although the column had a high capacity no column regeneration procedure 

was described. The column was simply replaced by a new one after every 25 

measurements of a sample containing 2.5 mg of copper or nickel. 

Riby et al. [83]later reported the use of a micro-column of strong cation exchange 

material (SCX) for in-line matrix isolation. The system was applied to the 

determination of As in nickel based alloy. A limit of detection of 1.3 ng mr1 of As 

with a precision of 3.0% (10 ng mr1 As, n= 10) was reported but no indication of 

throughput capability. Although successfully applied to the analysis in question the in

line incorporation of the micro-column in the aqueous carrier required significant 

compromise to be made between the performance characteristics of the matrix 

isolation system and hydride generation manifold itself, as discussed in more detail in 

Chapters four and five respectively. A crude column regeneration procedure was 

described but intermittent replacement of the column was still necessary due to 

compaction of the exchange material resulting in excessive back pressures within the 

system. Without matrix isolation the interference tolerance of the system was limited 

to only 5 j.Lg ml"1 of nickel. This was possibly due to a degree to the addition of 

sodium tetrahydroborate prior to hydrochloric acid as discussed for the system of 

Ikeda (82]. 

In very recent work Marshall and van Staden (71] applied the same in-line matrix 

isolation procedure (83] using a micro-column packed with AG50W X8 cation 

exchange resin. Dilute acid carrier streams (0.05 mol dm"3 H2S04, 0.1 mol dm-3 HCI) 

were shown to be successful for the isolation of As and Se from a variety of separate 

synthetic interfering matrices (Fe, Co, Cr, Cu and Ni, 1000 !lg ml"1). The overall 
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performance characteristics of the system though were limited by the poor 

performance characteristics of the gas-liquid separator as documented previously 

[240]. Determinand concentrations used to validate the matrix isolation procedure 

were 1000 ng ml"1 of As and Se respectively. Inclusion of the micro-column in-line 

was shown to deteriorate sensitivity even further due to increased dispersion of the 

sample plug. Column regeneration was achieved hy pumping a 2 mol dm·3 solution 

of eluent (10 m!) directly through the column. At an eluent flow rate of 2 m! min"1 

this procedure though required a regeneration time of five minutes and since the 

column was not disconnected from the rest of the system the eluted interferents were 

passed directly into the gas-liquid separator. It is suggested that this action is 

detrimental to overall system performance and to be avoided if at all possible due to 

the increased possibility of interference memory effects. 

2.3.6 Real Sample Analysis. 

Difficult samples· The application of PIA to FAAS has been shown by numerous 

workers to be advantageous especially in the analysis of so-called difficult samples. 

Mindel and Karlberg [245] were first to report the ability of FI to handle samples with 

high dissolved solids. A solution containing 25% mfv magnesium chloride was 

analysed for cadmium, Direct aspiration resulted in rapid blocking of the burner but 

with the FIA-AAS system no burner blockage was observed and viscosity problems 

were eliminated. The same observations have been made subsequently by numerous 

other groups for a variety of different sample types [86, 142, 152, 154, 246]. Fang et 

al. [246] reported that the concentration limit of dissolved solids in a sample was in 

fact determined by the degree of matrix interference, such as solute-volatilization 

interferences, and not by difficulties in the process of sample introduction. Toleration 

of high concentrations of dissolved solids in samples was attributed to the extremely 

short contact times of undiluted sample with nebulizer and burner (1-2 s per sample) 

and the effective rinsing of the carrier stream between sample injections. Further 

evidence for the ability of FIA in the handling of difficult samples has recently been 

reported through its application to slurry nebulization/atomization procedures 

[247, 248] and the analysis of oil emulsions [249]. 

Sample pretreatment· Although to date a number of real analyses have been tackled 

by FI-FAAS using various designs of manifold, many of the sample pretreatment 

processes can be traced back to the early work of Zagatto et al. [132, 250] and Rocks 

et al. [142, 156, 157, 251]. A summary of the variety of analyses to which FI-FAAS has 

been successfully applied is given in Table 2.3.1. 
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Zagatto et al. [132] demonstrated the use of the merging zones method in the 

determination of Ca, Mg and K in plant material. Consumption of 0.5 mg of 

lanthanum per sample was reported which was a significant reduction from 50 mg per 

sample for conventional aspiration. Sample dilution was obtained through on-line 

dispersion, coupled with dilution at the merging point, (dispersion coefficient 40). 

Rocks et al. [157] reported the use of a single line manifold for the determination of 

Ca and Mg in serum. No pre-dilution or addition of masking agents and releasing 

agents was required. For the determination of Ca a carrier stream of 0.01 mol dm·3 

lanthanum in 0.05 mol dm·3 HCl was used into which a 4 J.Ll of serum was injected 

directly. Dilution of the injected serum sample to within the working range of the 

detector was obtained through on-line dispersion during transport to the nebulizer, 

(dispersion coefficient 54). 

One of the biggest breakthroughs in FI-FAAS in connection with sample pretreatment 

was made by Burgnera et al. [252, 253] through the application of microwave assisted 

decomposition. Burguera et al. [252] described a method for the determination of Cu, 

Zn and Fe in whole blood. Untreated blood was injected (100 J.Ll) directly into an 

aqueous carrier containing Triton X-100 and merged with HC1/HN03 reagent. The 

merged sample was then transported along a coiled pyrex decomposition tube located 

inside the microwave oven prior to the nebulizer of the atomic absorption 

spectrometer. The system required no prior sample pretreatment, had a sampling rate 

of 80 h·1 and relative standard deviation of better than 3%. In a later system [253] the 

microwave decomposition of biological tissue was carried out in a closed flow circuit 

interfaced to a FI-FAAS manifold. Digested samples were pumped around the closed 

flow circuit from which aliquots (20 J.Ll for Zn and 100 J.Ll for Cd) were injected into 

a continuously flowing water carrier stream. Recoveries of 97-103% for Zn and 

96-98% for Cd with a precision of 2-6% were obtained. A similar design of system has 

recently been applied to the determination of Ph in sewage sludge [254]. The system 

described although successful to the analysis in question only attained partial digestion 

of the sample matrix and, therefore, relied on the ability of PI to handle slurry 

nebulization [247, 248]. 

A novel method for the automation of sample preparation was demonstrated by Yuan 

et al. [255] in 1991 with the on-line electrolytic dissolution of solid metal samples. An 

electrolysis cell was described and applied to the determination of Cu in aluminium 

alloys. The detection limit was a function of electrolysis time and current. Sample 
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analysis times of only a few minutes were required with a reproducibility of 4% for 

the same sampling point and 5% for different points on the alloy sample. 

Table 2.3.1 Real Sample Analysis by FI-AAS. 

Sample Analyte System feature Reference 

CLINICAL .................................................................... 
Serum Cu,Zn 142,(1982) 

Ca,Mg 157,(1984) 

Se HGAAS 242,(1990) 

Blood Plasma Se HGAAS 242,(1990) 

Blood Cu, Fe, Zn on-line microwave digestion 252,(1986) 

Pb Slotted tube atom trap 256,(1988) 

Biological tissues Se HGAAS 241,(1986) 

Cd,Zn microwave digestion 253,(1988) 

Parotid saliva Cu, Fe, Zn 257,(1986) 

Cerebrospinal fluid Ca, Cu, Fe, Mg, K. Zn 259,(1986) 

Urine Pb Off-line solvent extraction 259,(1986) 

Hair Pb 260,(1987) 

FOOD .................................•....•............................. 
Rice powder (NBS SRM 1568) As HGAAS 70,(1988) 

Se HGAAS 88,(1985) 

Wheat flour (NBS SRM 1567) As, Se HGAAS 88,(1985)~ 

Spinach (NBS SRM 1570) Cu, Zn 133,(1979) 

Foodstuffs Fe, Zn slurry nebulization/atomization 247,(1990) 

Cd,Pb 261,(1987) 

Powdered milk Cu, Fe 262,(1987) 

Milk Ca 263,(1990) 

ENVIROMENTAL .................................................................... 
Water 

Polluted sea water Cd, Cu, Pb, Zn 188,(1983) 

Cd, Pb, Zn On-line ion exchange 188,(1983) 
preconcentration 

Sea water Cd, Cu, Pb On-line ion exchange 193,(1989) 
preconcentration 

Tap, snow and mineral Bi, Se HGAAS/on-tine ion exchange 203,(1989) 
preconcentration 

Drinking and mineral ru HGAAS 243,(1990) 

Plant material Ca, K, Mg 132,(1979) 

Fe 250,(1981) 

contf .. 
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Sample Analyte System Feature Rererence 

Orchard leaves (NBS SRM 1571) AB, Bi, Sb, Te HGAAS 88,(1985) 

Cu,Zn 133,(1979) 

Soil Cd 86,(1986) 

Sediments As HGAAS 243,(1990) 

Coal fly ash (NBS SRM 1633a) As, Sb, Se HGAAS 88,(1985) 

As,Sb,Se HGAAS 243,(1990) 

Sewage sludge Pb On-line microwave digestion 254,(1990) 

Geological materials Se HGAAS 61,(1985) 

Silicate rocks Co On-line precipitation 264,(1989) 
dissolution 

INDUSfRIAL .................................................................... 
Pigments Cu, Cr, Mg, Zn Slurry nebulizationfatomization 248,(1991) 

Lubricating oils ea 249,(1989) 

Gasoline Pb 265,(1986) 

METALLURGY ......................................•....•........................ 
Steels Cr Standard additions 162,163,(1983) 

Cr 266,(1986) 

As, Bi, Sb, Se, Te HGAAS 88,(1985) 

As, Bi, Sb, Se HGAAS 243,(1990) 

Leaded gun metal m HGAAS 239,(1990) 

Electronic flow solder Bi HGAAS 239,(1990) 

Nickel based alloys As HGAAS/ On-line ion exchange 83,(1989) 
matrix isolation 

Aluminium alloy Cu On-line electrolytic dissolution 255,(1991) 

Copper based alloys Pb Slotted tube atom trap 267,(1989) 
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CHAPTER THREE 

ON-LINE DILUTION IN FAAS THROUGH THE APPLICATION OF FI AND WIDE BORE 
MANIFOLD TUBING. 

3.1 INTRODUCTION. 

The use of flow injection for on-line dilution and calibration strategies in FAAS has been 

reported extensively by numerous groups, as reviewed in section 2.3.3. To date though little 

attempt has been made by instrument manufacturers to develope commercial instrumentation 

based on these methods. To some extent this is due to a variety of limitations of the systems 

reported including their limited dilution ranges, lack of robust operation, complicated computer 

operation and use of expensive components. 

Early methods based on the fundamental principles of flow injection and dilution through 

on-line dispersion, were capable of relatively high values of dispersion. Rocks et al. (157] for 

example achieved a dispersion coefficient of 100. These methods were though, in general, 

limited to a single predetermined dilution factor. Development of network manifolds [159] have 

successfully extended the working range of the procedure to achieve up to six independent 

dilution values for a single sample. Although simple and inexpensive the full potential of the 

method is restricted by the build up of back pressure when long lengths of narrow bore (0.5 

mm i.d.) manifold tubing are used. Initial studies into the use of wide bore manifold tubing of 

up to 13 mm i.d., (155] has shown promise in overcoming such restrictions and at the same 

time producing large dispersions without the need for lengthy manifolds. For a manifold length 

of only 300 mm (1.3 mm i.d.) a dispersion coefficient of approximately 25 was achieved. To 

overcome the limited dilution ranges achieved by the simple on-line dispersion principle various 

modifications have been reported over the years. The use of merging zones (132] and zone 

sampling (158] procedures have been successfully applied. The requirement of exact timing and 

synchronisation of manifold operations in such systems though has made the process more 

complicated, requiring expensive components. 

Recent developments have moved away from carrying out the physical dilution of samples but 

have achieved the same procedure through manipulating the analytical data available within the 

FI transient signal response itself (166, 171-173]. Although successfully applied to the 

determination of off-range samples through the application of mathematical models, they rely 

on computer programs and computer controlled instrumentation, required to achieve precise 

timing, data collection and data evaluation. As a result these systems are complicated and 

expensive. 

58 



This chapter describes an investigation into the use of wide bore manifold tubing 

(0.8 - 5.0mm i.d.) in a flow injection manifold to permit a simple, cheap and robust method for 

on-line dilution in FAAS. The system was evaluated for possible commercialisation based on 

the use of a network manifold [159] to obtaiu discrete values of dispersion. The target 

performance for the manifold was to achieve dilution factors of up to 100 with a precision of 

1% relative standard deviation (RSD). 

3.2 APPARATUS AND REAGENTS. 

The atomic absorption spectrometer (Philips Scientific model SP9) was connected to either a 
Tekman TE200 chart recorder or the SP9 computer for absorbance measurements. Philips data 

coded hollow cathode lamps were used for all determinations. An air-acetylene flame was used 

throughout for which the nebulizing air support gas was supplied by an air-compressor . 
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Fig. 3.1. Schematic diagram of a single line FI manifold for use with wide bore tubing: P, 
peristaltic pump; V, sample injection valve; S, sample; WBMT, wide bore manifold 
tubing. 

Single line manifolds (see Fig. 3.1) were used for all FIA investigations. The manifolds were 

constructed from sections of wide bore tubing (0.8 - 5.0 mm i.d.). Short sections of small i.d. 

manifold tubing (0.8, 0.5 mm i.d.) were used to connect the sections of wide bore manifold 

tubing to the injection valve and nebulizer of the spectrometer respectively. Connecting tubing 

and wide bore manifold tubing (0.8 and 1.5 mm i.d.) were fitted together using conventional FI 

gripper fittings and connectors. For the larger 3.0 and 5.0 mm i.d. tubes short sleeves of tightly 

fitting pump tubing were used for the same purpose, as shown in Fig. 3.2. 
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O.Smmi.d. 

Fig. 3.2. Cross section of wide bore manifold tubing (WBMT): S, sleeves of pump tubing. 

For visual mixing characterisation studies the PTFE wide bore tubing was replaced with 

transparent PVC tubing. A Gilson Manipuls 3 peristaltic pump was used with a variety of 

different internal diameter PVC pump tubings (Altec) to control carrier flow rates. A Rheodyne 

model 5020 fixed volume loop, manually operated, injector valve was used. To achieve a low 

sample injection volume (20-30 Ill) short lengths of 0.8 mm i.d. PTFE manifold tubing were 

flanged directly to the back plate of the injector valve after removing the standard connecting 

arms. 

Calcium, lead and zinc solutions were prepared by diluting stock 1000 llg mr1 solutions (BDH 

SpectrosoL grade). Nitric acid (BDH, SpectrosoL grade) and analytical-reagent grade water 

produced by a liquipure RG system (reverse osmosis followed by ion exchange) were used for 

all sample and carrier solutions. To study mixing characteristics visually, coloured sample 

solutions were prepared from methylene blue (Boots, Quality control standard). 

33 PROCEDURES AND RESULTS. 

33.1 Optimization of Philips SP9 Spectrometer. 

The manufacturer's quoted variables (268] were used as a starting point for the 

optimization of the spectrometer for the steady state determination of Ca. The principle 

spectral line 422.7 nm was chosen and a slit width at 0.5 nm, with no use of background 

correction or signal damping. Analytical-reagent grade water was aspirated to zero 

absorbance and a 10 llg ml·1 Ca solution was used to obtain absorbance readings as the 

instrument variables were altered. All signal quantification was carried out with the SP9 

computer using precision program N" 91 (n = 9, integration time 2.0 s). A nebulizer 

uptake tube (185 mm, 0.5 mm i.d.) was used to introduce the calcium solution at a 
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natural uptake rate of 5.2 ml min"1 (Flow settings; air 27.5, acetylene 20.5 Arbitrary 

units). The effect of acetylene flow rate, burner height and lamp current on Ca 

absorbance are shown in Figs. 3.3 and 3.4 respectively. The final optimized spectrometer 

settings are shown in Table 3.1. 
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Fig. 3.3. Effect of burner height on the absorbance of 10 IJ.g mr1 of Ca, lamp current 7 
mA, air flow setting (Arbitrary units) 27.5:(•), acetylene flow setting 18 (fuel
lean); ( • ), acetylene flow setting 20 (stoichiometric); (•), acetylene flow setting 
23 (fuel-rich). 
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Fig. 3.4. Effect of lamp current on the absorbance of 10 IJ.g mr1 of Ca, air and acetylene 
flow settings 27.5 and 20.5, burner height 4 (Arbitrary units). 
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Table 3.1 Optimum SP9 Spectrometer variables for the determination of calcium. 

Wavelength, run 

Slit width, nm 

Lamp current, mA 

Support gas/ flow setting, (Arbitrary units) 

Fuel gas/flow setting, (Arbitrary units) 

Burner height, (Arbitrary units) 

Background correction 

Damping 

422.7 

0.5 

2.0 

27.5/air 

20.5 f acetylene 

4 

OFF 

OFF 

A characteristic concentration (0.0044 A) of 0.05 j.lg mr1 for Ca was obtained which 

compared favourably with the manufacturer's value of 0.09 j.lg mr1 Ca [268). The 

precision of the system based on a 0.2 j.lg mr1 Ca standard was 1.1% relative standard 

deviation (%RSD, n=9). 

3.3.2 Calibration of Gilson Manipuls 3 peristaltic pump. 

The peristaltic pump used to deliver the carrier stream was calibrated gravimetrically by 

the method of weighing by difference. The mass of water delivered for fiXed times, at 

different pump speed settings (RPM) for two sizes of pump tubing (0.89, 2.79 mm i.d.) 

was noted. Pumping rate was calculated as the volume of water pumped in unit time in 

millilitres per minute. Water density was approximated to 1 g cm·3 over the temperature 

range 20-25" C. The flow rate capabilities of the two pump tubings are shown in Fig. 3.5. 

When applied to pumping carrier in manifolds connected to the spectrometer the flow 

rate was determined at regular intervals and for each chaoge of pump variable, by the 

method of weighing by difference as described. This procedure was required to correct 

for the effect of nebulizer suction, changes in back pressure with manifold design and 

deterioration in the performance of pump tubing with age. 

62 



16 

14 

~ 12 

' c 
E 10 

e 
~ 8 
ill 
~ 

"' L 6 

"' c 

~ 4 

c. 

2 

0 20 30 40 50 

Pump speed settino~ rpm 

Fig. 3.5. Calibration graph for Gilson Manipuls-3 pump peristaltic pump: Pump tube 
dimensions; ( • ), 2.79 mm i.d.; (•), 0.89 mm i.d. 

3.3.3 Calibration of Injection valve sample loop volume. 

The volume of the sample loop used in the injection valve was calibrated gravimetrically 

by weighing a slug of liquid mercury delivered from it. The loop of the injection valve 

was fllled with liquid mercury, manually from a plastic syringe, with the valve in the load 

configuration. After the valve was actuated into the inject position the mercury sample 

slug was driven out of the sample loop into a pre-weighed beaker with a stream of air, 

supplied by a second syringe. The volume of the sample injection loop was therefore 

calculated knowing the mass of mercury used to fill the sample loop and the density of 

liquid mercury (13.6 g cm·\ For the injection valve used a sample loop volume of 

29.3 ± 0.3 (n=5, ± 95% confidence interval) was calculated. 

3.3.4 Effect of pumping flow rate on spectrometer response. 

3.3.4.1 Fl calcium signal response. 

The spectrometer was operated at the optimum conditions (Table 3.1) connected 

to a manifold based on that shown in Fig. 3.1. A straight length of PTFE manifold 

tubing (300 mm, 0.5 mm i.d.) was used to connect the injection valve and the 

nebulizer. 
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The effect of pumping flow rate on the flow injection sample introduction of Ca in 

FAAS was studied. The sample loop, volume 29 Ill, was filled with a 15 jlg ml"1 Ca 

solution, injected into a water carrier stream and transported to the spectrometer. 

The peak-height was recorded on a Tekman TE200 chart recorder (10m V FSD, 100 

mm min"1). Triplicate sample injections were made for each carrier flow rate. The 

results of the study are shown in Fig. 3. 6. 
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Fig. 3.6. Effect of pumping rate on the FJ sample introduction of 15 !lg ml"1 of Ca: 
29 Ill sample volume. 

The results indicated that to achieve optimum signal response for the FI (29 Ill) 

sample introduction of Ca the carrier flow rate should be maintained between 1.5 

and 3.5 ml min"1, (natural uptake rate of nebulizer 5.2 m! min"l, nebulizer uptake 

tube 185 mm, 05 mm i.d.). Over this flow rate range the variation in signal 

response with flow rate was shown to be minimal. A carrier flow rate of 

2.9 ml min"1 was chosen for later wide bore manifold investigation to optimize 

precision. The choice of carrier flow rate was made to limit the degree of 

imprecision encountered due to flow rate pulsations expected from a peristaltic 

pump and from the observations made in section 3.3.4.2 on the effect of sample 

introduction rate on the precision of spectrometer response. 
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3.3.4.2 Precision in the determination of lead with continuous and Fl sample 
introduction. 

The effect of sample introduction rate on the relative standard deviation (% RSD) 

of peak-height absorbance in the determination of Ph was investigated. The 

spectrometer was operated using the optimum variables, quoted by the 

manufacturer (268), shown in Table 3.2. A straight length of PTFE manifold tubing 

(300 mm, 0.5 mm i.d.) was used to connect the injection valve and the nebulizer. 

The natural uptake rate of the nebulizer was kept constant at 4.73 mi min-1 

(nebulizer uptake tube 185 mm, 0.5 mm i.d.) throughout the study. 

All quantification was made using the SP9 computer based on peak height 

absorbance data. For continuous sample introduction the RSD was calculated from 

nine two second integrations of the steady state absorbance signal. In the case of 

Fl sample introduction, data was obtained from nine separate injections. The mean 

relative standard deviation (%RSD) in each case was calculated from two 

independent sets of nine determinations. Results obtained for the Fl (200 Ill) and 

continuous sample introduction of 10 Jlg mr1 of Ph are shown in Table 3.3. 

Table 3.2 Optimum SP9 spectrometer variables for the determination of lead [268]. 

Wavelength, nm 

Slit width, nm 

Lamp current, mA 

Support gas/flow setting, (Arbitrary units) 

Fuel gas/flow setting, (Arbitrary units) 

Burner height, (Arbitrary units) 

Background correction 

Damping 
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217.0 

0.5 

5.0 

28/air 

21/acetylene 

3 

OFF 

OFF 



(I) Continuous sample introduction 

Pumoing rate ml min"1 Absorbance RSD (%) Mean RSD (%) 

0.4 (1) 0.056 1.7 
(2) 0.056 2.1 1.9 

1.1 (1) 0.148 1.2 
(2) 0.149 0.7 1.0 

2.4 (1) 0.392 0.6 
(2) 0.391 1.4 1.0 

3.5 (1) 0.408 1.2 
(2) 0.410 0.6 0.9 

5.0 (1) 0.466 0.9 
(2) 0.470 1.2 1.1 

6.2 (1) 0.482 0.9 
(2) 0.489 1.2 1.1 

7.2 (1) 0.524 1.2 
(2) 0.518 1.6 2.4 

8.1 (1) 0.540 2.0 
(2) 0.541 1.4 1.7 

9.4 (1) 0.544 1.4 
(2) 0.541 1.2 1.3 

10.3 (1) 0.535 0.5 

(2) 0.536 1.5 1.0 

(11) PI sample introduction (200 J.ll) 

Pumoinl! rate ml min"1 Absorbance RSD (%) Mean RSD (%) 

0.4 (1) 0.069 4.5 
(2) 0.070 3.1 3.8 

1.2 (1) 0.157 3.1 
(2) 0.159 3.8 3.5 

2.4 (1) 0.321 1.2 
(2) 0.323 2.0 1.6 

3.3 (1) 0.389 1.6 
(2) 0.385 1.7 1.7 

4.8 (1) 0.428 1.1 
(2) 0.429 1.8 1.5 

5.6 (1) 0.428 1.8 
(2) 0.422 2.2 2.0 

6.7 (1) 0.434 1.2 
(2) 0.440 1.8 1.5 

8.0 (1) 0.432 1.6 
(2) 0.437 1.9 1.8 

9.7 (1) 0.411 2.0 
(2) 0.415 2.3 2.2 

14.2 (1) 0.349 1.9 
(2) 0.343 3.9 2.9 

Table 3.3 Effect of sample pumping rate on the relative standard deviation (%RSD) 
of peak-height absorbance in the determination of lead. 
(I) Continuous sample introduction. 
(11) Flow injection sample introduction (200 J.ll). 
(Manifold variables as in text, section 3.3.4.2). 
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From the results in Table 3.3 it was evident that the precision observed with continuous 

introduction was superior to that of FI over the whole range of pumping rates 

investigated. In both cases though optimum precision was achieved at or slightly below 

the natural uptake rate of the nebulizer. Much above the natural uptake rate of the 

nebulizer a deterioration in precision was observed which contradicts the work of 

Brown and Ruzicka [144). 

3.3.5 Calculation of dispersion coefficient. 

To quantify the performance of wide bore manifold tubing in obtaining on·line dilution 

the term dispersion coefficient (D) was used [120). 

(3.3.1) 

Where c0 is the original analyte concentration and cm is the analyte concentration at 

peak maximum after dispersion. Dispersion coefficient values were not calculated from 

the ratio of instrument responses because of the limited linear range of the spectrometer 

for calcium. For each manifold in turn a calcium calibration was produced for the steady 

state introduction of sample at 2.9 m! min·1• Standard solutions of Ca were pumped 

directly in turn through the manifold (Fig. 3.1) in the place of the water carrier stream 

and their steady state signal responses recorded. Following the calibration a sample of 

known concentration ( c0 ) was injected (29 !J.l) directly into a water carrier stream 

(Fig. 3.1) pumped at the same flow rate (2.9 m! min"1) and its transient signal response 

recorded. The peak-height (Hx ) of the transient signal was then converted to a 

concentration term (c.), (concentration of dispersed sample plug reaching the nebulizer) 

from the steady state calcium calibration, by interpolation as shown in Fig. 3.7. Having 

determined the concentration of the sample after the dispersion process (c.) and knowing 

its original concentration ( c0 ) the dispersion coefficient was obtained from equation 3.3.1. 
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Fig. 3.7. Method applied to determine system dispersion coefficient: D, dispersion coefficient; 
c0 , concentration of injected standard; Hx, peak height of FI signal response produced 
by c0 ; c., concentration of injected standard after dispersion. 

3.3.6 Effect of manifold dimensions on dispersion coefficient. 

The spectrometer was operated at the optimum conditions (Table 3.1) connected to the 

manifold as shown in Fig. 3.1. For each wide bore manifold investigated the section of 

wide bore tubing was connected to the injector and nebulizer by two lengths of manifold 

tubing, 90 mm (0.8 mm i.d.) and 140 mm (0.5 mm i.d.) respectively. A 15 11g mr1 Ca 

standard was injected (29 11l) nine times into each manifold and the resulting FI signal 

responses were used to calculate the dispersion coefficients of each in turn as outlined 

previously (Section 3.3.5). The sample throughput reported for each was calculated on 

the basis of how many injections could be made in an hour. The time required to make 

a single determination was calculated from the chart recording based on the time interval 

between the sample injection and the return to the baseline of the transient FI signal 

response. The effect of wide bore manifold dimensions of length and internal diameter 

on both dispersion coefficient and throughput are shown in Figs. 3.8 and 3.9 respectively. 
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Fig. 3.8. Effect of wide bore manifold internal diameter on dispersion coefficient and 
sample throughput, manifold lenfth 500 mm, pumping rate 2.9 ml min·1, 
injection volume 29 Ill (15 j.Lg mr Ca). 
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Fig. 3.9. Effect of wide bore manifold length on dispersion coefficient, pumping rate 2.9 
ml min"l, injection volume 29 Ill (15 !lg mr1). C.), 1.5 mm i.d.; ( • ), 3.0 mm i.d.; 
( •), 5.0 mm i.d. 

Dispersion coefficients in excess of the target figure of 100 were obtained with 5.0 mm 

i.d. tubing. The RSD values were in the ranges 3.2-4.6, 1.6-6.0 and 4.6-13.0% (n=9) for 

the 1.5, 3.0 and 5.0 mm i.d. manifold tubes respectively. The 5.0 mm i.d. tubing limited 

sample throughput significantly. For manifold lengths of 100, 200, 300, 400 and 500 mm 

the throughput was 56, 36, 25, 22 and 19 h-1 respectively. 
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A practical limitation of the system was the retention and gradual build up of small air 

bubbles in the wide bore manifold tube. The carrier mean linear velocity was insufficient 

to wash the air bubbles out of the manifold. To prevent their contribution to the mixing 

characteristics they had to be therefore removed. This was achieved, with difficulty, by 

mechanically dislodging the air bubbles so allowing them to be passed directly through 

the manifold tube. 

33.7 Effect of analyte concentration on dispersion coefficient. 

The performance characteristics of the proposed manifold (Fig. 3.1) employing a single 

100 mm (5.0 mm i.d.) wide bore reactor tube was investigated as outlined in section 

3.3.6. For the use of calcium as a test analyte the spectrometer was operated at the 

optimum conditions shown in Table 3.1. For the use of zinc as the test analyte the 

spectrometer was operated at the optimum conditions shown in Table 3.4, based on the 

manufacturer's recommendations (268]. 

Table 3.4 Optimum SP9 Spectrometer variables for the determination of zinc. 

Wavelength, nm 

Slit width, nm 

Lamp current, mA 

Support gas/ flow setting, (Arbitrary units) 

Fuel gas/flow setting, (Arbitrary units) 

Burner height, (Arbitrary units) 

Background correction 

Dampiog 

213.9 

0.5 

8.0 

27.5/air 

20.0/ acetylene 

4 

OFF 

OFF 

The effect of analyte concentration on dispersion coefficient is shown in Table 3.5. The 

signal response peak shapes obtained are shown in Fig. 3.10. 
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Table 3.5 Variation in the dispersion coefficient with increasing analyte concentration; 
wide bore manifold 100mm (5.0 mm i.d.), injection volume 29 J.Ll, pump flow 
rate 2.9 m! min·1, (±95% confidence intervals). 

Analyte concentration J.Lg ml"1 Dispersion coefficient, D 

calcium zinc 

15 21.1±1.1 (n=4) 21.4±0.0 (n=3) 

50 41.7±0.0 (n=2) 38.5±0.0 (n=3) 

100 67.9±2.1 (n=4) 61.8±2.7 (n=3) 

200 112.8±6.5 (n=4) 87.6±5.4 (n=3) 

1000 182.7±10.8 (n=2) 187.5±4.9 (n=3) 

The dispersion coefficient obtained was strongly dependent on concentration but 

independent of the analyte species. For both calcium and zinc the dispersion coefficient 

was found to increase with increasing analyte concentration (see Table 3.5). The variation 

in peak shapes with concentration (Fig. 3.10) showed that the effects must be due in 

some way to changes in the mixing characteristics of the manifold. Standards used in the 

investigation were prepared by serial dilution of stock 1000 J.Lg mt·1 solutions (SpectrosoL, 

BDH), both prepared in 0.5 mol dm'3 nitric acid. Clearly therefore the prepared 

solutions used contained varying concentrations of nitric acid as well as the analyte 

species. The observed effects could therefore not be concluded to be solely analyte 

dependent. Investigation into the effect of nitric acid concentration on dispersion 

coefficient was therefore necessary. 

71 



-..1 ..., 

(ii) 1\ 

I, 
(v) / 

T 
11 (i) 

I (A) 

r 
I 

(iv/ 
' 

I~ 0 p I \ 1\ ~ .... 
0 ~ 

.-J l~ ·--~ 
> > 

) / L 60s ___.--/ 
60s 60s 

(v) r\ 
(iv) 

(B) 
' ' ' ' (i) 

(iii) 

I I 
(ii) 

I 
0 

Ill~ p ;... 

IB ~ 

I > > i 
I 

' 

L 
J 

/ _/ l_~~J L ___) L L 
V / t)t,'wtl .. llrv-. 

~' --- 60s 60s 60s -~----·· 
Fig. 3.1 0. Signal response peak shapes obtained with varying analyte concentration; (A). calcium, (B). zinc; (i), 15 ~g ml·'; (ii), 50 ~g m~'; 

(iii), 100 ~g ml·'; (iv), 200 ~g ml·'; (v), 1000 l'g ml·'. (Manifold variables as Table 3.5). 



3.3.8 Effect of nitric acid concentration on dispersion coefficient. 

The spectrometer was operated at the optimum conditions (Table 3.1) connected to the 

manifold as shown in Fig. 3.1. A section of wide bore manifold tubing, 90 mm (5.0 mm 

i.d.) was connected to the injector and nebulizer by two lengths of manifold tubing, 80 

mm (0.8 mm i.d.) and 50 mm (0.5 mm i.d.) respectively. A series of Ca standard 

solutions containing varying concentrations of nitric acid were prepared. 

A study of the effect of nitric acid concentration of the dispersion coefficient obtained 

for a range of Ca standards (50-1000 11g ml"1) was made. Standard solutions were 

injected in duplicate into an aqueous carrier stream (29 111, 2.9 ml min"1). The dispersion 

coefficient of each sample was calculated as outlined in section 3.3.5, based on the mean 

signal response of the two determinations. The effect of nitric acid concentration on the 

observed dispersion coefficient is shown in Table 3.6 and the resulting signal response 

peak shapes in Fig. 3. 11. 

Table 3.6 Effect of sample nitric acid concentration on dispersion coefficient; wide bore 
manifold tubing 90mm (5.0 mm i.d.), injection volume 29 111, pump flow rate 
2.9 ml min"1, (Aqueous carrier). 

Analyte Concentration Sample Preparation 
IJ.g mr1 

Serial Dilution Acid Matched 

HN03 D HN03 D 
(mol dm-3) (mol dm"3) 

50 0.025 35.7 0.500 90.9 

100 0.050 52.6 0.500 87.0 

200 0.100 76.9 0.500 87.0 

1000 0.500 85.5 0.500 85.5 
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A study of the effect of sample nitric acid concentration for a single Ca standard solution 

(50 !lg m1"1) was carried out. The injection volume of a new injection valve employed was 

calculated to be 21.1±4.1 Ill (Section 3.3.3). Each standard solution was injected into the 

manifold into both aqueous and nitric acid (1.000 mol dm-3) carrier streams 

(2.9 ml min 1). The effect of nitric acid concentration on dispersion coefficient and 

resulting signal response peak shapes for both carrier solutions are shown in Figs. 3.12 

and 3.13 respectively. 
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Fig. 3.12. Effect of nitric acid concentration on dispersion coefficient; wide bore manifold 
90.0 mm (5.0 mm i.d.); injection volume 21 j.Ll (50 j.Lg m1"1 Ca); pump flow rate 
2.9 ml min·1. C.), Aqueous carrier; ( • ), nitric acid carrier (1.000 mol dm-3). 
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Fig. 3.13. Signal response peak shapes obtained with varying nitric acid 
concentration (mol dm.3): (A), Aqueous carrier; (Il), Nitric acid carrier (1.000 mul dm.3); 

(i), 0.025; (ii), 0.050; (iii), 0.100; (iv), 0.500; (v), 1.000, (Manifold variables as Fig. 3. 12). 
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The results obtained from the experimental work clearly indicated that the 

performance of the FI manifold was affected significantly by the acid 

concentration ofthe sample, as shown in Table 3.6 and Fig. 3.12. Increase in the 

sample acid concentration was shown to produce a corresponding increase in 

the observed dispersion coefficient. For an aqueous carrier stream a two fold 

increase in dispersion coefficient from 35.7 to 76.9 was obtained with a four fold 

increase in nitric acid concentration (0.025-0.100 mol dm-3) • This increase in 

dispersion coefficient was accompanied by a noticeable change in the signal 

response peak shape as shown in Figs. 3.11 and 3.12. In general an increase in 

the acid concentration broadened the signal peak and introduced significant 

tailing. Peak shapes were very reproducible for each sample in turn. 

From the results shown in Table 3.6 it was concluded that the dispersion 

coefficient was independent of the analyte concentration. At the 0.500 mol dm-3 

nitric acid concentration only a 6% change in the observed dispersion 

coefficient was calculated for a 20 fold increase in concentration from 50 to 

1000 j.Lg mr1 of Ca. It was concluded that the results shown in Table 3.5 and 

Fig. 3.10 for Ca and Zn can be accounted for by the differences in nitric acid 

concentration of the sample solutions used. The most dramatic and unexpected 

results were obtained by si m ply changing the carrier solution from water to 

nitric acid (1.000 mol dm-3), as shown in Figs. 3.12 and 3.13. With use of a 

1.000 mol dm-3 nitric acid carrier the dispersion coefficients obtained were 

below 40, over the whole sa m pie nitric acid concentration range investigated. 

For the aqueous carrier stream, values of dispersion coefficient as high as 150 

were obtained through increasing the concentration of nitric acid in the sample 

to 1.000 mol dm-3• Peak shapes obtained with the aqueous carrier were rather 

distorted and for the 50 j.Lg mr1 Ca standard solution, acidified to 0.100 mol 

dm-3, a totally unexpected doublet peak was obtained (Fig. 3.13 (iii)). This 

observation was shown to be reproducible for repeated injections, and it was 

therefore, concluded that the effect arose from the mixing characteristics of the 

manifold. In contrast the peaks for the nitric acid carrier solution were single, 

narrow and sharp. 

To investigate the unusual mixing characteristics visual observation of the 

mixing processes was proposed. 
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3.3.9 VIsual investigation into the mixing characteristics of the wide bore manifold. 

The manifold shown in Fig. 3.1 was used, disconnected from the spectrometer. A section 

of PVC wide bore manifold tubing, 100 mm (5.0 mm i.d.) was mounted securely in the 

same orientation as that used with the spectrometer. Injections (21 J.LI) of a 0.25% m/v 

solution of methylene blue were made into the manifold and photographs were taken at 

predetermined intervals (s). A single photograph was taken for each injection in turn. 

The series of photographs obtained was used to follow the sample transport along the 

manifold and identify the mixing characteristics of the manifold for the variables used in 

earlier experimental studies. It was assumed that the mixing experienced by the 

methylene blue sample was identical to that of Ca standard solutions used for FAAS 

detection. 

The effect of the sample acid concentration on the mixing characteristics was studied. 

Methylene blue sample solutions (0.25% m/v) were acidified to 0.025 and 0.500 mol dm·3 

with nitric acid and injected separately into an aqueous carrier stream (2.9 ml min-1). 

The sample transport is shown in Figs. 3.14 and 3.15 respectively. 

The effect of using a nitric acid carrier stream (1.000 mol dm"3) on the moong 

characteristics was studied. A single 0.25% mfv methylene blue sample (0.025 mol dm·3 

HN03) was injected into the nitric acid carrier stream (2.9 ml min-1). The sample 

transport is shown in Fig. 3.16. 

Finally the effect of carrier flow rate on the mixing characteristics of the system was 

studied. A single 0.25% m/v methylene blue sample (0.025 mol dm·3 HN03) was 

injected into an aqueous carrier pumped at a flow rate of 18 ml min"1. The sample 

transport is shown in Fig. 3.17. 
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Fig. 3.14. Manifold mixing characteristics and sample transport: sample nitric acid concentration 0.025 mol dm·3 

(0.25% m/v methylene blue); Aqueous carrier, 2.9 ml min·•; t , time after sample injection (s). 
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Rg. 3.15. Manifold mixing characteristics and sample transport: sample nitric acid concentration 0.50 mol dm-1 
(0.25% m/v methylene blue); Aqueous carrier, 2.9 ml min·'; t , time after sample injection (s). 
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Fig. 3. ~ 6. Manifold mixing characteristics and sample transport: sample nitric acid concentration 0.025 mol dm·3 

(0.25% m(v methylene blue); ~ .000 mol dm·3 nitric acid carrier, 2.9 ml min·'; t, time after sample injection (s) . 
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Rg. 3.17. Manifold mixing characteristics and sample transport: sample nitric acid concentration 0.025 mol dm·3 

(0.25% m/v methylene blue); Aqueous carrier, 18.0 ml min·•; t, time after sample injection (s). 
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3.3.9.1 Discussion. 

The most notable observation was the effect of the instantaneous step change in 

mean carrier velocity moving from the narrow bore (0.8 mm i.d.) to the wide bore 

manifold tubing (5.0 mm i.d.). The mean carrier velocity was calculated to be 96.2 

and 2.5 mm s1 for the two tubes respectively. Fluid emerging from the smaller 

tubing was unable to follow the abrupt deviation of the tube boundary; consequently 

a turbulent jet developed (269). Theory predicts that a turbulent jet is formed when 

a moving stream meets a stationary fluid. A sheet of vorticity is subsequently 

generated at the interface between the fluids, and this leads to the formation of a 

wedge shaped turbulent mixing layer, as shown in Fig. 3.18. 

F1uid atre1t 

Entrainment 

Fig. 3.18. Turbulent mixing layer. 

It is suggested that similar mixing occurs in the system in question, taking into 

account the contribution made to mixing by the flow of carrier within the wide bore 

tubing itself. Mixing within the wide bore tubing at its inlet is suggested to be 

predominantly controlled by the characteristics of the turbulent jet. As the jet 

velocity attains equilibrium with that of the carrier velocity it is expected though 

that the mixing characteristics become more controlled by laminar flow, observed 

in the later portion of the wide tubing. A consequence of the turbulent jet is the 
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formation of turbulent eddies within the corners of the wide bore tubing inlet [270]. 

These such eddies were identified from observed recirculation of dye at the wide 

bore tubing inlet. Changes in the flow and mixing characteristics of the manifold 

were observed on increasing the acid concentration of the injected sample, (Figs. 

3.14 and 3.15). After the initial flow of the acidified sample (0.50 mol dm"3 HN03) 

into the wide bore tubing the sample bolus was less well defmed. The bolus was 

observed to be directed to the lowest part of the wall of the tube where the highest 

concentration of dye was visually identified and observed to move slowly along the 

tube. The observations made suggested that the changes in mixing characteristics 

were attributable to changes in the specific gravity of the sample with changing 

nitric acid concentration. Due to the low mean linear velocity of the carrier (25 mm 

s"1) in the wide bore tube changes in sample density affected the rate and mode of 

sample transport through the manifold. The visual observations made gave good 

explanation for the variation in dispersion coefficient with nitric acid concentration 

(Section 3.3.8). High values of the dispersion coefficient obtained at high nitric acid 

concentrations were clearly achieved due to the slower transportation of the sample 

along the tubing wall, where the linear velocity approaches zero, producing as a 

result a prolonged period of sample dilution. Retention of sample beneath the 

manifold inlet port (Fig. 3.15, t=12) and the subsequent recirculation mixing is 

proposed as another mechanism for the increase in observed sample dilution. 

Further evidence for the significant effect of specific gravity on the manifold 

performance was given by the visual observations made of the nitric acid carrier, 

(Fig. 3.16). The injected sample (0.025 mol dm"3 HN03) of a lower specific gravity 

than that of the 1.000 mol dm"3 nitric acid carrier, was observed to be transported 

along the upper wall of the tube. In comparison with the results of the previous 

investigations in which a water carrier was employed the sample was observed to 

undergo limited recirculation mixing. These observations accounted for the sharp 

narrow signal response peak shapes obtained in earlier experiments (Fig. 3.13). 

With a higher carrier flow rate of 18.0 ml min"1 with a consequent higher mean 

linear velocity (15.3 mm s"1) the sample was seen to be transported rapidly through 

the wide bore tube in less than ten seconds without any hold up "dead" volumes 

(Fig. 3.17). It was concluded that by increasing the carrier flow rate the specific 

gravity restrictions of the manifold could be reduced. Therefore, investigation into 

performance of the wide bore manifold at high carrier flow rate was made, (Section 

3.3.10). 
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3.3.10 Effect of increased flow rate on system performance. 

The spectrometer was operated at the optimum conditions (Table 3.1) connected to the 

manifold shown in Fig. 3.1. A section of PTFE wide bore manifold tubing, 90 mm (5.0 

mm i.d.) was connected to the injector and nebulizer by two lengths of manifold tubing, 

80 mm (0.8 mm i.d.) and 50 mm (0.5 mm i.d.) respectively. 

A study of the effect of the concentration of nitric acid in the sample for a standard 

solution of 50 11g mt·1 of Ca was carried out. Standard solutions were injected in turn 

into an aqueous carrier flowing at 18.0 ml min·1• The dispersion coefficient was 

calculated for each determination (n= 10) as outlined previously (Section 3.3.5). The 

effect of nitric acid concentration (0.025-1.000 mol dm"3) on dispersion coefficient is 

shown in Table 3.7. 

Table 3.7 Effect of sample nitric acid concentration on dispersion coefficient; 
Wide bore manifold, 90.0 mm (5.0 mm i.d.); pump flow rate 18 ml min"1; 
injection volume 21111 (50 11g mt·1 Ca) (± 95% confidence interval). 

Nitric acid concentration, 
mol dm"3 

Dispersion coefficient D RSD (%), (n=10) 

0.025 63.5±2.1 4.6 

0.050 60.9±2.2 5.0 

0.100 64.0±1.7 3.8 

0.500 63.0±1.7 3.8 

1.000 60.7±2.0 4.5 

The effect of the manifold length (5.0 mm i.d.) on dispersion coefficient and signal 

response peak shapes for a single 50 11g mt·1 Ca standard solution (1.000 mol dm"3 

HN03) was studied. The standard solution was injected into an aqueous carrier flowing 

at 22 ml min·1. The dispersion coefficient for each determination was calculated as 

outlined perviously (Section 3.3.5). The effect of manifold length (15-190 mm i.d.) on 

dispersion coefficient and signal response peak shapes is shown in Figs. 3.19 and 3.20 

respectively. 
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3.3.10.1 Discussion. 

The use of a higher carrier flow rate (18.0 ml min-1) was shown (Table 3.7) to 

eliminate the dispersion coefficient dependency on the specific gravity of the 

sample, over the nitric acid concentration range investigated (0.025-1.000 mol dm-3)

The precision though achieved at the high carrier flow rate was poor. Relative 

standard deviation (%RSD) values calculated for the dispersion coefficients 

obtained ranged between 3.8 and 5.0%. These relatively high figures may be 

explained by the imprecision of sample introduction using the manually operated 

rotary injection valve. The obtained signal response was observed to be affected by 

the rate at which the valve was actuated. To limit the imprecision the valve was 

actuated as smoothly and rapidly as possible for all work reported. Another reason 

for the poor precision may simply be the imprecision of the spectrometer response 

with the use of such a high sample introduction rate. From section 3.3.4.2 it had 

been shown, in the determination of Pb, that the precision for both steady state and 

F1 sample introduction deteriorated at flow rates much above the natural uptake 

rate of the nebulizer. 

Increments of dispersion coefficients between the values of30 and 90 were achieved 

through varying the manifold tube length between 15 and 190 mm, (Fig. 3.19). No 

investigation was made at longer tube lengths due to the proposed gradual 

introduction of the previously observed specific gravity effects with increased sample 

residence within the tube. Improved sample throughput was obtained as an 

additional benefit of using a high carrier flow rate. From Fig. 3.19 it was calculated 

that a dispersion coefficient of 90 would be possible with a corresponding 

throughput of 80 h-1. As observed with the lower carrier flow rate (2.9 ml min-1) 

the retention of air bubbles within the wide bore tubing was a major problem. 

Degassing the aqueous carrier solution however proved unsuccessful in preventing 

the formation of air pockets, following the nucleation of small air bubbles. 

3.4 DISCUSSION. 

The potential of F1 with wide bore manifold tubing as a means of carrying out on-line dilution 

is limited. Although capable of values of dispersion coefficients up to and in excess of the target 

figure of 100, the dependence on the specific gravity of the sample limits the applicability in the 

handling of routine samples. Without accurate matrix matching of samples and standards, a 

significant error due to variations in the specific gravity of the samples with varying acid 
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concentrations, matrix components etc would be obtained. However, matrix matching, if possible 

at all, would increase the sample preparation time contradicting the objectives of the system. 

Although the performance of the system is improved at a high carrier flow rate of 22 ml min-1 

it still retains some inherent practical limitations. Retention and subsequent nucleation of tiny 

air bubbles in the manifold is a significant problem. Build up of these air bubbles clearly limits 

the reproducibility of mixing within the manifold. A suggested solution to this problem is the 

tapering of the wide bore tubing at its inlet and outlet. It is predicted though that this strategy 

would significantly alter the mixing characteristics of the whole system through the removal of 

the instantaneous step change in mean carrier velocity. This may limit the magnitude of 

dispersion coefficient achieved. 

Precision of the system is clearly a limiting factor with relative standard deviations in the range 

of 3-5%. As previously discussed (Section 3.3.10.1) this may be attributed in part to the 

imprecision experienced in sample introduction using a manually operated rotary injection valve. 

It is possible that the precision could be improved through the use of an automatic injection 

valve. Results obtained in section 3.3.4.2 though suggest that the precision of the system is also 

restricted by the imprecision of the spectrometer response, since the sample is introduced at 

a flow rate significantly higher than the natural uptake of the nebulizer (5.2 ml min-1). To 

overcome this problem it is suggested that the carrier flow could be split prior to the 

spectrometer, therefore permit the introduction of carrier to the nebulizer at or below its 

natural uptake rate [132). 

The drawbacks of the system originate to some extent from the presence of several different 

types of hydrodynamic mixing regimes within the manifold. From visual observations made the 

specific gravity effects appear to occur with the onset of laminar flow, at a point when the 

sample solution flow velocity reaches equilibrium with that of the carrier solution in the wide 

bore tube. It is postulated therefore to optimize the system performance that mixing should be 

made totally turbulent by either limiting the manifold length at a high carrier flow rate, or 

possibly through the packing of the wide bore tube with glass beads (Packed bed reactor). This 

would produce a pseudo well stirred mixing chamber used previously by others with success 

[163-166). 
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CHAPTER FOUR 

ELIMINATION OF COPPER INTERFERENCE BY CONTINUOUS FLOW MATRIX 

ISOLATION IN THE DETERMINATION OF SeiV BY FI-HGAAS. 

4.1 INTRODUCTION. 

In recent years a variety of procedures for the automation of sample pretreatment in AAS have 

been developed with FI methodology. Systems capable of both preconcentration and matrix 

isolation employing liquid-liquid extraction [149, 183), ion exchange [188, 211) and precipitation 

[216, 221) have been developed, as reviewed in Chapter two (Section 2.3.4). 

Few attempts have been made so far to use such systems for the removal of interference effects 

in hydride generation AAS. As a direct result, sample preparation in HGAAS remains a tedious 

time consuming operation limiting the overall performance, throughput and cost effectiveness 

of the technique. It is suggested, therefore, that the development of continuous flow systems in 

HGAAS, incorporating possible ion exchange [80) and precipitation [73-75] matrix isolation 

procedures would be of great benefit. 

The first application of such a system was made by Ikeda [82) in 1985. A miniaturised 

suction-flow hydride generation system [235] (Fig. 4.1 (I)) was used for the determination of 

Se1v in which a micro-column of chelating resin removed copper and nickel interferents. 

Although matrix isolation was carried out in-line the system relied on manual sample pipetting 

and had no facility for column regeneration. 

Riby et al. [83) devised a system for the determination of As in a nickel based alloy 

(Fig. 4.1 (11)). An in-line micro-column of strong cation exchange material (SCX) was used for 

the removal of nickel. A timed sampling procedure was employed in which sample solution was 

aspirated continuously into the manifold at a known constant flow rate for a fiXed time period. 

Although the analysis was successful some degree of compromise had to be made between the 

performance characteristics of the matrix isolation system and of the hydride generation 

manifold itself. Column regeneration was carried out after every four determinations by 

pumping a solution of 1 mol drn'3 HCl through the column to waste, after disconnecting the 

sample line. Intermittent replacement of the column was necessary due to compaction of the 

exchange material resulting in excessive back pressures within the system. 

89 



Recently Marshall and van Staden (71) described a similar system (Fig. 4.1(/II))for the removal 

of a variety of interferents (nickel, copper, cobalt, iron and chromium) in the determination of 

both As and Se. Samples were introduced directly into a carrier stream (0.05 mol dm·3 H2S04 

or 0.1 mol dm·3 HCl) via an air actuated injection valve and transported through the micro

column packed with cation exchange resin (AG50WX8). Column regeneration was achieved by 

pumping a 2 mol dm·3 solution of eluent HCI or H2S04 (10 ml), directly through the column. 

It was found that inclusion of the micro-column in-line reduced the overall sensitivity as 

increased dispersion due to the presence of the column was produced giving rise to a smaller, 

broader signal response. 
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Fig. 4.1. Schematic diagrams of reported continuous flow matrix isolation HGAAS systems, (I) 
Ikeda (82); (11) Riby et al. (83]; (Ill) Marshall and van Staden (71]. P, peristaltic pump; 
S, sample; C, micro-column; GLS, gas-liquid separator; V, injection valve; W, waste. 
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This chapter describes an investigation of a FI system for the determination of Se in copper by 

hydride generation AAS. The copper interference was eliminated with a continuous flow matrix 

isolation procedure based on a micro-column of strongly acidic cation exchange resin (Dowex 

SOW). The matrix isolation manifold and hydride generation were interfaced through the sample 

injection valve in a manner similar to that reported by Nord and Karlberg [183] for liquid-liquid 

extraction with FAAS. A direct comparison is made between the performance characteristics 

of this novel system design and those of previously reported systems [71, 82, 83]. Aspects of the 

work in this chapter have been published [271]. 

4.2 APPARATUS AND REAGENTS. 

4.2.1 Apparatus. 

A Philips scientific SP9 atomic absorption spectrometer equipped with a Philips data 

coded selenium hollow cathode lamp was used for all determinations. The signals were 

recorded on a Tekman TE 200 chart recorder (2-10 m V range), all measurements being 

expressed as peak height absorbance. A 50 mm Philips scientific universal burner was 

used to support the air-acetylene flame heated silica cell (120 mm x 8 mm i.d.). The 

spectrometer was operated under the conditions shown in Table 4.1 based on the 

manufacturer's recommendations [268]. The silica T-cell was aligned to maximise the 

intensity of lamp radiation, passing along its central axis reaching the monochromator. 

Table 4.1 Philips SP9 spectrometer variables for the determination of selenium. 

Wavelength, nm 

Slit width, nm 

Lamp current, mA 

Support gas/ flow setting, (Arbitrary units) 

Fuel gas/flow setting, (Arbitrary units) 

Background correction 

Damping 
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196.0 

1.0 

7.5 

28/air 

15/acetylene 

OFF 

OFF 



In initial studies a Philips scientific PU9360 continuous flow vapour system was used 

[272]. The system was adapted for flow injection by the incorporation of a manual 

Rheodyne (Model 5020) fixed volume injection valve, as shown in Fig. 4.2 (I). 

The FI hydride generation manifold used for all matrix isolation work, shown in Fig. 4.2 

(11), was developed from the gas-liquid separator and hydride atomization systems of the 

Philips Scientific PU9360 continuous flow vapour system. 
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Fig. 4.2. Schematic diagrams of FI-HGAAS manifolds used. 
(I) FI manifold based on PU9360 system; (II) FI manifold with continuous flow 
matrix isolation unit. P, peristaltic pump; S, sample; H, water; A, HCI; R, 
NaBH4; W, waste; V1, switching valve; V2 sample injection valve; 
C, micro-column; GLS, gas-liquid separator; RC, Reactor coil. 
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4.2.2 Reagents. 

Two peristaltic pumps were employed. A Gilson Minipuls 3 was used for the 

hydride generation manifold and a Gilson Minipuls 2 for the matrix isolation 

unit. Control of the flow rates was achieved through the application of different 

bore standard manifold pump tubing (Altec). Flow rates were determined for 

each channel as reported in section 3.3.2. Sample injection was achieved using 

a Rheodyne model 5020 fixed volume injection valve operated by an 

electronically activated valve switching unit (Anachem). Sample loops of various 

volumes were prepared using polytetrafluoroethylene (PTFE) tubing (0.5-1.5 

mm i.d.) cut to appropriate lengths. The sample loops were calibrated using 

the procedure described in section 3.3.3. All manifold tubing consisted of 0.8 

mm i.d. PTFE tubing (Anachem). Manifold channels were connected through 

three way connector T-pieces (Anachem). A length of polyvinylchloride (PVC) 

tubing (200 mm, 5.0 mm i.d.) was used to connect the gas-liquid separator and 

silica atomization T -cell. 

A microbore glass column (50 x 3.0 mm i.d. (Anachem)) fitted with porous 

25 11m PTFE frits, containing the cation exchange resin (Dowex SOW), was 

incorporated into the external sample loop of a rotary sample injection valve 

(Anachem). 

Analytical-reagent grade water produced by a LiquiPure RG system (reverse osmosis 

followed by ion exchange), was used for all solutions and as a carrier stream. A sodium 

tetrahydroborate solution (1% mfv in a 0.1% mfv NaOH solution) was prepared using 

sodium tetrahydroborate pellets (SpectrosoL, BDH) and filtered through a Whatman541 

filter paper. With refrigeration, this solution was usable for up to 3 days. The 

hydrochloric acid reagent solutions were of SpectrosoL grade (BDH). All selenium (IV) 

standard solutions were prepared by dilution of a standard solution of selenous acid 

(SpectrosoL, BDH) containing 1000 11g mr1 SeiV. The atomization cell was conditioned 

with a 5% v/v solution of hydrofluoric acid (40% AnalaR, BDH). For the interference 

investigation, interferent standard solutions were prepared from copper (Il) nitrate, 

cobalt (Il) nitrate, iron (Ill) nitrate, nickel (Il) nitrate (all SpectrosoL grade, BDH) and 

nickel (Il) sulphate 7 hydrate (AnalaR, BDH). 

For the matrix isolation investigation, copper standard solutions were prepared from 

copper (II) sulphate 5 hydrate (AnalaR, BDH). High purity argon was used as the purge 
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gas (99.998% Ar, BOC). A potassium hydrogen phthalate solution was prepared directly 

from the solid (LaB reagent, BD H). The digestion of copper metal reference materials 

was carried out using nitric acid (Aristar, BDH) and hydrochloric acid (Aristar, BDH). 

Two cation exchange resins were investigated, Dowex 50WX8 (Drymesh 100-200, 8% 

cross linkage) and Dowex 50WX12 (Drymesh 50-100, 12% cross linkage), both used in 

their hydrogen forms (Sigma Chemicals). Two copper metal reference materials, 

National Institute of Standards and Technology (NIST); Standard Reference Material 

(SRM) 454 unalloyed copper XI and Bundesanstalt fur material forschung und prufung 

(BAM) Certified Reference Material (CRM) 361 copper, were obtained from the Bureau 

of Analysed samples (Middlesbrough, U.K.). 

4.3 ADAPTATION OF THE PHILIPS PU9360 CONTINUOUS FLOW VAPOUR SYSTEM FOR 

FI-HGAAS. 

4.3.1 Optimization of system variables. 

The spectrometer, operated according to the conditions shown in Table 4.1 was 

connected to the FI-HGAAS manifold (Fig. 4.2 (I)). The PU9360 continuous flow vapour 

system was operated under the conditions shown in Table 4.2, based on the 

manufacturer's recommendations [272). Unless otherwise stated, a 100 ng ml"1 Se1V 

standard acidified with 1.2 mol dm'3 HCI was used in the investigations of the effects of 

each parameter on the overall performance. No attempt was made to carry out an 

exhaustive optimization of the manifold variables since the basic aim of the study was to 

compare the performance of the PU9360 system for both continuous and FI sample 

introduction. A simple univariate optimization procedure was used for the reasons 

discussed in section 4.5.4. 

Table 4.2 PU9360 Continuous flow vapour system operating parameters for the 
determination of Se1v by HGAAS. 

Reagent Concentration Flow Rate/ m! min·1 

HCI carrier 1.2 mol dm"3 7.4 

NaBH4 1.0% m/v 3.2 

Ar - 600 

* Reactor coils RC1 200 mm (0.8 mm i.d., straight), RC2 270 mm (0.8 mm i.d., straight) 
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(I) Effect of Dame stoichiometry. 

The effect of flame stoichiometry on the steady state absorbance signal response was 

investigated. Sampling was achieved by pumping the standard solution continuously 

through the acid carrier channel (PU9360 under conventional operation). At a fixed 

air support gas flow setting of 28 (arbitrary units) an increase in signal absorbance 

from 0.406 to 0.575 was observed with a decrease in the acetylene flow rate setting 

from 20 to 15 (arbitrary units). An "optimum" acetylene flow setting of 15, producing 

a very fuel-lean flame, was chosen for all further work. At flow settings below 15 the 

flame was extinguished and so the system performance was restricted by the working 

limitations of the air-acetylene flame. 

(11) Effect of argon carrier gas flow rate. 

The effect of argon carrier gas flow rate on the PI (390 Ill) and steady state (5000 Ill) 

absorbance signal response is shown in Fig. 4.3. 
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Fig. 4.3. Effect of the flow rate of Ar on the absorbance of 100 ng ml"1 of Se1v. 
(•), Steady state (5000 Ill); ( • ), PI (390 Ill). All other variables as in Table 
4.2. 

An optimum Ar flow rate of 600 ml min-1 was chosen based on sensitivity and an 

observed increased rate of transport of the hydride to the atomization cell producing 
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sharper PI signal peak responses. The reduced signal absorbance observed for the 

flow injection study was explained by the dominant effect of gas phase dilution within 

the large internal volume of the U-tube gas-liquid separator, designed for continuous 

flow operation. This effect was enbanced at higher Ar flow rates. 

(Ill) Effect of manifold dimensions. 

The effect of reactor coil length (R~, Fig. 4.2 (I)) on the sensitivity for Se1v was 

negligible ( <10%) over the range 270-2000 mm (FI, 390 fll). On the basis of 

throughput and postulated improved interference tolerance with reduced reaction 

time, (as reported by Astrom [13)) a rector length of 270 mm was chosen as 

optimum. 

(IV) Effect of Injection volume. 

The effect of injection volume on the sensitivity of Se1v is shown in Fig. 4.4. 

Increasing the injection volume gave rise to an increase in sensitivity until the steady 

state limit was reached at approximately 1000 Ill. Employing a 390 Ill injection volume 

90% of the steady state sensitivity was achieved (characteristic cmicentration 

0.83 ng ml'1 Se1v). 
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100 ng m!' of Se1v. All other variables as in Table 4.2. 

96 



Although large injection volumes favoured high sensitivity, reducing the injection 

volume reduced the sample volume requirement and improved the throughput 

capability (Fig. 4.4). For a 390 Ill injection volume a throughput of 190 h"1 was 

achieved in comparison with 45 h"1 reported for steady state introduction [272]. The 

precision was less than 2% (RSD, n=9) for each injection volume investigated. 

4.3.2 On-line sample acidification. 

The FI-HGAAS manifold shown in Fig. 4.2 (I) was used with the values of parameters 

shown in Table 4.2. A procedure was investigated to permit on-line acidification of 

samples to eliminate the tedious and time consuming manual sample acidification step 

of the sample preparation. The method investigated was the on-line mixing of the 

hydrochloric acid carrier solution with the injected sample plug by the process of 

dispersion. 

The effects of reactor coil lengths on the signal responses obtained in the determination 

of 50 ng ml·1 of Se1v (390 Ill) and 100 ng m1"1 of Se1v (250 Ill) are shown in Table 4.3. 

Table 4.3 Effect of reactor coil length (RC1) on the absorbance of a non-acidified Se1v 
standard solution. 

Reactor coil, mm Peak height absorbance 
(RC) 

Investigation (I) Investigation (11) 

200 0.147 ±0.020DP 0.189±0.010DP 

600 0.158±0.006DP 0.182±0.009DP 

750 0.176±0.009DP 0.180±0.016DP 

1000 0.201±0.007 0.209±0.024 

1500 0.212±0.007 0.217 ±0.004 

2000 0.174±0.010 

(I) RC2 260 mm, injection volume 390 Ill, (50 ng m1"1 Se1v~ 
(11) RC2 2000 mm, injection volume 390 Ill, (50 ng m1"1 Se v) 
(Ill) RC2 260 mm, injection volume 250 Ill, (100 ng mr1 Se1Y) 

Other variables as Table 4.2 (± 95% confidence interval) 
• DP Doublet peak (absorbance, largest of two peaks). 
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0.302±0.005 

0.320±0.008 

0.349±0.007 

0.317±0.006 

0.255±0.002 



----- - -----------------------

It was observed (Table 4.3) that for on-line acidification, no improvement in sensitivity 

could be obtained by increasing the sample injection volume. This was due to the 

increased dilution of the sample plug with prolonged dispersion, necessary to achieve 

acidification of the whole sample zone and produce a single response peak. For the 

optimum manifold dimensions 390 Ill (RC1 1500 mm, RCz 2000 mm) and 250 Ill (RC1 

750 mm, RCz 260 mm) characteristic concentrations of 1.0 and 1.1 ng ml"1 Se!V and 

throughputs of 90 and 140 h"1 respectively were obtained. 

To optimize the performance of the system by applying on-line acidification through the 

dispersion process it is apparent that the injection volume should be kept to a minimum 

to reduce the manifold dimensions required to achieve mixing and therefore optimize 

throughput and reduce sample volume requirement. 

4.3.3 Copper interference tolerance. 

The interference of copper in the determination of Se1v was investigated for the 

manifold shown in Fig. 4.2(1) operated under the values of the parameters shown in 
Teble 4-.2. 
~+.3: Samples containing 50 ng ml·1 SeiV and varying concentrations of copper 

(copper(II)nitrate, SpectrosoL, BDH) were acidified to 1.2 mol dm·3 HCl and analysed 

directly without further sample preparation. The relatively sensitivity of each copper 

spiked sample was calculated with respect to a pure 50 ng ml·1 Se1v standard solution, 

for which interference free determination was assessed as that producing a recovery of 

100±10%. 

For a sample injection volume of 254 Ill, copper interference was observed at copper 

concentrations of above 0.50 llg ml"1. At a copper concentration of 5.0 llg m1"1, a relative 

sensitivity of 13.3% was gained and at 50 llg ml"1 of Cu no signal at all was observed. It 

was noted during the investigation that the overall sensitivity decreased with increased 

processing of interferent samples, and increased interferent concentration. This 

interference memory effect was to an extent, transient in nature since its magnitude 

decreased after interferent processing with repeated determination of interferent free 

standard solutions. The reactor coil (RC2) was observed to have become discoloured with 

a fine grey precipitate. Although no attempt was made to identify this grey precipitate, 

it was proposed that it was in part responsible for the interference memory effect. 
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The acid concentration of both samples and carrier solution was increased to 6.0 mol 

dm"3 HCl, as a result of which the copper interference free determination of Se1v was 

increased to 5.0 11g mt1 of Cu. Neither interference memory effect or precipitated 

species were observed for F1 sample introduction (254 fll) at this elevated acid 

concentration. This was not the case, though for steady state determinations. The 

interference free determination of SeN with an injection volume of 5000 111 was 

decreased to 0.5 11g ml-1 of Cu and an interference memory effect was very evident. Grey 

precipitate was observed in both rector coil and gas-liquid separator and, during sample 

processing, a reddish brown discoloration of the reaction mixture was clearly visible. 

4.3.3.1 Discussion. 

The interference memory effects observed throughout the investigation work are 

thought to be caused by a combination of two effects. The first of these effects is 

the retention of reduced copper and or copper species within the gas-liquid 

separator and reactor coil (RC2)and their effect on the formation of the gaseous 

hydride and or the formed hydride itself. Pettersson et al. [241] reported similar 

memory effects in the determination of SeN in the presence of copper which they 

attributed to the contamination of manifold tubing. Evidence for this proposed 

mechanism was the actual identification of permanent precipitate within the reactor 

coil and the reduction in the magnitude of the memory effect with time, expected 

with the slow washout of interferent species from the gas-liquid separator. Increased 

interference tolerance and elimination of the memory effect at a high H Cl 

concentration (6 mol dm-3
) is suggested to be explained by the increased solubility 

of the unidentified interfering species whether copper metal [14], copper boride 

species [47] or copper selenide [44, 46] and the formation of copper chloro 

complexes [46]. 

The second explanation for the interference memory effect is contamination of the 

silica atomization cell by copper species [46, 49]. It is suggested that species can be 

transported within a fine aerosol to the silica cell by the Ar carrier gas. Evidence 

for this effect was given in the later investigation into copper interference in the 

determination of Asiii (Section 5.4.3). No interference memory effect was observed 

in the investigation in question when a PTFE membrane filter was fitted within the 

hydride transport tubing. In the same investigation it was shown that the 

interference free determination of Asiii was possible with up to 1000 11g mr1 of Cu 

despite the presence of a significant amount of permanent precipitate. It is 
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suggested, therefore, based on this observation that the major interference effect 

evident in the Se1v study is due to the formation of copper selenide (44,46]. This 

does not dismiss though the possibility that the precipitation reaction plays some 

role in the interference mechanism or memory effects observed. 

The improvement in interference tolerance with a reduction in sample volume is 

explained by the decrease in the absolute amount of interferent introduced into the 

HGAAS system [44,90]. With the introduction of a smaller amount of interferent 

(8% that used in the continuous flow system (272]) it is suggested that the solubility 

limit of the system is less likely to be exceeded, therefore the precipitation and 

accumulation of interferent species within the system is prevented (90]. 

4.3.4 Discussion. 

The adaptation of the PU9360 continuous flow vapour system to FI-HGAAS was 

successful. From the results (Section 4.3.1) it is evident that in comparison with steady 

state analysis comparable sensitivity can be achieved with FI sample introduction but with 

the added advantages of superior throughput, reduced sample requirement and superior 

copper interference tolerance. A characteristic concentration of 0.83 ng ml'1 Se1V (390 

11l) compares favourably with 0.91 ng m1'1 Se1v quoted by the manufacturer's for steady 

state analysis with the PU9360 system (272]. 

Incorporation of an on-line sample acidification step within the system by dispersion of 

the sample within an acid carrier stream has limitations. The procedure is restricted in 

many respects to low sample injection volumes (250 11l) for which performance 

characteristics comparable with pre-acidified samples are achieved. Use of high injection 

volumes (;;, 390 11l) requires excessively long reactor coil lengths to achieve adequate 

mixing and produces no improvement in sensitivity (Section 4.3.2). 

The observed high copper interference in the determination of Se1v is in agreement with 

the observations of others (14, 44-46]. Although some improvement in the system 

interference tolerance was achieved through the manipulation of system variables 

(Section 4.3.3) the maximum copper concentration tolerated in the system was restricted 

to 5.0 IJ.g ml·1. 
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From these observations there is clearly some need to improve the interference tolerance 

of the system further to extend its use to the analysis of real samples containing copper. 

The use of an on-line ion exchange matrix isolation procedure (71,82, 83] was therefore 

investigated. 

4.4 DESIGN FEATURES OF A FI-HGAAS MANIFOLD INCORPORATING CONTINUOUS 

FLOW MATRIX ISOLATION. 

A flow injection manifold was developed based on the design reported by Nord and Karlberg 

(183] for liquid-liquid extraction with FAAS, shown in Fig. 4.2 (11). The matrix isolation and 

FI-HGAAS manifolds were made independent of each other and interfaced through the sample 

injection valve of the FI-HGAAS manifold. Sample pumped continuously through the column 

was sampled intermittently by the injection valve and introduced into the FI-HGAAS manifold. 

As the two flow systems were independent, the sample flow rate through the column could be 

kept low to keep the column efficiency high without having to compromise the sensitivity of the 

hydride generation manifold. The micro-column was incorporated within the sample loop of an 

injection valve to permit the intermittent regeneration of the column without the need to 

dismantle the manifold or replace the column as reported for previous systems (82, 83]. The 

regenerant solution flow was directed in the reverse direction to that of the sample to eliminate 

the possibility of column resin compaction. 

4.4.1 System operation. 

Calibration standard solutions, requiring no matrix isolation, were pumped continuously 

(2 ml min-1) through the injection valve, bypassing the micro-column. The injection valve 

was actuated intermittently (load time, 20 s; and injection time, 10 s) thereby sampling 

the standard solution and introducing it into the hydride generation manifold. 

Following the introduction of the standards, the micro-column was switched into the 

sample line and analytical-reagent grade water was continuously pumped through it to 

remove the hydrochloric acid. After washing the column, the sample was also introduced 

by continuous pumping. In order to fill the void volume of the column and pump tubing, 

the sample was pumped continuously for 60 s prior to sampling of the column eluent, as 

described for standard solutions. After triplicate injections, the micro-column was 

regenerated (using HCl) and the sample line washed with analytical-reagent grade water. 

[Hydrochloric acid (1.2 mol dm-3) was pumped continuously through the micro-column 
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in the opposite direction to that of the sample flow (2 ml min'1, 30 s)]. Following the 

short period of regeneration the column was switched back in-line and the sampling , 
procedure repeated. During the transfer of the uptake tube from sample to analytical

pped in order to prevent the introduction 

manifold was continuously run throughout 

matrix-isolation unit. A summary of the 

reagent grade water, the sample pump was sto 

of air into the column. The hydride generation 

the whole procedure, independently of the 

sampling procedure including timing sequences 

analysis, a standard solution of 1000 ng mt·1 Se 

is given in Table 4.4. At the start of each 

IV was injected two or three times. This 

ensitivity of the system for subsequent procedure enhanced both the precision and s 

determinations (Chapter seven). 

Table 4.4 Summary of the sampling procedure for matrix isolation including timing 
sequences. 

Timing sequence ( t) / s 

0 

20 

80 

100 

110 

170 

200 

Operation 

V, •, H20 pumpe d via column 

V,, sample pump ed via column 

vt, actuation, (I oad position) 

VI, actuation (inj ect position) 

VI, actuation (lo 
repeated to give 

ad position); injection procedure 
triplicate injections 

V8#, HCI regene rent pumped via column, H20 
le line pumped via samp 

V,, H20 pumped via column, procedure repeated, 
t=O 

•v,, valve containing column in sampling confi guration 
(IV1, sample injection valve 
#V 8, valve containing column in bypass config uration 

4.5 OPTIMIZATION OF THE FI-HGAAS MANIFOLD. 

The flow injection manifold shown in Fig. 4.2 (II) was 

isolation unit removed. The system was optimized fo 

investigated with the independent matrix 

r the determination of SeiV without any 

ent (RC1 100 mm, RCz 100 mm means of matrix isolation or other sample pretreatm 

(0.8 mm i.d.)). 
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4.5.1 Optimization of manifold variables for SeiV determination. 

The optimized variables for the FI-HGAAS manifold (Table 4.5) were obtained using 

a basic univariate approach, as used by Riby et al. [83). In obtaining the optimum 

variables, sensitivity was a prime concern but consideration was also given to precision, 

interference tolerance and reliability of the system. Unless otherwise stated, the 

optimization of each manifold variable was carried out using an aqueous 100 ng ml-1 

Se1v standard, (Other variables as Table 4.5). 

Table 4.5 Optimized variables for the determination of SeiV by FI-HGAAS (409 Ill). 

Reagent Concentration Flow rate/ ml min-1 

H 20 carrier -.- 6.0 

HCl 6.0 mol dm-3 4.2 

NaBH4 1.0% m/v 3.2 

Ar 600 

(I) Effect of Ar flow rate. 

The effect of Ar carrier gas flow rate over the range 200-600 ml min-1 was studied. 

Increasing the argon flow rate caused a significant increase in peak-height absorbance 

and rate of transport of hydride to the atomization cell, as previously observed, 

(Fig. 4.3). 

(Il) Effect of aqueous carrier now rate. 

The relationship between the flow rate of aqueous carrier solution and resulting peak

height absorbance is shown in Fig. 4.5.lt can be seen that to achieve maximum 

sensitivity, the carrier flow rate should be kept as high as possible. The optimum 

carrier flow rate was decided upon after consideration of precision (Table 4.6) and 

· interference tolerance (Section 4.5.3 (1)). At a fixed acid reagent concentration the 

relative HCl concentration in the manifold is increased on reducing the aqueous 

carrier flow. 
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(Ill) Effect or HCl flow rate. 

The effect of the hydrochloric acid flow rate on the sensitivity for Se1v was observed 

to be negligible over the range 2-14 m! min-1• This observation was unexpected and 

to some extent unexplained. The increase in hydrochloric acid flow rate which was 

predicted to reduce signal response by dilution appeared to be offset by an increased 

rate of transport through the gas-liquid separator, (Section 4.5.1 (VIll)). 

(IV) Effect or HCI concentration. 

The hydrochloric acid concentration was observed to have little or no effect on the 

Se1V signal response over the range 1.2-7.2 mol dm·3• The optimum hydrochloric acid 

concentration was decided upon after consideration of the copper interference 

tolerance of the system (Section 4.5.3). 

(V) Effect or NaBH4 flow rate. 

The effect of sodium tetrahydroborate on the sensitivity for Se1v was observed to 

be significant, as shown in Fig. 4.6. 
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Fig. 4.6. Effects of flow rate of NaBH4 solution on the absorbance of 100 ng mr1 

of Se1v. Concentration of NaBH4, 1.0% m/v, concentration of HCI, 
3.6 mol dm-3• All other variables as in Table 4.5. 

(VI) Effect of NaBH4 concentration. 

15 

The effect of sodium tetrahydroborate concentration on the sensitivity for Se1v was 

observed to be significant, as shown in Fig. 4. 7. 

0.5 

0.4 

• u c 0.3 • 0 

' 0 • 0 
< 
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0 1 

ooL---------~--------~----------~------~ 

0 2 3 

NaBH 
4
concentration (% mlv) 

Fig. 4. 7. Effect of the concentration of N aBH4 solution on the absorbance of 
100 ng mt·1 of Se1v. Flow rate of NaBH4, 3.2 m! min-1; Concentration of 
HCI, 3.6 mol dm-3. All other variables as in Table 4.5. 
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(VII) Effect of sample injection volume, 

The effect of sample injection volume on the sensitivity for Se1v was studied over 

the range (111-1501 fll). Increasing the injection volume produced an increase in 

peak-height absorbance as previously observed (Fig. 4.4). Although high injection 

volumes favoured high sensitivity, reducing the injection volume reduced sample 

volume requirement and improved throughput. An injection volume of 409 111 was 

chosen as the optimum producing 90% of the steady state signal response. 

(VIII) Effect of total carrier transport rate. 

The effect of total reagent carrier flow rate on the sensitivity for Se1v was 

investigated keeping the ratio of the independent reagent flow rates constant, 

(H20:HCl:NaBH4; 2.10:1.44:1.00). For both steady state and PI sample introduction 

increasing the total carrier transport rate was observed to improve Se1v sensitivity as 

shown in Fig. 4.8. From this observation it was evident that the system performance 

was not solely dependent on the relative concentrations of reagents used and that to 

optimize the system the total reagent carrier transport rate should be kept at a 

maximum. 
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4.5.2 Performance characteristics of FI-HGAAS manifold. 

The performance characteristics of the FI-HGAAS manifold were investigated 

following its optimization. Performance data for combinations of aqueous carrier 

flow rate and injection volume are given in Table 4.6. 

Table 4.6 FI-HGAAS manifold performance data for the determination of selenium. 

H fJ carrier flow Injection Characteristic •RSo (%) 
rate ml rnin -l volume ~tl concentration 

6.2 409 0.96(0.39)" 

13.0 409 0.79(0.32)" 

13.0 922 0.50(0.46)" 

• Relative standard deviation (10 ng ml·1 Se1v, n=9) 
l) Characteristic mass, ng 

1.3 

1.5 

1.6 

4.5.3 Optimization of manifold variables for interference tolerance 

Throughput h -l 

120 

180 

180 

The effects of manifold variables on the interference tolerance of the system in the 

determination of Se!V were investigated for copper, nickel, cobalt and iron. Unless 

otherwise stated the manifold operating parameters used were as shown in Table 

4.5. The relative sensitivity of each interferent sample was calculated against a pure 

20 ng mr1 Se1v standard solution for which interference free determination was 

assessed as that producing a relative sensitivity of 100±10%. 

(I) Effect of HCl concentration. 

The effect of reagent hydrochloric acid concentration on copper interference is 

shown in Fig. 4.9. The interference tolerance of the system was significantly 

improved on increasing the hydrochloric acid concentration for the reasons 

discussed previously in section 4.3.3. An optimum hydrochloric acid 

concentration of 6 mol dm-3 was chosen for subsequent work after consideration 

of the interference tolerance, interference memory effect, hydrochloric acid 

consumption and the difficulty in pumping high concentration acids [82]. 

The effect of reagent acid concentration on the interference of cobalt, iron and 

nickel respectively in the determination of Se1v is shown in Table 4.7. 
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Fig. 4.9. Influence of the HCl concentration on the interference of copper in the 
determination of 20 ng ml-1 of Se1v: (•), 2.4; ( •), 6.0 and 
(•), 9.6 mol dm-3. All other variables as in Table 4.5. 

Table 4.7 Effect of reagent hydrochloric acid concentration on the interference 
of Ni(II), Co(II) and Fe(III) in the determination of 20 ng ml-1 of Se1v; 
All other variables as in Table 4.5. 

Interferent Relative sensitivity (%) 
concentration !lg mr1 

Nickel Cobalt Iron 

2.4* 6.0* 2.4* 6.0* 2.4* 6.0* 

10 96.0 -.- 101.7 101.7 -.- -.-
20 101.6 -.- 100.3 99.3 -.- -.-
50 101.7 102.9 99.3 102.9 97.9 98.8 

100 96.6 102.9 100.0 104.5 99.6 101.2 

200 99.5 98.6 96.5 104.5 104.4 101.4 

500 86.5 97.5 89.5 100.3 106.5 106.3 

950 71.6 95.4 75.2 100.3 105.6 104.9 

• HCI/mol dm·3 
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It was found that the system has a significantly higher interference tolerance to 

nickel, cobalt and iron than for copper. The interference-free determination of 

20 ng mr1 of Se1v was possible with the use of a 6.0 mol dm·3 HCl reagent 

stream in each case in the presence of up to 950 j.Lg mr1 of interferent. No 

precipitation or interference memory effect was observed throughout with the 

exception of the nickel study (2.4 mol dm·3 HCl) in which a slight interference 

memory effect was observed at high interferent concentrations (950 llg mr1 Ni). 

(11) Effect of sample injection volume. 

The effect of sample injection volume on the interference of copper and nickel 

in the determination of 20 ng mr1 of Se1v is shown in Fig. 4.10. 
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Fig. 4.10. Influence of sample injection volume on the interference of copper 
and nickel in the determination of 20 ng mr1 of Se1V. ( • ), 3.0 j.Lg mr1 

Cu; (•), 1000 llg mr1 Ni. All other variables as in Table 4.5. 

Improved interference tolerance obtained with reduced sample injection volume 

was in agreement with earlier work described in section 4.3.3 (44, 90). This 

improvement was achieved, though, at the expense of sensitivity as covered in 

section 4.5.1(VII). In the case of copper on increasing the sample injection 

volume a, transient in nature, grey precipitate was observed as reported in 

section 4.3.3. 
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(Ill) Effect of total carrier transport rate. 

The effect of total reagent carrier flow rate on the copper and nickel 

interference in the determination of se!V was investigated keeping the ratio of 

the independent reagent flow rates constant (H20:HCl:NaBH4; 2.10:1.44:1.00). 

It was found (Fig. 4.11) that for both copper and nickel, the degree of 

interference decreased with increasing total reagent carrier flow rate. This 

observation was explained by a decrease in reaction time and therefore more 

rapid removal of hydride from the interferent matrix (13]. 
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Fig. 4.11. Effect of the total reagent carrier flow rate on the c~per and nickel 
interference in the determination of 20 ng mt1 of Se1 . (•), 4.0 11g mt1 

Cu; ( • ), 1000 11g mt1 Ni. All other variables as in Table 4.5. 

4.5.4. Discussion. 

For the optimization of the manifold operating parameters of the FI-HGAAS 

system it had been hoped that a simplex type optimization procedure (273] could 

have been used. This intention proved impractical though due to the observed 

day-to-day variations in system sensitivity(± 20 %) as described by Bax et al. (96]. 
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Although a more rigorous approach to optimization could have been carried out, 

it was decided that it was not necessary as the intention of the work was to 

investigate the matrix isolation step, and improvements in system design to 

incorporate it. 

From the summary of performance data shown in Table 4.8 it is clear that the 

performance of the optimized manifold compares favourably (Table 4.6) with other 

systems employing similar glass U-tube gas-liquid separators (12]. 

Table 4.8 Performance characteristics of FI-HGAAS systems reported for the 
determination of Se1v using a glass U-tube gas-liquid separator. 

Characteristic RSD (%) Injection Throu¥hput Reference 
concentration volume h" 

ng mt·1 Ill 

0.34 (0.17)1) 0.8 (n=10) 500 120 88* 

0.39 (0.23)1) <1.0 (10 ngml"1) 600 80 241 

2.1 (0.7)l) 5.8 (20 ng m!"l, n=6) 330 90 242 
l) eh, n IC mass n c aracte st , g 
* air-segmentation included. 

For the U-tube gas-liquid separator it is evident that the system performance is not 

only affected by the relative concentrations of reagents used but also by the rate of 

transport of the hydride, as shown in Fig. 4.8. Optimum sensitivity was achieved by 

maximising the rate of transport of the hydride both in the aqueous and gas phases. 

McLaughlin et al. (242] made similar observations at a fixed HCI, NaBH4 flow rates 

ratio of 1.4:1.0 with an increase in sensitivity as the flow rates of both reagents were 

increased. The performance limiting factor reported in their system though was the 

build up of back pressure and increase in the likelihood of rupturing tubing with 

increasing flow rates. In general, high total reagent carrier flow rates 

(~ 13 m! min"1) have been reported for the use of U-tube gas-liquid separators 

(67, 88, 241]. 

The interference tolerance of the system to copper (Fig. 4.9) and cobalt, iron and 

nickel (Table 4.7) is in good agreement with that of the previous FI work (67, 82, 

86, 88, 241]. Improved interference tolerance for copper and nickel with increased 

hydride transport, in the aqueous phase (Fig. 4.11) is explained by the shorter 

residence time of the hydride in the interfering matrix (13, 88, 90]. The improved 

interference tolerance for copper and nickel, observed at lower sample injection 
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volumes (Fig. 4.10), provides possible evidence as to why the interference tolerance 

reported for FI-HGAAS is so superior to that reported for both batch [84] and 

segmented continuous flow procedures [85]. Although both FI and continuous flow 

procedures employ the same basic operations, gas liquid separator design, flow rates 

etc., the sample sizes used are significantly different. The difference in sample size 

is even more significant in comparison with the batch [84] procedure. For the 

continuous flow [85] and batch [84] procedures the sample sizes used are, in 

general, between 10 and 25 times higher respectively than those used in flow 

injection. 

The selection of sample injection volume for a particular determination is clearly 

important. Careful consideration must be made to the demands of the analysis, 

whether it be high sensitivity or interference tolerance due to the compromise that 

must be made of one or other. 

4.6 OPTIMIZATION OF A CONTINUOUS FLOW MATRIX ISOLATION MANIFOLD FOR 

COPPER RETENTION. 

The Dowex SOW cation exchange resin was chosen for use in this work because of its previously 

reported successful application to matrix isolation in hydride generation AAS [80]. The resin 

consists of sulphonic acid functional groups attached to a styrene divinylbenzene copolymer 

lattice. The total exchange capacity quoted for the dry resin (H+ form) is 4.8 Meq/g [274]. 

4.6.1 Evaluation of cation exchange resin. 

The effectiveness of two Dowex SOW cation exchange resins, Dowex 50WX12 50-100 and 

Dowex 50X8 100-200, to remove copper from solution was investigated. An aqueous 

slurry of each resin was packed into a micro-column (50 mm x 3.0 mm i.d.) under 

suction (- 250 mg dry resin). The copper retention on the resin filled columns was then 

assessed by pumping a 1000 11g mr1 Cu standard solution (copper (11) sulphate 5 

hydrate, pH 4.00) through the column and continuously monitoring the copper 

concentration of the column eluent by flame atomic absorption spectrometry (FAAS). 

The spectrometer was operated under the manufacturer's recommended optinmm 

variables [268] and all quantification was made against aqueous copper standard 

solutions, pumped continuously into the nebulizer at the same flow rate as used in the 

column study. Breakthrough was judged to have occurred when the copper concentration 

of the column eluent exceeded 1.0 11g mr1. The figure of 1.0 11g mr1 Cu was chosen as 
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it is within the interference tolerance of the FI-HGAAS manifold as shown in section 

4.5.3(1) when operated under the conditions listed in Table 4.5. The two resins were 

assessed against the criteria of copper retention efficiency and flow rate capability. 

Although the 50-100 mesh resin permitted flow rates of up to 6.0 m! min·1 to be pumped 

through the column without major back pressure problems, its exchange efficiency was 

poor. The eluent concentrations determined for the initial introduction of copper to the 

column (leading edge of the sample) at 2.0 and 6.0 m! min·1 were 2.5 and 25 IJ.g mr1 Cu 

respectively. These figures increased drastically with continued pumping in each case. As 

expected for the smaller particle size resin (mesh 100-200) the exchange efficiency was 

found to be superior. Use of a smaller particle size, though, restricted the flow rate 

capability of the column to below 3.0 m! min·1• The effect of both sample flow rate and 

sample pH on the copper retention of the 100-200 mesh resin is shown in Figs. 4.12 and 

4.13, respectively. In the pH study pH adjustments were made with solutions of HCI and 

ammonia. The observed improvement in the efficiency of the resin with reduced sample 

flow rate (sample pH 4.0) was explained by an increased contact time between the 

copper ions and the active sites of the resin. In the pH study the retention of copper at 

pH values above 5.0 was not attempted because the addition of ammonia solution, in 

order to obtain such pH values, caused turbidity of the samples as a result of the 

formation of copper hydroxide. Such turbidity was assessed to be a source of analyte loss 

through eo-precipitation [80). 
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Fig. 4.12. Retention of copper as a function of sample flow rate through the 100-200 
mesh resin, sample pH 4.00. 
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Fig. 4.13. Retention of copper as a function of sample pH on the 100-200 mesh resin; 
sample flow rate 2.0 m! min-1. 

The recovery of 100 ng mr1 of Se1v from the column (2 m! min-1) was determined to 

be between 97.5 and 99.2% over the pH range of 1.00 to 4.80. The recoveries were 

calculated by comparing the signal response peak heights of the adjusted standards 

before and after passage through the column. 

It was observed that on introducing the copper solution the resin became compacted at 

the column outlet leaving a void at the inlet. This was attributed to the drop in pH 

during ion exchange. 

The 100-200 mesh resin was chosen for use in all subsequent work on the grounds of its 

superior exchange efficiency, over the 50-100 mesh resin. An optimum sample 

introduction flow rate through the column of 2.0 m! min-1 was chosen based on column 

efficiency and sampling rate. At a sampling flow rate of 2.0 m! min-1, the 409 J.li sample 

loop of the injection valve could be filled in 20 s. 

4.6.2 Discussion. 

From the observations made into the performance characteristics of the Dowex 50W X8 

100-200 resin it was evident that the in-line incorporation of the column into the hydride 

generation manifold [71, 82, 83] would be detrimental to performance. The flow rate 
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restrictions required by the presence of the column ( < 3 m! min·1) would significantly 

limit sensitivity as shown in section 4.5.1(II). Restricting the carrier flow rate to 3.0 m! 

min·1 would result in a sensitivity 50% of that achieved at the optimum carrier flow rate 

(13 m! min'1). 

Due to the observed shrinkage of the cation exchange resin on continued introduction 

of copper it was anticipated that the precision achieved with the in-line incorporation of 

the column would be poor. Shrinkage of the resin would produce unreproducible mixing 

within the column and therefore unreproducible dilution of successive injected samples. 

Furthermore the presence of the column within the manifold would be detrimental to 

sensitivity due to its proposed significant contribution to the dispersion of the injected 

sample plug [71]. 

With the continuous flow matrix isolation system (Fig 4.2(II)) the drawbacks discussed 

for the in-line incorporation of the micro-column are clearly overcome. The sample flow 

rate through the micro-column can be kept low (2 m! min'1), therefore optimizing the 

efficiency of the resin without having to make any change to the optimum carrier flow 

rate of the Fl-HGAAS manifold. Shrinkage of the resin with the introduction of sample 

causes no detrimental effect on the performance of the system in terms of sensitivity and 

precision since the sample is introduced continuously and, therefore, undergoes no 

dilution within the column itself, prior to introduction into the optimized Fl-HGAAS 

manifold. 

4.7 DETERMINATION OF Sew IN A SYNTHETIC COPPER MATRIX. 

The FI-HGAAS manifold (Fig. 4.2(11)) was operated under the optimum values of the operating 

variables shown in Table 4.5, according to the analysis sequence outlined in section 4.4.1. Two 

synthetic sample solutions containing 1000 l'g ml'1 Cu were prepared, spiked with 20 and 100 

ng m1'1 Se1v. Both samples contained in the final sample solution, 0.25% m/v potassium 

hydrogen phthalate, added as a pH buffer, and pH adjusted to 4.00 with dilute ammonium 

solution. The recoveries of Se1v from the two synthetic samples were determined in triplicate 

against aqueous standards of the same concentrations and found to be 119 and 108% 

respectively. 

A similar investigation was subsequently carried out but the addition of potassium hydrogen 

phthalate was removed from the sample preparation step. Recoveries calculated for samples 
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spiked with 5.0, 10.0, 20.0, 30.0 and 50.0 ng mr1 of SeiV were 104.5, 102.4, 97.5 and 94.5% 

respectively. 

4.7.1 Effect of potassium hydrogen phthalate on signal response. 

The FI-HGAAS manifold (Fig. 4.2 (II)) was operated under the optimum values of the 

operating variables shown in Table 4.5, with the matrix isolation unit removed. The signal 

responses for a series of 20 ng mr1 Se1V standard solutions spiked with different 

potassium hydrogen phthalate concentrations were determined and compared with the 

response of an aqueous standard solution of the same concentration. The investigation 

was made to identify the possible sensitivity enhancing effect of potassium hydrogen 

phthalate on the determination of Se1v by HGAAS, suggested by earlier results 

(Section 4.7). 

The effect of potassium hydrogen phthalate concentration on the sensitivity for SeiV is 

shown in Table 4.9. Over the optimum concentration range of 0.10 to 0.25% m/v a signal 

enhancement of the order of 10-15% was achieved. The decrease in signal response 

above 0.25% m/v was attributed to significant frothing observed in the gas-liquid 

separator resulting in reduced transport efficiency of the hydride. 

Table 4.9 Effect of potassium hydrogen phthalate on the absorbance of 20 ng mr1 of 
Se1v. All other variables as Tables 4.5 ( ± 95% confidence interval). 

Potassium hydrogen phthalate Peak-height absorbance Relative 
concentration (% m/v) 

20 ng mr l Se IV 
sensitivity (%) 

Blank (n=3) 
"mean 

0 0.000 0.091±0.001 100 

0.05 0.000 0.096±0.003 106 

0.10 0.000 0.103±0.001 113 

0.25 0.000 0.102±0.003 112 

0.50 0.008±0.001 0.093±0.001 93 

1.00 0.010±0.002 0.083±0.002 80 

4.7.2 Discussion. 

The interference free determination of Se1V in a 1000 !lg mr1 copper matrix was 

successfully achieved without the need for addition of potassium hydrogen phthalate pH 

buffer. Although the potassium hydrogen phthalate gave a signal enhancement in the 
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determination of Se1v it was concluded that its magnitude ( < 15%) does not warrant the 

expense and increase in sample preparation required in the matching of both standards 

and samples. 

The role of potassium hydrogen phthalate cannot be conclusively explained other than 

by its catalytic action on the rate of hydride formation and increase in the efficiency of 

the hydride generation reaction. Agterdenbos and Bax [100] made similar observations 

of an increased rate of hydride formation on the addition of KI in a continuous flow 

system. Addition of 0.1 mol dm-3 potassium iodide to the NaBH4 solution had the effect 

that only 0.001% mfv NaBH4 solution was sufficient for the complete conversion of Se1v 

from 2 mol dm-3 HCI in comparison with 0.16% mfv NaBH4 in its absence. It is 

postulated, therefore, that potassium hydrogen phthalate and potassium iodide act on the 

formation of hydrogen selenide by the same or similar mechanism. 

4.8 DETERMINATION OF SeiV IN COPPER METAL STANDARD REFERENCE MATERIALS. 

The analysis of two copper metal standard reference materials, NIST SRM 454 unalloyed 

copper and BAM 361 copper, was attempted. 

4.8.1 Calibration and analysis procedures. 

The FI-HGAAS manifold shown in Fig. 4.2(II) was operated under the optimum values 

of the operating variables shown in Table 4.5 according to the analysis sequence outlined 

in section 4.4.1. Aqueous Se1v standard solutions (0-50 ng mr1 Se1v) were used for 

calibration which were sampled directly without undergoing matrix isolation. Replicate 

determinations of the Se1v contents of both samples were made on single digest 

solutions. The column was regenerated after every third determination. 

4.8.2 Sample digestion. 

The method [82] used for the digestion of the two copper metal reference materials, 

NIST SRM 454 and BAM 361 was as follows. 
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A sample of copper metal (0.5 g) was accurately weighed into a clean Pyrex beaker (50-

lOO m!). To the beaker were added 10 ml of 8 mol dm-3 HN03 and the beaker was 

covered with a watch glass. The beaker was placed on a hot plate, heated to near 

dryness, then removed. Once cool, 10 ml of 6 mol dm-3 HCI were added and the beaker 

was placed in a steam bath. After approximately 15 min of heating, to dissolve the 

sample residue, the resultant solution was allowed to cool. The cool digest solution was 

transferred into a calibrated flask (100 ml) and diluted to volume with analytical-reagent 

grade water. Prior to analysis, the NIST SRM 454 and BAM 361 digests were further 

diluted to produce working samples containing 75 and 1000 l'g mr1 of copper, 

respectively. 

4.8.3 Sample pH adjustment. 

Initially prior to analysis the metal digest solutions were pH adjusted to pH 4.00 with the 

addition of ammonia solution to optimize the performance of the matrix isolation step 

according to Fig. 4.13. This produced some degree of precipitation and significantly 

reduced the capacity of the column as shown in Table 4.10. 

Table 4.10 Effect of ammonia solution added to achieve pH adjustment of copper digest 
(1000 l'g mr1) on the copper retention of the micro-column (2.0 ml min-1). 

Digest pH Copper retention/ mg 

1.00* 7.14 

1.20# 7.04 

2.10# 5.78 

3.20# 5.67 

4.30# 3.37 

• No pH adjustment of digest solution 
# pH adjustment with ammonia solution. 

The reduction in capacity of the column was identified as owing to competition between 

copper and ammonium ions for the active sites on the resin. In order to overcome this 

problem the pH adjustment step was removed from the sample preparation. The pH 

values of the two analysed samples NIST SRM 454 and BAM 361 were 2.1 and 1.1 

respectively. Therefore, even without pH adjusiment the column capacity was still 

sufficient to permit triplicate injections of each sample solution before column 
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regeneration as the column capacity is greater than 5.0 mg copper. The removal of the 

pH adjustment step had the further advantage of reducing sample preparation time and 

the chance of sample contamination as well as avoiding precipitation and the consequent 

loss of analyte through eo-precipitation [80]. 

4.8.4 Analysis results. 

The results of the analysis of the reference materials are given in Table 4.11. 

Table 4.11 Results of analysis of copper metal reference materials ( ±95% confidence 
limits). 

Sample Certified value for Se1v 
I '"'g g·1 

Se1V found/ !lg g·l 

NIST SRM 454 479±8 476±7.2(n=6) 

BAM361 36±0.6 37.1±0.7(n=8) 

4.8.5 System performance. 

The performance characteristics of the FI-HGAAS system achieved for the analysis of 

copper metal standard reference materials are shown in Table 4.12. The detection limit 

of the system was calculated from the calibration graph and the error residuals based on 

the unweighted linear regression line (275]. 

Table 4.12 Performance characteristics of the Fl-HGAAS system for the analysis of 
copper metal standard reference materials. 

Calibration 0-50 ng ml'1 Se1V 

Slope 4.35 X 10'3 A ng'1 ml 

Intercept 5.1 X 10'3 A 

Correlation coefficient 0.9992 

Characteristic concentration (0.0044 A) 1.0 ng mr1 

Precision (RSD, 10 ng ml'1 Se1v, n=12) 1.5% 

Detection limit [275] (3S8 ) 2.1 ng ml'1 

Throughput (triplicate determinations) 17 h'1 
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4.9 DISCUSSION. 

The results show (Table 4.11) that Se was successfully determined in the standard reference 

materials NIST SRM 454 and BAM 361. The sensitivity compares favourably with that of the 

conventional operation of the Philips PU9360 continuous flow system. For steady state analysis 

(sample volume 5.0 ml) a characteristic concentration of 0.91 ng mr1 Se1Y was reported(268). 

The copper interference tolerance of the two systems, 1000 and 0.5 l'g mr1 copper respectively, 

indicates the superior performance of the proposed FI-HGAAS system in the analysis of copper 

matrices. 

One of the major advantages of this system design in comparison with others, is the high 

precision obtained. For the system of Riby et al. (83) and lkeda (82) the RSDs quoted for the 

determinations of 10 ng mr1 of Aslll and 10 ng mr1 of Se1v were 3.0 and 3.8% respectively. 

These figures are clearly inferior to those quoted in this work (Table 4.6). A F-test(276) should 

be performed to statistically prove this but insufficient data is given in the two sets of work to 

permit the necessary calculation of standard deviation values. 

It is suggested that the sample introduction procedures used in the two systems may be possible 

sources of imprecision. In the system of lkeda (82) a 500 1'1 sample was introduced manually 

from a pipetman p-1000 pipette. Riby et al. (83) employed a timed injection procedure, pumping 

sample continuously into the system over a short period oftime (10 s). The carrier pump tubing 

was transferred manually between the carrier and sample solutions. No indication was given 

though as to whether or not the pump was actually stopped during this transfer process. 

Although timing of the sampling step was performed with the use of a stopwatch it is evident 

that the precision of the sampling step is very susceptible to operator performance and slight 

fluctuations in flow rate. If infact the pump was not stopped during the transfer of pump tubing 

between solutions it is suggested the introduction of air into the system may be a further source 

of imprecision. Incorporation of the micro-columns in-line in both systems (82,83) is also 

postulated to limit precision due to the contribution to sample dilution made by the column, 

as discussed in section 4.6.2. 

In the system of Riby et al. (83) the incorporation of the matrix isolation column in-line 

required a compromise in the performance characteristics for the matrix isolation and hydride 

generation procedures as discussed for the in-line incorporation of the column in the proposed 

system (Section 4.6.2). Although in the system of Riby et al. (83) high carrier flow rates of up 

to 9 ml min·1 were possible through the column, required to optimize sensitivity, the optimum 

matrix isolation characteristics were achieved at 2-4 ml min·1• Even at a compromise of 
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6.0 ml min·l, the system was susceptible to high back pressure and column compaction 

problems, requiring intermittent replacement of the column. No column compaction was 

reported by Marshall and van Staden [71] for in-line incorporation of a micro-column possibly 

due to the use of a 2 ml min"1 carrier flow rate. Use of such a low carrier flow rate may, as a 

result, account for the poor performance of the system, for which a limit of detection of 6 ng 

mr1 seiV was quoted [240]. 

In the proposed system no problem with back pressure or column compaction was observed as 

the sample flow rate through the column was kept low (2 ml min-1) and the HCI regenerent 

was directed through the column in the reverse direction to the sample flow. No column 

replacement was necessary over a period of 3 months continued use during which time no 

deterioration in column performance was noted. Keeping the sample flow low achieved the 

added advantage of an optimized matrix isolation step without any need to compromise the 

hydride generation performance. 

Incorporating the matrix isolation column within the sample loop of an injection valve, the rapid 

intermittent regeneration of the column is possible without interrupting the operation of the 

hydride generation manifold, a facility absent in other systems. All retained interferent is eluted 

directly to waste, bypassing the FI-HGAAS manifold. Ikeda [82] reported no column 

regeneration facility in the system used. The column was simply replaced after every 25 

determinations (column capacity, 50 mg of copper). By employing a relatively large column 

(2 ml resin), in order to increase the column capacity the sample throughput was restricted to 

30 h-1. Column regeneration was reported in the system of Riby et al. [83] but was undertaken 

manually, (prior to column regeneration, the water carrier line was disconnected from the rest 

of the hydride generation manifold and 1 mol dm·3 HCl was pumped through the column to 

waste). No indication of sample throughput capabilities were reported. In the work of Marshall 

and van Staden [71] column regeneration was achieved by pumping acid eluent (2 mol dm-3) 

directly through the column, (total process time 15 mins). No indication though was given as 

to whether the column was disconnected from the FI-HGAAS manifold prior to this procedure. 

Without disconnection the elution of excessively high concentrations of interferent ,into the FI 

manifold would be detrimental on the grounds of possible interference memory effects, as 

observed in the course of this work (Section 4.3.3). 

A major benefit of the proposed manifold design, with particular reference to the column 

regeneration step is the potential for automation. By using existing technology, full automation 

of the system is feasible [277]. Automation of previous systems [71, 82, 83] would be difficult 

without major modifications being made. 
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By employing the flow injection valve as an interface, the matrix isolation procedure could be 

applied directly to other flow injection hydride generation manifolds irrespective of their 

operating procedures, gas-liquid separator designs etc (13, 88-90, 239-242). Based on the 

successful application of the Dowex SOW resin to matrix isolation in HGAAS (80) it is suggested 

that with only minor modifications the same system could be used for the determination of 

other hydride-forming elements in the presence of a variety of interfering species such as nickel, 

iron, cobalt and silver. 
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CHAPTER FIVE 

ELIMINATION OF NICKEL INTERFERENCE BY CONTINUOUS FLOW MATRIX 
ISOLATION IN THE DETERMINATION OF As BY FI-HGAAS. 

5.1 INTRODUCTION. 

The successful determination of As in a nickel alloy (BCS 346) was reported by Riby et al. [83] 

in 1989. The system, which incorporated an in-line micro-column of strong cation exchange 

material (SCX), in a manner similar to other reported matrix isolation systems (71, 82], though 

had its limitations as discussed in Chapter four. These limitations were overcome in a new 

system design, outlined in Chapter four, which was used for the determination of Se!V in copper 

matrices. The application of the same system to the determination of As in nickel alloy is 

considered feasible, with the possibility of achieving the same improvements in system 

performance, over that reported by Riby et al. [83], as was discussed in Chapter four. 

A notable feature of the work of Riby et al. [83] was the use of a microwave sample digestion 

procedure which was reported to retain As in the + 3 oxidation state [278]. Prevention of the 

oxidation of As to the + 5 oxidation state, reported in conventional digestion procedures [279] 

was clearly beneficial. It is well documented that the sensitivity for As v in HGAAS is inferior 

to that of Aslll, particulary for FI-HGAAS [16,243], due to the slower hydride generation 

kinetics [280]. Elimination of this sensitivity difference has been achieved through optimization 

of system variables [235] and the application of pre-reduction reagents [16, 53, 243] of which 

potassium iodide has been used most commonly. In most cases the Kl pre-reduction method 

has been applied manually for which reaction times of up to 1 hour are required to achieve 

quantitative reduction (16, 53, 243]. On-line Kl pre-reduction of Asv has been implemented in 

FI-HGAAS but with rather limited performance data and some degree of compromise of the 

FI-HGAAS performance [58, 88] due to the need for increased reaction times. Both of these 

methods used a continuously flowing reagent stream of potassium iodide solution (50% m/v). 

The flow rates were 1.5 and 2.5 ml min·l, which represents a consumption of 45 and 75 g h"1 

Kl respectively. 

This chapter outlines the modification and use of the continuous flow matrix isolation system, 

previously described in Chapter four, for the determination of As in a nickel alloy (BCS 346) 

by FI-HGAAS. A novel stopped-flow Kl pre-reduction procedure incorporated within the 

system, to obtain As in the + 3 oxidation state, and therefore maximise sensitivity was used. 
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Stopped-flow methodology was employed to minimise reagent consumption and permit 

sufficiently long reaction times without the need for excessive reactor coil lengths. Direct 

comparisons are made with the system of Riby et al. [83). Aspects of this chapter have been 

accepted for publication [282). 

5.2 APPARATUS AND REAGENTS. 

5.2.1 Apparatus. 

Unless otherwise stated the apparatus used was identical to that described in Chapter 

four. A Philips Scientific SP9 atomic absorption spectrometer equipped with a Philips 

coded arsenic hollow cathode lamp was operated under the conditions shown in Table 

5.1 based on the manufacturer's recommendations [268]. 

Table 5.1 Philips SP9 spectrometer variables for the determination of arsenic. 

Wavelength, nm 

Slit width, nm 

Lamp current, mA 

Support gas/ flow setting (Arbitrary units) 

Fuel gas/ flow setting (Arbitrary units) 

Background correction 

Damping, s 

193.7 

1.0 

9.0 

28/air 

15/ acetylene 

OFF 

0.5 

The F1 hydride generation manifold used in Chapter four (Fig. 4.2 (!I)) was modified as 

shown in Fig. 5.1. Additional pump channels were incorporated within the matrix 

isolation unit to permit addition of potassium iodide and HCl reagents in the stopped

flow KI pre-reduction step. A disposable gas-line filter (VROH020 hydrophobic 0.2 I'm 

PTFE membrane, PALL) was fitted in-line with the hydride transport tubing connecting 

the gas-liquid separator and the silica atomization cell. 

All alloy digestions were carried out in a microwave-digestion unit (Oxford Laboratories, 

Model CEM MDS 810). Polypropylene calibrated flasks were used to handle all digested 

sample solutions. 
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Fig. 5.1. Schematic diagram of the FI manifold with continuous flow matrix isolation and 
stopped-flow KI pre-reduction unit: P, Peristaltic pump; S, Sample; H, Water; 
A, HCI; R, NaBH4; K, KI; W, Waste; V1, switching valve; V2 Sample injection 
valve; C, micro-column; F, PTFE membrane fllter; and GLS, gas-liquid 
separator; and RC1, Reactor coil. 

5.2.2 Reagents. 

Unless otherwise stated all reagents were identical to those used in the experiments 

described in Chapter four. All arsenic (Ill) standard solutions were prepared by dilution 

of a standard solution of arsenic trichloride (SpectrosoL, BDH) containing 1000 11g mr1 

As. All arsenic (V) standard solutions were prepared from sodium arsenate, (AR, 

Fisons). For the optimization of the matrix isolation procedure, nickel (11) sulphate 7 

hydrate (AnalaR, BDH) was used to prepare standard solutions. Interferent standard 
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solutions were prepared from antimony potassium tartrate (SpectrosoL, BDH), cobalt 

(II) chloride 6 hydrate (ACS reagent, Aldrich), copper sulphate 5 hydrate (AnalaR, 

BDH), nickel (11) sulphate 5 hydrate (AnalaR, BDH), selenous acid (SpectrosoL, BDH) 

and stannous chloride (AR, Fisons). Reagents used in the KI pre-reduction investigative 

work were hydrochloric acid (SpectrosoL, BDH), potassium iodide (AnalaR, BDH), 

sodium sulphite (SLR, Fisons) and sodium thiosulphate (GPR, BDH). The nickel based 

reference alloy was digested using nitric acid (Aristar, BDH) and hydrofluoric acid 

(40% Aristar, BDH). The nickel based certified reference alloy BCS 346 was obtained 

from the Bureau of Analysed Samples (Middlesbrough, U.K.). 

5.3 DESIGN FEATURES OF NOVEL FI-HGAAS MANIFOLD INCORPORATING 
CONTINUOUS FLOW MATRIX ISOLATION AND STOPPED-FLOW KI 
PRE-REDUCTION. 

The design features of the FI-HGAAS manifold with continuous flow matrix isolation were 

identical to those described in Chapter four (Section 4.4) but with the inclusion of a stopped

flow KI pre-reduction process (Fig. 5.1). Inclusion of this step was found necessary to convert 

the As present in the digested nickel alloy sample to the + 3 oxidation state and therefore 

improve sensitivity, as discussed in section 5.7. 

The sample and KI pre-reduction reagents were pumped continuously through the sample loop 

of the injection valve interfacing the matrix isolation unit and the FI-HGAAS manifold. 

Stopping the pump of the matrix isolation unit therefore retained the reaction mixture within 

the sample loop. A stop time sufficient for the quantitative reduction of As v to Aslll under 

these static conditions was then implemented prior to sample introduction into the FI-HGAAS 

manifold through the activation of the injection valve. 

Use of such a stopped-flow procedure permitted accurate and precise control of the KI pre

reduction reaction time without the need for excessive lengths of manifold tubing, any 

compromise of the FI-HGAAS performance characteristics and with minimal reagent 

consumption. 

5.3.1 System operation. 

System operation was identical to that reported in Chapter four (Section 4.4.1) but with 

the inclusion of control over the run and stop time of the matrix isolation unit pump, 

required in the KI stopped-flow pre-reduction procedure. The system, (Fig. 5.1) was 

operated under the optimized conditions shown in Table 5.2 according to the sampling 

procedure, including timing sequences, listed in Table 5.3. 
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Table 5.2 Optimized variables for the Fl-HGAAS manifold with contin uous flow matrix 
e 409 j.li, reactor isolation and stopped-flow KI pre-reduction. Injection volum 

coil RC2 600 mm (0.8 mm i.d.) 

(I) Hydride generation AAS 

Reagent Concentration Flow r ate/ m! min·1 

-
H10 carrier -.- 11.0 

HCI (A3) 3.6 mol dm·3 3.2 

NaBH, 1.0% m/v 3.2 

Ar -.- 400 

(11) Continuous flow matrix isolation 

Reagent Concentration Flowr ate/ m! min·1 

Sample < 1000 1-1g mr1 Ni 2.2 

HCI (column regenerant, A2) 1.2 mol dm·3 2.2 

(Ill) Stopped-flow KI pre-reduction 

Reagent Concentration Flow r ate/ m! min·1 

HCI (A1) 12 mol dm·3 2.2 

KI 30% m/v 1.4 

Table 5.3 Summary of the sampling procedure for matrix isolation and stopped-flow KI 
pre-reduction, including timing sequences. 

Timing sequence Operation 
(t)/s 

0 V5", H20 pumped via column 

10 V 5, sample pumped via column 

70 v,§, activation (load position) 

80 Matrix isolation pump stopped 

95 V1, activation (inject position) 

105 Matrix isolation unit pump started 
(procedure repeated from t = 70 to give trip licate 
injections) 

165 V8 #, HCI regenerant pumped via column, H20 pumped 
via sample line 

200 v;, H20 pumped via column (procedure r epeated t = 0) 

V5" valve containing column in sample configuration; v1§ sample inje ction valve; VB# 
valve containing column in bypass configuration. 
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5.4 OPTIMIZATION OF THE FI-HGAAS MANIFOLD. 

The performance of the flow injection HGAAS manifold shown in Fig. 5.1 was investigated with 

the independent matrix isolation/stopped flow KI pre-reduction unit removed. The system was 

optimized for the determination of Aslll without any means of matrix isolation or other sample 

pretreatment. 

5.4.1 Optimization or manifold variables for Asm determination. 

The optimized conditions for the FI-HGAAS manifold (Table 5.2 (I)) with the 

membrane filter removed from the hydride transport tubing were obtained using a basic 

univariate approach. as us{<! by Riby et al. [83])md implemented in Chapter four. In 

obtaining the optimum conditions sensitivity was a prime concern but consideration was 

also given to precision, interference tolerance, throughput and the reliability of the 

system. Unless otherwise stated the optimization of each parameter was carried out for 

an aqueous 20 ng mr1 Asm standard (values of other variables are given in Table 5.2(1)). 

(I) Effect of flame stoichiometry. 

In initial studies the flame stoichiometry was found to have a significant effect on the 

sensitivity for Asm. The sensitivity was observed to increase with increased acetylene 

flow setting. This effect was found though to be non reversible, indicating a 

conditioning effect on the performance characteristics of the atomization T-cell 

through heating in a fuel-rich air-acetylene flame (air flow setting 28; acetylene flow 

setting 22), discussed in more detail in Chapter seven (Section 7.3). After this 

conditioning process the effect of flame stoichiometry on the sensitivity for Asiii was 

negligible, producing less than a 15% variation in peak-height absorbance over the 

acetylene flow setting range of 14 to 21 (air flow setting 28). A fuel-lean air-acetylene 

flame (air flow setting 28, acetylene flow setting 15) was chosen for all subsequent 

work on the basis of superior precision. 

(11) Effect or Ar carrier gas flow rate. 

The relationship between the flow rate of the argon carrier gas and the resulting -- . ----·-- ______ _,~----·--
~t,::)!~igi_l! absorbance is shown in Fig. 5.2. An optimum Ar flow rate of 400 ml -------·-- . --·--·-····-

min'1 was chosen on the grounds of precision and throughput, whilst retaining 
·--------------~·---. ·--
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adequate sensitivity (85% of optimum, 150 ml min-1 Ar). Below 400 ml min"1, 

precision deteriorated (RSD 2.0-4.4%, 20 ng ml-1 Aslll, n=6) and significant peak 

broadening occurred, limiting throughput. 
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Fig. 5.2. Effect of the flow rate of Ar carrier gas on the absorbance of 20 ng mr1 

of Asm. Aqueous carrier flow rate, 9.2 ml min-1; RC2, 100 mm 
(0.8 mm i.d.). All other variables as in Table 5.2 (1). 

(Ill) Effect of manifold variables. 

The effect of reactor coil length (RC2, Fig. 5.1) on the sensitivity for Aslll is shown 

in Fig. 5.3. An optimum of 600 mm was chosen after consideration of throughput 

capability, back pressure build up and proposed interference tolerance (13]. 
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Fig. 5.3. Effect of the reactor coil length (RCz, 0.8 mm i.d.) on the absorbance of 
20 ng mr1 of Asm. Aqueous carrier flow rate, 9.2 ml min-1. All other 
variables as in Table 5.2(1). 
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(IV) Effect of aqueous carrier flow rate. 

The relationship between the flow rate of the aqueous carrier solution and the 

resulting peak-height absorbance is shown in Fig. 5.4. An optimum flow rate of 

11.0 m! min-1 was chosen to achieve optimum sensitivity and throughput. 
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Fig. 5.4. Effect of the aqueous carrier flow rate on the absorbance of 20 ng mt1 of 
Asm. All other variables as in Table 5.2(1). 

(V) Effect of HCIIlow rate. 

The effect of hydrochloric acid flow rate on the sensitivity for Aslll was observed to 

be negligible over the range 2-9 ml min-1• Less than a 11% variation in sensitivity 

was observed over this range. 

(VI) Effect of HCI concentration. 

The relationship between the hydrochloric acid reagent concentration and the 

resulting peak-height absorbance is shown in Fig. 5.5. An optimum concentration 

of 3.6 mol dm-3 was chosen on the basis of sensitivity. 
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Fig. 5.5. Effect of concentration of HCI solution on the absorbance of 20 ng m!"1 

of Asm. Flow rate of HCI, 3.2 m! min·1. All other variables as in Table 
5.2(1). 

(VII) Effect of NaBH4 flow rate. 

The effect of sodium tetrahydroborate flow rate on the sensitivity for Asiii was 

shown to be negligible over the range 3.2-8.7 m! min·1. Less than a 5.0% variation 

in sensitivity was observed. 

(VIII) Effect of NaBH4 concentration. 

The relationship between the concentration of sodium tetrahydroborate and the 

resulting peak-height absorbance is shown in Fig. 5.6. An optimum concentration 

of 1.0% mfv was chosen on the grounds of superior nickel interference tolerance 

at low sodium tetrahydroborate concentrations [ 46]. 
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Fig. 5.6. Effect pf the ~ll"centration of NaBH4 solution on tpe absorbance of 20 
ng mr of As . Flow rate of NaBH4, 3.2 m! min· . All other variables 
as in Table 5.2(1). 
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(IX) Effect of sample injection volume. 

The effect of sample injection volume on the sensitivity for As111 is shown in Fig. 

5.7. An injection volume of 409 fll was chosen for all subsequent work to optimize 

the throughput capability of the whole analysis system and achieve 75% of the 

optimum steady state sensitivity. 
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Fig. 5.7. Effect of injection volume on the absorbance of 20 ng mr1 of Asm. All 
other variables as in Table 5.2(1). 

5.4.2 Performance characteristics of FI-HGAAS manifold. 

The performance characteristics of the FI-HGAAS manifold were measured for the 

values of the operating parameters shown in Table 5.2(1). A characteristic 

concentration (0.0044A) of 0.42 ng mr1 of As111 and throughput capability of 110 h-1 

were obtained. The relative standard deviations for 2 and 10 ng m!"1 As111 were 3.3 

and 3.2%, respectively, (n= 10). 

5.4.3 Optimization of manifold variables for interference tolerance. 

The interference tolerance of the FI-HGAAS manifold in the determination of As111 

was investigated for copper, nickel, cobalt, antimony, tin and selenium. Unless 

otherwise stated the operating conditions used were those shown in Table 5.2(1). The 

relative sensitivity of each interferent sample was calculated against a pure 20 ng mr1 
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Asiii standard solution. Interference free determination was assessed as that 

producing a relative sensitivity of 100±10%. 

(I) Elimination of interference memory effects. 

The interference free determination of 20 ng mr1 of Aslll was achieved with up 

to 100 11g mr1 of Ni(II) and 50 11g mr1 of Cu(II) respectively. In both 

investigations though the sensitivity of the Asiii standard had to be determined 

before each interferent sample due to the presence of a significant interference 

memory effect. With increased interferent processing the overall sensitivity of the 

system was observed to deteriorate slowly in a manner similar tothat observed in 

the Se1v interference tolerance studies (Section 4.3.3). For the nickel and copper 

interferents, the percentage reductions in sensitivity observed were 18.0 and 45.5% 

respectively. Sensitivity was regained in both cases by soaking the atomization T

cell in a 10% v/v solution of hydrofluoric acid (48% Aristar, BDH) for 

approximately 15 minutes, followed by rinsing in distilled water and drying. The 

restoration of optimum sensitivity following this washing process suggested that 

the interference memory effect was due to contamination of the silica T-cell by 

trace amounts of copper and nickel salts (46, 49], as discussed previously, 

(Section 4.3.3). 

To eliminate the effect, prevention of the transport of such interferent species by 

the argon carrier gas to the atomization T-cell was required. A disposable gas-line 

membrane filter (PTFE, 0.2 11m) was fitted in-line with the hydride transport 

tubing as shown in Fig. 5.1. It was found that the filter caused a noticeable 

increase in back pressure which reduced the level of the aqueous reaction mixture 

in the gas-liquid separator. However, Ar flow rates of up to 500 ml min·1 were 

achieved without any loss of Ar or hydride through the separator drain. A direct 

comparison of the performance characteristics of the FI-HGAAS system with and 

without the membrane filter was made. The results are shown in Table 5.4. 
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Table 5.4 Performance data for the Fl-HGAAS system for the determination of 
Aslll with and without the membrane filter fitted. Manifold variables 
as in Table 5.2(I). 

Aslll concentration, NO FILTER FILTER 
ngmr1 

Absorbance RSD ( %) Absorbance RSD (%) 

2.0 0.019 3.3(n= 10) 0.012 3.8(n=12) 

10.0 0.110 3.2(n= 10) 0.056 1.9(n=12) 

20.0 0.195 2.4(n= 6) 0.109 0.5(n=12) 

(Il) Interference tolerance for nickel. 

The nickel interference tolerance of the FI-HGAAS system was investigated 

following the inclusion of the membrane filter within the gas-line. The effect of 

both HCl reagent concentration and reactor coil length (RC2) on the nickel 

interference in the determination of Aslll is shown in Table 5.5. No precipitation 

or colour change was observed in the gas-liquid separator or manifold tubing and 

no interference memory effect was experienced throughout the investigations. 

Operating parameters selected for subsequent work, shown in Table 5.2(I), were 

chosen on the basis of optimum sensitivity. The corresponding nickel interference 

tolerance of 100 J.Lg mr1 was considered more than sufficient for the proposed 

analysis of nickel alloy particulary with the implementation of matrix isolation 

prior to determination. 

Table 5.5 Effect of hydrochloric acid concentration and reactor cpil !en~ (RC2) on 
nickel interference in the determination of 20 ng mr of As . All other 
variables as in Table 5.2(I). 

Ni(II) RELATI YE SENSITIVITY % 
concentration 

J.Lgmr Investigation I I nvesti ation Il Investigation Ill 

10 100.8 -.-
50 99.2 -.- -.-
100 96.0 99.2 101.1 

200 82.0 95.3 100.0 

500 35.9 75.6 80.4 

1000 13.9 35.2 40.2 

Investigation I HCl 3.6 mol dm-3, RC2 600 mm ~0.8 mm i.d.l 
Investigation Il HCl 7.2 mol dm-3, RC2 600 mm 0.8 mm i.d. 
Investigation III HCl 7.2 mol dm-3, RC2 100 mm 0.8 mm i.d. 
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(Ill) Interference tolerance for copper. 

The interference-free determination of As111 was achieved with up to 1000 J.Lg 

mr1 of Cu. During the analysis of high concentration copper samples a dirty 

brown precipitate was observed within the gas-liquid separator. The precipitate 

washed out of the gas-liquid separator within seconds of each injection. At 

concentrations above 500 J.Lg ml·1 of Cu specks of a grey-black precipitate were 

also observed within the reactor coil (RC2) at the merging point of the acidified 

sample solution with the sodium tetrahydroborate solution. These observations 

were very similar to those reported in the investigation of copper interference 

in the determination of Setv, (Section 4.3.3). Despite the presence of the 

precipitate, no interference memory effect was experienced. 

(IV) Interference tolerance for cobalt. 

The interference-free determination of As111 was achieved with upto 100 J.Lg mr1 

of Co. No visible precipitation in or discolouration of the gas-liquid separator 

was observed on the analysis of the interferent samples and even at the 1000 J.Lg 

mr1 Co level no interference memory effect was experienced. 

(V) Interference tolerance for antimony. 

The interference-free determination of As111 was achieved with upto 0.02 J.Lg mr1 

of Sbiii . No precipitation or discolouration within the gas-liquid separator was 

observed throughout the investigation. An interference memory effect was 

observed but was shown to be transient in nature. The interference memory 

effect was removed through the repeated determination of a 20 ng mr1 Asiii 

standard solution. The presence of Sbiii was observed to affect the signal 

response peak shape and introduce background absorption as shown in Fig. 5.8. 

(VI) Interference tolerance of tin. 

The interference-free determination of As111 was achieved with up to 0.1 J.Lg ml·1 

of Snu. No precipitation or discoloration within the gas-liquid separator was 

observed, yet a strong interference memory effect was experienced. Following 

the analysis 10 and 50 11g ml·1 Snll samples the Asiii signal response was 

reduced to 83.0 and 36.0% of the original peak height signal response, 

respectively. This memory effect was removed by soaking the silica atomization 

T-cell in a 40% hydrofluoric acid solution for approximately 15 minutes. 
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ANTIMONY STUDY (SECTION 5.4.2 (V)) 

• 

SELENIUM STUDY (SECTION 5.4.2 (Vll)) 

• 
• 

100 ).'g ml· 1 se1v 10 ).'g ml· 1 Se1v 

Fig. 5.8. Effect of antimony and selenium on the signal response obtained in the determination of 20 ng ml·' of Asm. All other variables as in Table 5.2(1). 
• No Asm Present. 



(VII) Interference tolerance for selenium. 

The interference-free determination of As111 was achieved with up to 0.01 

~g mr1 of Se1v. No significant memory effect was experienced but, as 

reported for Sb111 (Section 5.4.2 (V)), the presence of Se1v affected the 

signal response as shown in Fig. 5.8. The investigation was repeated but 

each sample and standard was spiked at the 500 ~g mr1 Cu level prior to 

determination. As a result of copper addition the interference free 

determination of As111 was possible with up to 10 ~g mr1 Se1v. 

5.4.4 Discussion. 

The sensitivity of the FI-HGAAS system following optimization (Section 5.4.2 

characteristic concentration (0.0044A) 0.42 ng mr1 Asm), compared favourably with 

the characteristic concentration figure of 0.32 ng ml·1 quoted for the PU9360 system 

when used for conventional steady state analysis [268]. In comparison with the 

optimization study made for Se1v determination (Section 4.3.1) a significant difference 

was noted for the optimum argon carrier gas flow rate and reactor coil length (R~) 

in each case. Improved As111 sensitivity with reduced Ar carrier gas flow and 

increased reactor coil length may be explained in part by the slower rate of arsine 

formation relative to that of hydrogen selenide [27, 69]. The increased sensitivity with 

increased reactor coil length may well be attributed also to increased stripping of the 

hydride from solution prior to the gas-liquid separator[27], (Chapter six, Section 6.3). 

Inclusion of the disposable membrane filter within the hydride transport line clearly 

eliminated the interference memory effect experienced in the analysis of copper and 

nickel samples (Section 5.4.3 (!)). From these observations it was concluded that the 

interference memory effect observed in the As111 study and also in earlier Se1v studies 

(Section 4.3.3) was caused by the contamination of the silica atomization T -cell by 

trace amounts of copper and nickel salts, transported within a fine aerosol by the Ar 

carrier gas (46,49]. 

Inclusion of the membrane filter within the system, although detrimental to system 

sensitivity through increased dilution of the hydride in the gas phase was significantly 

beneficial to system precision (Table 5.4). This improved precision may be explained 

by the slight increase in back pressure within the system and the consequent 

dampening effect on pulsations in the Ar carrier gas flow rate. Prevention of the 
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transport of droplets of aqueous reaction mixture to the atomization T -cell may also 

have contributed to the improvement in precision. 

The interference tolerance of the FI-HGAAS system was shown to be high for 

copper, cobalt and nickel. These observations are explained by the rapid separation 

of the hydride from the interfering matrix[13] and the limited absolute concentration 

of interferent introduced into the system [44,90] in each case, as discussed previously 

in section 4.5.3. The observed interference-free determination of As111 with up to 1000 

1-1g ml-1 of Cu in the presence of significant precipitate supports the suggestion that 

high copper interference observed in the determination of Se1v (Section 4.5.3) is not 

due to the competition between precipitation and hydride evolution [14, 45]. The 

formation of copper selenide [ 44, 46, 49] is considered to be the more probable 

interference mechanism in this case. 

The nickel interference tolerance of the system was significantly higher than the 

5 1-1g mr1 Ni reported by Riby et al. [83]. A number of factors may be responsible for 

this. The 409 1-11 sample injection volume was less than 1000 1-11 used by Riby et al. [83] 

thus reducing the absolute amount of interferent introduced into the HGAAS system. 

Relative concentrations of sodium tetrahydroborate in each system calculated after 

correction for dilution from other reagent streams are also significantly different. In 

the proposed manifold a NaBH4 concentration of 0.18% m/v was calculated in 

comparison with 0.38% mfv for the manifold of Riby et al. [83]. According to Welz 

and Schubert-Jacobs [46], a lower sodium tetrahydroborate concentration would be 

expected to give improved interference tolerance. 

The addition of sodium tetrahydroborate prior to hydrochloric acid in the system of 

Riby et al. [83] may also be responsible for the inferior interference tolerance. This 

was demonstrated initially by Pierce and Brown [42] and further studied by Crock and 

Lichte [87]. Preferential reduction of nickel to the free metal or metal boride together 

with the lower solubility of such reduced interferent species could account for the 

observations made for this order of reagent addition. 

Interference tolerances of the system to the hydride forming elements Sb111, Sn11 and 

Se1v were far inferior to that reported for Cu, Ni and Co. Interference in the gas 

phase [15] due to (i) radical population interference and (ii) analyte decay 

interference (possibly due to formation of diatomic molecules [40]) is proposed as the 

interference mechanism for the three interferents in question based on (a) a lack of 
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any precipitation, (b) the presence of memory and background effects and (c) the 

such low concentration (ng ml"1) at which interference was observed. 

In the study of antimony interference, the transient interference memory effect is 

attributed to the deposition of elemental antimony followed by its slow evaporation 

from the silica atomization T-cell surface, as reported by Narsito et al. [27]. The 

permanent interference memory effect observed with Sn11 may again be explained by 

deposition within the atomization cell [15, 101, 102]. It has been suggested that these 

deposits modify the silica surface of the T-cell, encourage hydrogen radical 

recombination and analyle decay [15]. 

Background absorption effects may be explained by the introduction of interferent 

hydride species to the atomization T-cell and the species produced as a result of their 

subsequent decomposition. These include dimer and other polymer species [93], and 

diatomic molecules such as AsSb [40]. 

The successful use of copper as a selenium interferent suppressant [ 69, 70] is 

explained by the marked difference in the interference tolerances of copper observed 

in Se1V and Aslll determinations (Sections 4.3.3 and 5.4.3 respectively). Although 

successful for the reduction in Se1v interference the only problem with the procedure, 

on a practical level, was the formation of a significant quantity of precipitate within 

the system. With prolonged use the slow build up of precipitate would gradually block 

the flow line. 

5.5 OPTIMIZATION OF THE CONTINUOUS FLOW MATRIX ISOLATION MANIFOLD FOR 
NICKEL RETENTION. 

The efficiency of the Dowex 50WX8 100-200 cation exchange resin filled micro-column was 

investigated in the same manner as outlined in Chapter four (Section 4.6.1). The nickel capacity 

of the column was assessed by pumping a 1000 l'g m1"1 Ni standard solution (nickel (11) 

sulphate 7 hydrate) through the column and continuously monitoring the column eluent by 

flame atomic absorption spectrometry. Spectrometer variables used were those recommended 

by the manufacturer [268]. A flow rate of 2.4 ml min-1 was used in all investigations on the basis 

of the results described in section 4.6.1 which indicated that improved exchange efficiency would 

be obtained at low flow rates. Breakthrough was judged to have occurred when the nickel 

concentration in the eluent exceeded 10 l'g ml-1 of Ni, 10% of the hydride generation system's 

nickel interference tolerance. The effect of pH on the recovery of Aslll from the column was 
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determined by comparing the signal response peak heights of pH adjusted standards before and 

after passage through the column. All pH adjustments were made by the addition of either HCI 

or ammonia solutions. 

5.5.1 Effect of sample pH on nickel retention. 

The effect of pH on the retention of nickel is shown in Fig. 5.9. Maximum retention was 

achieved at pH values above 2.0. 
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Fig. 5.9. Retention of Ni on the micro-column as a function of sample solution pH. 
Sample flow rate, 2.4 m! min-1. 

5.5.2 Effect of sample pH on Aslll recovery. 

The recovery of a 20 ng mr1 Asm solution (sample flow rate 2.4 ml min-1) over the 

pH range 1.00-5.94 was quantitative (96.9-103.2%). 

5.5.3 Discussion. 

From the results it was evident that to optimize the matrix isolation procedure the 

sample pH should be kept above a value of 2.00. 

This design of matrix isolation system has a number of beneficial features, as 

previously discussed in detail in Chapter four (Section 4.6.2), which clearly makes it 

superior to in-line matrix isolation systems [71, 82, 83]. Mounting the column of the 

resin in the "injection" loop of a six port rotary valve allows intermittent regeneration 
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of the column while the determination is proceeding in the hydride generation 

manifold or standards are being introduced for calibration purposes. The direction 

of acid regenerent flow is opposite to that used to load the column and thus any 

tendency of the column contents to compact is minimised. As the resin is loaded in 

a continuous flow mode, the dimensions of the resin are not critical as the column 

makes no contribution to sample dispersion. In a flow injection manifold, such 

dimensional changes could eventually lead to measurable changes in dispersion 

coefficient. 

5.6 DETERMINATION OF Asm IN A SYNTHETIC NICKEL MATRIX. 

The FI-HGAAS manifold (Fig. 5.1) was operated with the stopped-flow KI pre-reduction 

reagent lines disconnected under the conditions shown in Table 5.2(1) and (II). Synthetic nickel 

sample solutions containing 1000 IJ.g ml'1 Ni (Ni(II) sulphate 7 hydrate) were prepared without 

any pH adjustment or addition of pH buffer, spiked with 10, 20, 50 and 100 ng m!'1 of Asm. 

The recoveries of Asm from these synthetic samples (pH 5.50) were determined in triplicate 

against aqueo~s standards of the same determinand concentrations. The recoveries of 10, 20, 

50 and 100 ng m!'1 of Asiii were 97.8; 97.8; 98.9; and 98.1% respectively. 

5.7 DETERMINATION OF As IN A NICKEL RASED ALLOY REFERENCE MATERIAL. 

The analysis of a single nickel based alloy BCS 346 was attempted. 

5.7.1 Sample digestion. 

The method [83) used for the digestion of nickel alloy reference material BCS 346 was 

as follows. 

A sample of nickel alloy (1.00 g) was accurately weighed in duplicate into two PTFE 

microwave digestion bombs. To each bomb was added 20 ml 4% v /v HN03 and 2.5 ml 

40% HF. The same acid digestion media was added to four other PTFE digestion 

bombs. The six bombs were capped, equally spaced within the microwave turntable and 

taken through the one hour digestion programme, (15 mins 30% power, 15 mins 50% 

power, 30 mins 40% power). Following the digestion programme the samples were left 

for one hour to cool. The bombs were uncapped, their contents transferred to 100 ml 
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polypropylene calibrated flasks and diluted to volume with analytical-reagent grade water. 

Prior to analysis the digests were further diluted to produce working samples containing 

1000 flg mr1 of Ni. Analysis of the working samples was carried out within 24 hours of 

digestion. After 24 hours the samples were observed to contain a significant amount of 

precipitated material. 

5_7 .2 Identification of As oxidation state. 

Prior to the attempted analysis of nickel alloy reference material the effect of the 

microwave digestion procedure on the oxidation state of As was investigated. Aqueous 

standard solutions of Aslll with and without nickel present were taken through the 

digestion procedure outlined in section 5.7.1. The As recoveries of these samples were 

subsequently determined against Asm standard solutions, as outlined in section 5.6. 

Results obtained from this investigation are shown in Table 5.6. 

Table 5.6 Effect of microwave digestion procedure on the recovery of Asm. Manifold 
variables as in Table 5.2 (1,!1). 

Sample solution Absorbance Recovery 
(%) 

STD 1 25ng mr1 Aslll 0.123(n=3) 

*SMP 1 Blank O.OOO(n=3) 

*SMP2 25ng mr1 Asiii 0.016(n=3) 13.0 

*SMP3 25ng mr1 Asm 0.015(n=3) 12.2 

*SMP4 25ng mr1 Asm, 500 flg mr1 Ni 0.014(n=3) 11.4 
·~amoles taken throu~h mtcrowave dt estwn p g g p rocedure. 

In view of the results shown in Table 5.6, a pre-reduction step was applied to determine 

whether or not the low recoveries were caused by the oxidation of As m to As v during 

sample digestion. A batch procedure, reported by Welz and Melcher [53], employing 

potassium iodide as a reducing agent was used as follows. Digested sample solutions 

were prepared to contain potassium iodide and hydrochloric acid concentrations of 0.5% 

m/v and 4.8 mol dm-3 respectively. The samples were then allowed to stand for 30 

minutes to allow quantitative reduction of As v and then analysed in the same manner 

as outlined in section 5.6. The results obtained from this investigation are shown in Table 

5.7. It was concluded that the low As recoveries were caused by the oxidation of Aslll 

to As V during the microwave digestion step, in direct contradiction of the observations 

of Riby et al. [83]. 
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Table 5.7 Effect of microwave digestion procedure on the oxidation state of As. Manifold 
Variables as in Table 5.2 (1,11). 

Sample solution Absorbance Recovery 

STD 1 25 ng mr1 Aslll 0.136(n=3) 

STD2 25 ng mr1 As V 0.025(n=3) 

*SMP 1 25 ng mr1 Aslll 0.020(n=3) 

*SMP 2 25 ng mr1 Aslll 0.020(n=3) 

**SMP3 Blank 0.007(n=3) 

**SMP 4 25 ng mr1 Aslll 0.147(n=3) 

**SMP 5 25 ng mr1 Aslll 0.145(n=3) 
*Samples taken throu !h microwave d1 estmn p g g p rocedure. 
• *Samples taken through microwave digestion procedure and K1 
pre-reduction procedure. 

5.7 .3 System performance for the determination of As v. 

(%) 

18.0 

14.7 

14.7 

·.-
102.9 

101.5 

The performance characteristics of the FI-HGAAS manifold (Fig. 5.1) for the 

determination of As v was investigated to assess the possible use of an As v calibration 

procedure in the analysis of nickel based alloy. A characteristic concentration of 5.5 ng 

mr1 As V was obtained for the manifold variables shown in Table 5.2. The interference 

free determination of 100 ng mr1 of As V was achieved with up to 100 11g ml"1 of Ni 

under the same conditions. The reduced sensitivity observed in the determination of Asv 

relative to that of Asm prevented analysis of the nickel alloy based on As v quantification. 

It was concluded that an As v pre·reduction step was needed in the analysis to permit 

determination and quantification as Asm. 

5.7.4 On-line pre-reduction of As v. 

An on-line pre-reduction procedure for As V employing the reduction chemistry reported 

by Sperling et al. [281] to produce the quantitative reduction of As v to Asiii in a reaction 

time of 4 s for FI-ETAAS, was investigated. The composition of the reducing reagent 

'cocktail" employed is given in Table 5.8. 

143 



Table 5.8 Reducing agent "cocktail" for the rapid on-line reduction of As v to As m. 

100 m! 4.5 mol dm-3 HCI 

200 m! 1.5 mol dm -3 

10 g ~a2S2C>3 
50 g KI 

The manifold shown in Fig. 5.10 was developed to permit the pre-reduction procedure 

to be applied after matrix isolation but prior to FI-HGAAS. Sample and reducing agent 

flow rates used were both 2.0 ml min-1 which permitted a reaction time in excess of 4.5 

s for a 3 m long reactor coil (0.8 mm i.d.). The FI-HGAAS manifold shown in Fig. 5.1 

was operated under the optimum conditions shown in Table 5.2(1). Sample solution was 

sampled intermittently through the activation of the sample injection valve as outlined 

in Chapter four (Section 4.4.1). 

s 

A 
w 

RR 

RC (3.0m) 
p 

FI-HGAAS 

Fig. 5.10. Schematic diagram of continuous flow matrix isolation unit incorporating an 
on-line As v pre-reduction step. P, peristaltic pump; S, sample; A, HCI; RR, 
reducing reagent; W, waste; V1, switching valve; V2, sample injection valve; C, 
micro-column. 

In the proposed on-line pre-reduction system blank absorbance values were excessively 

high ( > 1.00 A) making quantitative analysis impossible. The blank values were explained 

by the formation of hydrogen sulphide as a by-product of the hydride generation 

reaction, identified by its characteristic smell. 
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- ---------------------- ------------------

Because of the high background and the fact that hydrogen sulphide is toxic no further 

investigation of this pre-reduction chemistry was made. 

5.7 .5 Stopped-flow KI pre-reduction of As v, 

The use of a stopped-flow KI pre-reduction procedure was investigated to improve 

system sensitivity following the unsuccessful application of the on-line procedure 

described in section 5.7.4. The system used is shown in Fig. 5.1 and discussed in section 

5.3, operated under the optimum conditions shown in Table 5.2. The reducing agent used 

consisted of potassium iodide and hydrochloric acid. This reagent was used in a batch 

procedure by Welz and Melcher [53] and has been successfully applied to continuous 

flow systems by Pacey et al. [58] and Yamamoto et al. [88]. 

An investigation of the performance of the stopped-flow KI pre-reduction unit as a 

function of the stop-time, KI reagent concentration and HCI reagent concentration was 

made. The relative sensitivity of a 50 ng mr1 Asv standard solution was compared 

directly with that of a 50 ng mr1 Aslll standard solution for three separate sets of 

operating conditions as shown in Table 5.9. The values of the operating parameters used 

in investigation C (Table 5.9) and a stop time of 15 s were chosen as optimum for the 

pre-reduction unit (Table 5.2(III)). 

Table 5.9 Effect of manifold variables on the performance of the stopped-flow KI pre
reduction system for the reduction of 50 n§ mr1 of As v. A, KI 1.4 ml min·1 

(20% m/v), HCI1.5 ml min·1 (12 mol dm" ); B, KI 1.4 ml min"1 (30% m/v) 
HCI 1.5 ml min"1 ~12 mol dm-3); C, KI 1.4 ml min·1 (30% m/v), HCI 2.2 ml 
min"1 (12 mol dm" ). All other variables as in Table 5.2(I,Il). 

Stop time/s Relative sensitivity(%), (Asv wrt Aslll) 

Investigation A Investigation B Investigation C 

5 79.9 97.5 

10 77.6 86.6 95.2 

15 82.3 90.4 97.5 

20 80.4 97.0 96.7 

30 89.2 95.6 96.7 

45 92.1 95.6 

60 94.8 95.5 

145 



5.7.5.1 Discussion. 

For the values of the operating parameters used in investigation C (Table 5.9) an 

average recovery of 96.74% (standard deviation 0.62% and 95% confidence interval 

±0.77%) was obtained for stop times between 5 and 30 s. Clearly this is significantly 

different from 100% suggesting that not all the arsenic has been reduced. However, 

the conversion was considered sufficiently high enough to permit Asiii quantification 

with the possible implementation of a correction factor. The benefits of the stopped

flow pre-reduction unit design, as reported for the matrix isolation unit, result from 

the independence of the procedure from the hydride generation chemistry. The 

conditions for efficient pre-reduction, therefore, may be optimized separately from 

those of the hydride generation reaction. Due to the use of relatively high carrier and 

reagent flow rates in the FI-HGAAS manifold, the implementation of an in-line KI 

pre-reduction procedure [58, 88] was dismissed. The reactor coil length required to 

permit sufficient time for the quantitative reduction of As v, if possible in such a 

system, would be excessively long. It is proposed that this would compromise 

throughput capability, interference tolerance [13] and, due to the expected increase 

in back pressure, system reliability. 

In the stopped-flow method, control of reaction time is achieved independently of any 

other parameter such as flow rate or tube length. To achieve a residence time of 

15 s, without the implementation of the stopped-flow procedure, for the combined 

flow rate of 5.8 m! min'1 of sample and regents a reactor coil length of 2.9 m (0.8 mm 

i.d.) would be required in the matrix isolation/KI pre-reduction unit (Fig. 5.10). This 

strategy though would be far less economical with respect to sample and reagent 

composition. For the stopped-flow procedure the consumption of potassium iodide 

was 19.5 g h'1. This figure could be reduced further by pumping reagents 

independently of the matrix isolation unit. In such a system the pumping of reduction 

reagents could be stopped during column regeneration. The calculated potassium 

iodide consumption was clearly superior to the figures of 45 and 75 g h'1 reported for 

in-line KI pre-reduction procedures [58, 88]. This was to a degree due to the fact that 

the potassium iodide reagent in the stopped-flow unit was not diluted by the reagents 

used in the FI-HGAAS manifold (H20 carrier, HCI and NaBH4). The stock 

concentration necessary (30% m/v) to achieve quantitative reductions of As v was 

therefore reduced. 
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5.7.6 Calibration and analysis procedures. 

The Fl-HGAAS manifold shown in Fig. 5.1 was operated under the optimum values of 

the operating variables shown in Table 5.2 according to the analysis sequence outlined 

in section 5.3.1. Aqueous Aslll standard solutions (0-80 ng ml-1 Aslll) were used for 

calibration. These were sampled directly without undergoing matrix isolation. Replicate 

determinations of the As content of the BCS 346 nickel based alloy, digested as outlined 

in section 5.7.1, were made on two separate digest solutions. The column was 

regenerated after every third determination. Calibration and analysis data is shown in 

Table 5.10. 

Table 5.10 Calibration and analysis data for BCS 346. 

Sample Standard Absorbance Mean Corrected 
mass/g concentration absorbance absorbance 

/ ng ml-1 

0.0 0.006 0.006 
0-9.0~ 
-&.006 0.0063 

10.0 0.028 0.029 0.029 0.0287 

20.0 0.051 0.051 0.052 0.0513 

40.0 0.095 0.093 0.093 0.0937 

60.0 0.132 0.133 0.132 0.1323 

80.0 0.170 0.170 0.170 0.1700 

1.0399 0.103 0.101 0.101 0.1017 0.1051 

1.0334 0.101 0.100 0.100 0.1003 0.1037 

Regression equation y=0.002046x + 0.008773 

Syfx 2.50586 X w-3 

sb 3.6359 x w-5 

s. 1.6327 x w-3 

where y is absorbance, x concentration (ng ml"1), Sy/x is the standard deviation of they 

residuals, Sb is the standard deviation of the slope and Sa is the standard deviation of the 

intercept [283). The corrected absorbance values are those which would have been 

obtained had all the arsenic in the sample been reduced to Asm, (Relative signal 

response Asv wrt Asm, 96.74%). 
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5.7.7 Analysis results. 

The results of the analysis of the reference material are given in Table 5.11, based on a 

unweighted least squares regression of the calibration data shown in Table 5.10. The 

standard deviations of the two results are 0.89 and 0.88 ng mr1 for solution 

concentrations of 47.08 and 46.40 ng mr1, respectively (283]. The concentrations in the 

solid samples are therefore 45.27 and 44.90 fig g'1 with confidence intervals ±2.37 and 

±2.38 fig g·1 respectively. 

Table 5.11 Result of the analysis of BCS 346 nickel alloy reference material. ( ±95% 
confidence limits). 

Sample As found fig g·1 Certified value for As fig g'1 

Sample 1 45.3±2.37 50.2±3.7 

Sample 2 44.9±2.38 

5.7.8 Discussion. 

On first inspection of the analysis results one may reach an instant conclusion that the 

analysis was unsuccessful. Applying the "t-test" (284) to the data shown in Table 5.11 the 

null hypothesis was in fact rejected for both samples (P = 0.05), therefore, indicating a 

significant difference between the analytical results and certified value. However, this test 

requires a knowledge of the standard deviations of the two mean values to be compared 

and the number of replicates from which the two means were calculated. For the BCS 

346 certified reference material the certificate gives four results from different analysts, 

namely 50.0, 51.8, 52.0 and 47.0 fig g·1. Although the mean, standard deviation and 95% 

confidence interval from this data was calculated in the "t-test" the results were clearly 

an underestimation of the true uncertaintity since no consideration was paid to the 

uncertaintity of the results obtained from each analyst. As this data is not available on 

the certificate a truly accurate "t-test" cannot be undertaken, therefore, limiting the 

significance of the result achieved with the "t-test" applied. 

For the data obtained in the analysis (Tables 5.10 and 5.11) standard deviations and 95% 

confidence intervals were calculated, taking into account the uncertaintity encountered 

when calculating a concentration from an unweighted linear regression (283). Applying 

such a protocol even without a consideration of the uncertaintity due to the percentage 

reduction of Asv to Asm, the 95% confidence intervals of the measured value and the 
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certified value overlap. This, by definition, indicates partially that the values are not 

significantly different. 

A proposed explanation for the rather low mean As recovery from the nickel alloy was 

interference in the determination of As from mutual hydride forming elements.From the 

certificate for the reference material although the concentrations of the individual 

hydride forming species (Se, Sb, Sn etc) were all within the interference tolerance limits 

of the system, as determined in section 5.4.3, no consideration was paid to their additive 

effect. A repeat analysis was attempted employing a lower sample concentration, 

therefore, lower absolute concentration of mutual hydride forming species but no results 

were obtained due to spectrometer failure. 

5.7.9 System performance. 

For the analysis of nickel based alloy (BCS 346) a characteristic concentration (0.0044A) 

of 2.1 ng mr1 As was obtained. The detection limit of 3.9 ng mr1 As was calculated from 

the resultant calibration graph [275]. A sample throughput of 18 h'1 was achieved with 

triplicate injections. 

5.8 DISCUSSION. 

As discussed in detail in Chapter four and earlier in this chapter (Section 5.5.3) the design 

features of the continuous flow matrix isolation system makes it superior to that of previous in

line systems [71, 82, 83]. Full automation of the system, including the stopped-flow pre-reduction 

procedure should be possible with existing apparatus [277]. It is also postulated that the same 

stopped-flow KI pre-reduction procedure could be applied to the determination of Sb with tbe 

same benefits as outlined in section 5.7.5. 

For the direct application of the system to the determination of As in nickel alloy the detection 

limit was shown to be inferior to that of Riby et al. [83]. The values obtained for the two 

systems were 3.9 and 1.3 ng mr1 of As, respectively. The detection limit of the stopped-flow FJ. 

HGAAS system is restricted by the KI pre-reduction step, absent in the work of Riby et al. [83]. 

Prior to introduction into the FI-HGAAS system the sample was diluted by a factor of 2.7. 
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Some degree of controversy appears to exist as to the oxidation state of the As present in the 

nickel alloy following the microwave digestion procedure used (Section 5.7.1) (83, 278). In the 

work of Riby et al. (278) the oxidation state of the As present following digestion was assumed 

to be + 3 which was suggested to predominate at low pH. It appears though that no direct 

attempt was made to identify the species present. From the results described in section 5.7.2, 

the As is clearly present in the + 5 oxidation state. In connection with this an interesting 

observation was made by Riby et al. (278] using a dual column system (SCX and SAX columns 

in series) permitting the simultaneous determination of Asiii and Asv. In the determination of 

mixed aqueous Asiii and As v samples, separate signal responses were obtained for each species. 

In the presence of nickel though only a single Asiii signal response was reported. This was 

thought to be a direct result of the nickel exchanging with the column and releasing hydrogen 

ions into the sample, hence lowering the pH. The introduction of hydrogen ions was considered 

to cause the conversion of As v to As m. These statements though are contradicted by the 

observations made in section 5.7.2. No conversion of As v to As m was observed for a digested 

synthetic sample containing nickel (500 jlg ml'1 Ni) following the cation exchange procedure 

with the hydrogen form cation exchange resin, used in this work. 

Although the observations reported by Riby et al. (278) cannot be fully explained, it appears 

from their results that the cation exchange resin in the presence of Ni causes the rapid 

reduction of Asv to Asm. The proposed conversion of Asv to Asiii simply due to a decrease 

of pH though is rejected since a similar effect would be expected in the present system and this 

was not observed. Some consideration was also given to the order of reagent addition in the 

system of Riby et al.(278). Addition of sodium letrahydroborate prior to hydrochloric acid it was 

suggested may have in fact caused the rapid pre·reduction of As v to As m. Results in Chapter 

six (Section 6.4.1) though show that adding sodium tetrahydroborate prior to HCl makes no 

significant difference of the hydride generation efficiency of As V eliminating this possibility. 

The observations made by Riby et al. (278] are clearly of considerable interest since it appears 

that the rapid quantitative reduction of As v is possible by some mechanism yet to be fully 

elucidated. Further work is therefore clearly necessary to fully exploit its potential. 
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CHAPTER SIX 

EVALUATION AND CHARACTERISATION OF THE PERKIN-ELMER FIAS-200 
FI-HGAAS SYSTEM. 

6.1 INTRODUCTION. 

The successful application of flow injection to HGAAS (13), discussed in Chapter two, has 

eventually led to the development of a fully automated commercial FI-HGAAS system, the 

"FIAS-200", by the Perkin-Elmer corporation. Although basic performance data has been 

presented in sales documentation and in a single applications paper [243), to date very little 

information has been given on the characterisation of the instrument, its optimization or 

benefits of system design. 

This chapter describes an investigation into the use of the FIAS-200 system for the 

determination of As by FI-HGAAS. The system performance was evaluated and compared 

directly with that of the in-house system design, detailed in Chapter five, in order to identify 

possible benefits of system design. System variables were optimized. These included the order 

of reagent addition [42,58,83,87,235], atomization temperature [87,88,235], rector and segmentor 

coil lengths (27,235). Studies of these variables have been reported in the literature but with 

contradicting results as to the true optima. Following the optimization the direct application of 

the FIAS-200 system to the determination of As in nickel alloy without matrix isolation was 

assessed. 

6.2 APPARATUS AND REAGENTS. 

6.2.1 Apparatus. 

A Perkin-Eimer PE3100 atomic absorption spectrometer equipped with a Perkin-Elmer 

arsenic hollow cathode lamp was operated under the conditions shown in Table 6.1, 

based on the manufacturer's recommendations. The FIAS-200 FI hydride generation 

system shown in Fig. 6.1 and modifications of that manifold were used with the 

miniaturised gas-liquid separator shown in Fig. 6.2(1). The only permanent modification 

made to the system was the inclusion of a miniature PTFE membrane filter (Millex-SR, 

0.51-'m, Millipore) in-line with the hydride transport tubing, connecting the gas-liquid 

separator and silica atomization cell. A silica atomization cell heated externally by a 

furnace, shown in Fig. 6.3( l) was used throughout the work. 
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Table 6.1 Perkin·Elmer PE3100 spectrometer variables for the determination of 
arsenic. 

Wavelength, nm 

Slit Width, nm 

Lamp current, mA 

Background correction 

Status 

Integration time, s (Default) 

Signal quantification 

~ 

A 

R 

w 

L__p 

s 

I 1\v 
\ I) 

w 

}~ vv 

p 

193.7 

0.7 (low slit) 

18 

Off 

Computer control 

15 

Pcak·height absorbance 

h 

§s_ 
·vv 

AAS 

f:• 

GLS 

Fig. 6.1. Schematic diagram of the FIAS-200 FI-HGAAS system. P, peristaltic pump 
(stepper motor controlled); S, sample; A, HCl; R, NaBH4; W, Waste; V, sample 
injection valve; F, PTFE membrane filter; GLS, gas-liquid separator. 
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(NOTTO SCALE) 

(NOT TO SCALE) 

20 mm i.d. 

Level of reaction 
mixture 

ToMS 
(1000 mm, 1.0 mm i.d.) 

Aqueous reaction 
mixture,AsH3. H2, AI 

i!l-----Glass beads 
(Aqueous reaction mixture) 

(I) 

( 200 mm (7.0 mm i.d.) + 120 mm (5.0 mm i.d.)) 
_.- ---+AAS 

73mm 

'\. 
Waste 

(I!) 

Fig. 6.2. Gas-liquid separator designs. 
(I) FIAS-200 miniature gas· liquid separator, (Calculated internal volume 2.3 m!, 

excluding glass beads). 
(II) PU9360 gas-liquid separator, (Calculated internal volume 23 ml). 
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-Exhaust hose 

(I) 

~~==========="~=·~========~ 
fsoorun..~, 

lOO mm 

I (11) 

l 
--.1 11- 4.0 mm t.d. 

Fig. 6.3. Atomization cell designs. 
(I) FIAS-200 Furnace heated silica T-cell. 
(II) PU9360 Air-acetylene heated silica T -cell. 

The peristaltic pumps, injection valve, furnace and spectrometer were all controlled with 

an IBM compatible computer, using the specifically designed FIAS-200 system software. 

Where mentioned apparatus used for the in-house Fl-HGAAS system reported in 

Chapter five was as detailed in that chapter (Section 5.2.1), based around the gas-liquid 

separator shown in Fig. 6.2(II) and externally flame heated silica atomization cell shown 

in Fig. 6.3 (Il). 
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6.2.2 Reagents. 

An Asv stoc~ ___ standard solution (1000 j.lg ml-1) was prepared by dissolving the 

appropriate mass of sodium arsenate (certified grade, Fishe!)_ in analytical-reagent grade 

water. An Aslll stock standard solution (1000 1-1g ml"1) was prepared by diss~i~g·th-~ 
appropriate mass of arsenic trioxide (certified grade, Fisher) in sodium hydroxide 

solution (15 ml, 20% mfv) and then diluting to volume with reagent-grade water. 

Working standard solutions were prepared from these two stock solutions respectively 

by dilution with either HCl solution or reagent-grade water. Sodium terahydroborate 

solutions (in 0.1% mfv NaOH solution) were prepared using sodium tetrahydroborate 

solid (98%, Baker) and filtered through a Whatman 541 filter paper. With refrigeration, 

solutions were usable for up to 3 days. The hydrochloric acid reagent solutions were of 

A.C.S grade (Fisher). Conditioning and cleaning of the silica atomization cell was carried 

out using hydrofluoric acid (48% A.C.S grade, Fisher). For the nickel interference 

investigation work standard solutions were prepared from nickel (11) nitrate 6 hydrate 

(certified grade, Fisher). Reagents employed in the PU9360 system were as reported in 

Chapter five, section 5.2.2. 

6.3 OPTIMIZATION OF FIAS-200 SYSTEM VARIABLES. 

The spectrometer was operated under the conditions shown in Table 6.1, connected to the Fl

HGAAS manifold (Fig. 6.1). The FIAS-200 system was operated using the values of the 

operating parameters shown in Table 6.2, based on the manufacturer's recommendations. 

Unless otherwise stated a 10 ng mr1 Asv standard in 1.2 mol dm·3 HCl was used to investigate 

the effect of each operating parameter on the overall performance. 
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Table 6.2 FIAS-200 FI-HGAAS default variables for the determination of Asv (Fig. 6.1). 

~R::e:::a:Eg:::en::t:.__ ______ +--C=o::nc::::entration Flow rate/ m! min-1 

Sample 10 ng mr1 As V 

f---------t-->..:(1:::.2:...:m.::o:::..;l dm-
3 

HCI) 

~H::.C::l:..ca=r::.ri:::e::.r _____ ---1f---=1:::.2:..m::::;ol dm-3 

NaBH4 reagent 0.5% m/v 
f---------t~(0~.1~~~o~m/vNaOH) 

Ar -.-
~==========+===== 

500 ~I 

goo•c 

9.8 

10.0 

5.6 

50 

Injection volume 

Atomization temperature 

Reactor coil 

Segmentor coil 

100 mm (1.0 mm i.d.) 

300 mm (1.0 mm i.d.) 

(I) Effect of argon gas flow rate. 

The effect of the argon carrier gas flow rate on the absorbance signal response is shown in 

Fig. 6.4. An optimum Ar flow rate of 30 m! min'1 was chosen, after consideration was made 

to system precision, and applied in all subsequent work. 

o. '12 

0 '0 

~ 
0 09 

V c 

" D 

5 
~ 

0.015 

0.04 

0 02 

0 00 

0 ,0 '0 eo 90 '00 

Fig. 6.4. Effect of the flow rate of Ar on the absorbance of 10 ng mr1 of Asv. All other 
variables as in Table 6.2. 

(11) Effect of atomization temperature. 

The effect of atomization temperature on the sensitivity of As v is shown in Fig. 6.5. To 

achieve optimum signal response it was shown that the atomization temperature should be 
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kept at 750 'Cor above. An optimum atomization temperature of 800 'C was chosen for 

all subsequent work. 

0. 12 

0 '0 

(]) 0 08 

~ 
2 
6 0.06 

~ 
0. 04 

0.02 

o.ooL---------------------~--------------------~--------~ 
600 700 BOO 900 1000 4100 

Atomlz~tlon temperature/ ·c 

Fig. 6.5. Effect of the atomization temperature on the absorbance of 10 ng ml"1 of As v. 
All other variables as in Table 6.2. 

(Ill) Effect of reactor coil length. 

The effect of reactor coil length (RC, Fig. 6.1 (0.8 mm i.d.)) is shown in Fig. 6.6. 

Increasing the reactor coil length, although beneficial to As v sensitivity was shown to be 

detrimental to both sample throughput and stability of Ar carrier flow. Deterioration in 

the stability of Ar carrier gas flow was explained by a significant increase in back pressure 

with increasing reactor coil length. 

0 3 

0 2 

0.' 

0.0~------------------------~----------~-------------

0 1000 2000 3000 4000 

l=<r.t~ct.or col I '"no;;,t_h I mm 

Fig. 6.6. Effect of the reactor coil length (0.8 mm i.d.) on the absorbance of 10 ng m1"1 of 
As v. All other variables as in Table 6.2. 
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(IV) Effect of segmentor coil length. 

The effect of segmentor coil length (SC, Fig. 6.1 (0.8 mm i.d.)) on the As V sensitivity is 

shown in Fig. 6.7 for two reactor coil lengths (RC), 100 and 2000 mm (0.8 mm i.d.) 

respectively. For a reactor coil length of2000 mm an increase in segmentor coil length was 

accompanied by a significant increase in back pressure and therefore Ar flow instability, 

as reported in section 6.3(III). Reduced As v sensitivity with increased segmentor coil (RC, 

2000 mm) could not be conclusively explained, other than possibly by a reduction in 

sample transport rate in the chemifold, with increasing back pressure. It was concluded 

that the optimum combination of reactor coil and segment or coil lengths was 2000 and 300 

mm (0.8 mm i.d.) respectively. This produced an Asv sensitivity and precision slightly less 

than maximum without any back pressure problems. Under these optimum conditions, a 

characteristic concentration of 0.15 ng mr1 for As v and a precision of 1.1% (RSD, 

10 ng mr1 Asv, n=4) were achieved. 

0.35 

0 30 

0.25 
• ~ 
0 
D 0.20 
5 • D 
< 0. 1'5 

0.10 

0.05 

0 DO 
0 200 400 500 800 1000 

Seoment.or" col 1 lenQt.h 1 rrm 

Fig. 6.7. Effect of the segmentor coil length (0.8 mm i.d.) on the absorbance of 10 ng ml-1 

of Asv. (•), RC 100 mm (0.8 mm i.d.); ( •), RC 2000 mm (0.8 mm i.d.). All other 
variables as in Table 6.2. 

6.3.1 Discussion. 

An optimum atomization temperature of 800 'C was in close agreement with those 

reported previously of 850 'C (87], 950 'C [88] and 1000 'C (235]. In agreement with 

the findings of Ikeda (235] no improvement in sensitivity could be achieved at an 

atomization temperature above 900 • C. 
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The improved sensitivity observed with increased reactor and segmenter coil lengths was 

to an extent expected from the results obtained in the earlier Aslll study (Chapter five, 

Section 5.4.1 (Ill)) in which Aslll sensitivity was shown to increase with rector coil length, 

and the observations of others (27, 69, 235]. Increased reaction time achieved with 

increased reactor coil lengths was given as an explanation for the increased As v 

sensitivity particulary when considering the slow rate of formation of arsine from As v 

(27, 69]. Aggett and Aspell (280] postulated that arsine generation from As v is a two step 

reaction, the As V being reduced to As m before arsine formation. Reduction of As v to 

Aslll was considered to be the rate determining step. An increase in the efficiency of 

hydride stripping from the aqueous reaction mixture with a combined increase in reactor 

and segmenter coil length may also account for the observed increase in As v sensitivity 

(27]. 

On the basis of the optimization investigation the characteristic concentration achieved 

for As v of 0.15 ng ml·1 was clearly significantly superior to the figure of 5.5 ng mr1 

achieved with the PU9360 system (Chapter five, Section 5.7.3) but without prior 

optimization of manifold variables. Even allowing for the that fact the PU9360 was not 

optimized for the determination of As v, the significant difference in sensitivities of the 

two systems clearly gives some indication of the superior performance characteristics of 

the FIAS-200 system. 

6.4 DIRECT COMPARISON BElWEEN THE PERFORMANCE CHARACTERISTICS OF THE 

FIAS-200 AND PU9360 FI-HGAAS SYSTEMS. 

An experiment was undertaken to make a direct comparison between the characteristics of the 

FIAS-200 and those of the in-house PU9360 FI-HGAAS systems. The FI-HGAAS manifold 

optimized for the determination of Aslll on the PU9360 system (Chapter five, Fig. 5.1) was 

applied as directly as possible to the FIAS-200 system. An extra pump channel was included to 

permit the inclusion of an aqueous carrier stream into which the sample was injected prior to 

in-line acidification and NaBH4 addition, achieved through confluence mixing with pumped 

reagent streams. The manifold variables employed in the modified FIAS-200 system are shown 

in Table 6.3, transferred as directly as possible from Table 5.2(1), (Chapter five). 
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Table 6.3 FIAS-200 Fl-HGAAS variables based on the manifold variables optimized 
PU9360 system for the determination of As111, (Chapter five, Table 5.2 (I) 

for the 
). 

Reagent Concentration Flow rate/ ml min·1 

Sample Non acidified 9.8 

H,O carrier -.- 11.3 

HCl reagent 3.6 mol dm·3 3.5 

NaBH4 reagent 1.0% m/v 
(0.1% m/v NaOH) 

3.5 

Ar -.- 30 

Injection volume 500 J.Ll 

Atomization tern perature soo•c 
Reactor coil length, R~ 600 mm (0.8 mm i.d.) 

Segmentor coil, SC 300 mm (0.8 mm i.d.) 

The notable differences between the two systems that could not be physically overcome 

in the investigation were 

(I) absence of a segmentor coil in the PU9360 system 

(11) significantly lower Ar flow in FIAS-200 system 

(Ill) mismatch of sample injection volumes (FIAS-200, 500 J.LI; PU9360, 409 J.LI). 

Irrespective of these differences it was assumed that any significant diffe rences in 

performance characteristics could be attributed to the design features of the FIAS-200 

gas-liquid separator and atomization cell respectively. 

The results of the investigation are given in Table 6.4. Data for the PU9360 sy stem was 

obtained directly from Chapter five, sections 5.4.3 and 5.7.3 respectively. 

Table 6.4 Comparison of performance characteristics of the FI-HGAAS systems for the 
determination of As (variables as Table 6.2). 

PU9360 FIAS-200 

As111 Asv As m 

Characteristic 0.80 5.50 0.08 0.30 
concentration, ng mrt. 

Characteristic mass, ng 0.33 2.25 0.04 0 .15 

RSD (%) (10 ng mr1 As) 1.9(n = 12) 3.1(n=4) 1.8(n=4) 4.4 (n=6) 
'(0.0044A) 
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6.4.1 Effect of the order of reagent addition. 

The effect of the order of reagent addition on the determination of As v was investigated 

to identify whether there is any significant benefit in adding sodium tetrahydroborate to 

the sample, before acidification (83, 235]. The FI-HGAAS manifold detailed in Chapter 

five, Fig. 5.1, was applied directly to the FIAS-200 system and operated according to the 

variables shown in Table 6.2. Performance data for both orders of reagent addition for 

the determination of 10 ng mr1 of Asv are given in Table 6.5. 

Table 6.5 Effect of the order of reagent addition on the sensitivity of As v. All other 
variables as in Table 6.2, ( ± 95% confidence limits). 

Reactor coil length/ 
mm (0.8 mm i.d.) 

100 

200 

500 

600 

1000 

2000 

Investigation I 

Investigation II 

Investigation III 

Absorbance 

Investigation I Investigation 11 

·.· 0.174±0.005 

0.112±0.003 0.154±0.002 

0.141±0.005 

0.154±0.006 

0.187±0.007 0.133±0.004 

0.208±0.005 0.122±0.002 

HCI addition erior to NaBH4 
10 ng ml"1 As aqueous standard 
RC1, 100 mm (0.8 mm i.d.) 
Re;, varied 
se, 300 mm (0.8 mm i.d.) 

NaBH4 addition prior to HCI 
10 ng ml" 1 As V aqueous standard 
RC1, varied 
RC2, 600 mm (0.8 mm i.d.) 
se, 300 mm (0.8 mm i.d.) 

NaBH4 addition prior to HCI 
10 ng mi·1 As v (1.2 mol dm·3 HCI) 
RC1, varied 
RC2, 600 mm (0.8 mm i.d.) 
se, 300 mm (0.8 mm i.d.) 
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Investigation Ill 

0.201±0.007 

0.208±0.006 

0.238±0.008 

·.· 
0.246±0.011 

0.283±0.010 



6.4.2 Discussion. 

The sensitivity of the FIAS·200 system in the determination of Aslll was in good 

agreement with the Perkin-Elmer literature (Characteristic concentration 0.1 ng mr1 

Asm, 500 j.il). Explanation for its superior performance in comparison with the PU9360 

system is postulated to be due to one or more of the following features, listed in order 

of importance. 

(I) Reduced gas-liquid separator volume. 

As detailed in Fig. 6.2 the internal volume of the miniature gas-liquid separator used 

in the FJAS-200 system (excluding the volume taken up by the glass beads) was 

calculated to be only 10% that of the PU9360 gas-liquid separator. Reduced dilution 

of arsine (in the gas phase) could account for the increased sensitivity as observed by 

others when miniature gas-liquid separators were used [13, 67, 70, 89]. The difference 

in internal volume of the two gas-liquid separators was of the same magnitude as the 

difference in sensitivity observed. 

(II) Reduced hydride transport tubing volume. 

The internal volume of the hydride transport tubing used in the FJAS-200 system 

was calculated to be 0.79 ml which was significantly lower than the corresponding 

volume of 10.1 ml calculated for the PU9360 system. Reduced dilution in the 

gas-phase could therefore account for the difference in sensitivity as discussed in 

section 6.4.2(1). 

(Ill) Reduced Ar now rate. 

Dilution in the gas-phase with a 400 ml min·1 Ar flow rate, used in the PU9360 

system, was expected to be significantly higher than in the FIAS-200 system, which 

employed a flow rate of only 30 ml min·1. The increase in Aslll sensitivity with 

reduced Ar flow for the PU9360 system, shown in section 5.4.1(11) (Chapter five), 

is possible evidence for this suggestion [96]. 
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(IV) Superior atomization cell design. 

In the FIAS-200 system the optimum atomization temperature was achieved 

reproducibly through control of the furnace unit. In the PU9360 system, in 

comparison, the optimum atomization conditions were restricted by the limitations 

of the air-acetylene flame, as discussed in section 5.4.1(1) (Chapter five). 

Differences in the dimensions of the atomization T-cells (Fig. 6.3) may also account 

for the differences in sensitivity of the two systems. Atomization cell dimensions 

have been shown to play a critical role in system performance [13, 15, 235). 

(V) Incorporation of a segmentor coil. 

The incorporation of a segmentor coil in the FIAS-200 system could aid the hydride 

stripping process from the aqueous reaction mixture [27) based on the observations 

made in section 6.3(IV). 

Although the results indicated that the miniaturisation of the whole system was 

beneficial to system sensitivity a drawback was the resultant increase in back 

pressure. This makes manifold fracture and leakage more likely, particularly with 

prolonged use on a routine basis. A great deal of care was required to achieve the 

fine balance between the relative flow rates of reaction mixture entering and exiting 

the gas-liquid separator. Contamination of the atomization T-cell from aqueous 

reaction products was frequently experienced prior to the inclusion of the in-line 

membrane filter. 

Based on the results shown in Table 6.5 the addition of sodium tetrahydroborate 

prior to HCl in the FI-HGAAS system was not considered beneficial. An increase 

in sensitivity was observed for the addition of sodium lelrahydroborale prior to 

hydrochloric acid, only when determining a pre-acidified standard. This is due to an 

increase in the total reaction lime and, therefore, increased hydride generation prior 

to gas-liquid separation. On the basis that little or no improvement in sensitivity was 

observed after taking into account total reaction time, and the suggested reduction 

in interference tolerance adding NaBH4 prior to HCl (Chapter five, Section 5.4.4) 

[42, 87), the optimum order of reagent addition is concluded to be HCI followed by 

NaBH4• 
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6.5 ELIMINATION OF THE DIFFERENCES IN SIGNAL RESPONSE FOR Asm AND As V 
THROUGH MANIFOLD OPTIMIZATION. 

The FIAS-200 system was set up with the FI manifold used on the PU9360 system (Chapter 

five, Fig. 5.1). The manifold variables employed in the FI·HGAAS system are shown in Table 

6.3. Two studies of the effect of manifold dimensions and operation on the relative responses 

of As V and Aslll were made. The objective was to eliminate the difference in the relative signal 

responses and therefore any possibility of oxidation state interference effects in real sample 

analysis. 

6.5.1 Effect of manifold dimensions. 

The relative signal responses of 10 ng mr1 of As v and As m were investigated with 

increasing reactor coil length (RC2, 0.8 mm i.d.). It was hoped from the observations 

made in section 6.3(JII) that by increasing the reactor coil length, and therefore reaction 

time, quantitative hydride generation from As v[280J could be achieved. The results of 

the study are shown in Table 6.6. Although an increase in the signal response ratio 

(Asv/Aslll) was observed with increasing reactor coil length at reactor coil lengths in 

excess of 3000 mm, high back pressures made the system unreliable, so further 

investigation was not attempted. 

Table 6.6 Effect of reactor coillength(RC,) on the relative signal responses of 10 ng mr1 

As v and As111• Manifold variables as in Table 6.3, ( ±95% confidence interval). 

Reactor coil mm Absorbance Absorbance ratio 
(0.8 mm i.d.) 

Asv As111 
Asv/Aslll 

100 0.092±0.003 0.487±0.017 0.19 

200 0.096±0.008 0.502±0.015 0.19 

500 0.121±0.006 0.495 ±0.012 0.24 

1000 0.151±0.006 0.509±0.014 0.30 

1500 0.162±0.010 0.509±0.011 0.32 

2000 0.162±0.013 0.505 ±0.016 0.32 

3000 0.181 ±0.008 0.463±0.012 0.39 
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6.5.2 Implementation of a stopped-llow procedure. 

A stopped-flow procedure was investigated in an attempt to increase reaction time 

without the back pressure limitations encountered in section 6.5.1. After making a sample 

injection and allowing the sample plug to mix with both HCl and NaBH4, the pumps 

driving the manifold were stopped for a preprogrammed time interval, trapping the 

sample mixture within the reactor coil, (3000 mm, 0.8 mm i.d.). It was thought that by 

trapping the sample and reagent zones the hydride generation reaction would continue 

to completion under static conditions. In practice, however, this stopped-flow system 

proved impractical due to the formation of hydride and hydrogen. This gas formation 

within the manifold tubing generated sufficient pressure to force the reaction mixture out 

of the reaction coil and, therefore, caused the slow loss of hydride. 

6.5.3 Discussion. 

The results in section 6.5 showed that the difference in relative signal response between 

Asv and Aslll could not be eliminated simply by increasing the reaction coil length. An 

interesting observation made was the negligible effect of reactor coil length on the Aslll 

signal response. This was in direct contradiction to the observations with the PU9360 

system using the same manifold variables (Chapter five, Section 5.4). This observation 

indicated that possibly the hydride generation reaction was in fact complete before 

reaching the segmentor coil for all reactor coil lengths studied (100-3000 mm). The 

increased Aslll signal response with increased reactor coil length, obtained with the 

PU9360 system, may therefore, be assumed to be due to increased hydride stripping from 

solution (27) achieved in the FIAS-200 system, in the segmentor coil. 

Decreasing the carrier flow rates was considered as a further means of increasing the 

reaction time without producing the problems of the build up of back pressure, but was 

not implemented as it was considered that the overall system performance would be 

adversely affected. Extension of the reaction time either by increasing the reactor coil 

length or by reducing the carrier flow rate is clearly expected to compromise the 

beneficial characteristics of FI-HGAAS of sensitivity, interference tolerance and 

throughput (Chapter five, Section 5.4 ). Ikeda (235] reported the successful optimization 

of FI-HGAAS manifold variables to eliminate the difference in relative signal responses 

of As v and As m. To achieve this, though, sodium tetrahydroborate addition was made 

prior to hydrochloric acid, and a reactor coil of 1000 mm (3.0 mm i.d.) with a carrier 

flow rate of only 2.5 ml min·t were used. The observations made in Chapter five, 
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(Section 5.4) and Chapter six, (Section 6.4) would suggest that under such conditions 

the overall sensitivity and interference tolerance would be adversely affected. In fact the 

interference free determination of 10 ng ml'1 As was achieved in the presence of 5, 10, 

and 3 11g ml-1 of Co2+, Cu2+, and Ni2+ respectively (235). These figures are significantly 

lower than the values reported in Chapter live, (Section 5.4). 

6.6 OPTIMIZATION FOR NICKEL INTERFERENCE TOLERANCE IN THE 
DETERMINATION OF Asv. 

A study was made into the nickel interference tolerance of the FIAS-200 system in the 

determination of Asv. The FIAS-200 system was set up with the FI manifold used in the 

PU9360 system (Chapter five, Fig. 5. J). The values of the operating parameters used are shown 

in Table 6.3. The sensitivity for each test solution relative to that of a pure As V standard 

solution was calculated. An interference free determination was taken as one which produced 

a relative sensitivity of 100±10%. 

(I) Effect of reactor coil length. 

The effect of reactor coil length on the nickel interference in the determination of 

10 ng ml-1 of As V is shown in Fig. 6.8. During the investigation no precipitation or 

interference memory effects were observed. An optimum reactor coil length of 100 mm 

(0.8 mm i.d.) was chosen for subsequent work. 
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Fig. 6.8. Influence of reactor coil length (RC,, 0.8 mm i.d.) on the interference of nickel in 
the determination of 10 ng ml'1 of Asv. (•), 100 mm; ( •), 600 mm; (•), 2000 mm. All 
other variables as in Table 6.3. 
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(11) Effect of hydrochloric acid reagent concentration. 

The effect of hydrochloric acid concentration on the nickel interference in the 

determination of 20 ng ml"1 of As v is shown in Fig. 6. 9. No precipitation or interference 

memory effects were observed throughout the investigation. 
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Fig. 6.9. Influence of HCI concentration on the interference of nickel in the determination 
of20 ng ml"1 of Asv. (•), 9.6 mol dm-3; (•), 7.2 mol dm-3; (•), 3.6 mol dm·3• 

R~, 100 mm (0.8 mm i.d.). All other variables as in Table 6.3. 

6.6.1 Discussion. 

Improved nickel interference tolerance with reduced reactor coil length (13) and 

increased hydrochloric acid concentration (43, 45, 46) was in agreement with the 

observation made with the PU9360 system in Chapter five, (Section 5.4.3(11)). An 

unexpected observation made though during the study, that could not be conclusively 

explained, was that the system interference tolerance was lower for the determination 

of 20 ng ml"1 of Asv than 10 ng mr1 of Asv, for the same manifold variables. This 

finding did not agree with those of Meyer et a/.(44) who concluded that the 

interference was independent of analytc to interfercnt ratio. 

6.7 DISCUSSION. 

The inferior performance characteristics obtained for the PU9360 system (Chapter five) relative 

to those of the FIAS-200 system are attributed to the use of a larger gas-liquid separator 

developed for continuous flow methodology and its incompatibility with Fl-HGAAS, as 

discussed in section 6.4. It is thought that the superior sensitivity achieved with the FIAS-200 

system and the high nickel interference tolerance (Section 6.6) would permit the direct analysis 
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of the nickel based alloy BCS 346 (50 Jlg g·1 As) for arsenic. Use of the continuous flow matrix 

isolation unit, reported in Chapter five in conjunction with the FIAS-200 system would further 

extend the performance of the system and, therefore, permit the determination of even lower 

concentrations of As in similar nickel matrices. 
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CHAPTER SEVEN 

INVESTIGATION OF THE ATOMIZATION PROCESS IN HYDRIDE GENERATION 
ATOMIC ABSORPTION SPECTROMETRY. 

7.1 INTRODUCTION. 

It is apparent from the relevant literature (reviewed in Chapter one) that some controversy still 

remains concerning the atomization process in HGAAS. Irrespective of the atomization 

mechanism involved, it is evident that the atomization step contributes significantly to the 

overall performance characteristics of the HGAAS procedure. The development of a full 

understanding of the atomization procedures has lagged behind that of the hydride generation 

procedure itself and in many respects, remains the 'Achilles heel' of the technique. Limitations 

reported for the externally heated silica atomization cell include poor day-to-day performance 

and stability [93,96], limited linear working range [93,95], gas-phase interferences [40,41,69], 

interference memory effects [101,102] and the necessity for frequent T-cell conditioning [91,93]. 

The use of a graphite furnace appears to provide a solution to these restrictions [40,41] and 

therefore makes it a feasible alternative to the externally heated silica atomization T-cell. 

However, investigation into the atomization mechanism in the externally heated silica 

atomization cell and procedures to improve its overall performance are still of great importance 

in further improving the performance of the HGAAS technique in its present format. Although 

the graphite furnace has shown promise as a suitable successor to the silica atomization cell 

present limitations may, unless overcome, restrict its use on a routine basis in the future. The 

required use of complex lengthy furnace heating programmes, enhanced background absorption 

effects and restricted furnace lifetimes have all been documented in the use of such graphite 

furnaces [40,41]. 

7.2 APPARATUS AND REAGENTS. 

7.2.1 Apparatus. 

All apparatus used was identical to that reported in Chapters four, five and six, based on 

the in-house PU9360 and commercial FIAS-200 FI-HGAAS systems. The externally 

heated flame and furnace atomization cells investigated were those shown in 

Fig. 6.3 (I and II), (Chapter six). 
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7 .2.2. Reagents. 

All reagents used in the PU9360 in-house FI-HGAAS system were identical to those 

described in Chapters four and five. Reagents used with the FIAS-200 system were 

identical to those described in Chapter six. 

73 CONDITIONING PROCEDURES FOR THE SILICA ATOMIZATION T-CELL. 

The PU9360 in-house FI-HGAAS systems shown in Figs. 4.2(ll) and 5.1 were used for the 

determination of Se1v and Asiii respectively. Manifold variables used were those shown in 

Tables 4.5 and 5.2(1) respectively. 

A study was made into the effect ofT-cell surface condition on system performance and the 

use of conditioning procedures to achieve the optimum surface condition. Unless otherwise 

stated 20 ng mr1 Asiii and Se1v aqueous standards were used to investigate the effect of each 

conditioning procedure on the overall performance. 

(I) Effect ofT-cell surface. 

In the determination of Se1v new, unused atomization T-cells were shown to produce less 

than 25% the sensitivity achieved with the previously conditioned cells, in constant use. A 

similar observation was made for the determination of Asm. Three separate T -cells of 

different ages and analytical histories, used previously in the determination of Se1v, were 

shown to differ significantly in performance. Mean absorbance values obtained for the three 

T-cells in the determination of 20 ng mr1 of Asm, prior to any conditioning, were 

0.062±0.005, 0.088±0.006 and 0.108±0.004 (±95% confidence interval) for identical 

FI-HGAAS variables. An interesting observation made was that the T-cell that gave the best 

performance in the determination of Se1v gave the poorest performance in the 

determination of Asm. The critical requirement for a specific surface condition was evident 

from the observations made in Chapter four (Section 4.3.3) and Chapter five (Section 5.4.3). 

Poisoning of the silica atomization T-cell surface by trace amounts of the interferent species 

Ni and Cu and hydride forming elements Sb and Sn (15,102] resulted in a drastic reduction 

in sensitivity. 
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(11) Effect of HF soaking. 

The effect of a hydrofluoric acid conditioning procedure, based on that used by Welz and 

Melcher (91), was investigated. T-cclls were soaked in solutions of HF for a period of 30 

minutes (concentrations as quoted, Figs. 7.1 and 7.2), rinsed in analytical-reagent grade 

water and then thoroughly dried prior to use. Results for the conditioning procedure for 

both As111 and Se1v determinations are shown in Figs. 7.1 and 7.2 respectively. 

(Ill) Effect of processing high determinand concentrations. 

The effect of processing high determinand concentrations on sensitivity in the 

determination of both As111 and Se1v, with and without HF conditioning, was investigated. 

High determinand concentrations (1000, 10,000 ng ml'1) were injected (409 J.ll) into the 

system prior to determining lower analyte concentrations. Results are shown in Figs. 7.1 

and 7.2 respectively. 

(IV) Effect of flame stoichiometry. 

Based on the observations described in Chapter five (Section 5.4.1(1)) a study was made 

of the effect on sensitivity of conditioning, by heating the silica atomization T-cell within 

a fuel-rich air-acetylene flame. Three silica T-cells were heated separately in a fuel-rich 

air-acetylene flame (acetylene flow setting 22, air 27) for a period of five minutes, with the 

Fl-HGAAS system connected and operational. The effect of this conditioning procedure 

on the sensitivity of Aslll is shown in Table 7.1. 
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Table 7.1 Effect of heating the silica atomization T-cell in a fuel-rich air-ace\ilene flame 
on system performance in the determination of 20 ng mr1 of As 1. All other 
variables according to Table 5.2(I), (±95% confidence interval). 

T-CELL Absorbance 

Pre-conditioning Post-conditioning 

No. 1 0.062±0.005 0.109 ±0.003 

No.2 0.108±0.004 0.124±0.006 

No. 3 0.088±0.006 0.137 ±0.019 

The same conditioning procedure was applied to a silica T-cell following a hydrofluoric acid 

(40%) soak as described in section 7.3(11). A percentage increase in sensitivity observed in the 

determination of 20 ng mr1 of As111 was 274%, an increase in mean absorbance (n=3) from 

0.043 to 0.161. In further investigations it was observed that the conditioning effect could still 

be achieved with the FI-HGAAS system disconnected from the T-cell. The conditioning effect 

was found to be rather transient in nature. Each day prior to analysis conditioning was required 

to obtain maximum sensitivity. 

In the determination of Se1v, the increase in sensitivity obtained following the conditioning 

procedure was less impressive. Percentage increases in signal response in the measurement of 

20 ng mr1 of Se !V for two silica T -cells were 11.0 and 15%, with increases in mean absorbance 

(n=3) of 0.144 to 0.160 and 0.149 to 0.171, respectively. The reduced percentage increase 

relative to that for As111 was explained by the good performance characteristics of the two 

T-cells prior to implementing the flame conditioning procedure. 
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7 .3.1 Discussion. 

Comparing the relative benefits of each of the conditioning procedures for the 

determination of Aslll and Setv was made difficult since the standardisation of each 

T-cell was difficult, and the condition of each was changeable throughout the study. 

Therefore, comparison of observations made were more on a qualitative basis, from 

which the following conclusions were reached. 

Conditioning of the T-cell with HF in the determination of Aslll was observed t'o be 

beneficial in agreement with the findings of others (91, 96]. Agterdenbos and Bax 

(100] proposed that the process removes the active sites on the silica surface which 

promote the recombination of radicals (e.g., H + H ~ H2 or H + OH ~ H20) and 

possibly dimerization reactions such as 2Se ~ Se2. In direct contradiction though no 

obvious benefit was observed in the determination of Se1v and in fact the process was 

observed to be detrimental to a partly conditioned T-cell. An explanation for this was 

that the HF has an etching and therefore cleaning action on the silica T -cell surface. 

Vast improvements in sensitivity would therefore be expected only for badly 

contaminated (49,91] or newT-cells [91[. 

In the case of Se1v significant conditioning of the T-cell surface appears to be 

possible through the processing of high concentrations of hydride alone (49,93,101]. 

This effect may not though be totally attributed to conditioning of the T-cell since the 

study was carried out on a recently cleaned down system. In agreement with the 

findings of Reamer et al. (104] it is suggested that processing high concentrations of 

hydrogen selenide eliminates available adsorption sites on the walls of the gas-liquid 

separator and transport tubing, therefore, deactivates the surface to further SeH2 

adsorption. Processing high concentrations of arsine produced negligible changes in 

sensitivity. This was again in agreement with the literature since no direct 

improvement in As m sensitivity appears to have been obtained through the processing 

of high concentrations of arsine. Only an improvement in reproducibility was reported 

(103]. Processing high concentrations of hydride may, as postulated by Evans et al. 

(101], form some form of catalytic film on the T-cell surface which contributes to the 

atomization mechanism. Removal of this film with HF soaking would therefore 

account for the deterioration in sensitivity observed in the Se1v study. In agreement 

with the suggestion of Evans et al. [101] it was concluded that a separate 

pre-conditioned silica T-cell should be kept specifically for each element on the basis 

of these observations. 
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The beneficial conditioning effect of heating the T-ccll in a fuel-rich air-acetylene 

flame in the determination of both Aslll and Setv could not be conclusively explained. 

On the basis of the atomization mechanism proposed by Welz and Melcher (91) 

though the high partial pressure of hydrogen expected in the reducing environment 

of the fuel-rieh flame may play a significant role through increased hydrogen radical 

formation. Increased radical formation at the T-cell surface would also be expected 

to increase atomization efficiency according to the mechanism proposed by Bax et al. 

(96) through the catalytic action of such radical species. 

7.4 DETERMINATION OF HIGH CONCENTRATIONS OF Asm AND SeiV. 

The effects of various atomization parameters on the signal responses obtained in the 

determination of high concentrations of As111 and Se1v (100, 1000 and 10,000 ng mr1) were 

studied. Such high concentrations had previously been observed to produce rather unusual 

doublet signal response peak shapes (Section 7.3). The study was undertaken, therefore in an 

attempt to identify the cause of this effect and, therefore, gain more insight into the processes 

occurring within the silica atomization T-cell. 

The PU9360 in-house FI-HGAAS systems shown in Figs. 4.2(Il) and 5.1, used for the 

determination of Se1v and Asm, were operated under the conditions shown in Table 4.5 and 

5.2(I) respectively. The FIAS-200 system shown in Fig. 6.1 was operated under the conditions 

shown in Table 6.2. 

(I) Default. 

The signal response peak shapes obtained for 1000 and 10,000 ng mr1 of Se1Y and Asiii 

using the PU9360 system with the manifold variables shown in Table 4.5 and 5.2(1) 

respectively are shown in Fig. 7.3. 

(11) Increased sodium tetrahydroborate concentration. 

The signal response peak shapes for 1000 and 10,000 ng mr1 of Se1v and Asiii were 

measured as in section 7.4(1) for an increased sodium tetrahydroborate reagent 

176 



concentration of 5.0% m/v. The reagent concentration was increased in order to increase 

the quantity of hydrogen produced in the reaction and transported to the atomization 

T -cell. Results are shown in Fig. 7.3. 

(Ill) Fuel-rich air-acetylene flame. 

The effect of using a fuel-rich air-acetylene name (air now setting 27, acetylene 22) on the 

signal response peak shapes for 1000 and 10,000 ng mr1 of SeiV and Asm, using the 

PU9360 system, are shown in Fig. 7.3. 

(IV) Atomization temperature. 

The effect of atomization temperature on the signal response peak shapes for 100 and 

1000 ng ml·1 of As v, using the FIAS-200 system, is shown in Table 7.2 and Fig. 7.4. 
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Fig. 7.3. Signal response peak shapes obtained in the determination of high As111 and Se1v 
concentrations. (a),1000 ng mr1;(b),l0,000 ng mr1

• (I), Default variables (1% mjv Nall!-14); 

(11), 5.0% m/v NaBH4; (Ill), Fuel-rich air-acetylene flame. All other variables as in Table 
4.5 and 5.2(1). 178 



~----------------------------.......... 
Table 7.2 Effect of atomization temperature on peak-height absorbance and peak shape in the 

determination of 100 and 1000 ng mr1 Asv, (±95% confidence interval). All other 
variables as in Table 6.2. 

Atomization 100 ng mr1 As V 1000 ng mr1 As V 

temperature/ 
•c Absorbance Peak shape Absorbance Peak shape 

650 0.026±0.004 -.- 0.027 ±0.003 -.-
680 0.045±0.008 Doublet 0.028 ±0.002 -.-
700 0.256±0.022 Doublet 0.189±0.022 Doublet 

750 0.577 ±0.009 Singlet 0.554±0.020 Doublet 

800 0.579±0.006 Singlet 0.701 ±0.016 Doublet 

850 0.563±0.010 Singlet 0.725±0.007 Doublet 

900 0.540±0.008 Singlet 0.707±0.010 Singlet 

950 0.488±0.012 Singlet 0.656±0.010 Singlet 

1000 0.432±0.007 Singlet 0.624±0.006 Singlet 
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Fig. 7.4. Effect of atomization temperature on the signal response peak shape in the determination 
of 1000 ng mrt of Asv. (!), 900'C; (11), 800 'C; (Ill), 750'C. All other variables as in 

Table 6.2. 
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7.4.1 Discussion. 

The doublet signal response peak profiles observed at elevated concentrations of Se 

and As were similar to those reported by Agterdenbos et al. [93) and Guo et al. [243) 

respectively. Agterdenbos et al. [93) showed that at a concentration of 4.75 Jlg mr1 

of Se1V (T = 800 • C) a doublet shaped absorbance signal was obtained for the steady 

state generation of the hydride. Zero absorbance at the centre of the signal response 

was attributed to total dimerization of Se atoms. Absorbance peaks at the start and 

finish of sample introduction were explained by the lower relative partial pressures 

of Se atoms in the atomization cell, therefore the occurrence of little or no 

dimerization. 

The negligible effect on doublet peak character with increased NaBH4 concentration 

in the determination of Se1v and the reduction in overall absorbance was in 

agreement with the observations of Bax et al. [94). Increased hydrogen concentration 

within the atomization cell appears to be detrimental to selenium atomization. 

Decreased doublet peak character, observed in he determination of Asiii with 

increased NaBH4 concentration, was attributed to one of two possible effects. Based 

on the proposal of Bax et al. [96] the observations may simply be attributed to a 

reduction in the partial pressure and residence time of As atoms within the 

atomization cell, therefore reduced dimerization. On the basis of the atomization 

mechanism proposed by Welz and Melcher [91] though reduced doublet peak 

character could be attributed to increased hydrogen partial pressure within the 

atomization cell, therefore, increased hydrogen radical formation. Reduced overall 

sensitivity observed in the determination of As m appears to favour the postulation of 

Bax et al. [96). 

An interesting but rather contradicting observation was the effect of atomization 

temperature and flame stoichiometry on the atomization profile. Atomization of high 

concentrations of As clearly required high atomization temperatures, using the 

furnace heated T-cell, as reported by Guo et al. [243], possibly due to increased 

hydrogen radical formation [91]. Reduced doublet peak character at the same time 

was observed using a relatively cool fuel-rich air-acetylene flame. This observation 

gives possible evidence to there being two different atomization mechanisms for the 

two T-cell heating methods. It is difficult to be certain of this fact though since the 

actual atomization temperature within the fuel-rich air-acetylene flame heated silica 

T-cell could not be determined. In the case of the electrically heated T-cell any active 
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species must be formed within the T-cell as a result of direct heating. For the flame 

heated T-cell, active radical species may also be formed (within the flame), which may 

be capable of passing into the T-cell through its open ends. 

7.5 EFFECT OF AIR ADDITION ON THE ATOMIZATION OF ARSENIC. 

The FIAS-200 system shown in Fig. 6.1 (Chapter six) was used throughout and operated, unless 

otherwise stated, using the operating parameters shown in Table 6.2. 

A study was made of the effect of air-addition on system performance in the determination of 

Asv. Throughout the HGAAS literature numerous contradicting observations have been made 

as to the benefits and drawbacks of air or oxygen addition (82,88,91,95,96,98,227]. An 

investigation was made, therefore, to identify whether or not in the case of As v the addition 

of air was beneficial to the atomization process. 

(I) Air-segmentation of carrier stream. 

The FI-HGAAS manifold shown in Fig. 6./ was modified to include an extra pump channel 

and therefore permit air introduction into the HCl carrier stream. Air was pumped directly 

from the laboratory (10 ml min-t) into the HCl carrier (10 ml min-t) thereby producing an 

air-segmented carrier stream into which the sample was injected. Modification of the 

manifold resulted in an improvement in sensitivity of 15% in the determination of 10 ng mr1 

of Asv, (Mean peak-height absorbance (n=6) increased from 0.247 to 0.284). 

(II) Air addition to Ar carrier stream. 

The FIAS-200 system shown in Fig. 6.1 (RC, 2000 mm; SC, 300 mm (0.8 mm i.d.)) was 

used with the modification that air was introduced via the Ar carrier delivery unit. A 

peristaltic pump was used to introduce air (10 ml min-1) directly from the laboratory into 

the Ar supply (30 ml min'1) prior to entering the Fl-HGAAS system. 

The effect of air-addition on the signal response of 10 ng mr1 of Asv over the atomization 

temperature range of 600 to 1000' C is shown in Fig. 7.5. 

The effect of air-addition on the signal response of 1000 ng mr1 of Asv over the 

atomization temperature range of 600 to 1000' C is shown in Table 7.3 and Fig. 7.6. 
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Fig. 7.5. Effect of atomization temperature on the absorbance of 10 ng ml-1 of As v. Ar, 
30 ml min"1

; ( • ), 10 ml min"1 air; (•). no air. All other variables as in Table 6.2. 

Table 7.3 Effect of atomization tem£erature op the p~k-heig_ht absorbance and peak shape 
in the determination of 1~00 ng mr of As

1 
with air-addition. (±95% confidence 

interval). Ar, 30 ml min" ; Air 10 ml min- . All other variables as in Table 6.2. 

Atomization temperature/' C Absorbance Peak shape 

600 0.024±0.003 -.-
650 0.819±0.016 Multiple peaks 

700 0.836±0.011 Multiple peaks 

750 0.831±0.010 Steady state 

800 0.824±0.003 Steadv state 

900 0.819±0.024 Steady state 

1000 0.819±0.019 Steady state 
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Fig. 7.6. Effect of atomization temperature on the signal response peak shape in the detcrminalion 
of 1000 ng mr1 of Asv wi1h air addi!ion. Ar, 30 ml m in'\ Air, 10 ml min·1. (I), 9oo•c; (11), 
800 • C; (Ill), 750• C. All other variables as in Table 6.2. 
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(Ill) Pure air carrier stream. 

The FIAS-200 system shown in Fig. 6.1 (RC, 2000 mm; se, 300 mm (0.8 mm i.d.)) was 

used but the Ar carrier supply was replaced by an air carrier (30 ml min-1) obtained from 

a compressed air supply. The signal response of 10 ng ml-1 of As111 was investigated and 

compared with that obtained with a pure Ar carrier. 

With the use of a pure air carrier stream sensitivity was identical to that for an Ar carrier 

but rather distorted and spiked response peak shapes were obtained as shown in Fig. 7.7. 

With prolonged use the sensitivity slowly deteriorated. The mean peak-height absorbance 

(n=6) decreased from 0.315 to 0.241 over a period of about one hour. 

7 .5.1 Discussion. 

Air addition was clearly beneficial in the atomization of As as shown in Figs. 7.5 and 

7.6, but only at atomization temperatures below - 800 •c. These findings were in 

agreement with those of others in the determination of As[91,96], Se[95] and Sn[227]. 

At the same time in direct contradiction with the work of Parisis and Heyndrickx [98] 

who observed a positive effect of oxygen on the atomization of hydride forming 

elements (As111, Sbm, Se1v, Bim, Sn1v) at temperatures above 8oo•c. 

On the basis of these findings the increase in sensitivity observed as a results of 

air-segmenting the HCI carrier stream (Section 7.5(1)) was explained simply by 

reduced dispersion in the aqueous phase, as reported by Yamamoto et al. [88]. 

The results appear to favour the atomization mechanism proposed by Welz and 

Melcher [91]. According to this mechanism, at low atomization temperatures 

(600-800 •q hydrogen radical formation is expected to be significantly increased by 

the presence of extra oxygen, but to a lower extent at higher temperatures 

( ~ 800 • C), where the quartz T -cell is postulated to have a catalytic effect on 

hydrogen radical formation. The temperature dependency on the beneficial effect of 

oxygen addition (Fig. 7.5) does not appear to be explained by the proposed 

atomization mechanism of Bax et al. [96], according to equation 1.4.9 (Chapter one), 

unless by the increased formation of OH to H radicals which it was suggested 

catalysed the reaction [96]. 

In the use of a pure air carrier stream the rather distorted atomization profiles could 

not be conclusively explained. The reduction in sensitivity with time though was 

attributed to the slow poisoning of the silica T-cell surface by trace impurities within 

the unpolished air supply. 
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Fig. 7.7. Effect of carrier on the signal response peak shape in the determination 
of 10 ng mr1 of Asv. Atomization temperature 800 •c. (1), Air, 30 ml min" 1; (I I), Ar, 
30 ml min"1. All other variables as in Table 6.2. 
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7.6 DISCUSSION. 

On the basis of the observations made no clear atomization mechanism could be proposed. 

Further work is therefore clearly needed (Chapter eight). Explanation for the observations 

made was particularly hampered by what appears to be so much contradicting data in previously 

reported work. This is most likely due to the significant variations in system design, atomization 

procedure, operational variables, determinand and reagent concentrations etc., employed in 

these previous studies. Direct comparison of the performance data of one study with that of 

another is difficult because there appears to be little standardisation of operational variables. 

Although no conclusive evidence for a particular atomization mechanism was obtained, the 

critical involvement of the silica T-cell in the atomization process and its rather delicate nature 

was clearly evident. Optimum performance of the silica cell is dependent on numerous variables 

such as surface condition, temperature, hydride and gaseous reaction species. As discussed 

earlier (Section 7.1) for these reasons it is considered that a new method of atomization is 

required (such as electrothermal) to allow the technique of HGAAS to achieve its full potential, 

particulary in interference free routine analysis. 
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CHAPTER EIGHT 
CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

8.1 CONCLUSIONS. 

In Chapter one, the development and application of hydride generation in AAS was reviewed. 

Particular attention was paid to the various interference effects associated with the technique 

including both the mechanisms of interference and methods of overcoming them. The literature 

shows that there is a significant interest in the study of interference effects, but as is evident 

from the review, the experimental evidence has not yet resulted in unambiguous explanations 

for both the aqueous and gas phase interferences studied. This can be attributed to the variety 

of systems and operating parameters used in the various studies. The interference tolerance of 

the technique has been shown to be critically dependent on both the nature of the apparatus 

and reagent concentrations used. The review reveals that, in some cases, the mechanism 

involved is both analyte and interferent specific which may also account for the numerous 

apparently contradicting observations made and conclusions drawn. 

Many attempts have been made to overcome the interference effects in HGAAS but procedures 

proposed can be tedious. In many cases the procedures are manual, analyte and interferent 

specific and are only successful to a limited degree. 

One of the most significant advances made in HGAAS in terms of reducing the extent of 

interferences has been the successful implementation of flow injection (FI) procedures 

(Reviewed in Chapter two). Optimization and control of the hydride generation process through 

the use of FI has been shown by several research groups to reduce the magnitude of 

interferences observed. The added advantages of reduced sample requirement, reduced reagent 

consumption, enclosed system design and the potential for full automated operation makes the 

coupling of FI with HGAAS all the more appealing. 

The successful application of Fl to the wider subject area of atomic absorption spectrometry 

(AAS) was evident in the review of the subject made in Chapter two. The more recent work 

indicates that the technique of FI is no longer looked on as being simply a method of achieving 

fast sample presentation to the spectrometer but is emerging as a versatile method for on-line 

sample pretreatment. 

It is clear that a present trend in the nature of commercial chemical instrumentation is for the 

use of computers for the control of system components and for data handling. This though is 

increasing the cost and complexity of the procedures undertaken, particulary in the area of 

188 



on-line dilution and calibration. As an alternative approach, a simple cheap procedure for 

achieving variable on-line dilution using wide bore manifold tubing was investigated as 

documented in Chapter three. 

Although it might be argued that major breakthroughs have been achieved in both F AAS and 

ETAAS through the use of on-line sample matrix isolation procedures for both 

preconcentration and interference removal, little attempt has been made to adapt similar 

procedures to HGAAS. Considering the interference limitations of HGAAS tbe further 

investigation of FI-HGAAS and, more importantly, of matrix isolation procedures was deemed 

to be of significant interest and benefit. Developments in this area are described in Chapters 

four and five. 

The use of wide bore manifold tubing (up to 5.0 mm i.d.) to achieve controlled on-line dilution 

for FAAS was unsuccessful. Dispersion coefficient values up to and in excess of 100 were 

obtained, through the optimization of manifold dimensions, but the procedure was limited by 

variations in dispersion coefficients arising from differences in specific gravities between the 

sample and carrier fluids. Visual investigation of the mixing characteristics of the system showed 

that the effect of specific gravity on the dispersion characteristics was caused at least in part by 

the low linear velocity of the carrier solution in the wide bore manifold tubing. The step change 

in carrier velocity which was evident at the junction between the narrow bore connecting tubing 

and the wide bore tubing was shown to create complicated mixing characteristics which varied 

over the length of the manifold tube. The specific gravity effect could be partially eliminated 

by the use of an elevated carrier flow rate. However, the precision of the system was shown to 

be poor (RSD, 3-5%). Retention and nucleation of air bubbles remained a problem and 

increased back pressure became of concern. 

The use of a continuous flow matrix isolation procedure coupled with flow injection hydride 

generation atomic absorption spectrometry permitted the successful determination of Se in 

copper metal. In the system, a micro-column manifold (for the selective retention of the copper 

interferent) was interfaced with the hydride generation manifold through a sample injection 

valve. The two manifolds, being independent of each other, could each be fully optimized. In 

previous designs of in-line matrix isolation systems this had not been possible. This design also 

permitted the inclusion of a rapid column regeneration step which made full automation of the 

system feasible. 

Optimization of the FI-HGAAS manifold achieved a sensitivity comparable with that of 

continuous flow hydride generation atomic absorption spectrometry but with the added 
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advantages of reduced sample requirement, superior throughput and vastly improved 

interference tolerance. The high interference tolerance of the FI-HGAAS system to such species 

as cobalt, copper, iron and nickel was shown to be due to a combination of the low sample 

volume used and the rapid transport and release of the hydride from the aqueous phase. The 

interference tolerance of the FI-HGAAS system itself was shown to be critically dependent on 

the sample injection volume and the total transport rate of the carrier and reagent streams. 

In the analysis of the two copper metal standard reference materials NIST 454 and BAM 361 

the system was shown to have a characteristic concentration of 1.0 ng mr1 of seiV, limit of 

detection of 2.1 ng mrl, relative standard deviation of 1.5% (10 ng mr1 Se1v, n= 12) and sample 

throughput of 51 h'1, 

The system was subsequently applied to the determination of As in nickel alloy. Contrary to 

earlier reports, the microwave digestion procedure did not retain the As in the digested matrix 

in the + 3 oxidation state. As the sensitivity for As v was, too low, modification of the system 

was necessary to permit the on-line pre-reduction of Asv to Asm. A stopped-flow pre-reduction 

procedure was implemented after the matrix isolation step. The sample and reducing agent were 

retained in the sample loop of the injection valve for a predetermined time interval prior to 

introduction into the hydride generation manifold. Again being independent of the hydride 

generation process, the procedure could be optimized fully without any compromise of the 

FI-HGAAS performance characteristics. Direct comparison with previous in-line pre-reduction 

procedures showed that the system had the added advantages of considerably reduced reagent 

consumption, superior control of the reaction time and the removal of any need for long rector 

coils and the problems of back pressure they produce. 

Further evidence for the high interference tolerance of FI-HGAAS was obtained from a study 

of the interferences of cobalt, copper and nickel in the determination of As. Incorporation of 

a PTFE membrane filter in the hydride transport line was found to be beneficial in eliminating 

interference memory effects and their deterioration of sensitivit~ The interference tolerance of 

the system to other hydride forming elements was shown to.£ar less impressive. This was 

considered to be due to the limitations of the externally heated silica T-cell atomizer. 

A characteristic concentration of 2.0 ng mr1 of As and limit of detection of 3.9 ng mr1 of As 

were obtained with the pre-reduction procedure for a set of operating parameters optimized 

with respect to interference tolerance, throughput and sensitivity. Results were presented for 

the analysis of a nickel standard reference material, BCS 346. 

190 



The performance characteristics of the commercial FIAS-200 FI-HGAAS system were 

investigated for the determination of As. The sensitivity achieved with the system (0.08 ng mr1 

Asiii) was found to be an order of magnitude better than that observed with the system based 

on the PU9360 unit. The increased sensitivity was attributed to the reduced volumes of the gas

liquid separator and hydride transport tubing, the reduced argon carrier flow and the 

atomization cell design of the FIAS-200 system. 

Some interesting observations were made regarding the order of reagent addition. No 

improvement in sensitivity was found in the determination of As V when adding the sodium 

tetrabydroborate prior to hydrochloric acid. For the same determination, increasing the reactor 

coil length increased the sensitivity (this was not the case in the determination of Asm). 

Although the difference in relative sensitivity of Asiii and As v was shown to be minimised 

through the control of reactor coil length, it could not be eliminated through the optimization 

of manifold parameters alone. 

On the basis of the high sensitivity achieved using the FIAS-200 system for the determination 

of Asv (characteristic concentration 0.44 ng ml"1) and its observed high interference tolerance 

to nickel, results obtained indicated that the system would permit the direct analysis of the 

nickel based alloy BCS 346 (50 11g g·1 As). Following the optimization of both the reactor coil 

length and hydrochloric acid reagent concentration, the interference free determination of 

20 ng ml"1 of Asv in the presence of upto 200 I'& ml·1 Ni was shown to be possible. It is 

suggested though that the incorporation of the continuous-flow matrix isolation unit, 

documented in Chapter five, would further extend the performance of the system and therefore 

permit the determination of even lower concentrations of As in similar nickel matrices. 

From the investigation of the hydride atomization process no clear cut conclusions could be 

reached regarding the mechanism of the atomization process. However, some interesting 

observations were made, particulary of the critical involvement of the silica atomization T-cell 

in the process in question. The performances of both flame and furnace heated silica 

atomization cells were observed to be dependent on a number of parameters. The age and 
be 

quality of the silica surface was shown to • critical. The addition of air to the atomization cell 

proved beneficial but only at low temperatures ( <80o•q. At the optimum atomization 

temperature ( ~soo• C) the addition of air produced no improvement in sensitivity. A number 

of conditioning procedures were shown to be beneficial including HF soaking, processing high 

determinand concentrations and flame treatment. The rather delicate nature of the atomization 
Q 

cell though clearly was shown to be,limiting factor regarding the range of analyses that could 

be undertaken with the system. The investigation of alternative atomization methods is 

suggested to be of considerable importance. 
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8.2 SUGGESTIONS FOR FURTHER WORK 

8.2.1 Further investigation into on·line dilution in F AAS through the application of Fl and 
wide bore manifold tubing. 

Despite of the specific gravity limitations encountered with the use of wide bore tubing 

it is considered that the procedure still has potential. With a number of minor 

modifications, and further investigation it is predicted that the system could meet the 

initial performance specifications namely to achieve dilution factors up to 100 with a 

precision of 1% relative standard deviation or better. Optimization of the wide bore 

manifold tubing geometry should overcome the major practical problem of air retention 

and nucleation. The exit port of the wide bore tubing could be made conical in shape, 

as shown in Fig. 8.1, which would remove the dead volumes and subsequent retention of 

air bubbles experienced with the earlier design (Fig. 3.2). 

INLET 

~~~~~------------~====~======~O~U~TL~IT~= 

Fig. 8.1. Schematic diagram of modified wide bore manifold tube shape. 

The inlet to the wide bore tube should though be kept as used in earlier work to retain 

the "turbulent jet" mixing characteristics, caused by the abrupt step change in carrier 

velocity and resulting high sample dispersion. To aid the washout of air bubbles further 

the carrier flow rate should be kept at the high value of -20 m! min·1. Keeping the 

carrier flow rate high would further benefit throughput and the elimination of the specific 

gravity effects. To minimise these latter effects, it is suggested that the manifold tube 

length be restricted to less than 200 mm. The loss of dispersion expected with this 

limitation could be counteracted by the use of a smaller sample injection volume. 

Although difficult to construct from narrow bore manifold tubing, injection loop volumes 

of the order of 10 Ill are possible. Use of either a pneumatically or electrically activated 

injection valve would improve reproducibility in sample introduction particulary when 

employing such a high carrier flow rate. The poor precision expected at the high carrier 

velocity used could be overcome by directing a portion of carrier to waste prior to the 

nebulizer when operated normally [132). Peak area quantification would also improve the 
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method due to its less critical dependence on mixing efficiency (167), therefore, higher 

tolerance to specific gravity effects. 

In addition to these discussed modifications a network manifold (159) of a design similar 

to that shown in Fig. 8.2 would he constricted and evaluated. This design would be 

simple, cheap and robust using few component parts. The system could be used with a 

single manifold tube therefore a fixed dispersion coefficient which is possible if the 

analyst is dealing with a high number of similar samples. Alternatively the system could 

be used with a variety of manifold tube dimensions selecting appropriate wide bore 

tubing with either manually or automatically operated switching valves. Each channel 

would be calibrated independently. 

PUMP w 
WB 

CARRIER 20mltnin- /1 1"'-. sv WB2 sv FAAS 

\..! ~V 
SAMPLE Smlmin-1 (1C>-20f'l) WB3 

l4ml mm- WASTE 

I 

Fig. 8.2. Schematic diagram of a network variable dispersion manifold system using 
wide bore manifold tubing. SV, switching valves; V, electrically or pneumatically 
activated injection valve; WB, wide bore tubing; W, waste. 

8.2.2 Extension of on-line matrix isolation procedures In HGAAS. 

Following the success of the developed continuous flow matrix isolation system for the 

removal of copper interference in the determination of Se1v by HGAAS, it is suggested 

that the some system could be applied to the analysis of a variety of other copper 

matrices. Based on the findings of Hershey and Keliher (80), regarding the use of Dowex 

50W cation exchange resin for interference reduction in HGAAS, it is possible that the 

system could also be used for the determination of a variety of other analytes in similar 

sample matrices. Results obtained in the investigation (80) suggest that there is scope for 
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the analysis of high interference matrices such as cobalt, copper, lead, nickel and silver 

for such determinands as As, Bi, Sb and Se. Considering the use of other ion exchange 

resins, of which there are numerous, each with its own specific working characteristics, 

the system could in theory be tailored to each analytical problem faced. 

Of possibly even greater interest and benefit, through the careful choice of ion exchange 

resin and control of the ion exchange chemistry the same methodology could be applied 

to the matrix isolation of mutual hydride forming elements. Results presented in 

. Chapter five demonstrated the poor interference tolerance of hydride forming elements 

to each other in the determination of As and the critical interferences observed in the 

presence of Sb, Se and Sn at ng mr1 concentrations. 

Hershey and Keliher (80] documented that Chelex 100 resin had a high affinity for Bi, 

Te and, to a lesser extent, Sb (pH 2.00). The AG50WX16 resin (purified Dowex 50WX16 

resin) was shown to have an affinity for Te. Use of these resins and others in the 

developed system should, therefore, permit the rapid matrix isolation and subsequent 

interference free determination of selective hydride forming elements in mixed matrices. 

Using combinations of such resins may also permit multielement determinations 

presently unachievable using H GAAS. 

To date on-line matrix isolation in HGAAS has been restricted to the use of solid phase 

extraction (71, 82, 83]. Despite the fact that over the years a number of manual 

precipitation procedures have been used for matrix isolation in HGAAS (72-75], it 

appears that no attempt has been made to implement them in either continuous flow or 

FI systems. The review presented in Chapter two clearly showed that interest in on-line 

precipitation procedures in FAAS has grown significantly recently due its capability to 

perform both preconcentration and interference removal (150, 220-224]. 

There would be no reason in principle why similar systems could not be developed for 

use in HGAAS. Debrah et al. (220] recently described a system for the precipitation and 

subsequent preconcentration of copper hydroxide on a nylon filter. It is suggested that 

this system could be used to remove copper interference in the determination of SeiV 

and other hydride forming elements. Using the same principle the matrix isolation of 

nickel would also be possible as demonstrated manually by Welz and Melcher (74] and 

Wickstrom et al. (75]. One possible problem with such a system would be the capacity 

of the procedure. In previous preconcentration work, the masses of retained metals were 

in the low j.lg range whereas for use in the proposed system the filter device would have 

194 



to cope with possible mg quantities. Precipitation and retention on a filter of such 

concentrations may subsequently introduce flow and back pressure restrictions. For this 

reason an investigation of a variety of filter media may well be required. To limit the 

effect of such restrictions the precipitation manifold could be interfaced with a 

FI-HGAAS system through the sample injection valve as demonstrated in Chapters four 

and five respectively. The ion exchange column fitted in the sample loop of the second 

injection valve would be replaced directly by a filter device (possibly a membrane filter). 

A schematic diagram of the proposed system in shown in Fig. 8.3. 

s 
OH 

A w 

AAS 
H 

A w 
R 

Fig. 8.3. Schematic diagram of a PI-H GAAS manifold incorporating continuous flow 
matrix isolation using precipitation. P, peristaltic pump; S, sample; H, water; A, 
HCl; R, NaBH4; OH, Sodium hydroxide; V1, switching valve; V2, sample 
injection valve; F, nylon filter; G, gas-liquid separator; W, waste. 

Further modification of the proposed system may also permit the use of analyte 

eo-precipitation procedures for matrix isolation [72, 73]. This strategy would clearly be 

more complicated since following the precipitation and retention of the analyte species 

on the filter an elution step would be needed to introduce the sample into the HGAAS 

system. Such a procedure though would permit preconcentration of the sample. The use 

of on-line precipitation in HGAAS on first inspection appears promising but in depth 

investigation is clearly required particulary into the kinetics of the precipitation reactions 

to permit their successful implementation in a flowing system. Use of stopped-flow 

methodology, as demonstrated in Chapter five, may be required to overcome possible 

kinetic restrictions. 
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8.2.3 Sensitivity enhancement studies. 

From the findings described in Chapter six it was evident that the maximum sensitivity 

obtained with the FI·HGAAS system, developed in-house, was limited by the gas-liquid 

separator design. Comparison studies made with the purpose built FIAS-200 FI-HGAAS 

system indicated the benefits of miniaturisation of the gas-liquid separator. Investigation 

into improvements in gas-liquid separator design possibly through miniaturisation 

[ 67, 70,234] or use of membrane separators [ 58,89,239] would prove invaluable, particulary 

for the in-house system, extending the range of analyses to which it could be applied with 

increased sensitivity. With improved sensitivty it is suggested that the analysis of samples 

such as blood, urine, fish and other biological tissues would be feasible. 

The matrix isolation interface used for interference removal purposes, could with 

modification be equally as successfully be used for preconcentration. Using such ion 

exchange resins as D-201 (strongly basic microporous anion exchanger, Shenyang Organic 

Chemicals) and CPG-8-hydroxyquinoline (chelating ion exchanger, Pierce Chemical Co., 

USA) the preconcentration of both Se and Bi should be possible (180,203] and the use 

of other resins could extend the preconcentration capability further. The preconcentration 

unit shown in Fig. 8.4 would be interfaced to the FI-HGAAS system through the sample 

injection valve permitting independent optimization of the two units. 
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Fig. 8.4. Schematic diagram of proposed preconcentration unit interface with the 
FI-HGASS system. P, peristaltic pump; S, sample; A, HCl; B, Buffer solution; 
V 1 switching valve; V 2 sample injection valve; C, column; W, waste. 
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In the proposed system sample plus buffer would be pumped at a low flow rate through 

the column to maximise retention efficiency. After the specified preconcentration interval 

the column would be activated into the elution position. In the elution cycle the 

preconcentrated analyte would be stripped from the column by a continuously flowing 

stream of acid (possibly HCI) and transported to the sample loop of the injection valve. 

With controlled timing and the use of a low eluent flow rate it would be possible to trap 

a high percentage of the eluted sample plug, if not all, within the sample loop prior to 

introduction into the HGAAS system. Such a procedure has been achieved in recent 

FI-ETAAS methods (213,215]. If the acid eluent concentration was sufficiently high the 

need for further on-line acidification of the sample plug would be removed. It is 

suggested that the use of such a procedure would prove useful for the analysis of simple 

matrices such as tap and mineral waters. At present such analyses are impossible by 

conventional HGAAS procedures due to insufficient detection limits. 

8.2.4 Further investigation and evaluation of the stopped-flow As V pre-reduction unit. 

The stopped-flow As v pre-reduction unit described in Chapter five showed significant 

promise in preliminary results. Further optimization of the unit including the use of 

heating is suggested to improve its performance. Based on the success of the system in 

the case of As, it can be assumed that it could equally as successfully be applied to the 

on-line pre-reduction of Sb V to Sbm using the same chemistry (16]. 

Results obtained for the determination of As in an nickel based alloy (Chapter five) were 

to an extent inconclusive and in contradiction with the findings of Riby et al. (83]. As 

discussed in Chapter five these findings tend to indicate that in the system of Riby et al. 

(83] arsenic present as As V after digestion was infact pre-reduced quantitatively to Asm 

on-line. If this is the case the authors of the work have developed a very rapid and 

effective method for the conversion of As v to its more sensitive Aslll oxidation state. 

Explanation for the observations made remains to be reached, therefore, further 

investigation would be of significant interest and value. A number of factors need close 

inspection including the properties of the sex column particulary in the presence of 

nickel ions. It is very possible that the presence of nickel under certain conditions could 

in fact catalyse the pre-reduction mechanism in some way. The addition of sodium 

tetrahydroborate prior to hydrochloric acid in the FI-HGAAS system may also play some 

role in the pre-reduction chemistry. 
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8.2.5 Atomization Studies. 

Further investigation into the atomization mechanism of the externally heated silica 

atomization cell is required following the rather inconclusive findings described in 

Chapter six. 

To restrict observations made to the atomization process alone and eliminate 

contributions made by the hydride generation reaction it is proposed that arsine and 

hydrogen selenide should be supplied from commercially available gas-cylinders 

(Messer-Griesheim), as used by Welz and Melcher [91] in their early work. Using such 

a procedure various trends could be identified along with the active participitation of 

such species as hydrogen and oxygen. This approach would still though only permit 

calculated estimates of the atomization mechanism, as has been the case for nearly all 

published work to date. To conclusively identify the mechanism investigation on the 

molecular level and the identification of active reaction species and products would be 

needed. Clearly, to achieve this techniques such as mass spectrometry would be 

necessary, as used by Welz et al. [99] in recent work. 

The use of graphite furnace atomizers [40, 41], would appear from early reports to be 

the way forward for HGAAS. Using furnace temperatures of the order of 2000-3000• C 

atomization is achieved solely by thermal dissociation. The need for careful control of 

reaction and interferent species entering the atomization cell and the condition of the 

atomization cell, required with the externally heated silica cell, is therefore removed. 

Employing a graphite furnace atomizer previously unachievable multielement 

determinations using HGAAS should be possible. The performance of the system would, 

therefore, compare favourably with that reported for the coupling of hydride generation 

to inductively coupled plasma atomic emission spectrometry ICP-AES [285]. Investigation 

into the use of a graphite furnace atomizer in a FI-HGAAS system it is suggested would 

produce a robust high performance HGAAS system. High interference tolerance in the 

aqueous phase would be achieved by using FI and through the use of a graphite furnace 

improved gas-phase interference tolerance would. Present drawbacks evident with the use 

of graphite furnaces of increased background absorption, limited graphite cuvette life 

times, complicated timing sequences and reduced throughput capability would all need 

to be investigated. A further benefit of the system would be the capability to carry out 

in-situ preconcentration in the graphite furnace itself [30,31]. Replicate injections of 

sample in the FI system would permit preconcentration without any deterioration of 

interference tolerance, expected in the aqueous phase with continuous sample 

introduction. 
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