4 research outputs found

    Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers

    Get PDF
    GNSS atmospheric water vapor monitoring is not yet routinely performed in Italy, particularly at the regional scale. However, in order to support the activities of regional environmental protection agencies, there is a widespread need to improve forecasting of heavy rainfall events. Localized convective rain forecasts are often misplaced in space and/or time, causing inefficiencies in risk mitigation activities. Water vapor information can be used to improve these forecasts. In collaboration with the environmental protection agencies of the Lombardy and Piedmont regions in northern Italy, we have collected and processed GNSS and weather station datasets for two heavy rain events: one which was spatially widespread, and another which was limited to few square kilometers. The time variations in water vapor derived from a regional GNSS network with inter-station distances on the order of 50 km were analyzed, and the relationship between the time variations and the evolution of the rain events was evaluated. Results showed a signature associated with the passage of the widespread rain front over each GNSS station within the area of interest. There was a peak in the precipitable water vapor value when the heavier precipitation area surrounded the station, followed by a steep decrease (5–10 mm in about 1 h) as the rainclouds moved past the station. The smaller-scale event, a convective storm a few kilometers in extent, was not detected by the regional GNSS network, but strong fluctuations in water vapor were detected by a low-cost station located near the area of interest.[Figure not available: see fulltext.]

    A novel fusion framework embedded with zero-shot super-resolution and multivariate autoregression for precipitable water vapor across the continental Europe

    Get PDF
    Precipitable water vapor (PWV), as the most abundant greenhouse gas, significantly impacts the evapotranspiration process and thus the global climate. However, the applicability of mainstream satellite PWV products is limited by the tradeoff between spatial and temporal resolutions, as well as some external factors such as cloud contamination. In this study, we proposed a novel PWV spatio-temporal fusion framework based on the zero-shot super-resolution and the multivariate autoregression models (ZSSR-ARF) to improve the accuracy and continuity of PWV. The framework is implemented in a way that the satellite-derived observations (MOD05) are fused with the reanalysis data (ERA5) to generate accurate and seamless PWV of high spatio-temporal resolution (0.01°, daily) across the European continent from 2001 to 2021. Firstly, the ZSSR approach is used to enhance the spatial resolution of ERA5 PWV based on the internal recurrence of image information. Secondly, the optimal ERA5-MOD05 image pairs are selected based on the image similarity as inputs to improve the fusion accuracy. Thirdly, the framework develops a multivariate autoregressive fusion approach to allocate weights adaptively for the high-resolution image prediction, which primely addresses the non-stationarity and autocorrelation of PWV. The results reveal that the accuracies of fused PWV are consistent with those of the GPS retrievals (r = 0.82–0.95 and RMSE = 2.21–4.01 mm), showing an enhancement in the accuracy and continuity compared to the original MODIS PWV. The ZSSR-ARF fusion framework outperforms the other methods with R2^2 improved by over 24% and RMSE reduced by over 0.61 mm. Furthermore, the fused PWV exhibits similar temporal consistency (mean difference of 0.40 mm and DSTD of 3.22 mm) to the reliable ERA5 products, and substantial increasing trends (mean of 0.057 mm/year and over 0.1 mm/year near the southern and western coasts) are observed over the European continent. As the accuracy and continuity of PWV are improved, the outcome of this paper has potential for climatic analyses during the land-atmosphere cycle process

    The STARTWAVE atmospheric water database

    Get PDF

    Estimation of tropospheric wet delay from GNSS measurements

    Get PDF
    The determination of the zenith wet delay (ZWD) component can be a difficult task due to the dynamic nature of atmospheric water vapour. However, precise estimation of the ZWD is essential for high-precision Global Navigation Satellite System (GNSS) applications such as real-time positioning and Numerical Weather Prediction (NWP) modelling.The functional and stochastic models that can be used for the estimation of the tropospheric parameters from GNSS measurements are presented and discussed in this study. The focus is to determine the ZWD in an efficient manner in static mode. In GNSS, the estimation of the ZWD is directly impacted by the choice of stochastic model used in the estimation process. In this thesis, the rigorous Minimum Norm Quadratic Unbiased Estimation (MINQUE) method was investigated and compared with traditional models such as the equal-weighting model (EWM) and the elevationangle dependent model (EADM). A variation of the MINQUE method was also introduced. A simulation study of these models resulted in MINQUE outperforming the other stochastic models by at least 36% in resolving the height component. However, this superiority did not lead to better ZWD estimates. In fact, the EADM provided the most accurate set of ZWD estimates among all the models tested. The EADM also yielded the best ZWD estimates in the real data analyses for two independent baselines in Australia and in Europe, respectively.The study also assessed the validity of a baseline approach, with a reduced processing window size, to provide good ZWD estimates at Continuously Operating Reference Stations (CORS) in an efficient manner. Results show that if the a-priori station coordinates are accurately known, the baseline approach, along with a 2-hour processing window, can produce ZWD estimates that are statistically in good agreement with the estimates from external sources such as the radiosonde (RS), water vapour radiometer (WVR) and International GNSS Service (IGS) solutions. Resolving the ZWD from GNSS measurements in such a timely manner can aid NWP model in providing near real-time weather forecasts in the data assimilation process.In the real-time kinematic modelling of GNSS measurements, the first-order Gauss- Markov (GM) autocorrelation model is commonly used for the dynamic model in Kalman filtering. However, for the purpose of ZWD estimation, it was found that the GM model consistently underestimates the temporal correlations that exist among the ZWD measurements. Therefore, a new autocorrelation dynamic model is proposed in a form similar to that of a hyperbolic function. The proposed model initially requires a small number of autocorrelation estimates using the standard autocorrelation formulations. With these autocorrelation estimates, the least-squares method is then implemented to solve for the model’s parameter coefficients. Once solved, the model is then fully defined. The proposed model was shown to be able to follow the autocorrelation trend better than the GM model. Additionally, analysis of real data at an Australian IGS station has showed the proposed model performed better than the random-walk model, and just as well as the GM model. The proposed model was able to provide near real-time (i.e. 30 seconds interval) ZTD estimates to within 2 cm accuracy on average.The thesis also included an investigation into the several interpolation models for estimating missing ZWD observations that may take place during temporary breakdowns of GNSS stations, or malfunctions of RS and WVR equipments. Results indicated marginal differences between the polynomial regression models, linear interpolation, fast-Fourier transform and simple Kriging methods. However, the linear interpolation method, which is dependent on the two most recent data points, is preferable due to its simplicity. This result corresponded well with the autocorrelation analysis of the ZWD estimates where significant temporal correlations were observed for at most two hours.The study concluded with an evaluation of several trend and smoothing models to determine the best models for predicting ZWD estimates, which can help improve real-time kinematic (RTK) positioning by mitigating the tropospheric effect. The moving average (MA) and the single-exponential smoothing (SES) models were shown to be the best-performing prediction models overall. These two models were able to provide ZWD estimates with forecast errors of less 10% for up to 4 hours of prediction
    corecore