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ABSTRACT 

 

The determination of the zenith wet delay (ZWD) component can be a difficult task 

due to the dynamic nature of atmospheric water vapour. However, precise estimation 

of the ZWD is essential for high-precision Global Navigation Satellite System 

(GNSS) applications such as real-time positioning and Numerical Weather Prediction 

(NWP) modelling.  

 

The functional and stochastic models that can be used for the estimation of the 

tropospheric parameters from GNSS measurements are presented and discussed in 

this study. The focus is to determine the ZWD in an efficient manner in static mode. 

In GNSS, the estimation of the ZWD is directly impacted by the choice of stochastic 

model used in the estimation process. In this thesis, the rigorous Minimum Norm 

Quadratic Unbiased Estimation (MINQUE) method was investigated and compared 

with traditional models such as the equal-weighting model (EWM) and the elevation-

angle dependent model (EADM). A variation of the MINQUE method was also 

introduced. A simulation study of these models resulted in MINQUE outperforming 

the other stochastic models by at least 36% in resolving the height component. 

However, this superiority did not lead to better ZWD estimates. In fact, the EADM 

provided the most accurate set of ZWD estimates among all the models tested. The 

EADM also yielded the best ZWD estimates in the real data analyses for two 

independent baselines in Australia and in Europe, respectively.  

 

The study also assessed the validity of a baseline approach, with a reduced 

processing window size, to provide good ZWD estimates at Continuously Operating 

Reference Stations (CORS) in an efficient manner. Results show that if the a-priori 

station coordinates are accurately known, the baseline approach, along with a 2-hour 

processing window, can produce ZWD estimates that are statistically in good 

agreement with the estimates from external sources such as the radiosonde (RS), 

water vapour radiometer (WVR) and International GNSS Service (IGS) solutions. 

Resolving the ZWD from GNSS measurements in such a timely manner can aid 

NWP model in providing near real-time weather forecasts in the data assimilation 

process. 
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In the real-time kinematic modelling of GNSS measurements, the first-order Gauss-

Markov (GM) autocorrelation model is commonly used for the dynamic model in 

Kalman filtering. However, for the purpose of ZWD estimation, it was found that the 

GM model consistently underestimates the temporal correlations that exist among the 

ZWD measurements. Therefore, a new autocorrelation dynamic model is proposed in 

a form similar to that of a hyperbolic function. The proposed model initially requires 

a small number of autocorrelation estimates using the standard autocorrelation 

formulations. With these autocorrelation estimates, the least-squares method is then 

implemented to solve for the model’s parameter coefficients. Once solved, the model 

is then fully defined. The proposed model was shown to be able to follow the 

autocorrelation trend better than the GM model. Additionally, analysis of real data at 

an Australian IGS station has showed the proposed model performed better than the 

random-walk model, and just as well as the GM model. The proposed model was 

able to provide near real-time (i.e. 30 seconds interval) ZTD estimates to within 2 cm 

accuracy on average. 

 

The thesis also included an investigation into the several interpolation models for 

estimating missing ZWD observations that may take place during temporary 

breakdowns of GNSS stations, or malfunctions of RS and WVR equipments. Results 

indicated marginal differences between the polynomial regression models, linear 

interpolation, fast-Fourier transform and simple Kriging methods. However, the 

linear interpolation method, which is dependent on the two most recent data points, is 

preferable due to its simplicity. This result corresponded well with the 

autocorrelation analysis of the ZWD estimates where significant temporal 

correlations were observed for at most two hours. 

 

The study concluded with an evaluation of several trend and smoothing models to 

determine the best models for predicting ZWD estimates, which can help improve 

real-time kinematic (RTK) positioning by mitigating the tropospheric effect. The 

moving average (MA) and the single-exponential smoothing (SES) models were 

shown to be the best-performing prediction models overall. These two models were 

able to provide ZWD estimates with forecast errors of less 10% for up to 4 hours of 

prediction.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.0  BACKGROUND 

Water vapour is the major greenhouse gas in the atmosphere and contributes 

enormously to cloud and precipitation processes. It is extremely variable both 

spatially and temporally, and is dependent on surface and air temperature. Given its 

role in the hydrological cycle, a better understanding of the distribution of 

atmospheric water vapour will ultimately improve precipitation forecasts worldwide. 

Atmospheric water vapour is a difficult entity to measure due to its dynamic 

behaviour. Therefore, any new water vapour measurement techniques should be 

welcome. 

 

In Global Satellite Navigation Systems (GNSS), a signal delay caused by the 

atmospheric water vapour is referred to as the wet delay. Initially considered as a 

nuisance factor in GNSS data processing, the wet delay can be determined in the 

estimation process. Once the wet delay is estimated, it can then be used to determine 

the amount of precipitable water vapour (PWV) in the atmosphere (section 2.3.1). 

Over the years, traditional sensors such as radiosonde (RS) and water vapour 

radiometer (WVR) have provided the benchmark for quantifying PWV. However, 

the performances of these sensors can be affected by unfavourable weather 

conditions, and especially at times of precipitation. The large costs of RS (long-term) 

and WVR (immediate) can also be disadvantageous. Other water vapour sensing 

techniques such as radio occultation (RO) and Very Long Baseline Interferometry 

(VLBI) also have their disadvantages. Although RO can provide greater coverage 

than the other methods, especially over the oceans, its accuracy is restricted to 5 km 

above the Earth’s surface. The cost of constructing and maintaining VLBI stations, 

on the other hand, are too great to ensure adequate spatial coverage over the land. 

However, the flexibility and reasonable cost of GNSS, as well as its all-weather 
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operation capability can provide an additional dimension to the conventional 

methods of atmospheric sensing in a cost-effective manner.  

 

In GNSS post-processing, the tropospheric delay is often estimated, for instance, 

using least-squares (LS), in the zenith direction as a parameter, along with the 

differential coordinates and the carrier-phase integer ambiguities. Due to its small 

magnitude in comparison to other parameters, the precision (i.e. LS standard error 

estimates) of the zenith tropospheric delay solutions provided by GNSS is heavily 

dependent on how effectively other measurement errors can be removed or mitigated 

prior to the LS estimation process. The majority of these measurement errors, such as 

the clock errors and the ionospheric delay, can be effectively accounted for through 

the use of dual-frequency (L1 and L2) measurements, differencing techniques and 

external models (e.g., Klobuchar, 1986). Once estimated, the zenith tropospheric 

delay, or zenith total delay (ZTD), can then be divided into its hydrostatic and wet 

components.  

 

The zenith hydrostatic delay (ZHD) can be estimated with external models to within 

a millimetre in accuracy (e.g., Saastamoinen, 1972), and be subtracted from the 

estimated total tropospheric delay, leaving behind the zenith wet delay (ZWD) 

component, which is mostly due to the atmospheric water vapour. The ZWD can 

then be used to determine the precipitable water vapour (PWV) for a given site (see 

section 2.3.1). A receiver at a nearby location can also make use of this ZWD 

estimates for accurate positioning by correcting for the atmosphere related errors. 

The accuracy and precision of LS tropospheric estimates are also dependent of the 

choice of stochastic model, which describes the quality of the observed GNSS 

signals and the correlations among these measurements. An appropriately defined 

model can lead to quality tropospheric estimates and error estimates. 

 

One of the applications of GNSS PWV estimates is in aiding Numerical Weather 

Prediction (NWP) models to provide better weather forecasts. The impact of GNSS 

PWV estimates on weather forecasting is well documented (e.g., Kuo et al., 1996; 

Vedel and Huang, 2003; Gutman et al., 2004; Vedel and Huang, 2004; Vedel et al., 

2004; Macpherson et al., 2007). These studies reported improvements in the 

humidity and precipitation forecasts when GNSS PWV estimates are assimilated into 
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NWP models. Comparisons between the estimates from a NWP model with and 

without GNSS PWV estimates assimilation were made and the improvement in 

relative humidity (RH) forecasts lead to a 40% reduction of forecast errors (Gutman 

et al., 2001). The impact of GNSS PWV estimates was further emphasised by a 

multi-year experiment over the period from 1999-2004 by Smith et al. (2006), 

whereby improvements were evident in the 6-h and 12-h RH forecasts. An 

experiment for a three month period (March-May 2004) in the corresponding 

campaign also witnessed the strongest improvements in the 3- and 6-hr forecasts.  

 

Properly-defined error estimates for the GNSS PWV estimates are also essential in 

the realisation of their true impact on the NWP. The estimation of the observation 

error covariance matrices is still a very challenging prospect in data assimilation 

(Buehner et al., 2005). The true impact of GNSS PWV estimates on NWP cannot be 

realised unless the error covariance matrix is correctly defined (Kuo et al., 1996). 

Even if the quality of the assimilated data is poor, improvement in the NWP analysis 

can be expected as long as the error information is given correctly (Huang and Vedel, 

2003). Along with the actual GNSS tropospheric estimates, the use of the 

corresponding ZTD error estimates (i.e. square root of the LS error variances of the 

ZTD estimates) in the assimilation process was found to have improved the NWP 

forecast skill in precipitation (Vedel and Huang, 2004). It was also noted, however, 

that the optimal error estimates to be used in the assimilation need to be 

“significantly” greater than the standard errors of the LS ZTD, which was in the 

order of around 3 mm (at one standard deviation). Therefore, a strategy to provide 

more realistic LS tropospheric error estimates are needed, in addition to quality 

tropospheric estimates. 

 

The benefits of good GNSS tropospheric solutions can also extend to near real-time 

or real-time kinematic (RTK) GNSS applications. If a network of reference stations 

(or a single reference station) is able to provide accurate and precise ZWD estimates 

in a timely manner, these estimates can then be used by a mobile or static user at an 

unknown location to improve ambiguity resolution, and ultimately, the position 

solutions. Furthermore, these GNSS ZWD estimates and error estimates can be used 

to predict or forecast ZWD estimates ahead of time. These predicted values can be 
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useful for real-time positioning, as well as for aiding NWP models to provide 

dependable short-term weather forecasts. 

 

 

1.1 RESEARCH OBJECTIVES 

Factors that can affect the determination of the ZTD (and accordingly the ZWD), and 

the corresponding error estimates include the parameterisation of the observation 

equation, the processing strategy, the choice of stochastic model used, the 

observation redundancy level, and the degree in which the measurement noises have 

been mitigated. To evaluate the significance of their roles in the estimation of the 

ZWD, the following tasks were undertaken in this study: 

 

• Parameterisation of ZWD from GNSS observations through functional and 

stochastic modelling; 

• Investigate the achievable accuracies and precisions of GNSS tropospheric 

estimates; 

• Assess the impact of stochastic modelling on the estimation of the GNSS 

tropospheric estimates and their corresponding error estimates with simulated 

and real data at reference stations. The study also includes the comparisons 

between the Minimum Norm Quadratic Unbiased Estimator (MINQUE) and 

the other more traditional models; 

• Investigate using t-tests to determine whether the error estimates from the LS 

adjustment process are a dependable source of error information for 

corresponding GNSS tropospheric solutions; 

• Study the impact of a reduced processing window size and a reduced network 

(i.e. smaller number of stations) on the estimation of the GNSS tropospheric 

estimates and the corresponding error estimates; 

• Investigate the temporal correlations that exist among the ZWD estimates and 

propose an autocorrelation function that can represent the trend of these 

correlations. The impact of the proposed autocorrelation model on the 

estimation of ZWD in RTK mode will also be studied; 
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• Investigate the best interpolation models for the purpose of estimating 

missing ZWD values, which can be used during breaks in GNSS, RS or WVR 

data; 

• Test a number of prediction models to provide reliable short-term forecast of 

ZWD estimates, which can be used for real-time kinematic applications, as 

well as for NWP models. 

 

 

1.2  THESIS OUTLINE 

The remainder of this thesis comprises seven chapters. 

 

Chapter 2 reviews the modelling of atmospheric water vapour and, briefly, its role in 

the atmosphere the major greenhouse gases. It also discusses a number of existing 

methods, other than GNSS, that can be used to quantify the atmospheric water 

vapour. 

 

Chapter 3 details the procedure in which the atmospheric wet delays can be estimated 

with GNSS using the least-squares approach in static mode. This Chapter also 

discusses the GNSS measurement noises that can affect the wet delay estimation 

process, and the manner in which they can be mitigated to minimise the residual 

errors from filtering through to the wet delay estimates. The Kalman filter (KF) 

process is also outlined as a technique that allows the determination of the wet delays 

in near real-time. The first-order Gauss-Markov (GM) KF process which models 

consecutive state vectors with respect to the GM autocorrelation function, is 

examined closely. A new autocorrelation function is then proposed to better 

represent the decaying trend of the autocorrelations among the ZWD measurements. 

 

Chapter 4 discusses the importance of the choice of the stochastic model on the 

quality of the determined tropospheric parameter and its error estimates. Some 

conventional stochastic models, such as the equal-weighting model, the elevation-

angle dependent model, and the signal-to-noise model are discussed. In addition, one 

of the more rigorous spatial models, the MINQUE model, is reviewed along with its 
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limitations. A modification to this spatial model is proposed to overcome some of its 

limitations. 

 

Chapter 5 presents the t-test approach to determine the effectiveness of the error 

estimates of the GNSS ZWD solutions as one of the sources for assessing the quality 

of the actual ZWD estimates for periods where there are no external data available to 

determine the accuracy of these estimates. This chapter also examines the 

consequences of a processing strategy, which involves a network of reference 

stations with a 24-h or longer processing windows, on the estimation of the LS ZWD 

estimates and their error estimates. 

 

Chapter 6 provides all the results and analyses of the methods discussed in the 

previous chapters related to the ZWD estimation and error analysis. One of the 

primary focuses of Chapter 6 is to investigate the impact of MINUQE stochastic 

model on the tropospheric solutions from the LS adjustment process in static 

positioning. This chapter is divided into four sections. The first section provides the 

analysis of GNSS stations that cover all of Australia to demonstrate the capability of 

GNSS to provide accurate tropospheric estimates. Through the use of simulation 

data, the second section tests a number of proposed stochastic models on the 

determination of the ZWD values and their error estimates. This study also analyses 

the effects of varying the processing window sizes on the error estimates with the 

statistical procedure outlined in Chapter 5. The investigation is then carried over to a 

real data analysis of a long baseline between two Australian stations. The PWV 

estimates resulting from this baseline analysis are compared and validated with the 

RS data sets. However, as the number of RS data was limited to a maximum of two 

per day, the number of comparisons was limited. Therefore, data from a baseline 

between two European stations with co-located WVRs were investigated. The WVRs 

are able to provide ZWD estimates at a higher resolution than RS, and thus, more of 

the GNSS ZWD estimates can be validated. The results of the European campaign 

are presented in the Section 6.4. The other focus of Chapter 6 is to evaluate the 

performance of the proposed autocorrelation model against two of the more 

established random process model, i.e. the random walk and the Gauss-Markov 

models, in the near real-time determination of the ZWD in the KF process. The 

results of these comparisons are presented in the final section of Chapter 6. 
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Chapter 7 analyses the significance of the temporal correlations that exist among the 

ZWD estimates over different time lags. This chapter also outlines and demonstrates 

the performance of a number of proposed ZWD interpolation methods that can be 

used to estimate missing ZWD data in an effective manner. This chapter also outlines 

and tests a number of ZWD prediction models that may prove useful in real-time 

kinematic applications and NWP models by forecasting short-term ZWD estimates. 

 

Finally, Chapter 8 summarises the findings and conclusion of the study, and presents 

some recommendations for future research. 
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CHAPTER 2 

 

BACKGROUND – ZENITH WET DELAY IN THE ATMOSPHERE 

 

 

2.0 INTRODUCTION 

The Earth’s atmosphere is primarily composed of Nitrogen (N2, ~78%) and Oxygen 

(O2, ~21%). Traces of other gaseous constituents are also present, which include 

water vapour (H2O), methane (CH4), hydrogen (H2), carbon dioxide (CO2), and noble 

gases such as argon (Ar), helium (He) and neon (Ne). The degree of contribution of 

these gases to the atmosphere is very small, and is difficult to quantify with any 

precision. However, adequate measurements may be obtained with an appropriate 

apparatus at a specific time and location (Jacobson, 1999). 

 

The atmosphere is divided into five layers according to the difference in temperature. 

From the lowest to the highest altitude, these layers are the troposphere, the 

stratosphere, the mesosphere, the thermosphere and the exosphere. These 

atmospheric layers are illustrated in Figure 2.1. 

 

The troposphere is a layer that extends from the Earth’s surface to about 10 km over 

the North and South poles and about 16 km over the equator. The temperature of the 

troposphere decreases as the altitude increases. The temperature reduction rate (lapse 

rate) is approximately 6.50C/km. The temperature stops decreasing at the upper 

boundary of the troposphere, known as the tropopause. Nearly 90% of the 

atmospheric mass is below 16 km (Möller, 1973), and more than 80% of this is 

within the troposphere. Therefore, nearly all of the Earth’s weather activities occur in 

the troposphere. The troposphere also contains most of the water vapour in the 

atmosphere. By studying the troposphere, meteorologists are able to forecast 

weather.  
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Figure 2.1 The Earth’s atmospheric structures (source: UCAR, 2008) 
 

 

The stratosphere extends from the tropopause to about 50 km from the Earth’s 

surface. It is also where the ozone layer is found. The stratosphere contains very little 

moisture and thus, clouds are rare, as well as any weather disturbances. The top of 

the stratosphere is known as the stratopause. All of the gaseous mixtures in the 

troposphere and the stratosphere are virtually electrically uncharged, and therefore, it 

is commonly referred to as the neutral atmosphere. Nearly 99% of the atmospheric 

mass is below 30 km (Möller, 1973), therefore the neutral region of the atmosphere 

contains virtually all of the water vapour. 

 

From the stratopause to about 86 km above the Earth’s surface is the mesosphere. 

The temperature in the mesosphere decreases with altitude. The lowest temperature 

in the Earth’s atmosphere occurs at the top of the mesosphere, called the mesopause. 

The average temperature at the mesopause is -900 C and may reach as low as -1000 C. 

The mesosphere is also the layer of the atmosphere where most meteors are 

vaporised when entering the atmosphere 
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The thermosphere extends from the mesopause to about 500 km above the Earth’s 

surface. When radiation from the Sun and other sources in the outer space enters the 

thermosphere, ionization of the atoms and molecules occur, producing ions. Most of 

the ionization takes place in the lower layer of the thermosphere, and hence, is called 

the ionosphere. Technically, the ionosphere is not an atmospheric layer but rather, it 

is an extension of the thermosphere. The ionosphere represents less than 0.1% of the 

total atmospheric mass. The ionization process requires the presence of short-wave 

radiation from the Sun and therefore, little or no ionization would take place below 

the lower boundary of the ionosphere.  

 

Beyond the upper layer of the thermosphere is known as the exosphere. The 

exosphere is the upper limit of the Earth’s atmosphere and is the only atmospheric 

layer where atoms and molecules can, to some extent, escape into space.  

 

 

2.1 MOIST AIR 

Moist air is a mixture of dry air and various phases (i.e., liquid, solid and gas) of 

water. As such, the Earth’s atmosphere can be viewed as the moist atmosphere. Dry 

air refers to all gases in the atmosphere, except water vapour (WV). The major 

constituents of dry air are nitrogen, oxygen, argon and carbon dioxide. These four 

gases account for 99.99% of the pressure exerted by dry air, therefore the 

concentration of all other dry or trace gases, such as neon, helium and methane, can 

be ignored in the calculation of the total dry air pressure without much loss in 

accuracy (Jacobson, 1999).  

 

When the water in the moist atmosphere is in the gaseous state, it behaves like the 

dry air (Satoh, 2004). WV is the gaseous form of water. It is the result of 

evaporations from soil, lakes, rivers, oceans, sublimation from glaciers, transpiration 

from plants, or through chemical reactions. Approximately 85% of the atmospheric 

water is due to ocean surface evaporation (Jacobson, 1999). The distribution of WV 

in the atmosphere varies with time and location. The atmosphere may contain up to 

4% or 40,000 ppmv (parts per million by volume) of WV over the equatorial regions. 
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In comparison, the WV concentration is almost zero over the Earth’s poles. Mid-

latitude regions will experience seasonal changes in the water vapour distribution.  

 

WV is a major greenhouse gas and it plays a major role in the climate change 

process. In addition to providing radiative feedback of the greenhouse effect due to 

CO2, its phase changes and transportation through the atmosphere is vital in forming 

clouds and the precipitation processes. An improved understanding of how water 

vapour re-distributes itself in the atmosphere will ultimately lead to superior short-

term (daily-weekly) weather forecasts, as well as better long-term (yearly) climate 

prediction (Jacobson, 1999). Therefore, this underlines the need for its study, thereby 

forming the basis of the present work. 

 

2.1.1 Mixing Ratio 

The mixing ratio is a relative quantity that defines the abundance of a gas with 

respect to the dry air either by volume or mass. The volume mixing ratio (VMR), qχ , 

is the number of gas molecules per molecule of dry air (d), and for a gas q it is 

expressed as (Jacobson, 1999): 
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where dP  and qP  are the partial pressures (kPa) of dry air and gas q; dn  and qn  are 

the number of moles (in mol) of dry air and gas q, respectively. 
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where dM  and qM  are defined as the molecular weight (or molar mass) of dry air 

and gas q, respectively; dρ  and qρ  denote the density of dry air and gas q. 
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From Eq. (2.2), the mass mixing ratio of water vapour can be defined as: 

 wvwvwv
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M

M
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where wvM  and wvχ  are the molecular weight and VMR of water vapour; The 

values for dM  and wvM  in Eq. (2.3) can be found in standard chemistry textbooks. 

(e.g.,  Peixoto and Oort, 1992).  

 

2.1.2 Humidity 

The water vapour content in the atmosphere can also be expressed in terms of 

specific humidity. Specific humidity is quantified in a similar way to the mass 

mixing ratio, except it expresses the mass of water vapour per mass of moist air. The 

equation for specific humidity wvq  can be given as (Jacobson, 1999): 

   

 
wvd

wv

wvd

wv

m

wv
wv

P622.0P

P622.0
q

+
=

ρ+ρ

ρ
=

ρ

ρ
=  (2.4) 

 

where  wvP  and wvρ  are the partial pressure and density of water vapour, with mP  

and mρ  being the pressure and density of moist air, respectively. The mass density of 

moist air is: 

 

wvdm ρ+ρ=ρ  (2.5) 

 

and thus, Eq. (2.4) can be rewritten as: 

 

( ) m

wv

wvm

wv

wvwvm

wv
wv

P

P622.0

P378.0P

P622.0

P622.0PP

P622.0
q ≈

−
=

+−
=  (2.6) 

 

Specific humidity can also be expressed in terms of the mass mixing ratio (Jacobson, 

1999), i.e. 
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m

d
wvwvq

ρ

ρ
ω=  (2.7) 

The mixing ratio is always greater than the specific humidity, the difference is 

however negligible in most instances. The discrepancy between the mixing ratio and 

specific humidity is generally less than 2% (Saucier, 1955).  

 

There is a maximum value for water vapour pressure wvP  known as the saturation 

vapour pressure, s,wvP , which is a function of the temperature T . The saturation 

vapour pressure over a liquid surface is given as (Jacobson, 1999): 

 

 















×+








−×=

T

T
ln1309.5

T

1

T

1
6816exp112.6s,wvP f

f

 (2.8) 

 

where swvP ,  and T  are given in millibars and Kelvin respectively. fT  is the freezing 

temperature of water and has a constant value of 273.16 K ( C00 ). For the 

temperature range C35TC35 0
c

0 <<− , Bolton (1980) provides an alternative 

expression, 

 

 








+
×=

5.243T

T67.17
exp112.6P

c

c
s,wv  (2.9) 

 

The relationship between T and cT is given as 

 

 cf TTT +=  (2.10) 

 

Correspondingly, the equation for the saturation vapour pressure over ice, I,wvP , is 

(Jacobson, 1999): 
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
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T
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(2.11) 
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The saturation vapour pressure equations above are central in determining whether 

water vapour condenses as liquid or deposits as ice particles. If the air temperature is 

below fT  and I,wvwv PP > , water vapour deposits as a solid and snow. If the air 

temperature is above fT  and s,wvwv PP > , water vapour generally condenses to liquid.  

 

The relationship between wvP  and s,wvP  gives rise to another commonly used 

humidity parameter, relative humidity, U . That is, 

   

 %100U
s,wv

wv ×
ω

ω
=  (2.12)  

where 

 







=ω

d

s,wv
s,wv

P

P
622.0  (2.13) 

 

which can be referred to as the saturation mixing ratio.  

 

 

2.2 ATMOSPHERIC EFFECTS ON L-BAND GNSS SIGNAL 

PROPAGATION 

As a GNSS signal propagates towards a receiver on Earth, its path lengths and 

velocities are significantly compromised due to the presence of the atmosphere. 

Efforts to correct the ranges between the satellites and receivers are essential in 

precise GNSS positioning. A slight distortion, in the order of a nanosecond, in the 

signal travel times may result in inaccuracies of a few decimetres in the 

determination of the range, which in turn dilutes the accuracy of the determined 

position. Outer space is a largely resistance-free environment, and as such, the 

electromagnetic GNSS signals are assumed to propagate in a direct path at the speed 

of light.  

 

The direct signal propagation routes imply, by definition, that the travelling medium 

of the electromagnetic waves has an index of refraction, nref, value of 1. Any 
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deviations from this value are attributed to the Earth’s atmospheric effect, as well as 

other error sources and biases (e.g., Nicholson et al., 2005). These error sources 

include satellite orbital errors (Pervan and Chan, 2003; Beutler et al., 2006), antenna 

phase centre offsets and variations (Schmid and Rothacher, 2003; Schmid, 2005), 

ocean tide loading (e.g., Penna and Baker, 2002; Khan and Scherneck, 2003; Urschl 

et al., 2005), atmospheric loading (Sun et al., 1995; Kaniuth and Vetter, 2006) and 

multipath (Van Nee, 1992; Bétaille et al., 2006; Larson et al., 2007), which 

individually can incur an inaccuracy of a millimetre to a few centimetres to the 

GNSS solutions. The combined effects can be even more dramatic.  

 

The Earth’s atmosphere, more specifically the ionosphere and the troposphere, is 

largely responsible for the GNSS signal propagation error. The refraction effect due 

to the atmosphere not only affects the traversing speed of a GNSS signal, curvature is 

also introduced to its intended straight-line path. The associated excess length due to 

the bending of the signal propagation path is about one centimetre at o15  elevation 

angle (Bevis et al., 1992; Ichikawa, 1995). The bending effect is usually ignored as it 

corresponds to approximately 0.1% of the total path delay. The refraction effect is 

seen as an important source of information for atmospheric science, however in 

GNSS positioning, refraction is generally considered as a nuisance factor. 

Subsequently, the atmospheric effects are often mitigated from the observables in 

order to ensure solutions of high precision (Bevis et al., 1992; Musa et al., 2004). 

The height component of coordinates is most affected by unmodelled atmospheric 

refraction (Bock et al., 2001). A path delay has to be resolved to an accuracy of 

about 0.3mm in order to secure 1 mm accuracy in the height component of 

differential GNSS measurements. Such level of accuracy is currently unachievable 

on a consistent basis (Schön et al., 2004; Satirapod and Chalermwattanachai, 2005).  

 

 

2.3 TROPOSPHERIC DELAY 

Signal delays induced by the troposphere are generally known as tropospheric 

refractions or tropospheric delays. In practice, tropospheric effects on GNSS 

measurements refer to the delays induced by the troposphere, and the stratosphere 

(i.e. the neutral atmosphere). Although the troposphere is smaller than the 
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stratosphere, GNSS signals experience greater refractions in the troposphere as it 

contains the majority of the atmospheric mass. 

 

Signal delay occurs in the troposphere by the slowing of the signal velocity and 

bending of the propagation path. Thus, the measured distance (based on timed 

signals) will be greater than the geometric range. The troposphere is a non-dispersive 

medium for GNSS frequencies or for any radio frequencies below 15 GHz (Hay and 

Wong, 2000). Delays on the code and phase observables are therefore identical.  

 

Signals received at low elevations pass through more of the atmosphere than those of 

higher elevations and therefore, experience greater tropospheric effects. 

Tropospheric refraction can reach 2.3 m in the zenith direction of an observing 

receiver at sea level (Bevis et al., 1992; Rocken et al., 1995; Businger et al., 1996; 

Dodson et al., 1996; Duan et al., 1996; Leick, 2004). The measured signal range 

error for an elevation of a few degrees could be in the order of several metres (El-

Rabanny, 2002; Xu, 2003). A difference up to a factor of four can be seen between a 

delay at the zenith and at the an elevation angle of 150 (Bevis et al., 1992).  

 

The tropospheric delay cannot be mitigated using the L1/L2 combination, as it is for 

the ionospheric effects (e.g., Seeber, 2003). Therefore, it has to be properly modelled 

or estimated. For short baselines (<10-20 km), each GNSS station/receiver will be 

subject to virtually identical tropospheric biases, thus, the effect can be differenced 

away without the need to introduce external aid from meteorological data or models. 

This approach works best provided the stations are at comparable altitudes, i.e. the 

amount of atmosphere above each of the stations is similar. When larger baselines 

are being considered, or when the height differences between the stations are, 

adequate modelling of the tropospheric delays is essential (Seeber, 2003). However, 

acquiring highly precise tropospheric estimates still remains difficult due to the 

dynamic nature of the atmospheric gases, more specifically, the atmospheric water 

vapour (e.g. Bevis et al., 1994; Rocken et al., 1997; Snajdrova et al., 2006).  
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2.3.1 Modelling the Tropospheric Delay 

A medium with a refractive index (not equal to one) impacts a signal’s propagation 

path length and its velocity. The difference between the calculated range and the 

geometric range can be defined as: 

 

 ( )∫ −=∆
cL

grefrc LdssnL  (2.14) 

 

where ( )sn refr  is the index of refraction as a function of position s  along a curved 

path cL , and gL  is the straight line geometric Euclidean path between a satellite and 

a receiver. Equivalently, (2.14) can be expressed as (Bevis et al., 1992): 

 

 ( )∫ −+−=∆
cL

gprefrc ]LL[ds]1sn[L  (2.15) 

 

where pL  is the path length of the curve cL . The first term of the right-hand side of 

Eq. (2.15) is attributed to the change in signal velocity, while the second term 

represents the bending of the ray path. As mentioned previously, this bending effect 

is usually ignored as it corresponds to approximately 0.1% of the total path delay. 

Thus, following Eq. (2.15), the excess path between a station i and a satellite j as a 

result of signal retardation due to the troposphere is modelled as: 

 

 ( )[ ]∫ −=
cL

refr
k
j ds1snT  (2.16) 

 

The quantity ( )sn refr  is often described in terms of the atmospheric refractivity

( )sN refr . The relationship between ( )sn refr  and  ( )sN refr  is defined as: 

 

 ( ) ( )sN101sn refr
6

refr
−=−  (2.17) 

 

Thus, Eq. (2.16) becomes 
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 ( )∫
−=

cL

refr
6j

i dssN10T  (2.18) 

The degree of tropospheric refraction on a GNSS signal depends directly on the 

density of the atmospheric air. In turn, the air density is dependent on temperature, 

atmospheric pressure and the air humidity (or water vapour pressure). Smith and 

Weintraub (1953) proposed a two-term formula to describe the air refractivity as: 

 

 
2

wv5
refr

T

P
1073.3

T

P
6.77N ×+=  (2.19) 

 

The first term in Eq. (2.19) is considerably larger than the second in most 

circumstances. Under normal atmospheric conditions, the proposed formulation is 

considered accurate to about 0.5% (Resch, 1984). A more refined, three-term 

formula for refractivity was also offered by Smith and Weintraub (1953): 
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where dZ  and wvZ  is the compressibility factor of dry air and water vapour, 

respectively; ,k1  ,k2  3k  are the pre-determined coefficients based on theory and 

experimental observations. Table 2.1 provides the values for these coefficients. 

 

Table 2.1 Values for Coefficients 21 k,k  and 3k   

 k1(Kmbar-1) k2(Kmbar-1) k3(K
2mbar-1) 

Smith and Weintraub (1953) 77.607 ± 0.013 71.60 ± 8.50 3.747 ± 0.031 

Thayer (1974) 77.604 ± 0.014 64.79 ± 0.08 3.776 ± 0.004 

Bevis et al.(1994) 77.600 ± 0.050 70.40 ± 2.20 3.739 ± 0.012 

 

Although water vapour represents less than 1% of the total atmospheric volume, it is 

extremely variable and difficult to quantify. Most of the water in the air is from the 

atmospheric water vapour (e.g., Leick, 2004). Liquid water does contribute slightly 

to the overall refractivity; however it is not parameterised in Eq. (2.20). Elgered 

(1993) evaluates a maximum of about 0.75 cm path delay can be introduced by liquid 
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water, which amounts to even less than that of the bending effect. It is as such treated 

similarly and is ignored in the formulation. The compressibility factors, dZ  and wvZ , 

take into account small departures in the behaviour of the atmospheric gases from the 

ideal gas laws (Bevis et al., 1992). Both parameters differ from unity only a few 

parts per thousand (Owens, 1967), and therefore are usually set to one. The first and 

second terms of Eq. (2.20) describe the sum of distortions of the dry and wet 

atmospheric constituents under the influence of an applied magnetic field. The third 

term refers to the refractivity due to the permanent dipole moment of the water 

vapour molecule, which is independent of the GNSS frequency (Bevis et al., 1992).  

 

In Table 2.1, the coefficients ,k1  ,k2  and 3k  of Thayer (1974) are more widely used 

than Smith and Weintraub (1953) because of their high nominal precisions. The 

accuracy of the refractivity computed via Eq. (2.20) is limited to around 0.02%, as a 

result of the uncertainties in Thayer’s constant coefficients (Davis et al., 1985). 

However, there were arguments against the derivation of these coefficients by Hill et 

al. (1982), who argued that the methodology of Thayer (1974) as theoretically 

unjustifiable. The main issue here is with the 2k  constant, which is determined 

through extrapolation of the optical frequencies. Another set of values for the ,k1

,k2  and 3k constants were later suggested by Bevis et al. (1994). Bevis et al. (1994) 

are confident that the proposed set of coefficients has a 95% probability that their 

true values lie within two standard deviations. 

 

The first term of Eq. (2.20) can be further split into two terms, one that reflects the 

refractivity of an ideal gas in hydrostatic equilibrium and another that is dependent of 

the partial water vapour pressure (Leick, 2004). By introducing the equation for the 

ideal gas with respect to its density 

 

 
i

uii
i

M

TRZ
P

ρ
= ,   for di = (dry), wv (water vapour)        (2.21) 

 

and applying dP  from (2.21) to the first term of (2.20) results in, 
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where uR  denotes the universal gas constant and is given as 8.31434 Jmol-1K-1 

(Jacobson, 1999). 

 

Defining the relationship between the total air mass density ρ  with its partial 

densities due to the dry and wet air constituents as: 

  

 wvd ρ+ρ=ρ  (2.23) 

 

and substituting it into Eq. (2.22) and combining it with the other terms of Eq. (2.20) 

gives 
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where 
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A value of 2.21.22 ±  Kmbar-1
 for '

2k  is given in Bevis et al. (1994).  

 

The total refractivity refrN  can now be expressed in terms of the hydrostatic ( dN ) 

and wet ( wvN ) components. That is, 
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However, the wet delay component (i.e. Eq. (2.27)) due to water vapour is more 

elaborate than the dry component (i.e. Eq. (2.26)). When Eqs. (2.26) and (2.27) are 

integrated along the zenith direction, the zenith hydrostatic delay (ZHD) and the 

zenith wet delay (ZWD) are finally computed respectively as: 

 

 ( )∫
−=

zenith

d
6 dhhN10ZHD  (2.28) 

( )∫
−=

zenith

wv
6 dhhN10ZWD  (2.29) 

 

with the zenith total delay (ZTD) defined as 

 

 ZWDZHDZTD +=  (2.30) 

 

When surface pressure and surface temperature data are available, the ZWD may be 

expressed in terms of precipitable water vapour (PWV) measurement. PWV is often 

identified as the Integrated Water Vapour (IWV). Thus, the relationship between the 

two entities is defined by the dimensionless conversion factor Π  (e.g., Bevis et al., 

1992; Glowacki et al., 2006): 

 

 ZWDPWV ×Π=  (2.31) 

with 
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and 
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where wvR  and wρ  are the specific gas constant of water vapour and the density of 

liquid water, respectively; mT  is the weighted mean temperature; wvP  denotes the 

partial pressure of water vapour with T denoting the height-dependent temperature 
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reading. The integration is performed from the surface through the entire atmosphere. 

The factor Π  is sometimes approximated as 6.5 (Kleijer, 2004), but it varies 

spatially and temporally. The parameter mT  can be approximated using a linear 

regression equation, which is derived from the radiosonde profiles acquired within 

the USA (Bevis et al., 1992): 

 

 sm T72.02.70T +=  (2.34) 

 

where sT  is the surface temperature in Kelvin. Bevis et al. (1992) mentioned that Π  

can be evaluated to within 2% accuracy with Eq. (2.34). A study into the estimation 

of mT  over 53 global stations in a 23-year period has found that the appropriateness 

of the coefficients in Eq. (2.34) are limited to the continental US (Ross and 

Rosenfeld, 1997). However, using a linear regression model of the same form as Eq. 

(2.34), it was found in most cases that site-specific coefficients can evaluate mT  to 

within 2% accuracy, corresponding to an absolute PWV error of 0.1-0.5 mm.   

 

2.3.2 Hydrostatic and Wet Delays 

The hydrostatic delay is much larger than the wet delay as it represents 90% of the 

total tropospheric refraction (Dodson et al., 1996; Duan et al., 1996). Changes in the 

ZHD, given in Eq. (2.28) at a specific location are mainly due to surface pressure 

changes accompanying synoptic-scale motions of the atmosphere. Variations in the 

ZHD are usually at the order of 2-3 cm during the year at mid-latitudes (Janes et al., 

1991), but may reach 5 cm on a daily basis, or over a few days. The hydrostatic delay 

is not difficult to account for and can be estimated with a high degree of accuracy 

when precise surface meteorological measurements are incorporated in its modelling. 

Current models can estimate the hydrostatic delay with an accuracy that is within 1% 

of actual delay (Seeber, 2003). Moreover, if the atmosphere is in hydrostatic 

equilibrium and if the atmospheric pressure is measured with an error less than 0.3 

mbar, then the ZHD can be retrieved within 1 mm using for example, the 

Saastamoinen (1973) hydrostatic model (Mendes and Langley, 1999). This ensures 

that minimal hydrostatic errors propagate through to the wet delay estimates. 
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Although the wet delay, given in Eq. (2.29) accounts for only 10% of the total delay, 

it is far more difficult to model or remove due to the lack of knowledge regarding the 

distribution of the water vapour in the atmosphere. The temporal and spatial 

variability of the water vapour ensures that the wet delay cannot be consistently 

modelled with millimetre precision. The wet delay can vary from a few centimetres 

in arid places to 35 cm in tropical and humid regions (Bevis et al., 1992).  

 

2.4 TROPOSPHERIC MODELS 

Tropospheric models are often used to model the state of the atmosphere with 

varying degrees of accuracy. Surface meteorological measurements such as pressure, 

temperature and humidity are generally required as inputs for these models. Other 

inputs may include station height, surface gravity and temperature lapse rate. Models 

such as the Hopfield (1971) and Baby et al. (1988) can be used to estimate the ZHD 

accurately to within 3-4 mm whilst Saastamoinen (1973) can produce results with 

sub-millimetre bias (Mendes and Langley, 1999). 

 

On the other hand, acquiring highly-precise measurements of ZWD consistently with 

current tropospheric models is difficult, as the correlation between wet delay and 

surface measurements is weak (Mendes and Langley, 1999). Under standard 

atmospheric conditions (1,010 mbar for atmospheric pressure, 200C for temperature, 

and 50% humidity), most existing models generate acceptable estimates for weather 

forecast application. However, such conditions are rare, especially over long periods 

of time. Thus, many of these models are inadequate in capturing the absolute wet 

delay estimates (El-Rabanny, 2002). The residual wet delay resulting from existing 

models ranges from a couple to several centimetres (e.g., Mendes and Langley, 1999; 

Kim et al., 2004; Farah et al., 2005; Satirapod and Chalermwattanachai, 2005). This 

inaccuracy may rise to 5-8 cm during the passage of weather fronts (Elgered, 1993; 

Ichikawa, 1995). In humid conditions such as that on the Indian subcontinent, a mean 

absolute difference of up to 6.4 cm between the true ZWD and the widely used 

Hopfield (1971) model can be observed (Saha et al., 2007). The  European 

Geostationary Navigation Overlay Service (EGNOS) tropospheric model was 

reported to produce vertical tropospheric errors of up to 17.8 cm for a UK-based 

network (Dodson et al., 1999; Penna et al., 2001). Although tropospheric models 
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such as EGNOS and Saastamoinen (1973) are considered as global models, the 

meteorological data used to generate these models are primarily from Northern 

Hemisphere. Thus, it is not surprising that these models do not perform well under 

vastly different conditions and locations. The situation is worse for airborne 

applications as accurate meteorological measurements are difficult to obtain (Mendes 

and Langley, 1999). 

 

The following sub-sections will discuss in detail some of the more widely used 

tropospheric models, namely the Saastamoinen (1973) model, the modified 

Saastamoinen (1973) model and the modified Hopfield (1969) model. These models 

are included the Bernese GNSS software package V4.2 (Hugentobler et al., 2001), 

which is the main processing software package used in this study. 

 

2.4.1 Saastamoinen Model 

Under the assumption of hydrostatic equilibrium, Saastamoinen (1973) modelled the 

integral solution to the ZHD formula in Eq. (2.28) as a function of mean gravity mg

(Saastamoinen, 1973): 
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with 

 )H00028.02cos00266.01(gg 0
mm −−= l  (2.36) 

 

where sP  is the surface air pressure; 0
mg  is the mean gravity at mean sea level and is 

defined by a constant value of 9.784 ms-2; l  is the geocentric latitude of observing 

site, whilst H is the station orthometric height in km. By applying the refractivity 

constant provided by Essen and Froome (1951), the Saastamoinen model is thus 

given as 
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The corresponding Saastamoinen ZWD model is outlined as: 
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where the surface partial pressure of water vapour, s
wvP , can be obtained with in situ 

measurements of surface temperature sT  (K) and relative humidity sU  (in %) via the 

following expression (Xu, 2003); 
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When Eqs. (2.37) and (2.38) are combined, the resulting Saastamoinen ZTD model 

is: 
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A more general Saastamoinen formula, which allows for the calculation of the total 

path delay (TPD), is given by multiplying Eq. (2.40) by the secant function, such 

that: 
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where zθ  is the zenith angle from a station on the Earth’s surface.. 

 

2.4.2 Modified Saastamoinen Model 

The modified Saastamoinen (1973) model introduces two correction terms to Eq. 

(2.41), B and Rδ , which are dependent on H and zθ , respectively. The calculation of 

the TPD via the modified Saastamoinen model can be summarised by: 
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Both Rδ  and B can be linearly interpolated using Tables (2.2) and (2.3) for any 

given H and zθ  (Xu, 2003). 

 

Table 2.2 Coefficients of B at various heights H 

H (km) 0 0.5 1 1.5 2 2.5 3 4 5 

B (mbar) 1.156 1.079 1.006 0.938 0.874 0.813 0.757 0.654 0.563 

 

Table 2.3 Coefficients of Rδ  heights H and zθ  

H (km) 
zθ  

60.00 66.00 70.00 73.00 75.00 76.00 77.00 78.00 78.50 79.00 79.50 79.75 80.00 

0.0 0.003 0.006 0.023 0.020 0.032 0.039 0.050 0.065 0.075 0.087 0.102 0.111 0.121 

0.5 0.003 0.006 0.011 0.018 0.028 0.035 0.045 0.059 0.068 0.079 0.093 0.101 0.110 

1.0 0.002 0.005 0.010 0.017 0.025 0.032 0.041 0.054 0.062 0.072 0.085 0.092 0.100 

1.5 0.002 0.005 0.009 0.015 0.023 0.029 0.037 0.049 0.056 0.065 0.077 0.083 0.091 

2.0 0.002 0.004 0.008 0.013 0.021 0.026 0.033 0.044 0.051 0.059 0.070 0.076 0.083 

3.0 0.002 0.003 0.006 0.011 0.017 0.021 0.028 0.036 0.042 0.049 0.058 0.063 0.068 

4.0 0.001 0.003 0.005 0.009 0.014 0.017 0.022 0.030 0.034 0.040 0.047 0.052 0.056 

5.0 0.001 0.002 0.004 0.007 0.011 0.014 0.018 0.024 0.028 0.033 0.037 0.043 0.047 

 

Actual pressure, temperature and relative humidity measurements or those from a 

standard atmospheric model may be used in Eq. (2.42). These meteorological 

estimates may alternatively be obtained via the following expressions (Xu, 2003): 

 

 ( )[ ] 225.5

00s HH000226.01PP −−=  (2.43) 

 ( )00s HH0065.0TT −−=  (2.44) 

 ( )[ ]00s HH000639.0expUU −−=  (2.45) 

 

where 25.1013P0 = mbar, 16.291T0 = K, 00.0H0 = m and %50U0 = . s
wvP  is 

defined earlier by Eq. (2.39).  

 

2.4.3 Modified Hopfield Model 

Denoting the tropospheric TPD at zθ by: 

  

 ( ) ( ) ( )zwvzdz DDTPD θ+θ=θ  (2.46) 
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where ( )zdD θ  and ( )zwvD θ  are the tropospheric dry and wet delay at the zenith 

angle zθ , respectively, the modified Hopfield (1971) model for calculating the TPD 

are summarised by: 

 ( ) ∑
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ξ
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1k
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ND  for wv,di =  (2.47) 
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and  

 6378137R E = m  (2.62) 

( )16.273T72.14840136H s
e
d −+=   (2.63) 

 11000H e
wv = m  (2.64) 

where the quantity ER is the Earth’s equatorial radius. 
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There are several hydrostatic models available to users, other than the Saastamoinen 

models in Sections 2.4.1 and 2.4.2. Some of these are presented in Table A1 in the 

Appendix, including the hydrostatic model given by Davis et al. (1985), Baby et al. 

(1988) and Hopfield (1969). Table A2 in the Appendix also provides other available 

wet delay models, including Askne and Nordius (1987), Baby et al. (1988), Hopfield 

(1971) and Ifadis (1986) wet delay models. 

 

 

2.5 ATMOSPHERIC SENSORS OTHER THAN GNSS 

Precise profiling of the atmospheric delay is arduous and complex matter. This desire 

to understand the atmosphere has led to the development of several atmospheric 

sensors. Radiosondes (RS) and water vapour radiometers (WVR) are traditional 

sensors that are able to provide direct measurement of the atmospheric delays. Radio 

occultation (RO) is a remote sensing system which is also capable of quantifying the 

physical properties of the atmosphere. Initially deployed for geodetic purposes, 

measurements from Very Long Baseline Interferometry (VLBI) are now routinely 

used to provide comparable atmospheric measurements. The RS has however over 

the years established itself as the benchmark and its values are frequently used to 

validate that of its counterparts. The RS is not without its limitations, as is with the 

other approaches. In this section, the aforementioned sensors will be briefly outlined, 

along with their advantages and disadvantages. 

 

2.5.1 Radiosonde 

RS is an electronic instrument that comprises a set of weather sensors and hangs 

around 20 m below a hydrogen or helium balloon (see Figure 2.2). When a RS is 

released, the onboard sensors provide direct measurements of the temperature, 

relative humidity and air pressure profiles as it travels through the atmosphere (Wang 

et al., 2003; Soden et al., 2004; Miloshevich et al., 2006; McMillin et al., 2007). The 

sensors are battery powered and are linked to a 300 milliwatt radio transmitter. The 

transmitter sends the atmospheric data to a receiver at a monitoring station at a 

frequency ranging from 1668.4-1700.0 MHz. A RS flight lasts approximately 2 

hours and the RS can ascend to more than 35 km above the Earth’s surface and drift 

more than 200 km from the release point.  
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During its flight, the radiosonde’s balloon will expand as the atmospheric pressure 

decreases. Once the balloon reaches its elastic limit and bursts, a small parachute is 

employed on the RS to reduce damage to lives and properties during its descent. 

Although RS are expendable, their impending costs limit the number of launches to 

at most twice daily at most weather stations. Thus, it is almost impossible to profile 

the distribution of water vapour based solely on RS measurements. Direct RS 

measurements also have sensor-icing problem in the upper atmosphere (>10km) due 

to decreased atmospheric temperature (Fu et al., 2007). Additionally, RS provides 

poor spatial coverage over the oceans as most launch sites are inland-based. The RS 

coverage in the Southern Hemisphere is also not as comprehensive as the Northern 

Hemisphere. 

 

Although RS is perceived as the most reliable sensor by many researchers, biases 

still exist in the instrument. The Vaisala RS, for example, is one of the most widely 

used radiosondes worldwide. It has however been shown to exhibit a dry bias in PW 

of 3-4 mm when compared to GNSS analyses and an independent RS model 

(Nakamura et al., 2004). Wang and Zhang (2008) indicated that the dry bias in 

Vaisala (RS80A, RS80H, RS90 and RS92 models) RS increases linearly with PWV 

and a relative bias (RS-GNSS) of less than 10% is observed for PWV range of ~5-40 

mm. The dry bias in Vaisala RS at daytime also tends to be greater than of night-time 

(e.g., Kwon et al., 2007; Wang and Zhang, 2008; Yoneyama et al., 2008). Wang and 

Zhang (2008) noted that the daytime and night-time relative dry bias for the RS92 

model is about 10% and 5%, respectively. 

 

 

Figure 2.2 A radiosonde being released (http://www.ncdc.noaa.gov/) 
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2.5.2 Ground-Based Water Vapour Radiometer 

A ground-based WVR is a device that measures the intensity of the electromagnetic 

energy at a certain frequency. It is able to measure integrated water vapour (IWV) 

contents as well as the wet delay along a given direction, when operated under 

infrared bands, by measuring the sky brightness temperature, skyT  (e.g., Rocken et 

al., 1991; Coster et al., 1996; Basili et al., 2001; Aonashi et al., 2004; Haefele et al., 

2004; Liu et al., 2005; Mattioli et al., 2005; Wang et al., 2007). Ground-based 

WVRs are typically operated at 22 GHz in order to quantify a line-of-sight (LoS) 

IWV measurement. A second measurement at 31 GHz is often simultaneously 

observed so as to correct the signal for possible cloud liquid water. Once retrieved, a 

sky brightness temperature measurement is then used to calculate the opacity υ  via 

the following expression (Haefele et al., 2004): 
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where BgT  is the brightness temperature of the cosmic background radiation and has 

a pre-set value of 2.7 K; mT is the weighted mean atmospheric temperature which can 

be determined from surface meteorological measurements. The relationship between 

the IWV and opacity is characterized by (Haefele et al., 2004): 

 

 GHz31GHz22 cbaIWV υ+υ+=  (2.50) 

 

The coefficients a, b and c are predetermined from a climatology database. Eq. (2.50) 

allows IWV to be estimated with an accuracy of 0.5 kg/m2 (Haefele et al., 2004). 

Once an IWV value is obtained, the ZWD can in turn be calculated by means of: 

 

 
Π

=
IWV

ZWD  (2.51) 

 

where Π  is defined by Eq. (2.32). The ZWD can be calculated with an accuracy of 

<0.3 mm if mT is resolved within 1 Kelvin (Haefele et al., 2004).  
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The drawbacks of WVR are the high cost, poor spatial coverage, and that its 

performance is degraded by the presence of heavy cloud covers and moisture on the 

equipment due to rain or morning dew. Under favourable non-precipitating 

atmospheric conditions, WVR and RS measurements have been consistently found to 

greatly agree with one another by less than 2 mm in the average PWV differences 

(e.g., Basili et al., 2001; Haefele et al., 2004; Martin et al., 2006).  

 

2.5.3 Radio Occultation 

Radio Occultation (RO) is a technique that takes advantage of the current satellite 

constellation by directing the GNSS signals to a GNSS receiver onboard a low Earth 

orbiter (LEO), shown in Figure 2.3. Using the precise locations of the GNSS and 

LEO satellites, the ray path and the tangent point accurately determined. Based on 

the information of the tangent point, the radius “r” and the asymptotic ray miss-

distance “α” can be obtained,  after which the bending angle “a” can be calculated 

(e.g., Awange et al., 2004; Fu et al., 2007). The curvature or bending of a GNSS 

signal allows for the determination of atmospheric refractivity profiles at different 

heights. By assuming spherical symmetry in the occulting atmosphere, the index of 

refractivity from LEO to the Earth’s surface can be calculated. In turn, temperature, 

pressure and water vapour in the troposphere and electron density in the ionosphere 

can be resolved effectively (e.g., Hajj et al., 2002; Fu et al., 2007; Zhang, Biadeglgne 

et al., 2007; Zhang, Fu et al., 2007).  

 

 

 

 

 

Figure 2.3 GNSS radio occultation geometry   
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The atmospheric readings provided by RO are most accurate between the altitude of 

5-25km (Kuo et al., 2005). RO atmospheric soundings become less reliable in 

comparison to RS below the specified altitude and the incorporation of such 

measurements to weather forecasting is unlikely to yield any significant 

improvement (Healy et al., 2005). As the majority of the atmospheric water vapour is 

below 5 km, the RS and WVR are the preferred sensors in this study. Figure 2.4 

demonstrates the effectiveness of RO for atmospheric profiling at various altitudes in 

comparison to data from the European Center for Medium-range Weather Forecast 

(ECMWF) and National Centers for Environmental Prediction (NCEP). 

 

The advantages of RO over RS and WVR are that it provides global coverage, high 

vertical resolution, high accuracy and all-weather capability (Fu et al., 2007). 

 

 

 

Figure 2.4 Vertical temperature and specific humidity profiles derived from CHAMP’s 
(CHAllenging Minisatellite Payload) occultation measurements compared 
with data from the ECMWF and NCEP (source: Wickert et al., 2001) 

 

2.5.4 Very Long Baseline Interferometry 

The VLBI technique was initially developed to study radio sources in the distant 

cosmos. The technique itself can be reversed to perform precise geodetic studies on 

Earth and provide insight into the planet’s orientation in the universe. VLBI involves 

two or more exceptionally sensitive radio telescopes tracking a single natural source 

such as a quasi-stellar object known as a quasar (see Figure 2.5). A quasar will 
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appear motionless when observed from the Earth’s surface due to its great distance 

from the planet, thus making it a suitable candidate as a reference point. When 

multiple quasars are observed, a celestial reference frame is formed. By 

simultaneously observing several quasars over multiple time periods with a network 

of radio telescopes worldwide, scientists are able to use the collected data and 

determine the relative times of the arriving signals to within a few picoseconds. 

These time differences can then be used to determine the distance between each pair 

of telescopes to within a millimetre across the network (e.g., Pradel et al., 2006). 

These data also allow scientists to monitor, among others, the Earth’s size, shape and 

variation in its rotational speed. Meteorological studies with VLBI have also been 

gaining momentum in recent times and have played a significant role in providing 

reliable atmospheric delay estimates (e.g., Snajdrova et al., 2006; Heinkelmann et 

al., 2007; Krügel et al., 2007; Steigenberger et al., 2007) and the development of 

improved mapping functions (e.g., Niell, 2000; Boehm and Schuh, 2004; Boehm et 

al., 2006; Tesmer et al., 2007). The construction and maintenance costs of a VLBI 

base station ensure that its numbers are limited on a global scale. Therefore, it does 

not provide the spatial coverage as comprehensive as that of GNSS. 

 

 

Figure 2.5 A quasar tracked by multiple radio telescopes (http://www.nasa.gov/) 
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2.6 CHAPTER SUMMARY 

Atmospheric WV is a difficult entity to quantify due to its variability and dynamic 

behaviour. Existing tropospheric models are only able to provide WV estimates to 

within a few centimetres in accuracy, a level unacceptable in many GPS applications 

such as precise point positioning and NWP models. Atmospheric sensor such as RS, 

WVR, RO and VLBI can be used to provide WV estimates at a given station. 

However, the associated costs of RS (long-term), WVR and VLBI limit the number 

of these instruments that can be deployed at a given area, and thus, resulting in poor 

spatial coverage. Although spatial coverage is not an issue with RO, its performance 

is restricted to the mid and upper troposphere. This is not ideal as majority of the 

atmospheric WV are found in the lower troposphere (<5 km). On the other hand, 

GNSS is able to continuously provide 24-h WV estimates virtually anywhere on 

Earth.  

 

Unlike RS and WVR, the performance of GNSS is also unaffected by heavy cloud 

cover, precipitation, or moisture on the equipments. The advantages of GNSS over 

the other WV sensing techniques also include its long-tem stability and relatively 

low cost. However, GNSS is not a perfect atmospheric sensing tool. In Chapter 3, a 

detailed discussion on the estimation of the atmospheric WV with GNSS is provided. 

This chapter will also outline factors that can affect the final GNSS WV solutions. 
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CHAPTER 3 

 

ZENITH WET DELAY ESTIMATION FROM GNSS 

 

 

3.0 INTRODUCTION 

A GNSS signal propagating from a satellite to a receiver has its journey impeded 

from the line-of-sight (LoS) path as it enters and passes through the Earth’s 

atmosphere (see Figure 2.1). The retrieved GNSS signal is also affected by other 

error sources such as satellite and receiver clock errors, ocean tide loading (OTL), 

atmospheric loading, a priori station coordinates, satellite coordinates, multipath, 

receiver noise, and other equipment errors. The Majority of these errors can be 

mitigated by differencing techniques. Others can be accounted for by using precise 

products from International GNSS Service (IGS) or a Continuously Operating 

Reference Stations (CORS) network. Once these errors are modelled out of the 

signal, only the variables of interest (generally the coordinates, the ambiguity and/or 

the tropospheric parameters) remain. These variables can then be estimated with 

millimetre precision when sufficient observations are available (e.g., Wang et al., 

2007).  

 

Recent comparative studies between the RS, WVR and GNSS PWV (derived from 

ZWD) have shown that a difference of 2.5mm or less can be achieved consistently 

(e.g., Pottiaux et al., 2003; Mattioli et al., 2005; Wang et al., 2007). However, these 

studies are generally conducted over mid-latitudes. The mean PWV differences 

between GNSS and other sensors may reach 4 mm or more over the regions that are 

closer to the tropics (e.g., Takiguchi et al., 2000; Sapucci et al., 2007). 

 

Unlike WVRs, the performance of GNSS is unaffected by precipitation or cloud 

cover. Additionally, the satellite constellations ensures that at least four satellites are 

visible anywhere worldwide and virtually anytime. GNSS can therefore provide 

continuous 24-hr solutions at any specified time period, an attribute that radiosondes 

do not possess. The long-term stability of GNSS is also an advantageous attribute 

that allows it to be used to verify other PWV sensors (e.g., Wang and Zhang, 2008).  
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In this Chapter, the process for estimating the tropospheric effect with GNSS is 

outlined. The association between the tropospheric delay and the GNSS observations 

will be briefly described in Section 3.1. The adjustment methods to process these 

observations are presented in Section 3.2. The error sources that can impact the final 

parameter/tropospheric solution are discussed in Section 3.3, along with the methods 

to minimise their impact. The tropospheric parameter is often expressed in the zenith 

direction through mapping functions. Section 3.4 will outline a number of mapping 

functions currently available to help derive the ZTD and reduce any mapping errors. 

Once estimated, the ZTD can then be used to determine the corresponding ZWDs. 

 

 

3.1 MODELLING OF THE GNSS OBSERVATIONS 

The zero-difference (ZD) GNSS pseudorange ( i
1RP ) and carrier-phase ( i

1Rφ ) 

observations from station R1 to satellite i are modelled in accordance with the station 

position, clock offsets, ionosphere, troposphere, and the ambiguity parameters via the 

following simplified observation equations (e.g., Hofmann-Wellenhof et al., 2001; 

Leick, 2004): 
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where i
1Rρ  is the geometric distance obtained from the satellite position and a 

approximate receiver position; c  is the velocity of light; λ  is the wavelength of the 

carrier frequency L1 or L2; 1Rtδ  is the receiver clock error; itδ  is the satellite clock 

error; i
1RN  is the integer carrier phase ambiguity; i

1RI  is the ionospheric delay; i
1RT  is 

the total tropospheric path delay (TPD) and  i
1Re  represents the errors associated with 

multipath, satellite orbits and other equipment-related errors.  

 

A single differenced (SD) observation in relative positioning involves the subtraction 

between two observations with one commonality. The situation generally calls for 

two GNSS stations, say R1 and R2, tracking the same satellite i at identical epochs of 
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time. Using the ZD pseudoranges and phase observations defined by Eqs. (3.1) and 

(3.2), respectively, differencing the observations at R1 and R2 will result in the 

following SD observation equations (e.g., Leick, 2004): 
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In the SD scenario, the satellite clock error is removed, and thus, reducing the 

number of parameters to be estimated. If the baseline of station R1 and station R2 is 

relatively short as compared to the altitude of the satellite, then the orbital and 

atmospheric errors are reduced. Another situation where single differencing can be 

applied is when two or more satellites are simultaneously tracked by one receiver at a 

particular time t. The receiver clock error, rather than the satellite clock error, will be 

eliminated in this case. 

 

The double differencing technique is generally applied in GNSS processing as it 

further reduces errors without sacrificing significant information. The double 

differencing scenario requires two stations, R1 and R2, and two satellites, i and j. A 

double differenced (DD) observable can be produced initially generating two SD 

observations with respect to each of the two satellites and differencing them 

afterwards, thus resulting in the following DD functional model (e.g., Leick, 2004), 
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Both the satellite and receiver clock errors are eliminated from Eqs. (3.5) and (3.6). 

The ionospheric and tropospheric error terms, as well as satellite-based errors, have 

been further reduced. Furthermore, the ambiguity term, ij
2R1RN , becomes an integer. 

However, solving the ambiguity term is not a trivial matter. For a relatively short 

observation window, the highest possible precision in relative positioning can only 
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be achieved if all the ambiguities of the DD observations are resolved to their integer 

values (Hofmann-Wellenhof et al., 2001).  

 

However, the gain in baseline precision by resolving the ambiguities becomes 

smaller when longer window span is used (Teunissen et al., 1997).  

 

Figure 3.1 RMS of a 7-parameter Helmert transformation with respect to the actual 
coordinate set (source: Mervart, 1995) 

 

Mervart (1995) investigated the impact of fixing ambiguities on the solved 

coordinate set with varying window session lengths over a network of 13 stations. 

Since only one station (Wettzell) was fixed in the analysis, the network solution may 

be corrupted by rotation errors (Mervart, 1995). Thus, for each session length, the 

solved coordinate set was transformed to the reference set via the Helmert 

transformation method. The study has found that there were minimal RMS 

differences between the positioning solutions of fixed and float ambiguities when the 

observing window is greater than five hours. The result of the study is illustrated in 

Figure 3.1. Based on these findings, the real data for the baseline studies, given in 

Sections 6.3 and 6.4, are processed with float ambiguities. 

 

 

3.2 ADJUSTMENT MODEL FOR THE ESTIMATION OF ZWD 

The functional model for GNSS observations is well known and fairly well defined 

(e.g., Teunissen and Kleusberg, 1998; Seeber, 2003). To process these observations, 

adequate adjustment techniques are required to estimate the ZTD/ZWD, the station 

m
 

RMS OF THE HELMERT TRANSFORMATION 
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coordinates and the integer ambiguity set. The adjustment methods discussed here 

are the least squares (LS), the sequential least squares (SLS) and Kalman filtering 

(KF). The LS and SLS adjustment processes are generally applied in static 

positioning mode whereas KF is often implemented in kinematic positioning. 

 

3.2.1 Least Squares Adjustment 

Post-processing of GNSS data is predominantly implemented via the LS principles. 

Modelling of LS is formulated according to the positioning technique used. For 

instance in precise point positioning (PPP), suppose at a particular station R1, the 

satellite clock errors were removed from a set of n ionosphere-free ZD phase signals 

φ  via IGS products. A linearised system of ionosphere-free equations can be 

constructed to represent the relationship between the ZD misclosure vector L, which 

is a function of φ  and the a-priori parameters 0X , i.e. ( )φ= ,XfL 0 , and the 

remaining p unknown parameters X such that (e.g., Leick, 2004): 

 

  vAXL +=  (3.7) 

 

with v being a vector of residuals, and A as the design matrix. Parameterising the 

total delay (slope) significantly increases the number of unknowns in the observation 

equations in the manner that will lead to a matrix rank deficiency. Therefore to avoid 

this problem, the tropospheric parameter i
1RT  in matrix A is generally expressed in 

terms of the ZTD and a mapping function, ( )i1Rm θ , such that: 

 

  ( ) ZTDmT i1R
i

1R ∗θ=  (3.8) 

  

where iθ  is the elevation angle. A number of mapping functions will be discussed 

later in Section 3.4. Mapping all LoS delays to the zenith direction will ensure that 

the system of equations in Eq. (3.7) is not under-determined. 

 

The design matrix A is: 
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The corresponding set of unknown parameters to be estimated is: 
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When surface pressure and temperature data are available, the ZWD can be the 

extracted from the estimated ZTD value via Eq. (2.30) by accounting for the ZHD 

using the Saastamoinen (1973) dry model given by Eq. (2.35). Figure 3.2 illustrates 

the extraction process. 

 

 

 

 

 

 

 
 
 

Figure 3.2 Process to determine the ZWD from the ZTD estimates 

Surface pressure and 
temperature data 

 

Use Saastamoinen hydrostatic model 
(Eq. (2.37)) to determine ZHD 

Output: ZWD 
ZWD = ZTD - ZHD 

Input: ZTD 
ZTD = ZHD + ZWD 
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Apart from the absence of the ambiguity term jN , the modelling of the design matrix 

and unknown parameter set for the pseudoranges are identical to that of the phase 

observations.  

 

In relative positioning, the design matrix differs to that of PPP in that the 

tropospheric and ambiguity parameters are defined in relative terms. The clock errors 

are also eliminated in the DD process. The design matrix A for the ionosphere-free 

DD observations at stations R1 (assumed to be known and is fixed) and R2 can be 

formulated as: 
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where 
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The vector of unknowns X is: 
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The differential tropospheric delay parameter of the unknown vector X in Eq. (3.14) 

between stations R1 and R2 for satellites i and j, can be rewritten as (Collins and 

Langley, 1997): 

 

i
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Substituting Eq. (3.8) into Eq. (3.15) results in (Zhang and Lachapelle, 2001): 
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The design matrix A and the vector of unknowns X are, respectively, given by: 
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and 

[ xX ∆=  y∆  z∆  1RZTD  2RZTD  ( )]T

amb
n

2R1R 1n,..,1nN amb −=  (3.18) 

 

By redefining the differential tropospheric estimate in this manner, the absolute ZTD 

at stations R1 and at station R2 can be estimated separately using the LS approach. 

Once the GNSS-estimated zenith tropospheric delay is obtained, it can then be used 

to determine ZWD (see Figure 3.2), and consequently the PWV via Eq. (2.31).  

 

The LS problem for Eq. (3.7), with a a-priori observation weight matrix W, is given 

by: 

 

 ( )XWAAWLA TT =  (3.19) 

 

Eq. (3.19) is often referred to as a system of normal equation (NEQ). For the quantity 

WAAT  in Eq. (3.19), if the weight matrix W is a diagonal matrix, that is, 
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then WAAT  can be represented as 
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where ija  is the element of the design matrix A at row i and column j. Each diagonal 

entry j (for =j 1, 2, .., k) of the WAA T  in (3.21) can be viewed as the sum of 

squares (SSQ) of the elements of column j of design matrix A, whilst each off-

diagonal entry (i, j) is the sum of the cross-products (SCP) between the elements of 

column i and column j (for ,ji ≠ ) of A (Walpole et al., 2007). SSQ can also be 

regarded as the SCP between the two identical columns, i.e. ( iii SCPSSQ = ). 

 

If the weight matrix is a non-diagonal matrix, i.e., 
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WAA T  becomes 
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The solution for Eq. (3.19) is then: 
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T1T ==
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 (3.25) 

 

Therefore, the final solution in relation to the a-priori parameters 0X  is given by 

vector X  is such that: 

 

 X̂XX 0 +=   (3.26) 

 

The a-posteriori variance-covariance (VCV) of the estimated parameters X̂  is: 

 

 ( ) 1T2
0X̂

WAAˆ
−

σ=∑  (3.27) 

where, 

 
pn

Wvv
ˆ

T
2
0

−
=σ , and (3.28) 

 X̂ALv −=   (3.29) 

 

The quantity 2
0σ̂ , often referred to as the a-posterior unit variance or variance factor, 

is an unbiased estimate of 2σ  and is an indicator of the accuracy of the observations 

in the LS adjustment process. The formal errors of Eq. (3.27) are generally too 

optimistic, depending on the data sampling and the complexity of the error modelling 
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used in defining the weight matrix W (e.g., Kouba, 2009). Therefore, the precision of 

the parameter estimates are often defined by the square root of the variance 

parameters given in Eq. (3.27), i.e. the standard deviation, multiplied by a factor k. If 

the normal distribution is assumed for the parameter estimates, k is often given a 

value of three as it represents 99.7% probability that true estimate for each individual 

unknown iX  is within ( )iX̂stdevk ∗± . That is, 

 

 Prob ( ) ( )( ) α−=<<− 1X̂stdev*kXX̂stdev*k iii  (3.30) 

 

where α is the probability that ( )iX̂var*kX > . 

 

If the station coordinates are known beforehand in both the PPP and relative 

positioning cases, then the matrix A and vector X, respectively, simplify to: 
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and 
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The LS solutions to these systems of equations are as given by Eq. (3.25). The LS 

approach, outlined above can be seen as a special case of filtering in static mode.  
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3.2.2 Sequential Least Squares 

Over successive observation epochs, consider en  number of sequential observation 

equation systems given by: 

 

 111 vXAL += , 222 vXAL += , …, 
eee nnn vXAL +=  (3.33) 

 

with weight matrices 1W , 2W , …, 
enW  respectively. The systems have a common 

unknown vector X. In GNSS processing, these systems are often assumed to be 

uncorrelated. In this instance, the batch solution to the equation systems, given by  
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Using the formula (Gotthardt, 1978; Cui et al., 1982) 

 

 ( ) 1111 BFDEEEBCDE −−−−
−=+  (3.36) 

 

where B and D are any matrices, C and E are any invertible matrices, and 

 

 ( ) 111 BDECF
−−− +=  (3.37) 

 

the inverse of the accumulated normal matrices in Eq. (3.34) can be represented as 

Q
~

 such that (Xu, 2003): 
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and 

 ( ) 1T
n1nn

1
n eeee

AQAWK
~ −∗

−
− +=  (3.40) 

 

where I is an identity matrix. Then the batch solution in Eq. (3.34) can be rewritten in 

terms of ∗
−1nQ , which is the cofactor matrix of the previous ( )1n e −  epochs of 

observations, and its corresponding estimated solution 1n e
X̂ −  such that (Xu, 2003): 
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Eq. (3.41) is known as the SLS solution. The SLS method is often used in GNSS 

positioning as it reduces to the storage capacity required for a standard LS approach. 

 

3.2.3 Kalman Filtering 

Kalman filtering (KF) is a technique that allows the state vector of a moving object, 

which is characterized by its non-stationary position and velocity, to be computed as 

a function of time. A Kalman filter is, in a sense, a general form of the SLS 

adjustment with time updates of the state vector and its VCV matrix (Hofmann-

Wellenhof et al., 2001). KF is often applied in real-time GNSS applications such as 

navigation. 

 

Suppose for the initial epoch 0t , the state vector ( ) 00 XtX = , which includes the 

ZWD, and its cofactor matrix 
0XQ (see Eq. (3.29)) are assumed to be known. The 

state transition matrix that relates two consecutive state vectors reads (Xu, 2003): 

 

 i1i1i,ii uXX +Φ= −− ,   for ,1i = ,2 K (3.42) 

 

1i,i −Φ  is known as the transition matrix. The system noise iu  is assumed to follow a 

normal distribution with zero mean and a known VCV matrix, uQ . Using the 

covariance propagation law, the cofactor matrix for the state vector in Eq. (3.42) is 

given by (Xu, 2003): 
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 u
T

1i,iX1i,iX QQQ
1ii

+ΦΦ= −− −
 (3.43) 

 

Eqs. (3.42) and (3.43) are called the predicted values for the state vector at epoch it . 

By applying the SLS principle to correct for the predicted values, the estimated 

values of the ZWD, along with the other parameters of the state vector, in this epoch 

can be calculated by: 

 

( )iiiii XALKXX̂ −+=  (3.44) 

( ) iii QKAIQ̂ −=  (3.45) 

where 

 ( ) 1

v
T
iii

T
ii i

QAQAAQK
−

+=  (3.46) 

 

where I is the identity matrix; iA and iL  are the design matrix and misclosure vector 

at epoch it ; 
ivQ  is the corresponding cofactor (covariance for the unit weight) 

matrix of residuals iv  (resulting from the SLS principle), which is often defined as 

1W− . The KF outlined above is of the classical case. There are several other more 

refined versions of the KF, such as the extended KF, the robust KF and the 

adaptively robust KF (e.g., Wang, 2000; Geng and Wang, 2008). Interested readers 

are referred to Hofmann-Wellenhof et al., (2003), Xu (2003), Leick (2004) and other 

relevant texts for more details. 

 

In static positioning, the positional state vector, iX  does not change with time, i.e. 

1ii XX −= , which implies that I1i,i =Φ −  in Eq. (3.42) and also, uQ  is assumed to be 

zero. This also means that the solutions of the KF will be identical to that of SLS.  

However, the ZWD estimates will vary with time due to the fluctuations of the water 

vapour in the atmosphere. In this instance, an appropriate representation of the 

transition between adjacent ZWD measurements of sampling interval t∆  is needed.  

 

3.2.3.1  Random Walk Model 

A random walk (RW) model (e.g. Xu, 2003) defines a random process whereby the 

value of the current variable, say iX  is composed of the past variable 1iX −  plus an 
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error term defined as a white noise iε  with zero mean and unit variance. 

Mathematically, a RW model is given by: 

 

 i1ii XX ε+= −  (3.47) 

 

The associated variance of the RW process noise iε  is: 

 

 ( ) 222
i tE ∆σ=ε  (3.48) 

 

where 2σ  is the variance of the RW process. 

 

3.2.3.2  First-Order Gauss Markov Model 

Assuming that the correlations among the GNSS observations decays smoothly with 

time, the first-order Gauss Markov (GM) model (e.g. Xu, 2003) can be called upon 

to describe the temporal dependence of the adjacent GNSS measurements, such that 

the dynamic model of the state vector is: 

 

 i1i

t
1

i uXeX GM += −

∆
τ

−

 (3.49) 

 

where GMτ is the correlation time of the GM model, and iu  is a white noise with zero 

mean and covariance uQ . The value for GMτ can be directly estimated from the GM 

autocorrelation function: 

 

( )
t

1

GMet
∆

τ

−

=∆ρ  (3.50) 

 

 given at  the 
e

1=ρ  point where tGM ∆=τ . Figure 3.3 illustrates the behaviour of 

the GM autocorrelation function given by Eq. (3.50), for =τGM 1-h (curve) and 

=τGM 2-h (broken curve). 
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Figure 3.3 Autocorrelation function of the Gauss-Markov process  
 

Without loss of generality, suppose that the positional solutions are known and are 

fixed or tightly constrained, and that the remaining parameters, i.e. ambiguities, 

clock errors and etc., are also estimated or modelled out of the observation equation 

beforehand. In addition, the ZHD is determined via the Saastamoinen hydrostatic 

model and subtracted from the ZTD parameter prior to the estimation process. 

Therefore, the estimated tropospheric parameter is that of the ZWD component, and 

the GM model in Eq. (3.49) can then be expressed as: 
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 (3.51) 

 

The associated variance of the GM process noise, iu , can be derived by firstly 

rearranging Eq. (3.51) to give: 
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Then by squaring and taking the expectation of both sides of Eq. (3.52), this results 

in: 
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where 2
GMσ is the steady-state variance of the GM process.  

 

In practice, a single value for the ZWD parameter is generally estimated for a 1-h or 

2-h interval (Kouba, 2009). This is due to the fact that the ZWDs generally do not 

vary significantly from their mean value during these short time intervals. In other 

words, the ZWD data behaves like a stationary process (Wei, 2006). As an example, 

Figure 3.4 provides an illustration of the ZWD variation around its mean for a 2-h 

period. The ZWD data in this figure is estimated from WVR at the Onsala station on 

the 10th of September in 2003.  
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Figure 3.4 A plot of the WVR ZWD data at the Onsala station in a 2-h period on 10 
Sept 2003.  

 

By assuming a constant mean, ZWD, over a short time-period, the ZWD component 

can be given as: 

 

ZWDZWDZWD ∆+=  (3.54) 

 

The mean parameter ZWDin Eq. (3.54) can be estimated via empirical wet delay 

models. However, a more rigorous approach would be to estimate ZWD along with 

ZWD∆  in the Kalman filtering process. In this manner, the GM model given by Eq. 

(3.51) can then be expressed as: 
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where iu~  is a white noise with zero mean and variance u~Q . The associated variance 

u~Q  for ZWD∆  is identical to that given by Eq. (3.53). 

 

3.2.3.3  A New Autocorrelation Model 

The GM autocorrelation function given by Eq. (3.52) is dependent on the empirical 

value given to the correlation time GMτ , which in turn, is determined by a specific 

point in time t where significant ZWD autocorrelation is observed. For instance, 

from Figures 7.1 to 7.6, τ can be determined by finding the intersection between the 

autocorrelation trend line and the confidence interval (broken red line). However, the 

dependence of GMτ  on a single observation at a specific time t may result in an 

autocorrelation function that does not reflect the true autocorrelations among all the 

ZWD observations. In other words, the transition of the ZWD from times 1it − to it  

may not be adequately represented by a GM process. Therefore, an alternative 

autocorrelation function is proposed in this study.  

 

A set of n autocorrelation estimates for the a-priori ZWD data set can be determined 

by the following standard autocorrelation formula (e.g., Walpole et al., 2007): 

 ( ) ( )
( )0Ẑ

tẐ
t

∆
=∆ρ    (3.56) 

with 

 ( ) ( )( ) ( )( )∑
∆−

=

−∆+−=∆
tn

1i

ZWDttZWDZWDtZWD
n

1
tẐ  (3.57) 

 

 where ZWD is the empirical mean. 

 

The motivation for the GM is that in a typical situation, one expects that the 

correlation function ( )t∆ρ  in Eq. (3.56) asymptotically exhibits an exponential 

behaviour for large lag t∆ (Brandt, 1999). That is, ( ) 








τ

∆
−∆ρ

GM

t
exp~t . However, it 

will be shown later on in Figures 3.5 to 3.8 that autocorrelation values determined 

from the GM model deviates or decays too rapidly as compared to the actual 

autocorrelation values from Eq. (3.56). Hence in this thesis, an autocorrelation 
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function was proposed. The hyperbolic function ( )
∆t

1
∆tf = , which also deviates (but 

not as rapidly) to zero for large positive lag t∆ , is the motivation for the proposed 

autocorrelation model. The hyperbolic function was then divided by the correlation 

time τ  so that it becomes a unit-less measure. A shift was then applied to ensure that 

the function value is one at zero time lag, i.e. 0∆t = . A power component is then 

introduced to the function to control the decaying rate of the hyperbolic function. It 

will be shown later the proposed autocorrelation model provides a better fit to the 

autocorrelation model given by Eq. (3.56). The proposed autocorrelation function 

between the ZWDs at epochs i and i-k, i.e. a lag kt =∆ , is given by: 
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kii
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t
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tZWD,ZWDnCorrelatio  (3.58) 

 

where PMτ  is the correlation time of the proposed model, and the parameter β  is to 

be determined. 

 

Taking the natural logarithm of both sides of Eq. (3.58) results in the linearised form: 
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 (3.59) 

 

Therefore, an estimate for ,β i.e. ,β̂ can then be calculated by performing LS analysis 

on the first two autocorrelation values, generated by Eqs. (3.56) and (3.57), using the 

linear relationship defined by Eq. (3.59). As it will be shown in Chapter 7 that the 

tropospheric estimates are correlated for at most 2 h, it is necessary to ensure that the 

proposed model is able to follow the autocorrelation trend within a 2-h period. 

Hence, a LS estimates for β is achieved with the first two autocorrelation values 

(assuming that the lag ∆t  in measured in hours). Once β̂  has been determined, the 

proposed model given by Eq. (3.58) is then fully defined. 
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Figures 3.5 to 3.8 demonstrate the capability of the proposed model in following the 

trend of the estimated PWV autocorrelations, which were calculated via Eq. (3.56). 

The plots are given at four different locations (Alice Springs, Broome, Burnie and 

Ceduna) across Australia. The GM model is also included in these figures for 

comparison purposes. For the GM model, the value of GMτ  is determined at a time 

lag t (in hours) where statistically significant autocorrelation is observed using the 

Ljung-Box Q statistic (Ljung and Box, 1978). For the proposed model, GMPM τ=τ . 

 

 

Figure 3.5 Comparison between the performances of the proposed model (solid circles) 
and the GM model (squares) in estimating the estimated PWV 
autocorrelations (triangles) at Alice Springs in Northern Territory 

 

 

 

Figure 3.6 Comparison between the performances of the proposed model (solid circles) 
and the GM model (squares) in estimating the estimated PWV 
autocorrelations (triangles) at Broome in Western Australia 
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Figure 3.7 Comparison between the performances of the proposed model (solid circles) 
and the GM model (squares) in estimating the estimated PWV 
autocorrelations (triangles) at Burnie in Tasmania. 

 
 
 

 
Figure 3.8 Comparison between the performances of the proposed model (solid circles) 

and the GM model (squares) in estimating the estimated PWV 
autocorrelations (triangles) at Ceduna in South Australia 

 

 

From Figures 3.5 to 3.8, it can be seen that the GM function did not adequately 

represent the actual PWV autocorrelations. In fact, the GM function consistently 

over-estimates the rate at which the PWV autocorrelation values decreases. 

Conversely, the proposed model, given by Eq. (3.58) is able to provide 

autocorrelation values that closely follow the actual autocorrelation values for a 

significant length of time. 
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For the proposed autocorrelation model, the state vector of the ZWD at time it  can 

be represented by: 

 

 i1it
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 (3.60) 

 

To determine the variance of the process noise uQ , the quantity iu  in Eq. (3.60) is 

once again isolated. Then taking the expectation of its square gives: 
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where 2σ  is the variance of the process. 
 

The ZWD state vector, given in Eq. (3.60), can also be represented in the form 

described in Eq. (3.55). In this thesis, the performances of the RW and GM models, 

and the proposed model will only be assessed in the Kalman filtering process in PPP 

mode. The results are given Section 6.5. 

 

 

3.3 ERROR SOURCES AFFECTING GNSS PARAMETER ESTIMATION 

In the PPP approach, the estimation of the ZWD and other unknowns can be 

negatively affected by unmodelled errors sources. Many of the residual errors have 

small values. However, since the ZWD values are comparatively small, ignoring the 

errors will impact the precision of the ZWD estimation. Although the differencing 

techniques mitigate majority of these errors, the combined effects of the residual 

errors may still be significant. Dealing with these errors is thus, essential if precise 

ZWD is required. This section will discuss these possible error sources and the 

degree to which they can be dealt with through the differencing techniques, IGS 

products and external models. 

 

3.3.1 Satellite Ephemeris Error 

The satellite orbital paths are influenced by the solar wind, radiation pressure and 

forces caused by the celestial bodies in the outer-space. Errors in the modelling of the 

forces acting on the GNSS satellites are known as ephemeris errors. To achieve high 

accuracy in GNSS positioning, it is vital that the position of the satellite is accurately 

known. In the case where the satellite position error is 5m and the baseline length is 
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20km, and assuming the satellite has an altitude of 20,000km, then the effect of 

ephemeris error on the baseline error is expected to be around 5mm (Wells et al., 

1987). In relative positioning over a short baseline, the stations will view a particular 

satellite at almost identical angles, and the errors in the satellite position can be 

removed by differencing the observations.  

 

However, over longer baselines, though it is highly reduced through the differencing 

method, errors will still be present. To ensure the effect of ephemeris error on the 

parameter estimation is minimal, several institutions, such as the International GNSS 

Service (IGS; http://igscb.jpl.nasa.gov/), use a global GNSS network to provide 

precise ephemeris data with the GNSS data. The IGS ephemeris data are currently 

available in three different packages: Final Orbits, Rapid orbits and Ultra-Rapid 

orbits. The Final orbits are post-processed, and are generally available every 2-3 

weeks. The expected accuracy of the Final orbits are around 2.5 cm (Kouba, 2009). 

The latency for the Rapid (approximately 17-h) and Ultra-Rapid orbit (3-h to 9-h) 

products are much shorter. The expected accuracy of these packages is in the 2.3 cm 

and 3 cm level, respectively (Kouba, 2009). 

 

3.3.2 Satellite Clock Error 

Although onboard satellite clocks are extremely accurate, they are not perfect. The 

stability of an atomic clock is about one to two parts in 1013 over a period of one day, 

which corresponds to a clock error of about 8.64 to 17.28 nano-seconds per day (El-

Rabanny, 2002). When this error is multiplied by the speed of light, a range error of 

2.59 m to 5.18 m is the product. As the signal transmission is steered by its 

individual satellite time, the necessary shift to GNSS time is another component of 

satellite clock error.  The satellite clock correction products are included in the IGS 

ephemeris data. Even after applying the clock correction to the satellite time frame, 

an error of several nanoseconds still remains, which, may correspond to a significant 

range error (Kaplan, 1996). Thus, the estimation of the ZWD can be negatively 

impacted as a result. Fortunately, the satellite clock errors can be eliminated by 

differencing the observations, as shown by Eqs. (3.5) and (3.6). 
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 3.3.3 Satellite Antenna Phase Centre Offset 

The satellite ephemeris data describes the path in which a particular satellite would 

undertake with reference to the centre of mass of the satellite. However, the 

geometric distance between a satellite and a receiver is in fact the distance between 

the phase centres of the two antennas. The phase centre offset for most satellite are in 

the Z-coordinate direction (see Figure 3.9), which is towards the Earth. Therefore, a 

correction for this offset needs to be applied to the satellite coordinates to obtain high 

precision GNSS tropospheric solution. Moreover, the offsets and variations in the 

phase centre itself needs to be addressed. As of November 2006, the IGS convention 

has adopted the absolute phase centre offset and variation approach (Schmid et al., 

2007) for all satellite and station antennas. 

 

 

Figure 3.9 Orientation of the satellite offset with respect to the satellite body fixed 
reference frame in XYZ-coordinate 

 
 
3.3.4 Receiver-Based Errors 

Much like the satellites, ground-based receivers are subject to clock errors and 

antenna phase offsets and variations. The receiver clock error is usually estimated as 

an additional parameter in the observation equation, or differenced away between 

satellites as shown in Eqs. (3.3) and (3.4). The receiver antenna phase offset depends 

on the intensity, the frequency and elevation angle of the received satellite signal, 

and to a small extent, on the azimuth as well (Schupler and Clark, 1991). The largest 

offset is generally in the height component, which may be as much as 10 cm (Leick, 

2004). An offset of such magnitude can impact the precision of the ZWD estimation 

by as much as 3 cm (Bock et al., 2001). In addition, the phase centre pattern varies 

for different antenna types.  

 

In GNSS network processing, the phase centre offsets and variations can be 

significantly reduced with the differencing process, provided that the identical 
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receiver-antenna combination are used within the observation session. However, 

such situations are uncommon. It is therefore mandatory that phase centre offsets and 

variation products are included in any network processing as exclusion of these data 

may incur a height and tropospheric error of up to 10 cm (Kouba, 2009). The use of 

the antenna phase centre products is especially important in PPP (Ebner and 

Featherstone, 2008). A relative calibration of the antenna is at least required for 

precise estimation. Absolute calibrations is however, recommended. Fortunately, 

these are freely available at the IGS centre. 

 

3.3.5 Multipath Effects 

Signal can be received in two manners; through a path of direct LoS or through 

reflections off objects surrounding the receiver antenna. The effect due to the latter is 

known as the multipath effect and it is one of the chief error sources for GNSS 

measurements (Wells et al., 1987). The presence of multipath errors can be verified 

using a day-to-day correlation of the estimated residuals (Hofmann-Wellenhof et al., 

2001). A reflected signal always travels along a longer path and therefore is delayed 

en route to the receiver. The amplitude of the reflect signal is also reduced. The 

magnitude of the amplitude reduction depends on the reflectivity of the reflecting 

object, the angle of deflection and the polarization.  

 

Multipath affects both code and carrier phase measurements, though the impact is 

greater for code observables (Lachapelle, 1990). An error of around 4.8 cm (a quarter 

of a cycle) for L1 carrier phase observables can result from this effect, whilst its 

influence on the C/A-code measurements may be several tens of metres (El-

Rabanny, 2002). Van Nee (1992) reported that a code pseudorange error of up to 

100m may result from multipath if the receiver is located near buildings. If the 

multipath in a signal is unmodelled, the corresponding ZWD parameter will most 

likely be significantly overestimated due to the longer signal path. 

 

The multipath effect can be estimated by using the L1/L2 pseudorange measurement 

as it is frequency dependent. As the size of the effect is also dependent of the 

sensitivity and design of the antenna, a well-designed receiver component can also 

reduce its impact, such as a choke ring antenna. As multipath is a localised effect, the 

simplest, and possibly the best option, is to select an observation site in a local 
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environment where there are no reflecting objects in the vicinity of the antenna (Xu, 

2003). 

 

3.3.6 Cycle Slips 

Resolving the ambiguity of the phase observations, the initial number of integer 

cycles, is one of the main issues in precise GNSS positioning. The problem can be 

made even more complicated when a cycle slip interrupts the signal transmission.  

 

A cycle slip occurs when there is a sudden discontinuity or jump in the carrier phase 

observables by an integer number of cycles, as a result of signal loss. The main 

culprits for cycle slips are low signal-to-noise (SNR) due to bad atmospheric 

conditions, multipath or low satellite elevation, malfunction in the receiver firmware, 

and obstructions of the receiver line of sight due to trees, buildings, mountains and so 

on. The triple differencing technique is often used to detect cycle slips (e.g., 

Hofmann-Wellenhof et al., 2001).  

 

3.3.7 A-Priori Positional Error 

The analysis of a GNSS network involves the coordinates-fixing (or constraining) of 

at least one reference station. The International Terrestrial Reference Frame (ITRF) 

solution is generally used for such cases and although it is accurate, it is not perfect. 

Errors resulting from positional fixing will filter through to the estimates of the 

unknown station(s), the tropospheric/ZWD parameter, as well as other remaining 

variables. Therefore, known stations are often constrained, rather than fixed to their 

positions in order to minimize the unmodelled errors filtering through to the ZWD 

and other parameter estimates. 

 

3.3.8 Earth Body Loading 

The Earth tides are caused by the temporal variation of the gravitational force due to 

the orbital motions of the Moon and the Sun, and to a lesser extent the other celestial 

bodies, resulting in the deformation of the Earth’s elastic body. The structure and 

motion of the Earth also play a role in the magnitude of the deformation of its body. 

Depending on the latitude and longitude of the station, the solid Earth tides can 

generate a periodic site displacement of up to 30 cm and 5 cm in the vertical and in 

the horizontal position components (Leick, 2004), respectively. This resulting offset 
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in the vertical component can significantly reduce the accuracy of the ZWD 

estimates. If the Earth body loading is left unmodelled, the difference in ZTD 

solution may reach 2-4 mm (Watson et al., 2006). The deformation also causes 

changes in the Earth’s gravitational potential and thus, the velocity of the satellites 

varies with time as a result. Low-orbiting satellites are affected more than the GNSS 

satellites, which lie approximately 20,000 km above the Earth’s surface. 

 

3.3.9 Ocean Tide Loading 

An ocean tide is the cyclic rise and fall of the seawater along the coastlines. The 

time-varying geometric alignment of the Earth, Moon and the Sun is responsible for 

the changing gravitational attraction between the bodies, which in turn causes, and 

dictates the rhythm and height of the tides. The cyclical behaviour of the tides is 

primarily due to the Earth’s rotation and orbits. As the tide redistributes and rises 

along the coastal land, the earth’s crust succumbs under the pressure and the weight 

of the tidal water. The displacement of the sea floor and the coastline due to this 

phenomenon is called the ocean tide loading effect. In-land stations are less affected 

than stations near the coast, with a maximum displacement of less than a centimetre, 

whereas a deformation of up to 10 cm can be felt for the latter over the course of just 

6 hours (Baker et al., 1995; Penna and Baker, 2002). However, the average value of 

the loading effects on the GNSS stations is generally small over 24 hours, a sign that 

the OTL effect can be removed through daily averaging (Khan and Scherneck, 

2003). Presently there are several existing ocean tide models, such as GOT00.2, 

FES04, NAO99b and NEA2004 (e.g., Lyard et al., 2006; Melachroinos et al., 2008). 

Ocean tide solutions based on these models are often incorporated into GNSS data 

processing to minimise OTL effects on the errors of the estimated parameters. 

Incidentally, the versatility of GNSS has allowed it to be conversely used to validate 

several ocean tide loading models (Urschl et al., 2005).  

 

3.3.10 Atmospheric Pressure Loading 

The pressure exerted by the Earth’s atmosphere causes crustal deformation. The 

magnitude of the displacement due to this effect varies with location of the site and 

the weather status of the atmosphere. A vertical displacement of up to 1cm can result 

from the time-dependent effects of atmospheric loading (Van Dam and Wahr, 1987). 

It was shown that up to 24% of the total variance in the GNSS height estimates is 



 64

explained by surface deformations due to the atmospheric pressure (Van Dam et al., 

1994; Tregoning and Van Dam, 2005). Sun et al (1995) indicated that the 

atmospheric effect can bring about a surface vertical displacement of 2-5 cm in some 

cases in Europe. The perturbation due to this effect is found to be correlated with the 

latitude of the observing site.  Atmospheric pressure loading on the surface 

displacements tends to be larger at higher latitude, where pressure variations are 

greater (Van Dam et al., 1994). 

 

In relative positioning over short baselines, the atmospheric pressure loading may not 

differ much from site to site, therefore, the effect can be significantly minimised by 

differencing the observables. Although the atmospheric loading can be effectively 

modelled, it is often ignored as its impact is significant only for baseline lengths of 

several thousands of kilometres (Beamson, 1995). 

 

 

3.4 MAPPING FUNCTIONS 

The TPD terms in Eqs. (3.1) and (3.2) vary according to the location of the observed 

satellite, which changes with time. However, the TPD can be redefined with respect 

to the zenith total delay (ZTD) over the observing receiver as in Eq. (3.8). The 

determination of the ZTD is based on the average of the delays of visible satellites 

observed at various elevation angles multiplied by a mapping function (MF) that 

describes the dependence on the elevation angle. This relationship was established by 

Marini (1972) as an alternative to the more complex traditional method of series 

expansion of integrals. The choice of mapping function is crucial for precise GNSS 

applications such as ZWD estimation.  A correctly chosen MF is especially important 

when low-elevation satellites are observed, to ensure minimal errors from filtering 

through to the parameter estimates (Mendes, 1999).  

 

If the mapping functions for the hydrostatic ( Hm ) and wet ( Wm ) delays are treated 

separately, then the total tropospheric delay can be expressed as: 

 

 ( )θ= H
i
A mT ( )θ+ WmZHD ZWD  (3.62) 
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where θ  is the elevation angle from station A to satellite i. Marini (1972) also 

provided an empirical MF in the form of a continuous fraction. It was determined 

that the elevation dependence of any horizontally stratified atmosphere can be 

approximated by expanding in a continued fraction in terms of a cosecant function: 

  

 ( )
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( )
( )

L
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+θ

+θ

+θ

=θ  (3.63) 

 

where the coefficients a, b and c are either constants or linear functions which are 

dependent on pressure, temperature, humidity, latitude and height. The proposed 

formulation provided the foundation from which several later mapping functions 

(e.g., Chao, 1974; Davis et al., 1985; Ifadis, 1986; Herring, 1992) are based upon. 

Table A3 in the Appendix provides a summary of these established models. 

 

Most MFs assume a fairly homogeneous atmosphere and have varying degrees of 

accuracy. Mendes and Langley (1999) provided the most comprehensive assessments 

and comparisons of the MFs developed prior to its publication. It was found that for 

elevation angles above 10 degrees, there is not one specific MF that stood out as 

being significantly superior to the others. However, for data observed below 10 

degrees, the majority of the mapping functions are found to be inadequate for precise 

positioning. For lower elevation angles, Mendes (1999) mentioned that the Niell 

(1996) mapping functions (NMFs) are only one of the few MFs deemed adequate for 

high-precision applications. 

 

The form adopted by Niell (1996) hydrostatic and wet MF is the continued fraction 

given by Eq. (3.63). However, the hydrostatic NMF includes a height-dependent 

correction term to account for the variation in the thickness of the atmosphere at 

different altitudes. In addition to the station height (H), the hydrostatic NMF is also 

dependent on the day of year (DOY) and station latitude ( l ). The wet MF on the 

other hand, is solely dependent on the latitude. The mathematical hydrostatic and wet 

delay models for the NMFs are (Niell, 1996): 
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where ( ,a ht  ,b ht  )htc  are given as ( )335 1014.1,1049.5,1053.2 −−− ××× km. Each of the 

coefficient dryx for ( ,ax =  ,b  )c  is a function of the latitude and day of year, i.e. 

 

 ( ) ( ) ( ) 






 −
π+=

25.365

28DOY
2cosxxDOY,x ampavgdry lll  (3.67) 

 

The corresponding values for avgx and ampx for five latitudes can be determined from 

Table 3.1. The values for other latitudes can be computed by linear interpolation 

between the appropriate tabulated coefficients. These quantities remain constant for 

latitudes at and below 015 elevation. The values for ,a wet  wetb  and wetc  are treated 

similarly. 
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Table 3.1 Coefficients for Niell’s dry and wet mapping (Mendes, 1999) 

Coefficients 
Latitude 

150 300 450 600 750 

3
avg 10a −×  1.2769934 1.2683230 1.2465397 1.2196049 1.2045996 

3
avg 10b −×  2.9153695 2.9152299 2.9288445 2.9022565 2.9024912 

 3
avg 10c −×  62.610505  62.837393 63.721774 63.824265 64.258455 

5
amp 10a −×  0 1.2709626 2.6523662 3.4000452 4.1202191 

5
amp 10b −×  0 2.1414979 3.0160779 7.2562722 11.723375 

 5
amp 10c −×   0 9.0128400 4.3497037  84.795348 170.37206  

4
wet 10a −×  5.8021897 5.6794847 5.8118019 5.9727542 6.1641693 

3
wet 10b −×  1.4275268 1.5138625 1.4572752 1.5007428 1.7599082 

2
wet 10c −×  4.3472961 4.6729510 4.3908931 4.4626982 5.4736038 

     

 

The appealing feature of the NMFs is that they require no meteorological data as 

input parameters (Niell, 1996). The reduction in computational effort ensures that the 

NMFs are more practical in most instances, whilst providing comparable, if not 

better, solutions than other established MFs. Therefore, the NMFs are the only MFs 

considered in this study. Recent MFs such as the Vienna mapping functions (VMF, 

Boehm and Schuh (2004) and VMF1, Boehm et al. (2006)) and the Isobaric mapping 

functions (IMF, Niell (2003)) provide more realistic modelling of the state of the 

atmosphere as they allow input data from numerical weather models. The formulae 

for IMF and VMF1 are summarized in Table A4 in the Appendix. The Global 

mapping functions (GMF, Boehm, et al. (2006)) was later developed as an 

approximation to VMF1, but without the need for external input data. 

 

 

3.5 CHAPTER SUMMARY 

Although the estimation of the ZWDs is fairly straight forward in the LS process, the 

quality of the ZWD solutions is dependent on how well the other “nuisance” factors 

have been handled (as discussed in Section 3.4 and 3.5) in the functional model. 

Furthermore, the final ZWD estimates are dependent on the choice of stochastic 

model used in the LS analysis. Some of the more commonly used stochastic models 

will be discussed in the following Chapter, along with a well-known spatial model 

known as the Minimum Norm Quadratic Unbiased Estimator.  
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CHAPTER 4 

 

STOCHASTIC MODELLING OF THE GNSS OBSERVATIONS 

 

 

4.0 INTRODUCTION 

GNSS measurements are characterised by a functional model and a stochastic model 

in LS.  The functional model represents the mathematical relationship between the 

GNSS observables and the parameters of interest. The stochastic model is defined by 

an appropriate covariance matrix describing the precision (variance) and the spatial 

and/or temporal correlation among the measurements (covariance). As shown by 

Eqs. (3.1) and (3.2) in Chapter 3, the functional model is well defined as factors such 

as station coordinates, ambiguities, atmospheric delays, clock errors, multipath, etc., 

have been investigated and identified in many literatures (e.g., Teunissen and 

Kleusberg, 1998; Hofmann-Wellenhof et al., 2001; Xu, 2003; Leick, 2004). On the 

other hand, the stochastic model is generally chosen in a relatively simple form for 

practical purposes (Wang et al., 2002). 

 

Stochastic modelling of GNSS observations is one of the more challenging aspects in 

precise GNSS positioning. LS possesses an attractive property in that the mean 

square error (MSE) is minimised. However, an inadequately defined covariance 

matrix will result in LS losing its optimality property (Dodson, 1993). Many of the 

existing stochastic models implemented in GNSS data processing, are uncomplicated 

for practical purposes. For real-time kinematic (RTK) data processing where results 

are needed almost instantaneously, a simple stochastic model can ease the time delay 

(e.g., Fuller et al., 2005). A wrongly chosen stochastic model however may result in 

faulty cycle slip detection, thereby incurring biases into the ambiguity resolution. 

The quality of the other parameter estimates, including the ZTD,  will also suffer as a 

result (Fuller et al., 2005). Some GNSS processing software often employ a simple 

stochastic model that assumes all raw observations have the same variance. Such an 

assumption is too presumptuous as studies have shown that systematic errors caused 

by the atmosphere and multipath have varying degrees of impact on GNSS signals 
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(e.g., Barnes and Cross, 1998). It was also demonstrated with statistical analysis that 

the assumption of constant variances can be inappropriate (Bischoff et al., 2006). 

Beutler et al. (1987) reported that erroneous modelling of the correlations causes 

millimetres level error in the coordinate estimates. Han and Rizos (1995) concluded 

that the solved parameter estimates are always over-optimistic when independence is 

assumed between the observations. Satirapod et al. (2002) further demonstrated that 

an improper stochastic model may incur a height offset of 8-10 mm. Jin et al. (2005) 

similarly reported an offset of up to 2 cm in the height component of the baseline 

solution. Error in the height determination will ultimately have an impact on the 

tropospheric delay estimates (e.g., Mendes and Langley, 1999; Tregoning and 

Herring, 2006).  

 

Modern GNSS software do however provide other alternatives such as the elevation-

angle-dependent model and the signal-to-noise ratio model (e.g., Hugentobler et al., 

2001; King and Bock, 2002). Although these models do somewhat reflect the quality 

of the observed GNSS signals, correlations between the raw measurements are again 

ignored. Nevertheless, the elevation-angle-dependent model for example, has been 

shown to produce reliable LS ZTD/PWV estimates (e.g., Penna et al., 2005; 

Steigenberger et al., 2007). Although more rigorous stochastic modelling techniques 

are available (e.g., Wang et al., 1998; Tiberius and Kenselaar, 2003; Teunissen and 

Amiri-Simkooei, 2007), the complexity of these models generally demands greater 

processing time. Additionally these more complicated models have predominantly 

been used to derive positional and ambiguity estimates, and the effects on ZTD 

estimates are still relatively unknown. Though one may hypothesise that better 

coordinates would lead to better ZTD estimates, the significance of the impact is still 

speculative. One of the objectives of this thesis therefore aims to answer this 

question.  

 

In this Chapter, details of various existing stochastic models that can be used to 

estimate ZTD/ZWD will be outlined. Emphasis will be on the more rigorous 

stochastic modelling technique known as the Minimum Norm Quadratic Unbiased 

Estimation (MINQUE). Developed by Rao (1970, 1971, 1979), MINQUE was 

successfully applied in GNSS data processing and has been shown to improve short 

baseline solutions, as well as ambiguity resolution (Wang et al., 1998; Wang et al., 
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2002). It has not yet, however, been implemented over long baselines and with large 

processing windows, or for the purpose of ZWD recovery. The simplified MINQUE 

(SMINQUE) model (Satirapod et al., 2002), a variation of the original MINQUE 

approach which was shown to produce similar results to that of its predecessor with 

limited data, will also be discussed. All the stochastic models outlined in the 

subsequent sections will be implemented in the study. Although it is discussed, the 

signal-to-noise model will not be used in the data analysis as it is receiver dependent 

and tedious to estimate. 

 

 

4.1 CONVENTIONAL STOCHASTIC MODELS 

The choice of stochastic model is an important factor in determining the final 

outcome of the LS ZTD and parameter solution. The following sub-sections will 

examine some of the conventional models that are commonly implemented in GNSS 

applications.  

 

4.1.1 Equal-weighting Model 

The equal-weighting model (EWM) refers to the simplest of all stochastic models. 

The EWM is constructed with the assumption that all ZD GNSS observations are 

independent from one another (i.e. have no correlations) and have the same variance, 

i.e.: 
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Suppose there are n satellites being observed for a given epoch at stations R1 and R2. 

In addition, satellite 1s  was chosen as the reference satellite at both locations. The 

corresponding set of ZD phase observations φ  can then be mapped to the DD 

observations DDφ  via the double-differenced correlation matrix cD   such that: 

 

 φ=φ cDD D   (4.2) 
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Under the error propagation law, the construction of the variance-covariance (VCV) 

matrix for the (n-1) DD observations is (Hofmann-Wellenhof et al., 2001): 
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4.1.2 Elevation-Angle-Dependent Model 

The elevation-angle-dependent model (EADM) is modelled on the basis that the 

GNSS measurement noise is dependent on satellite elevation, which can be attributed 

to the receiver antenna’s gain pattern, atmospheric refraction and multipath (e.g., 

Kim and Langley, 2001). Modelling the observational noise as a function of the 

satellite elevation can take on many forms. Jin and de Jong (1996) described how the 

standard deviation σ  of the code observations can be modelled quite well by a 

satellite elevation dependent exponential model. The model was expressed as: 

 

 
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The constants 0a , 1a  and 0δ  are dependent on the type of receiver and observations 

being used; θ  is the observed satellite elevation angle. 

 

The other EADMs are often defined in terms of a geometric function such as the 

cosine and sine function to capture the severity of the noise induced by the 
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atmosphere, much like the approach taken in constructing modern mapping functions 

in Section 3.4. One of these elevation-angle-based models used to describe the 

variance of a raw GNSS measurement has the general form (Wang, 1999): 

 

 ( )i2222 fba
i

θ+=σφ   (4.7) 

 

where 2a  and 2b  are constant coefficients and ( )i2f θ  is the function that is defined 

with respect to iθ , which is the elevation angle for observation i . In the GAMIT 

Version 4.2 software package (King and Bock, 2002), the variances of the ZD 

measurements are defined by a sine function of the elevation angle iθ  such that: 
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The coefficients are given as 3.4a = mm and 7b = mm. The Bernese Version 4.2 

GNSS software package (Hugentobler et al., 2001) on the other hand, utilizes the 

cosine function of the elevation angle iθ . The corresponding formula reads: 

 

 ( )i2222 cosba
i

θ+=σφ   (4.9) 

 

The coefficients a  and b  are simply given as 0 and 1. The raw observations are also 

assumed to be spatially and temporally uncorrelated in the EADMs.  

 

4.1.3 Signal-to-Noise Ratio Model 

Signal to noise (SNR) is defined as the ratio between signal strength and the 

associated background noise. The lower the noise is, the higher the ratio. SNR is a 

popular signal quality indicator and has been frequently used to construct multipath 

mitigation models. The relationship between multipath and SNR or carrier-to-noise 

(C/N) ratio is a subject that has been investigated widely and these studies revealed a 

strong correlation between the quantities (e.g., Comp and Axelrad, 1996; Brunner et 

al., 1999; Bétaille et al., 2006; Lau and Cross, 2007). Modern receivers generally 
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have built-in firmware that is able to estimate SNR. The SNR values can vary from 

receiver to receiver as the manufacturers may use different algorithms.  To a lesser 

extent, SNR has also been used to produce stochastic models for high-precision 

GNSS applications (e.g., Özlüdemir, 2004). The relationship between the phase noise 

( φσ ) and the SNR  is (Spilker, 1996): 

 

 
φ

φ ≅σ
SNR

12   (4.10) 

 

The SIGMA-ε weight model (Hartinger and Brunner, 1999) links the phase noise 

with the C/N observable through a model parameter iC [m2Hz], and it reads 
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Wieser and Brunner (2000) argued that some antenna-receiver combinations require 

an additional term, iT  [m2]. The revised SIGMA-ε model was given as: 
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For the Rogue SNR8000/DORNE MARGOLIN B antenna/receiver combination, the 

corresponding values given to the constants are estimated to be 0T 1L = , 244.0C 1L =  

for L1 signals, and 6
2L 1088.0T −×= , 3

2L 1077.0C −×=  for L2 signals respectively 

(Wieser and Brunner, 2000). Lau and Mok (1999) and Satirapod and Wang (2000) 

also highlighted the close relationship between SNR and the satellite elevation angle.  

 

Using the phase variances ( 2

iφσ ) for a ZD observation i , the corresponding weight is 

calculated via the following equation: 
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where 2σ is the a-priori variance of the GNSS observations. 

 

The coefficients for the SNR models are not of a general nature as they are receiver-

dependent, and can be tedious to estimate. Thus, the SNR models are not 

implemented in this study. 

 

 

4.2 MINIMUM NORM QUADRATIC UNBIASED ESTIMATION 

The stochastic models, given in Section 4.1, assume that the correlations among the 

ZD observations are negligible when generating the VCV matrix. However, such  

assumption may lead to unreliable results (Wang et al., 2002). The Minimum Norm 

Quadratic Unbiased Estimation (MINQUE) method (Rao, 1971) is a popular 

stochastic estimation procedure and is often called upon in many practical situations 

to generate dynamic estimates for VCV (e.g., Satirapod et al., 2002; Mäkinen et al., 

2003; Musa et al., 2003; Fuller et al., 2005; Erol et al., 2008). 

 

To illustrate the MINQUE process, consider the linear model given by Eq. (3.7). The 

VCV matrix of the measurement vector L , can be expressed in the form: 

 

 ∑∑
==

σ==Σ
q

1i
ii

q

1i
i VC   (4.13)  

 

where ,1σ  2σ , .., qσ  are the VCV components to be estimated and ,V1 2V , .., qV  

are the so-called accompanying matrices. The structure of these matrices will be 

discussed later. The problem here is one of estimating q  unknown elements of Σ .  

 

According to Rao (1971), the MINQUE of the linear function of iσ ( ,1i = ,2 .., q ), 

i.e. qq2211 a..aa σ++σ+σ , is the quadratic function YLLT , where Y  is estimated 

such that: 

 

( )YΣΣYTrace  is a minimum  (4.14) 

subject to 
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 0YA =  (4.15) 

and 

 ( ) iiYCTrace α= ,   ,1=i ,2 ..., q   (4.16) 

with  

 q21 CCC +++=Σ L  (4.17) 

Using Eqs. (4.14), (4.15) and (4.16), the MINQUE of ∑
=

σ
q

1i
iiV is then 
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where the vector γ  is a solution of 
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and 
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The symmetric U matrix can be partitioned as 
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where en  is the number of epochs in a GNSS processing window session. 

 

By expressing Eq. (4.19) as κ=γS , where the (i,j) entry of matrix S is given by: 

 

 ( )jiij UVUVTraceS =  (4.22) 

 

this leads to κ=γ −1S .  

Since the MINQUE of ∑
=

σ
q

1i
iiV  is  
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( ) σκ=κ=κ=γ −− ˆMSMSM T1TT1TT   (4.23) 

Therefore, ( ,ˆˆ 1σ=σ 2σ̂ , .., )qσ̂  is a solution of 

 

 MS =σ   (4.24) 

 

M  can alternatively be defined as: 

 

 WvWVvULUVLM i
T

i
T

i ==   (4.25) 

 

One of the criticisms of MINQUE is that it is only locally optimal (Rao, 1971; Rao, 

1979; Fotopoulos, 2005). This means that different a priori VCV estimates will 

result in different MINQUE solutions. However, it can be observed from Eqs. (4.18) 

to (4.22) that both S  and M  are dependent on the VCV matrix, Σ , via the matrix U. 

Since the elements of Σ  are the direct result of σ̂ , an iterative process can be 

performed. Given an initial estimate ( )0σ̂ , a ( )th1j +  approximation is generated with 

the following iterative procedure: 

 

 ( ) ( ) ( )j
1
j1j MSˆ −

+ =σ , ,0j = ,1  ,2 …  (4.26) 

 

The number of iterations in Eq. (4.26) can be set to a pre-defined finite value or until 

the difference between the ith and (i-1)th elements is less than a pre-specified 

tolerance value, for example, 10-5. An example of how MINQUE can be used to 

estimates the VCV of the DD observations will be given later in Section 4.4. 

 

Another problem with MINQUE is that it does not ensure the estimated variances 

will always be positive (Rao and Kleffe, 1988). However, if all the matrices ,V1 2V , 

.., qV  are non-negative definite, Rao and Kleffe (1988) proposed an alternative 

iterative scheme  

 ( )
)VU(Trace
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i
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i

ii

σ

σσ

+ σ=σ ,   ,1i =  2, .., q (4.27) 
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where the ( )th1j +  approximation to the thi  component of σ̂  can be computed. This 

modified scheme ensures iσ̂  will remain non-negative throughout the iterations 

when ( ) .0ˆ i
0 ≥σ  It is also computationally simpler than Eq. (4.26), which requires the 

calculation of the S  matrix. 

 

One should note, however, that the convergence in MINQUE is not guaranteed (Rao, 

1971; Rao and Kleffe, 1980, 1988). The likelihood of convergence in MINQUE 

largely depends on the number of observations compared to the number of 

parameters (i.e., observation redundancy increases the chances of achieving 

convergence), and/or the pre-defined structure of the stochastic model (Sjöberg, 

1984). Another positive consequence of high redundancy is that negative variances 

occur less frequently (Fotopoulos, 2005).  

 

 

4.3 SIMPLIFIED MINQUE 

The execution of MINQUE, given in Section 4.2, requires a processor with 

substantial computer power and memory as the number of observations becomes 

large, and this is mostly due to the computation and storage of the U matrix in Eq. 

(4.21). For example, suppose fifteen satellites are observed over a certain time 

period. From these satellites, fourteen distinct satellite-pairs can be constructed. 

Therefore, a 1414×  VCV matrix needs to be constructed, with each variance 2
iσ  (for 

i = 1, 2, .., 14) describing the spatial variability of each of the satellite-pair i.  

 

The U matrix is dependent on the weight matrix, which is taken as the inverse of the 

VCV matrix. Since the VCV matrix is not a diagonal matrix, the calculation of the 

inverse matrix can be time consuming. For a longer observing time period, the 

number of distinct satellite-pairs will increase and thus, the determination of the 

inverse of the VCV will become more complex. Additionally the dimension of 

matrix U is of DDobsDDobs nn × , where DDobsn  is the number of DD observations in the 

specified observing window. The required storage capacity can therefore be quite 

significant as DDobsn   becomes large.  
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The notion behind the simplified MINQUE (Satirapod et al., 2002), which will be 

referred to here as SMINQUE, is to reduce the complexity of the U matrix, resulting 

in the efficient computation of the MINQUE process. The proposed simplification of 

MINQUE disregards the off-diagonal block entries of U and gives rise to a block-

diagonal matrix *U  as its replacement in the procedure. The *U  matrix is 

expressed as:  
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Subsequently, Eq. (4.21) can be simplified to 

 

 ( )∑
=

=
en

1t
jtttitttij VUVUTraceS  (4.29) 

 

where itV  is the block-diagonal element of iV  for epoch t and jtit VV = .  

 

The theoretical basis of the simplified approach offered by Satirapod et al. (2002) is 

unclear and was not discussed. It does, however, empirically ensure the operation of 

the procedure is more efficient when computation time is of concern. The 

consequence of the simplification of U (see Eq. (4.21)), nevertheless, can be 

demonstrated. 

 

Given that 

 

 ULWv =   (4.30) 

 







































=









































s

2

1

nn2n1n

n22221

n11211

n

2

1

n

2

1

L

L

L

UUU

UUU

UUU

v

...

v

v

W00

0

W0

00W

eeee

e

e

ee

M

L

MOMM

L

L

L

OOM

MO

L

 (4.31) 



 79

 ∑
=

+=
en

1j
jijiiiii LULUvW    for ji ≠  and =i 1, 2, ..., en  (4.32) 

 

then using Eq. (3.23),  
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If matrix *U  was used, then 0LUv
ee n

1j
jij

T
i

n

1i

=∑∑
==

 and thus, the resulting VCV matrix 

from the SMINQUE process will be wrongly estimated. Hence, the LS solutions for 

the tropospheric parameter in Eq. (3.26), as well as the corresponding error estimate 

in Eq. (3.28), may be unrealistic. Results from Satirapod et al. (2002) show that both 

the MINQUE and SMINQUE yielded similar results in the resolved GNSS 

ambiguity set. The difference in coordinate solutions produced by MINQUE and its 

simplified counterpart were in the sub-millimetre range. The investigation was 

carried out over shorter baselines (15 m, 215 m, 870 m, and 13,300 m), each with 30 

min of data. Although MINQUE and SMINQUE were shown to have negligible 

differences in these instances, whether or not such remark will hold true under 

difference circumstances (e.g., longer baseline lengths > 20 km) is still unknown. 

The impact of the simplification on the convergence likelihood was also not 

discussed. 

 

 It has also been indicated by Satirapod et al. (2002) that it is “possible” that the 

effect of changing satellites can be handled simply by processing Eq. (4.28) on an 

epoch-by-epoch basis when the SMINQUE is used. However, a demonstration was 

not provided. On closer inspection, the modification has, in fact, failed to overcome 

this issue of changing satellites. Since the matrix U is dependent on the VCV matrix

Σ , the latter has to be constructed appropriately first, in order yield U and eventually

*U . As the problem regarding the formation of the VCV matrix was not addressed, 

*U cannot be defined as result. In the following section, an alternative approach to 

the construction of the VCV is proposed to overcome the issue of changing satellites. 
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4.4 A MODIFIED APPROACH TO MODELLING WITH MINQUE  

MINQUE was only ever used on relatively small processing windows, and over a 

relatively short baseline (<15km) due to its computational demands. However, there 

are other limitations to MINQUE. Satirapod et al. (2002) stated that MINQUE 

requires equal number of satellites in every epoch of the window session. Hence, the 

method was only used for sessions that were less than 1 hour long (e.g., Wang et al., 

1998; Satirapod et al., 2002; Wang et al., 2002) and requires the same satellites to be 

tracked all throughout the session without any cycle slips. In this section, a more 

general approach will be taken in the construction of the VCV matrix in the 

estimation step and thus, the effect of having a variable satellite distribution from 

epoch to epoch can now be handled. This will be illustrated with a simple scenario 

and an example. 

 

Suppose im  satellites are tracked at epoch it  by two receivers. Denote the raw 

GNSS carrier-phase measurements collected from receiver R1 and receiver R2 at 

epoch it  as: 

 

 ( ,1
1R1R φ=φ ,2

1Rφ )Tm
1R
i...,φ   

 ( ,1
2R2R φ=φ ,2

2Rφ )Tm
2R
i...,φ   (4.34) 

 

Then, the DD measurements ( )itL  between satellite j and satellite k at epoch it  is: 

 

 ( ) ( )ici
jk

2R1R tDtL φ= ,   =i 1, 2, …, en  (4.35) 

 

where en  is the number of epochs in the processing session and the matrix cD  is as 

defined in Eq. (4.3). Let sn  be the number of distinct satellite-pairs in the session. 

Therefore, a ss nn ×  VCV matrix can be constructed and represented as: 
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where 

 ( ) 2/1nnq ss +=   (4.37) 

 ( ,1σ=σ ,2σ .., )T

qσ   (4.38) 
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Note that the variances, denoted as ,2
iii σ=σ  can only be calculated if and only if, 

the number of occurrences for each distinct satellite-pair is at least two in the 

selected processing window. 
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If the same set of satellites were tracked throughout the session, and assuming that 

the satellite-pairs do not vary from epoch to epoch, then 
en21 m...mm ===  for a 

session with en  epochs of data. Therefore, the full VCV matrix of all DD 

observations is: 

 

 ∑
=

σσ=Σ
q

1j

*
jDD ,V

j
 (4.43) 

where, 

( )( )iVdiagV
jj

*
σσ = ,  (4.44) 

( ) ,ViV
jj σσ =    =i 1, 2, ..., en   (4.45) 

 

This was the case considered in Wang et al. (1998). The problem occurs when the 

number of observed satellites varies from epoch to epoch, that is, ji mm ≠ , j,i∀  

such that, ji ≠ . In order to overcome the problem, the necessary adjustment only 

involves simple manipulation of the VCV matrix. Consider a scenario where there 

are four variables, ,1x  ,2x  3x  and ,4x  with the following known VCV structure. 
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Suppose variable 3x  is of no interest anymore, then a new VCV matrix, *Σ , can be 

realised by extracting the necessary elements from Σ . Additionally, the order of the 

variables does not matter because it would just be a case of relabelling. For example, 

let us denote =1y ( ,4x ,2x )T1x and 3x2y = . Then, the VCV matrix Σ  can be 

rearranged and partitioned such that: 
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Therefore, ignoring variable 3x  will result in a 33 ×  matrix 11
* Σ=Σ . It is with this 

approach that the restriction on the fixed number of VCV components in the 

MINQUE estimation step is avoided. As 
j

Vσ  ( ,1j =  2, .., q) are direct results of the 

VCV matrix, they can also be managed in the same way.  

 

Example 1: 

Suppose satellites 1, 2, 3 and 4 were tracked for three epochs. In each epoch, satellite 

2 was chosen to be the reference satellite. Furthermore, suppose the signal from 

satellite 1 was lost in the first epoch. Therefore, the DD observation vector L , which 

can be either pseudorange or phase measurements, is modelled as: 
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The VCV matrix of all distinct satellite-pairs, 2-1, 2-3 and 2-4 can be written as: 

 

 

















σσσ

σσσ

σσσ

=Σ

−−−−−

−−−−−

−−−−−

2
4242,3242,12

42,32
2

3232,12

42,1232,12
2

12

  (4.49) 

 

Since the satellite pair 2-1 is missing in the first epoch, the VCV matrix at epoch 1t  

will be a subset of Σ , that is, 
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with Σ=Σ=Σ
32 tt . Therefore the full VCV matrix for all DD observations is 

( )
321 tttDD ,,diag ΣΣΣ=Σ . Here also, there are six variance VCV components to be 

estimated. The accompanying matrices at the first epoch are: 
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where ( ,1σ=σ ,2σ ,3σ ,4σ ,5σ )T

6σ ( ,2
12−= σ ,2

32−σ ,2
42−σ ,32,12 −−σ ,42,12 −−σ )T42,32 −−σ ; 

for epoch 2t  and 3t , the matrices 
j

Vσ ( 6,..,2,1j = ) are as represented by Eqs. (4.40) 

to (4.42). Finally, DDΣ  can be expressed as 

 

( ) ∑
=

σσ=ΣΣΣ=Σ
6

1j

*
jtttDD j321
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where 

( ) ( ) ( )( )321
* tV,tV,tVdiagV

jjjj σσσσ =   (4.58) 

 

Once *Vσ  has been properly defined, the MINQUE process can proceed without 

further complications. 
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Suppose that in the next few epochs there is a change in the reference satellite, say 

satellite 3. In this instance, a new set of ambiguities (i.e., 432313 Nand,N,N −−− ) is 

formed. The corresponding VCV matrix for all epochs is a 6×6 matrix given by: 
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Hence, there are 21 VCV components to be estimated instead. The derivation of the 

accompanying matrices is similar to the process outlined earlier. However, the 

increase in the dimension of the VCV matrix does significantly increase the 

computation time. 

 

Previous to this work, MINQUE was thought to be only capable of processing GNSS 

data when the number of satellites does not change throughout the whole processing 

window. By restricting the length of the baseline, it ensures higher chances that both 

receivers are tracking the same set of satellites for a given period. However, it was 

shown that by correctly defining the VCV matrix and its corresponding 

accompanying matrices at each epoch, the issue of unequal number of observed 

satellites is no longer a problem. More specifically, this change allows MINQUE to 

be implemented for when there is a change in the number of distinct satellite-pairs 

(i.e. new ambiguity terms). Note that a change in the number of distinct satellite-

pairs can occur either due to a change in the reference satellite, a new satellite 

appearing in the latter epochs of the processing window, or the disappearance of a 

tracked satellite within the observational period.  

 

The proposed changes here will allow MINQUE to be implemented over larger data 

sets and longer baselines. This approach is also be used to construct the VCV matrix 

for SMINQUE in this study. 
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The number of distinct satellite-pairs will increase as the number of epochs increases 

for a given window session. Consequently, a 24-hour processing session may still be 

unrealistic for MINQUE. For a session with sn  distinct satellite-pairs, a ss nn ×  

VCV matrix is to be stored. For large values of sn , the storage of Σ  will require 

significant memory space. To tackle this problem, one could suggest:  

 ( )2
jDD ,0~v

j
σ ,   for ,1j = ,2 ,K { }inmax  (4.60) 

 

where in  is the number of DD observations at epoch it  for =i 1, 2, ,K en . 

 

It is assumed here that the first DD observation of each epoch has a common 

variance 2
1σ , whilst the second DD observation of each epoch will have a variance 

2
2σ , and so on. Therefore, if there is a maximum of maxn number of observations in 

any given epoch it , i.e. { }
en,..,2,1i
imax nmaxn

=

= , only a maxmax nn ×  VCV matrix is stored in 

memory instead. Hence, the dimension of Σ  is significantly reduced. Additionally, 

the increase in redundancy level for each 2
jσ  will increase the likelihood of 

convergence and its non-negativity value (e.g., Fuller et al., 2005). Thus, placing the 

assumption as defined in Eq. (4.60) on the DD observations is a more appropriate 

method of constructing the stochastic model in a practical sense.  

 

 

4.5 CHAPTER SUMMARY 

Stochastic modelling of GNSS observations is a well known, but complex issue. 

Stochastic models such as the EWM and the EADM ignore any existing spatial and 

temporal correlations between the raw GNSS observations, and are used to reduce 

the impact of low-quality signals on the final solution. Although the simplicity of 

these models also ensures the computational time does not become a hugely negative 

factor, the solution may suffer as a result. More sophisticated stochastic models such 

as MINQUE (Rao, 1970), generally require greater processing time and thus, are not 

routinely implemented in practice. However, Satirapod et al. (2002) provide a 

simplified MINQUE model, which significantly reduces the computation time. The 

simplification however, was not justified. The theoretical consequence of this 
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simplification was addressed in Section 4.3. MINQUE was initially only able to 

process data whereby equal number of satellites is observed at every epoch 

throughout the window session (Wang et al., 1998; Wang et al., 2002). This is the 

reason why MINQUE has generally been implemented over small window sessions 

(<1hr) and relatively short baselines (<15 km) in GNSS applications. However, this 

restriction can be avoided by redefining one of the processing steps. The 

modification is detailed in Section 4.4, along with an example. The revised approach, 

also applicable to SMINQUE, allows MINQUE to be implemented over larger data 

sets and longer baselines. In this study, the modified approach will be implemented 

in the data processing in Sections 6.2 to 6.4 of Chapter 6. The MINQUE and 

SMINQUE models will only be applied in static positioning mode in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 



 88

CHAPTER 5 

 

ASSESSING THE PRECISION OF THE GNSS-ESTIMATED  

TROPOSPHERIC SOLUTIONS 

 

 

5.0  INTRODUCTION 

The optimality of LS estimates, described in Chapter 3, lies in minimising the model 

residuals (e.g., Johnson and Wichern, 2007; Walpole et al., 2007). However, the final 

solution may not be reflective of the true solution if the defined stochastic models 

(see Chapter 4) are incorrect or due to a lack of quality observations. In general, 

reliable positioning can be achieved by introducing a certain level of observation 

redundancy (Kim and Langley, 2001). Tropospheric estimates will also improve as a 

result. To assess the accuracy of the LS solutions, positional estimates can be 

compared to known ITRF or local geodetic coordinates, whilst the ZTD/ZWD 

estimates can be compared to independent measurements from other atmospheric 

sensors such as a water vapour radiometer (WVR) and/or radiosonde (RS). This is 

one of the ways to assess the quality of the GNSS tropospheric estimates. It is worth 

noting that levels of uncertainty exist in these control data themselves (e.g., 

Nakamura et al., 2004; Nilsson et al., 2005), as discussed in Section 2.5.  

 

The root mean squared error (RMSE) is often used to evaluate the accuracy of a set 

of GNSS tropospheric solutions. The RMSE evaluates the difference between GNSS 

and RS/WVR ZWD estimates (or any other comparable tropospheric estimates), and 

is computed as follows: 

 

 

( )

c

n

1j

2)j(
i

)j(
GPS

n

ZWDZWD

RMSE

c

∑
=

−

=     for i = RS or WVR  (5.1) 

 

where cn  refers to the number of data compared.  
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The general consensus from past studies (e.g., Bevis et al., 1994; Businger et al., 

1996; Haase et al., 2003; Snajdrova et al., 2006; Heinkelmann et al., 2007; 

Steigenberger et al., 2007; Wang et al., 2007) is that a set of GNSS ZWD (PWV) 

estimates is considered as good estimates if it has a RMSE value of less than 15-20 

mm in ZWD (giving 2-3 mm in PWV using Eq.(2.31)) when compared to RS 

estimates, or any other reliable independent measurements such as WVR or VLBI 

solutions. For assimilation purposes, it is preferable that the accuracy of the GNSS 

ZWD estimates is within 7-15 mm, or 1-2 mm in PWV (Macpherson et al., 2007).  

 

Unfortunately, RS is the only atmospheric sensor in regular operational use within 

Australia for meteorological studies. Therefore at a specific site, there are at most 

two observations per day (at UTC 0:00 and 12:00) available for validating GNSS 

tropospheric solutions. However, in practice, tropospheric solutions are given hourly 

(i.e. 24 ZWD solutions a day) or two-hourly (i.e. 12 ZWD solutions a day). 

Consequently, the quality of the majority of the GNSS ZWD estimates remains 

unknown. In such a situation, the corresponding error estimates (i.e. the square root 

of the error variances) of the LS tropospheric solutions can be called upon to assess 

these remaining ZWD estimates. These error estimates are an indication of the 

precision of the tropospheric solutions. In order to evaluate the effectiveness of the 

error estimates of the LS ZWD solutions as a realistic source of quality-checking 

information, Section 5.1 will provide the statistical tests that can be used to perform 

such task.  

 

It can also be observed from Eqs. (3.14) and (3.15) in Chapter 3, that the LS ZWD 

error estimates are dependent on the redundancy level, as well as the quality of the 

GNSS observations. Given a well-defined functional model of GNSS measurements, 

the ZWD and other parameter error estimates are generally very small when there is 

a high level of redundancy. Such small error estimates are generally not indicative of 

the dynamic nature of the ZWD in the atmosphere and thus, reliance on these error 

estimates for assessing the ZWD solutions can be unwise in many cases. Therefore, 

this chapter will also investigate the impact of high observation redundancy on the 

tropospheric error estimates. The discussions are provided in Section 5.2.  
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5.1  STATISTICAL INFERENCES FOR ZWD ESTIMATES 

Although it is only implemented sparingly in practice, the error estimates (precision) 

from the LS adjustment process can be used for assessing the quality of the GNSS 

ZWD estimates in the absence of independent external measurements such as RS and 

WVR. To determine the adequacy of this approach, a statistical inference of the LS 

ZWD estimates is discussed.  

 

The techniques of statistical inference can be categorized into two stages. The first 

stage involves the estimation of the ZWD parameters. The parameter estimation 

process was summarised in Chapter 3 (Sections 3.1 and 3.2). The second stage is 

realized by hypothesis testing of the ZWD parameter estimates (e.g., Montgomery, 

2001; Walpole et al., 2007).  

 

In the hypothesis testing procedure, a statement is made with regards to the values of 

the parameters of a probability distribution (Montgomery, 2001). The statements in 

hypothesis testing are formally expressed as the null hypothesis ( 0H ) and the 

alternative hypothesis ( AH ). By assuming true ZWD value is known beforehand, the 

GNSS ZWD can be deemed adequate (in a statistical sense) if 0H  is not rejected. For 

example, since RS ZWD estimates are often used as the benchmark, one may set up 

the hypothesis in such a way that the RS solutions are deemed as the true values. 

That is, 

 

 :H 0  RSGNSS ZWDZWD =   (5.2) 

 :HA RSGNSS ZWDZWD ≠   (5.3) 

 

The test statistic, i.e. a one-sample t-test, to help test the hypothesis is given as (e.g., 

Montgomery, 2005; Walpole et al., 2007), 

 

GNSSZWD

RSGNSS
OBS

s

ZWDZWD
t

−
=   with (n-1) degrees of freedom  (5.4) 

where 
GNSSZWDs  is the error estimate of the LS GNSS ZWD estimate. The t-statistic is 

developed under the assumption that data is normally distributed, and that prior 
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information regarding the true variance 2σ  is unknown. The variance of the GNSS 

ZWD estimate ( 2
ZWDGPS

s ) is given by the diagonal entry of the covariance matrix, 

given by Eq. (3.27), corresponding to the (mean) ZWD estimate from the LS process. 

The null hypothesis 0H  in Eq. (5.2) is rejected if 
1n,2

OBS s
tt

−
α> , where 

1n,2
s

t
−

α  

denotes the upper 2sα  percentage point of the t-distribution. The quantity sα  is the 

level of significance. 

 

If 0H  is not rejected, the test concludes that there is no significant statistical 

difference (NSSD) between the GNSS and RS ZWD estimates and thus, indicating 

that the error estimate provides a realistic measure of the quality of the LS ZWD 

solution. This error information can then be used to weight the ZWD observations in 

the NWP assimilation process. The hypothesis test can also be performed between 

the GNSS ZWD estimates and that of WVR or VLBI.  

 

An alternative to a two-sided hypothesis test is through the use of a ( s100 α− )% 

confidence interval (CI) for the GNSS ZWD estimates. If the test value, RSZWD  for 

example, falls within the CI, then 0H is not rejected. A ( s100 α− )% CI forms the 

basis of a quality control chart (Montgomery, 2001). A control chart, given by Figure 

5.1, consists of a centre line that represents the average value of the estimate, and 

two horizontal lines, called the lower control limit (LCL) and upper control limit 

(UCL), above and below the centre line. The control limits are chosen such that the 

majority of the sample points will fall between them. 

 

 

 

 

 

 

 

 

Figure 5.1 A typical control chart (source: Montgomery, 2001) 
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The mean and control limits, in reference to GNSS ZWD estimates, are given as: 

 

 UCL = 
GNSSs ZWD

2
GNSS stZWD α+  (5.10) 

Centre Line = GNSSZWD  (5.11) 

LCL = 
GNSSs ZWD

2
GNSS stZWD α−  (5.12) 

In process control, the typical value chosen for 
2

s
t α  is three (e.g., Montgomery, 

2001). The LCL and UCL are then referred to as the “three-sigma” control limits 

(Montgomery, 2001). Any points outside of these limits are considered as outliers 

and an investigation into the cause can be taken. Too many outliers may indicate the 

existence of a bias and corrective action such as re-sampling of the data points may 

be necessary (Montgomery, 2001). Therefore, if a RS ZWD point falls outside of a 

GNSS LS ZWD control limits, it may be necessary to obtain a more reliable mean 

estimate (with control limits) by increasing the window size. A set of inner limits at 

two-sigma, called the warning limits, is often constructed in conjunction to the 

control limits at three-sigma (Montgomery, 2001).  

 

The use of the t-distribution in Eqs. (5.10) and (5.12) is an alternative to the Fisher 

distribution (commonly known as the F-distribution) when constructing the control 

limits (or the confidence interval). A confidence interval with the F-distribution is 

constructed in the “collective” sense in that the remaining LS parameter coefficients, 

i.e. the coordinate partials, the ambiguities, etc., are taken into consideration. 

However, the t-distribution is preferred over the F-distribution by practitioners when 

constructing the CI for individual parameter estimates as the precision of the interval 

is better (Johnson and Wichern, 2007). Therefore, the t-distribution will be used in 

this study when constructing the control limits for the ZWD or PWV estimates. 

 

 

5.2 TROPOSPHERIC PARAMETER ERROR ESTIMATES 

The impact of GNSS-estimated ZWD on weather forecasting is well documented 

(e.g., Kuo et al., 1996; Vedel and Huang, 2003; Gutman et al., 2004; Vedel and 
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Huang, 2004; Macpherson et al., 2007). These studies reported small, but generally 

positive improvements in both the humidity and precipitation forecasts when GNSS 

ZWD estimates are assimilated into NWP models. However, a proper statistical 

description of the assimilated data is essential in improving NWP modelling (Vedel 

and Huang, 2004; Guo et al., 2005). The estimation of the observation error 

covariance matrices is a very challenging prospect in data assimilation (Buehner et 

al., 2005).  The true impact of GNSS ZWD on NWP cannot be realised unless the 

error covariance matrix is correctly defined (Kuo et al., 1996). Even if the quality of 

the assimilated data is poor, improvement in the NWP analysis can be expected as 

long as the error information is given correctly (Huang and Vedel, 2003).  

 

A crude way to define the error structure of the to-be-assimilated GNSS ZWD 

estimates is to determine the statistical offsets (i.e. RMSE) between measurements of 

the GNSS-estimated ZWD and that of the NWP model analysis prior to the 

assimilation (Huang and Vedel, 2003). The resulting offsets provide the upper limits 

for error analysis. Koizumi and Sato (2004) similarly calculated the RMSE of the 

differences between the observed GNSS ZWD and the average ZWD estimates 

generated from the surface temperature and pressure profiles. The error estimates 

were taken as approximately half of the RMSE value. GNSS meteorology studies in 

recent times have assimilated slant wet delays (SWD) or slant ZWD into NWP 

models rather than the zenith measurements (e.g., Ha et al., 2003; Eresmaa and 

Jarvinen, 2006; Eresmaa et al., 2007; Järvinen et al., 2007; Liu et al., 2007). The 

GNSS SWD estimates are generated by mapping the ZWD, which is firstly estimated 

through the standard LS process, to various angles. The corresponding  LS ZWD 

error estimates can also be used to provide a precision estimates for the slant delays 

(e.g., Ha et al., 2003). Therefore, proper modelling of the zenith measurement errors 

structures are still important regardless. The error estimates of the GNSS ZWD data 

can also be derived from comparisons with measurements from other atmospheric 

sensors (Huang and Vedel, 2003) or from theoretical arguments (e.g., error estimates 

of the LS solutions).  

 

The GNSS tropospheric solutions from several studies (e.g., Basili et al., 2003; 

Wang et al., 2007), including that of the IGS , are derived through the use of large 

networks. Error estimates resulting from the LS adjustment of large networks are 
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often very small and not reflective of the quality of the tropospheric solution. Section 

5.2.1 will demonstrate such a scenario, and Sections 5.2.2 and 5.2.3 will investigate 

the cause of these small error estimates. 

 

5.2.1 Assessing the Error Estimates of the GNSS ZWD Solutions 

Figure 5.2 shows a plot of PWV in the atmosphere over the Townsville (TOW2) 

region in Australia. RS estimates (shown as triangles) from a nearby RS launch site 

(30 km from the GNSS station) are plotted along these GNSS PWV estimates. The 

RS PWV estimates were provided instead of ZWD for this campaign. The hourly 

GNSS PWV solutions (estimated at every major hour) for Townsville are generated 

as a part of a 24-h window solution for a network of stations. The processing strategy 

of the network is outlined in Chapter 6.  

 

The relationship between the GNSS and RS PWV estimates is displayed in Figure 

5.3. A regression correlation regR  value of 9420.08873.0 =  indicates a strong 

linear association. The RMSE of the PWV differences is 1.95mm. 

 

 

 

Figure 5.2 Comparison between GNSS (line) and RS (triangles) PWV estimates at 
Townsville (TOW2) 
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Figure 5.3 Regression plot between the GNSS and RS PWV estimates at TOW2 
 

However, there is only one RS measurement available for comparison per day and as 

such, the number of GNSS PWV estimates that can be validated is limited. 

Unfortunately, there are no WVR data available at TOW2.  

 

In the absence of independent RS data to assess these remaining GNSS PWV 

estimates, the only source of error information comes from the parameter error 

estimates generated via the LS adjustment process. Figure 5.4 and 5.5 indicates that 

according to the three-sigma control limits (see Eqs. (5.10) - (5.12)) only six out of 

the 22 GNSS PWV are in statistical agreement with the RS PWV). Hence, the 

majority of PWV solutions are biased. This also shows that the error estimates 

derived from the LS adjustment process are not a reliable a source of error 

information, which is essential in the NWP assimilation process.  

 

The inadequacy of the error estimates from the LS adjustment process (see Eq. 

(3.31)) for assessing the quality of the GNSS PWV estimates may be attributed to the 

misspecification of the underlying stochastic model, and that a properly defined 

stochastic model should be able to provide more dynamic and realistic errors for the 

PWV estimates.  
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Figure 5.4 Plot of GNSS PWV with error bars at three-sigma against RS PWV 
 

 

Figure 5.5  Plot indicating that only six out of 22 (below the 3-sigma error line) GNSS 
PWV estimates are in agreement with the RS PWV estimates 

 

 

Larger error estimates however, imply lesser precision and therefore are not 

desirable. Greater redundancy is thus, often introduced to mitigate these errors so 

that the corresponding parameter estimates are applicable in practice (Seeber, 2003). 

For the coordinate correction and ambiguity parameters, this approach is justified 

since these parameters are theoretically time-invariant (in static GNSS applications). 

In an error-free environment, the station coordinate corrections will always be zero 

25

30

35

40

45

50

3
1
-M

a
r

1
-A

p
r

2
-A

p
r

3
-A

p
r

4
-A

p
r

5
-A

p
r

6
-A

p
r

7
-A

p
r

8
-A

p
r

9
-A

p
r

1
0
-A

p
r

1
1
-A

p
r

1
2
-A

p
r

1
3
-A

p
r

1
4
-A

p
r

1
5
-A

p
r

1
6
-A

p
r

1
7
-A

p
r

1
8
-A

p
r

1
9
-A

p
r

2
0
-A

p
r

2
1
-A

p
r

DOY 2003

P
W

V
 (

m
m

)

GPS Radiosonde

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

3
1
-M

a
r

1
-A

p
r

2
-A

p
r

3
-A

p
r

4
-A

p
r

5
-A

p
r

6
-A

p
r

7
-A

p
r

8
-A

p
r

9
-A

p
r

1
0
-A

p
r

1
1
-A

p
r

1
2
-A

p
r

1
3
-A

p
r

1
4
-A

p
r

1
5
-A

p
r

1
6
-A

p
r

1
7
-A

p
r

1
8
-A

p
r

1
9
-A

p
r

2
0
-A

p
r

2
1
-A

p
r

DOY 2003

P
W

V
 E

rr
o

r 
(m

m
)

GPS PWV Errors (3-sigma) GPS PW - RS PW



 97

(if the station is known) and the ambiguities are fixed integer values regardless of 

time. Each time a sample is taken, these values would not change. Therefore by 

increasing sample redundancy, the LS estimates of the corrections and ambiguity 

parameters should converge to the theoretical or “true” values.  

 

On the other hand, the tropospheric delays vary over time, even for static GNSS 

positioning. If the tropospheric delay is resolved hourly, then the correct modelling 

of the corresponding error estimates should in essence capture the variability around 

the mean tropospheric delay during that period. However, when more observations 

are added to a session, information on the tropospheric parameters are generally not 

updated, but rather adjusted in accordance to better coordinate solutions. Though the 

accuracy of the tropospheric estimates may improve to an extent due to better 

coordinates, the tropospheric error estimates may be adversely affected if the 

redundancy level is too high. The theoretical bases of the above argument are 

discussed in the following sections. 

 

5.2.2 Impact on the Error Estimates from the LS Adjustment Process by 

Varying Processing Window Sizes 

Suppose there are two hours of data, each with 1n  and 2n  number of observations 

respectively, to be processed for a baseline between stations R1 and R2. Without loss 

of generality, the ambiguity terms are assumed to have been resolved. Furthermore, 

other error sources such as clock corrections and ionospheric delays are also assumed 

to have been accounted for either through differencing or external models (see 

Chapter 3). The coordinates of R1 are assumed to be known and fixed. If the ZTD 

parameter is to be estimated in each hour, then the corresponding design matrices 

( )iA ( ,1i = )2  and WAAN
~ T= (Eq. (3.21)) are as follows: 
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        [ ]1
2R

1
1R mmzyx ∆∆∆∆∆=  (5.13) 

 

 

 

 (5.14) 

 

 

 

For the second hour: 

 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )



























∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

=

2R

2
n

1R

2
n

2R

2
n

2R

2
n

2R

2
n

2R

2
2

1R

2
2

2R

2
2

2R

2
2

2R

2
2

2R

2
1

1R

2
1

2R

2
1

2R

2
1

2R

2
1

2

T

f

T

f

z

f

y

f

x

f

T

f

T

f

z

f

y

f

x

f

T

f

T

f

z

f

y

f

x

f

A

11111

MMMMM

 

               [ ]2
2R

2
1R mmzyx ∆∆∆∆∆=  (5.15)  

 

 

   (5.16) 

 

 

 

Columns one, two and three of the design matrices ( )1A  and ( )2A  in Eqs. (5.13) and 

(5.15) are the partial derivatives of station R2 with columns four and five being the 

tropospheric parameters for stations R1 and R2, respectively. The forms of the 

tropospheric parameters, 1Rm∆  and 2Rm∆ , are as described by Eq. (3.16). ( )1W  and 

( )2W  are the weight matrices generated through either standard models such as the 

SSM or the EADM described in Section 4.1, or a more sophisticated model such as 

MINQUE, given in Section 4.2. The WAA T  matrix for each hour are given as ( )1N
~

 

and ( )2N
~

, respectively. The diagonal entries of the N
~

 matrices are given by SSQ 

(sum of squares) of each individual columns, whilst the off-diagonal entries of the N
~
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columns i and j (see Section 3.2.1). If the two hours of data are processed together, 

then the corresponding combined design matrix A and N
~

 matrix are typically of the 

forms: 

 

 

 

 

 

                 (5.17) 
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where            

 

The key point to notice from Eq. (5.18) is that the SSQs of the tropospheric 
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variables themselves, but also for the tropospheric error estimates since from Eq. 

(3.27): 

 

 ( )N
~

invˆ 2

X̂
σ=∑  (5.19) 

 

where 2σ̂  is the model error defined by Eq. (3.28). If a 24-h window session was 

used, and the tropospheric parameters are estimated hourly, the accumulation of the 

normal matrix, i.e. ( )∑
=

=
24

1i

i
24 N

~
N
~

, will ensure a substantial increase in the SSQs and 

SCPs corresponding to the coordinate partials. The tropospheric parameter SSQs are 

again unaffected. When the inverse 24N
~

 is taken, the ensuing tropospheric error 

estimates will be even smaller. However, an increase in the accuracy of the 

tropospheric parameters is undeniable. Thus, the circumstance here requires a 

compromise between having good tropospheric estimates (through improving 

coordinate partial estimates) and realistic error estimates.  

 

For the cases where the coordinates of both stations are fixed, the N
~

 matrix in Eq. 

(5.18) reduces to: 
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The covariance matrix of the corresponding parameter estimates *X̂  is: 

 

 ( )*2

N
~

X̂
N
~

invˆ ** σ=Σ  (5.21) 

 

In such scenarios, the estimation of the tropospheric parameter of *N
~

 can be seen as 

uncorrelated. In other words, independent analyses of Eqs. (5.14) and (5.16) will 

yield solutions identical to those of Eq. (5.20). The error estimates of *X̂  (diagonal 

entries of *X̂
Σ  in Eq. (5.21)), which are dependent on the overall model error 2

N
~ *σ̂ , 
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are however different to those derived from ( )1N
~

 and ( )2N
~

. Suppose 2
1σ̂  and 2

2σ̂  are 

the model errors, given in Eq. (5.19), of ( )1N
~

 and ( )2N
~

. If 2
2

2
1 ˆˆ σ≈σ  then the resulting 

tropospheric parameter error estimates will be similar to those derived from Eq. 

(5.21). However, if the model errors are vastly different, i.e. 2
2

2
1 ˆˆ σ>>σ , then the error 

estimates in Eq. (5.21) for one hour will be underestimated whilst errors will be 

overestimated for the other hour as compared to those of ( )1N
~

and ( )1N
~

. Therefore, it 

would make sense to perform independent analysis of the normal matrices to obtain 

more realistic error estimates. 

 

5.2.3 Impact on the Error Estimates from the LS Adjustment Process: 

Baseline versus Network 
Without loss of generality, suppose a 1-h session of data were processed for a 

network of three stations, namely R1, R2 and R3. For argument’s sake, suppose 

station R1 was chosen as the station common to both independent baselines of the 

network. Thus, the designated baselines are from R1 to R2, i.e., (1-2), and from R1 

to R3, i.e. (1-3). Furthermore, the coordinates of station R1 are deemed to be known 

(i.e., fixed). With the same assumptions as stated in Section 5.2.2, the corresponding 

combined design matrix for the baselines is: 
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By representing the columns of the design matrix in Eq. (5.22) as: 
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Eq. (5.24) shows that the SSQ of the coordinate partials (i.e. ( ) ( )3121

1R

SSQ −+−

∆
) and 

tropospheric parameter (i.e. ( ) ( )3121
T1

SSQ −+− ) estimates of station R1 are updated and 

benefits from the addition of data from baseline (1-3). The LS estimates for the 

remaining two stations will adjust accordingly to the estimates of station R1.  

Improvements in the estimates of station R1 will impact the estimates of stations R2 

and R3 similarly. It is also noticeable from Eq. (5.24) that the SSQ of the 

tropospheric parameters for stations R2 and R3 are unaffected by the merging of the 

baseline data sets. Therefore, the corresponding tropospheric error estimates are 

likely to be underestimated. Network constraints for the coordinates can be 

implemented to stabilise the network solutions. Inclusion of these constraints can 

improve the geodetic solution and hence, reduce the model error 2σ̂ . The 

tropospheric estimates will improve as a by-product of the improved coordinate 

solutions. The corresponding tropospheric error estimates will reflect this 

improvement and become smaller. However, the fact remains that the tropospheric 

estimates are only adjusting to better resolution of the coordinate solutions. The 

tropospheric SSQ terms of stations R2 and R3 still remain unchanged. Relative 

tropospheric constraints between subsequent tropospheric parameters of the same 

station can also be used, though it is not necessary for tropospheric estimation 

intervals longer than 1-h (e.g., Hugentobler et al., 2001). 
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The impact on the error estimates may not be as great for a small network as 

demonstrated here. However, for a large network, the formal errors will become even 

smaller. The stations that will benefit from a large network are those that appear 

multiple times amongst the designated baselines. However, it is likely that one or 

more of the stations will appear in only one of the baselines. Although the LS 

geodetic and tropospheric solutions of such stations will adjust and profit from the 

improvement in the estimates of other stations, the error estimates will nevertheless 

be grossly affected by the increased redundancy level. Given that precise coordinates 

are available from external sources for most GNSS stations, a large network may not 

be necessary in GNSS processing. Chapter 6 will explore whether or not a simple 

baseline with known station coordinates will suffice in providing good tropospheric 

parameter and realistic error estimates.  

 

5.3 CHAPTER SUMMARY 

GNSS processing is often implemented over a large network with a 24-h processing 

window to obtain highly precise tropospheric estimates (e.g., Wang et al., 2007). 

However, the magnitudes of the resulting error estimates of GNSS PWV/ZWD are 

often very small, and thus are not appropriate for assimilation in NWP models. From 

Eqs. (3.27) and (3.28), the tropospheric error estimates are dependent on (1) the 

model error 2σ̂ , and (2) the stochastic model. Issues regarding the specified 

stochastic model were addressed earlier in Chapter 4. The model error in turn is 

dependent on the number of observations. The dependence of the LS error estimates 

on the observation number is a fact that is often overlooked. GNSS ZTD estimates 

are traditionally estimated with a rigid 24-h window data in a large network of 

stations (e.g., Wang et al., 2007). In a 24-hr window, the number of observations can 

exceed the thousands for a network. Consequently, it is expected that the 

tropospheric parameter error estimates are statistically small. It is also not 

uncommon that larger windows (72-h) are considered (e.g., Glowacki et al., 2006).  

 

Given that the coordinates of the majority of the GNSS stations worldwide are 

accurately known, it is feasible to acquire sensible ZTD results with a smaller 

network of highly constrained stations, or even just a single baseline. The 

combination of downgrading window size and network thus may have a positive 
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impact on the error estimates without severely impacting the quality of the ZTD 

estimates in a negative manner. The impact of a smaller window across different 

stochastic models on the GNSS PWV/ZWD estimates, and the corresponding error 

estimates, are investigated and discussed in Chapter 6. 
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CHAPTER 6 

 

GNSS ZWD ESTIMATION - RESULTS AND ANALYSES 

 

 

6.0 INTRODUCTION 

The issues put forward in Chapters 4 and 5 are tested in this chapter. They are: 

 

(1) To investigate the estimation of GNSS tropospheric delay and its error 

estimates using a baseline and a reduced processing window size; 

(2) To investigate the impact of stochastic modelling on the GNSS 

tropospheric estimation over long processing windows and long baselines. 

 

Section 6.1 provides the analysis using an Australian-wide GNSS network over a 3-

week campaign carried out in 2004. The LS solutions from this network analysis will 

provide some insight into the appropriateness of the corresponding tropospheric error 

estimates as a dependable source of error information, in periods where there are no 

external data readily available for validation purposes. Section 6.2 investigates the 

impact of reducing the size of the session window, as discussed in Section 5.2.2, on 

the LS estimation of the ZWD and its error estimates via the use of simulation data. 

In addition, the MINQUE method, given in Chapter 4, will be implemented to 

analyse its impact on GNSS height and tropospheric solutions. Results from 

MINQUE and its variations, will be compared to the more conventional models such 

as EWM and EADM.  

 

Next, the assessment of these stochastic methods is performed based on real GNSS 

data are summarised in Section 6.3. These investigations were carried out on 

Australian GNSS stations. RS data are chiefly used by Australian meteorologists for 

atmospheric profiling. Thus, the number of comparisons is limited in the third study. 

To further emphasise the results in Section 6.3, a follow-up study was conducted 

using a baseline campaign between two European stations where WVR data were 
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available, and multiple comparisons can be made daily. The results of this study are 

presented in Section 6.4. 

 

Assessment of the error estimates of the GNSS LS tropospheric solutions from each 

of the aforementioned stochastic models was also performed. The error estimates of 

the GNSS solutions were gathered and used to construct the confidence (or error) 

intervals. These intervals are used to determine if the error estimates were adequate 

as a dependable source of error information to assess the invalidated tropospheric 

estimates. Behrend et al. (2002) briefly commented on the statistical aspects of error 

analysis between independent atmospheric sensors (VLBI, GNSS, WVR and NWP 

models) but no values were actually presented. The error analysis presented here will 

hopefully provide some insights into the extent in which the error estimates can be 

considered useful.  

 

 

6.1  ANALYSIS OF THE AUSTRALIAN GNSS STATIONS 

Australia boasts many different climatic regions, including the tropical north of 

Australia, the Mediterranean of the south-west, the humid and cool subtropical of the 

east, and the arid centre of Australia (BoM, 2008a). Atmospheric profiling in 

Australia is heavily dependent on RS soundings to provide accurate upper air 

temperature and humidity measurements (BoM, 2008b). According to the Integrated 

Global Radiosonde Archive (IGRA), there are currently around 45 established RS 

sites in Australia (NOAA, 2008), which is fairly low in comparison with the size of 

the country. The aims of this section are: 

 

• To demonstrate the potential of GNSS as a reliable atmospheric sensor to 

complement RS; 

• To determine the appropriateness of the error estimates of the LS PWV 

solutions as a dependent source of error information at times where there 

are no RS data to validated the GNSS PWV solutions. 

 

Data from a three-week period were selected for the analyses of the Australian 

campaigns. The chosen period dates from the 31st March to 21st April 2003, 
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corresponding to the autumn season. This period has high diurnal variation and it 

allows GNSS to demonstrate its capability under varying atmospheric conditions. 

Geoscience Australia (http://www.ga.gov.au), IGS and Land Victoria, provided the 

GNSS data sets for the campaign. The Australian Fiducial Network (AFN) and Land 

Victoria are the sources of all GNSS data. The AFN consists of eight geodetic quality 

GNSS receivers distributed over the whole of Australia. The Darwin, Melbourne, 

Townsville, Alice Spring and Karratha station are among the tested locations. 

Moreover, additional data from the GNSS stations around the State of Victoria were 

incorporated in the analysis process to strengthen the network analysis, as well as 

providing a glimpse into the potential of the Victorian network as a major source of 

GPSMet (GPS Meteorology) data given its density (see Figure 6.2). The Australian 

Bureau of Meteorology (BoM) also supplied the corresponding PWV estimates 

retrieved via RS (at 0:00 and/or 12:00 UTC) for validation purposes, together with 

other relevant surface meteorological data such as temperature and pressure data. 

These atmospheric data allow the ZHD to be extracted from the LS ZTD via Eq. 

(2.30), and what remains is assumed to be the ZWD, which will then be converted to 

PWV (see Eqs. (2.31) and (2.32)), thus enabling a direct comparison to the RS PWV 

data.  

 

All data were processed with the Bernese GNSS software (version 4.2) package 

(Hugentobler et al., 2001). Data included in the processing also comprises the IGS 

products concerning the monitoring stations, satellite ephemerides, Earth Orientation 

Parameters (EOPs), coordinates and velocity of ground stations, antenna phase centre 

offsets and variations. During processing, the station coordinates, satellite and 

receiver clock offsets and the tropospheric zenith delay were estimated. The 

processing parameters include a cut-off elevation angle of 150, the Niell (1996) MFs, 

and the Saastamoinen (1972) tropospheric model, which was used to provide a-priori 

ZTD estimates. The ionosphere-free linear combination (e.g., Leick, 2004) was 

implemented to mitigate the ionospheric residual errors. Data from 34 GNSS stations 

were analysed (See Figures 6.1 and 6.2).  
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Figure 6.1 IGS Stations around Australia (http://itrf.ensg.ign.fr/) 
 

 

 

Figure 6.2 GNSS stations in the state of Victoria (http://www.land.vic.gov.au/) 
 

These stations were divided into three separate campaigns depending on to their 

locations, which will be referred to as: (1) the Southern Campaign (2) the North-

eastern Campaign, and (3) the Western Campaign. The North-eastern and the 

Western campaigns each consist of seven stations. The Southern campaign involved 

the remaining 23 stations, where the majority of the selected sites are from the state 

of Victoria, as shown in Figure 6.2. The division of the stations is for reducing the 

computational workload whilst ensuring the accuracy and precision of the parameter 

solutions are not negatively impacted (e.g., Haase et al., 2003). The processing 

strategy is similarly to that which is recommended by Hugentobler et al. (2001).  
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The raw GNSS code pseudorange and carrier phase data (in RINEX format) were 

firstly converted to Bernese (Version 4.2) format prior to any post-processing. After 

the data conversion, the clock errors were then estimated with the code observables 

by the built-in CODSPP program. The estimated (approximate) clock errors were 

later accounted for in the carrier phase observables. The CODSPP program provided 

a-posteriori positional error estimates to check if the quality of the measurements 

warrants further processing. Single-difference (SD) code and phase observations 

were then generated with the SNGDIF program and stored as files. These SD 

observations, and not the raw data, were used to generate DD observations (Eq. 

(3.6)) in the parameter estimation process. If the campaign involved m receivers, the 

program SNGDIF generates m-1 independent baselines from which the SD 

observations (Eq. (3.4)) were determined. The SD observations then underwent a 

cycle-slip detection/repair process in MAUPRP and corrected for large 

discontinuities in the receiver clock on a SD level. The triple-differencing technique 

(e.g., Goad et al., 1996; Leick, 2004; Chen et al., 2005) was also employed for the 

detection of cycle-slips that were more subtle. Once the SD data is “cleaned”, the 

post-processing of the DD observations began by implementing the GPSEST 

program. The GPSEST program utilised the LS principle in the parameter estimation 

process (see Section 3.2). The parameter estimation procedure involved three stages. 

In the initial stage, the ionospheric-free observations and the Saastamoinen (1972) 

model, given by Eq. (2.37), was used to account for the tropospheric delays in the 

initial stage so that the float ambiguities can be estimated. The ambiguities, which 

are dependent on the baseline length and observation window, for all baselines are 

then resolved (if possible) to their integer values separately in the succeeding 

processing stage with the aid of the QIF (Quasi-Ionosphere-Free) ambiguity 

resolution method. Details of the QIF, and other ambiguity resolution techniques 

(e.g., LAMDA, SIGMA, ROUND, etc.) are provided in Hugentobler et al. (2001). 

The integer ambiguities were then incorporated into the DD observations, from 

which the absolute tropospheric delay were estimated and mapped to the zenith 

direction (i.e. ZTD) with the NMF, given by Eq. (3.64), in the final stage. The final 

positional coordinates were also estimated in the LS adjustment process, given in Eq. 

(3.25). The processing procedure is summarised in Figure 6.3.  
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Figure 6.3  Data processing with Bernese GNSS software 

 

Once estimated, the ZTD is then converted to PWV estimates using Eqs. (2.30) and 

(2.31), which can then be compared to the RS PWV estimates. Figures 6.4 to 6.9 

illustrate the good agreement between the GNSS PWV (line) and RS PWV 

(triangles) solutions for some of the selected stations in each campaign. 

 

 

 

Figure 6.4 PWV plots at MAC1 for the Southern Campaign 
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Figure 6.5 PWV plots at MOBS for the Southern Campaign 
 

 

 

Figure 6.6 PWV plots at DARW for the North-eastern Campaign 
 

 

 

Figure 6.7 PWV plots at ALIC for the North-eastern Campaign 
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Figure 6.8 PWV plots at YAR2 for the Western Campaign 
 

 

 

Figure 6.9 PWV plots at PERT for the Western Campaign 
 

 

Using the RS PWV as the validation data, the quality of the GNSS-estimated PWV is 

defined by the RMSE expression given in Eq. (5.1). The number of RS data available 

each day for most stations is two. However, Townsville (TOW2) and Alice Springs 

(ALIC), for instance, have only one daily RS observation for comparison. The 

RMSE of the differences between the GNSS and RS PWV estimates for all stations 

are given in Tables 6.1 to 6.3. The distances between each of the GNSS stations and 

the nearest RS launch site are also presented in these tables. Note that the RS may 

rise and drift further away from the GNSS stations before any measurements are 

taken. 
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Table 6.1 RMSE of the GNSS-RS PWV differences for the Southern Campaign 

Station 
PWV RMSE 

(mm) 

Approximate distance between the 

GNSS and radiosonde sites (km) 

Number of 

RS per day 

BALL 2.38 87 2 

BENA 3.59 162 2 

BUR1 3.29 237 2 

CANN 3.41 306 1 

CEDU 4.62 293 2 

CLAY 2.14 37 2 

COLA 2.14 132 2 

EPSO 2.37 115 2 

HAMI 1.74 109 1 

HOB2 1.35 6 2 

HORS 3.01 168 1 

MAC1 1.28 1 2 

MELB 1.51 18 2 

MOBS 1.46 21 2 

MTBU 2.06 154 2 

SHEP 3.38 153 2 

TID1 1.65 140 1 

TID2 1.73 140 1 

TIDB 1.47 140 1 

YALL 2.91 142 2 

 

 

 

Table 6.2 RMSE of the GNSS-RS PWV differences for the Northern Campaign 

Station 
PWV RMSE 

(mm) 

Approximate distance between the 

GNSS and radiosonde site (km) 

Number of 

RS per day 

ALIC 2.04 14 1 

ARC3 2.50 0.1 2 

DARW 3.47 53 2 

DARR 3.37 53 2 

JAB1 5.39 218 2 

SUNM 6.24 381 2 

TOW2 1.95 30 1 
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Table 6.3 RMSE of the GNSS-RS PWV differences for the Western Campaign 

Station 
PWV RMSE 

(mm) 

Approximate distance between the 

GNSS and radiosonde site (km) 

Number of 

RS per day 

BROO 1.58 0.2 1 

COCO  3.16 0.1 2 

HIL1 1.92 25 2 

KARR 6.00 172 2 

NNOR 3.08 99 2 

PERT 2.16 16 2 

YAR2 2.10 69 1 

 

For the most part in Tables 6.1 to 6.3, the results from the analyses generally agree 

with previous studies such as Bevis et al. (1992) and Wang et al. (2007), whereby 

the RMSEs between the GNSS and RS PWV estimates are usually less than 2.5 mm, 

or at worst 3 mm. Stations attributed with relatively large (>3 mm) PWV RMSE can 

be justified by the fact that the distances between the GNSS and RS sites (with drifts) 

are large (>100km), therefore significant biases are not unexpected. KARR, SUNM 

and JAB1 are the main culprits. Although the RMSEs for COCO, DARW and DARR 

(co-located with DARW) are relatively high (considering the distance between the 

GNSS and RS sites are small), this is not unexpected. The COCO station is located 

on the Cocos Island and DARW and DARR are situated in the tropics, hence the 

atmospheric conditions are much more unstable than for the other stations. However, 

these values are consistent with the RMSEs reported by Glowacki et al. (2006). 

Table 6.4 indicates that once the distance between a GNSS station and a RS launch 

sites reaches more than 150km, the discrepancy between the estimates becomes 

significant. Thus, RS data becomes unreliable as a source of validation data. 

 

Table 6.4 RMSE of PWV estimates for various distances between the GNSS and RS 
sites 

Distance (D) between the GNSS and RS site (km) PWV RMSE (mm) 

0<=D<=50 2.00 

50<D<=100 2.98 

100<D<=150 2.10 

150<D<=200 3.97 

D>200 4.78 
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Figures 6.10 to 6.14 show that the overall PWV differences become larger as the 

distances between the sites increases. 

 

 

 

Figure 6.10  Plot of the differences between the GNSS and RS PWV whereby the 
distance between the GNSS and RS sites ranges from 0-50km 

 

 

 

Figure 6.11   Plot of the differences between the GNSS and RS PWV whereby the 
distance between the GNSS and RS sites ranges from 50-100km 

 

 

 

Figure 6.12 Plot of the differences between the GNSS and RS PWV whereby the 
distance between the GNSS and RS sites ranges from 100-150km 
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Figure 6.13 Plot of the differences between the GNSS and RS PWV whereby the 
distance between the GNSS and RS sites ranges from 150-200km 

 

 

 

Figure 6.14 Plot of the differences between the GNSS and RS PWV whereby the 
distance between the GNSS and RS sites are greater than 200km 

 

Results from the Australia-wide campaigns have demonstrated the capability of 

GNSS to produce reliable PWV estimates for stations across various climatic 

regions. However, at times where there are no RS or WVR data, the only other way 

to assess the GNSS PWV estimates is through its error estimates. Figure 6.15 is a 

plot of the error estimates of the GNSS PWV corresponding to the stations given by 

Figures 6.4 to 6.9. 

 

 

Figure 6.15 A plot of the error estimates of the GNSS PWV for various stations 
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As illustrated by Figure 6.15 and the case considered in Section 5.2.1, the error 

estimates of the GNSS PWV are very small (<0.5 mm in PWV) in comparison and, 

in general, are fairly constant over the time window, and thus, not very indicative of 

the dynamic nature of the atmospheric water vapour. Thus, Sections 6.2 to 6.4 aim to 

explore the impact of stochastic modelling and varying window session lengths on 

the error estimates of the GNSS tropospheric solutions to assess whether it is 

possible to obtain a set of error estimates that can be considered as a dependable 

source of error information for the actual GNSS tropospheric estimates.   

 

 

6.2 WET DELAYS RECOVERY WITH SIMULATED DATA 

Results from Section 6.1 shows that although GNSS can provide quality tropospheric 

solutions, however, the resulting tropospheric error (precision) estimates do not 

provide an adequate source of error information. One of the aims of this study is to 

explore whether or not the error estimates of the tropospheric estimates can be made 

more realistic to adequately reflect the quality of the GNSS tropospheric estimates 

without the aid of external measurements such as RS and WVR. Thus, the objectives 

of this section are to explore: 

 

• The impact of stochastic modelling (as discussed in Chapter 4) on the error 

estimates of the GNSS LS tropospheric solutions; 

• The effects of varying window session lengths on the error estimates of the 

GNSS LS tropospheric solutions. 

 

The significance of their impacts on the error estimates of the GNSS tropospheric 

solutions is determined by constructing error or confidence intervals at one, two and 

three standard error as outlined in Section 5.1. Furthermore, the objectives are carried 

out with the view that the actual accuracies of the tropospheric estimates and the 

coordinate height solutions are not severely compromised. The investigations were 

carried out via simulation data initially as it allows the “observation noise” 

component to be controlled, and thus, the direct impact of various stochastic models 

and varying window sizes on the ZWD estimation can be assessed. 
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The simulation data used here were generated by simulating the satellite coordinates 

for a specified session, using the software developed at Curtin University by Penna 

and Stewart (2003). The software is GNSS orbital simulator that simulates a 

satellite’s path with no perturbations. Therefore, for a particular location, the exact 

geometric range between the satellite and the receiver can be calculated, and the 

effect of different individual error sources readily assessed. The GNSS simulation 

software used can perform weighting by using the EWM, the EADM models, or any 

other arbitrary weighting schemes. Tropospheric delays, and/or any other error 

sources (e.g., multipath or random errors) determined through external functions, can 

also be accommodated.  

 

In this test, simulated ZWD (SimZWD) values were also used. These SimZWDs 

were actual wet delay values determined from a 24-h GIPSY version 2.6 software in 

precise point positioning mode, estimating them every 5 minutes together with 

horizontal gradients, whilst holding fixed ‘legacy’ JPL (Jet Propulsion Laboratory) 

'fiducial-free' orbital and Earth rotation products, and using the NMFs. SimZWD 

values were generated for the HOB2 IGS station from 1999 to 2004. A five-day 

period in 2004 from June 15th to 19th was chosen for this analysis as there was a large 

ZWD variability over these five days, ranging from 5mm to 16mm. As the 

SimZWDs were given at every 5-minute interval, the orbital simulator was also used 

to sample at the same interval length. For each observation of every epoch, the 

SimZWDs were added to the simulated LoS geometric ranges with the aid of the 

NMFs. Once all the SimZWDs have been incorporated into the simulated data, the 

LS analysis is then performed. Figure 6.16 shows a flowchart that describes the main 

procedure in the simulator. 

 

Along with the coordinate partials, the weighted one-hourly LS ZWDs estimates 

were retrieved in the analyses. These LS ZWDs were then compared to the 

“averaged” SimZWDs across six different processing windows, selected to be 1-h, 2-

h, 4-h, 6-h, 12-h and 24-h, and using the five different stochastic methods discussed 

in Chapter 4. These models are the EWM, the EADM, the MINQUE, the SMINQUE 

and the non-negative definite MINQUE (NND_MINQUE) models. 
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Figure 6.16 A flowchart describing the data simulation and analysis process 
 

The non-negative MINQUE (NND_MINQUE) model is similar to that of EWM and 

EADM in that it involves only the estimation of the variances among the ZD 

observations. The NND_MINQUE is defined by Eq. (4.26). In discussing the results, 

MINQUE and SMINQUE will be referred to collectively as (S)MINQUE. The most 

important aspect of this simulation analysis is that no errors were applied to the 

observations besides tropospheric delay, i.e. the only present “error source” is the 

variability among the SimZWDs themselves within the hour.  If the stochastic model 

is correctly chosen, one would expect the coordinate correction estimates to be 
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approximately zero and the output ZWD estimates to be similar to the (averaged) 

SimZWDs values for the processing window considered. 

 

The height component of the coordinates is most affected by atmospheric delay (e.g., 

Bock et al., 2001). As such, the height offsets resulting from the analysis were 

closely looked at. Figures 6.17 to 6.22 show the height offsets of each stochastic 

model resulting from varying the processing window size from 1-h to 24-h.  

 

 

 

Figure 6.17 Height offsets resulting from the LS analysis with a 1-h processing window 
 

 

Figure 6.18 Height offsets resulting from the LS analysis with a 2-h processing window 
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Figure 6.19 Height offsets resulting from the LS analysis with a 4-h processing window 
 

 

Figure 6.20 Height offsets resulting from the LS analysis with a 6-h processing window 
 

 

Figure 6.21 Height offsets resulting from the LS analysis with a 12-h processing window 
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Figure 6.22 Height offsets resulting from the LS analysis with a 24-h processing window 
 

It can be observed from Figure 6.17 that the residual wet delays, coupled with the 

stochastic model that was used, can incur a height offset of up to 30 mm in some 

instances. As the size of the processing window increases, the residual effects on the 

heights will decrease due to increased observation redundancy (Kim and Langley, 

2001). 

 

Over the six different window sizes, both MINQUE and SMINQUE consistently 

produced the smallest height offsets. The RMSE of the height offsets (in mm) over 

the 5-day campaign is present in Table 6.5. The superiority of (S)MINQUE is 

especially evident for the smaller processing window sizes (1-h, 2-h, and 4-h). The 

NND_MINQUE was the worst performer over the 5-day period. The variance factor, 

given by Eq. (3.28), of the linear model produced by the NND_MINQUE model is 

unity. A variance factor of one indicates that the stochastic model is correctly chosen 

(e.g., Dodson, 1993; Wang et al., 1998). Given that this is the case, and coupled with 

the fact that NND_MINQUE produced the worst results, the underlying notion here 

signifies the importance of proper modelling of the correlation between the 

observations. The mean and standard deviation of the height offsets are presented in 

Tables 6.6 and 6.7, respectively. The corresponding plots for the table values are 

given by Figures 6.23 to 6.25. 
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Table 6.5 RMSEs of the height offsets (mm) over the 5-day campaign 
 

Window EWM EADM MINQUE SMINQUE NND_MINQUE 

1-h 5.35 3.90 1.84 1.94 8.57 

2-h 2.59 1.35 0.86 0.94 2.90 

4-h 1.17 0.66 0.23 0.25 1.03 

6-h 0.68 0.41 0.28 0.28 0.63 

12-h 0.27 0.19 0.18 0.18 0.26 

24-h 0.73 0.41 0.32 0.32 0.66 

 

Table 6.6 Mean height offsets (mm) over the 5-day campaign 
 

Window EWM EADM MINQUE SMINQUE NND_MINQUE 

1-h 0.19 -0.19 0.20 0.26 -0.77 

2-h 0.38 0.16 -0.03 -0.02 0.17 

4-h 0.24 0.11 -0.03 -0.01 0.25 

6-h 0.31 0.12 0.22 0.22 0.20 

12-h 0.37 0.13 0.29 0.28 0.32 

24-h 0.35 0.15 0.19 0.19 0.31 

 

Table 6.7 Standard deviation of the height offsets (mm) over the 5-day campaign 
 

Window EWM EADM MINQUE SMINQUE NND_MINQUE 

1-h 5.36 3.92 1.84 1.93 8.57 

2-h 3.67 1.92 1.23 1.34 4.14 

4-h 2.36 1.33 0.47 0.50 2.08 

6-h 1.69 1.04 0.67 0.67 1.56 

12-h 0.92 0.67 0.60 0.59 0.87 

24-h 0.72 0.43 0.29 0.29 0.65 

 

 

Figure 6.23 Height offset RMSEs (mm) for various stochastic models over varying 
window sizes 
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Figure 6.24 Mean height offset (mm) for various stochastic models over varying window 
sizes 

 

 

Figure 6.25 Standard deviation of the height offsets (mm) for various stochastic models 
over varying window sizes 

 

Table 6.8 compares the MINQUE’s RMSE in the height component to those of the 

other stochastic models.  The relative improvement (RI) of MINQUE over the other 

models is calculated as follows: 
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The advantage of MINQUE over the other models that ignore spatial correlation 

among the raw observations is fairly substantial.  The average height improvements 

made by MINQUE are 60%, 36%, and 61% when compared to EWM, EADM and 

NND_MINQUE, respectively. However, the difference between MINQUE and 

SMINQUE is marginal. 

 

Table 6.8 Relative improvement in the height estimates for HOB2 over the five-day 
data set as a result of using MINQUE 

 

Window Size EWM EADM MINQUE SMINQUE NND_MINQUE 

1-h 66% 53% - 5% 79% 

2-h 67% 36% - 9% 70% 

4-h 80% 65% - 8% 78% 

6-h 66% 53% - 5% 79% 

12-h 67% 36% - 9% 70% 

24-h 80% 65% - 8% 78% 

 

 

In the analysis of the ZWD estimation, the differences between the SimZWDs and 

the LS-estimated ZWDs over the five days are illustrated by Figures 6.26 to 6.31. It 

can be observed from these figures that there are minimal changes between the ZWD 

trends for the 4-h, 6-h, 12-h and the 24-h processing window. The RMSE of the 

differences, given by Eq.( 5.1), are given in Table 6.9.  

 

 

Figure 6.26 Wet delay differences between the LS (acquired with a 1-h processing 
window) and SimZWD estimates 
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Figure 6.27 Wet delay differences between the LS (acquired with a 2-h processing 
window) and SimZWD estimates 

 

 

Figure 6.28 Wet delay differences between the LS (acquired with a 4-h processing 
window) and SimZWD estimates 

 

 

Figure 6.29 Wet delay differences between the LS (acquired with a 6-h processing 
window) and SimZWD estimates 
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Figure 6.30 Wet delay differences between the LS (acquired with a 12-h processing 
window) and SimZWD estimates 

 

 

Figure 6.31 Wet delay differences between the LS (acquired with a 24-h processing 
window) and SimZWD estimates 

 
Table 6.9 RMSE of the wet delay differences (mm) at HOB2 
 

Window EWM EADM MINQUE SMINQUE NND_MINQUE 

1-h 3.88 2.80 3.07 3.02 5.24 

2-h 3.03 2.22 3.08 3.08 3.25 

4-h 2.46 2.10 2.74 2.78 2.39 

6-h 2.14 1.89 2.60 2.60 2.08 

12-h 2.14 1.97 2.45 2.46 2.10 

24-h 2.12 1.93 2.38 2.39 2.08 

 

 

Unexpectedly, better height recovery did not yield better ZWD estimates, 

contradicting many previous studies (e.g., Dodson et al., 1996; Bock and 

Doerflinger, 2001; Bock et al., 2001; Tregoning and Herring, 2006). The EADM was 
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the best stochastic model over all window sizes in the recovery of the wet delay 

estimates. The EADM recovered the ZWD with a better accuracy than EWM, 

MINQUE, SMINQUE and NND_MINQUE, by an average of 23%, 20%, 20%, and 

30%, respectively, over the smaller windows (1-h, 2-h and 4-h). When estimating the 

ZWD, GNSS observations that are closer to the zenith have more significant impact 

as compared to those at low elevations, and therefore should have greater weights. 

The EADM is reflective of this, and this could explain why it had out-performed 

(S)MINQUE. Thus, the solutions may have been driven in favour of the EADM. The 

dependence of NMFs on the elevation angle could also exaggerate the results of the 

EADM.  

 

For larger windows sizes (6-h, 12-h and 24-h), the relative improvement of the 

EADM over the EWM and the NNE_MINQUE models are consistently around 10%. 

On other hand, the advantage of the EADM over the (S)MINQUE techniques is still 

around 20%. The (S)MINQUE approach produced the least precise estimates overall. 

 

The corresponding wet delay error estimates were also analysed. To determine 

whether a set of error estimates can be considered as a dependable source of error 

information, error (confidence) intervals at 1 SEσ , 2 SEσ  and 3 SEσ , where SEσ  

represents one SE, were constructed for each of ZWD estimates (see Section 5.2). 

Two and three standard errors represent approximately, a 95% and a 99.7% error 

interval, respectively. An error estimates for a LS ZWD is deemed adequate if there 

is a statistical agreement between the LS ZWD and SimZWD estimates according to 

the error intervals. 

 

Figures 6.32 to 6.36 illustrate the number of LS ZWD that are statistically in 

agreement with the SimZWD at 1σ, 2σ and 3σ , corresponding to each of the tested 

stochastic models with a 1-h processing window. For these plots, a statistical 

agreement between a LS ZWD and the simulated ZWD estimates is achieved if their 

difference (blue circles) falls below the error intervals (black line). 

 

All these figures display similar trend, whereby comparatively larger peaks are 

observed on the 15th and the 17th of June 2004, in each of the respective plot. It can 
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also be observed that the (S)MINQUE produced smaller LS ZWD error intervals, i.e. 

more precise, than the EWM, EADM and NND_MINQUE. However, there is a 

greater portion of statistical disagreement between the SimZWD and LS ZWD, and 

thus, indicating that the majority of the LS ZWD estimates are biased. On the other 

hand, the majority of the LS ZWD and SimZWD are in statistical agreement with 

one another. Hence, the corresponding error estimates provide useful error 

information for any future NWP data assimilation process. 

 

 

Figure 6.32 Error intervals (black line) of the LS ZWD at 1σ, 2σ and 3σ for EWM and 
with a 1-h processing window.  

 

 

Figure 6.33 Error intervals (black line) of the LS ZWD at 1σ, 2σ and 3σ for EADM and 
with a 1-h processing window. 
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Figure 6.34 Error intervals (black line) of the LS ZWD at 1σ, 2σ and 3σ for MINQUE 
and with a 1-h processing window. 

 

 

Figure 6.35 Error intervals (black line) of the LS ZWD at 1σ, 2σ and 3σ for SMINQUE 
and with a 1-h processing window. 

 

 

Figure 6.36 Error intervals (black line) of the LS ZWD at 1σ, 2σ and 3σ for 
NND_MINQUE and with a 1-h processing window. 
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Tables 6.10 to 6.12 illustrate the actual percentages of LS ZWD estimates that are in 

statistical agreement with the SimZWD measurements at 1 SEσ , 2 SEσ  and 3 SEσ , 

respectively over various processing window sizes. The total number of comparisons 

in each case is 120. 

 

Table 6.10 Number (percentage) of LS ZWD solutions that are in statistical agreement 
with actual ZWD at 1 SEσ

 
 

Window EWM EADM MINQUE SMINQUE NND_MINQUE 

1-h 35 (29%) 41 (34%) 10 (8%) 8 (6%) 28 (23%) 

2-h 37 (30%) 46 (38%) 9 (7%) 8 (6%) 36 (30%) 

4-h 35 (29%) 30 (25%) 14 (11%) 14 (11%) 38 (31%) 

6-h 32 (26%) 35 (29%) 17 (14%) 17 (14%) 34 (28%) 

12-h 26 (21%) 31 (25%) 26 (21%) 26 (21%) 30 (25%) 

24-h 30 (25%) 31 (25%) 29 (24%) 29 (24%) 33 (27%) 

 

 

Table 6.11 Number (percentage) of LS ZWD solutions that are in statistical agreement 
with actual ZWD at 2 SEσ

 
 

Window EWM EADM MINQUE SMINQUE NND_MINQUE 

1-h 66 (55%) 78 (65%) 22 (18%) 22 (18%) 55 (45%) 

2-h 66 (55%) 70 (58%) 20 (16%) 24 (20%) 63 (52%) 

4-h 55 (45%) 60 (50%) 32 (26%) 32 (26%) 56 (46%) 

6-h 58 (48%) 58 (48%) 36 (30%) 36 (30%) 57 (47%) 

12-h 57 (47%) 53 (44%) 45 (37%) 45 (37%) 56 (46%) 

24-h 58 (48%) 50 (41%) 54 (45%) 53 (44%) 58 (48%) 

 
 
Table 6.12 Number (percentage) of LS ZWD solutions that are in statistical agreement 

with actual ZWD at 3 SEσ
 

 

Window EWM EADM MINQUE SMINQUE NND_MINQUE 

1-h 91 (75%) 98 (81%) 30 (25%) 37 (30%) 79 (65%) 

2-h 84 (70%) 95 (79%) 41 (34%) 36 (30%) 84 (70%) 

4-h 77 (64%) 87 (72%) 56 (46%) 56 (46%) 76 (63%) 

6-h 83 (69%) 83 (69%) 56 (46%) 55 (45%) 83 (69%) 

12-h 69 (57%) 73 (60%) 67 (55%) 67 (55%) 68 (56%) 

24-h 71 (59%) 74 (61%) 68 (56%) 68 (56%) 72 (60%) 

 

 

From Tables 6.10-6.12, the EADM is again the top performer across all window 

sizes with respect to producing realistic error estimates. For the 1-h and 2-h 

processing windows, approximately 60% and 80% of LS ZWD estimates are in 
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agreement with SimZWD at 2 SEσ  and 3 SEσ , respectively. The (S)MINQUE models 

are inferior to the other methods in this regard. The performance of (S)MINQUE did 

improve as the size of the processing window increases. The differences between the 

stochastic models are negligible for larger window sizes.  

 

In summary, the results from the simulation study indicate that although 

(S)MINQUE did resolve the station heights (with respect to RMSE, mean and 

standard deviation of the offsets) better than the EWM, EADM and NND_MINQUE, 

this superiority was not evident in the recovery of the SimZWD. In fact, EADM 

recovered the SimZWD better than the other models (EWM, MINQUE, SMINQUE 

and NND_MINQUE) by an average of 16%, 21%, 21% and 19%, respectively, 

across all window sizes, respectively. Error analysis for EWM, EAD and 

NND_MINQUE suggests that smaller processing windows will produce a set of LS 

ZWD estimates that are statistically less biased (i.e. statistically not different to the 

actual ZWD estimates). Hence, the corresponding error estimates can provide useful 

information for the eventual assimilation of the LS ZWD estimates. The error 

intervals produced by the EADM were able to successfully capture 82% of the 

SimZWD (at three standard errors) with a 1-h window, with EWM not far behind at 

76%. Overall, the EADM came out as the top performer.  

 

 

6.3 PWV ESTIMATION WITH REAL DATA AND VALIDATED WITH RS  

Results from the simulation study in Section 6.3 indicated that a reduction in the 

processing window size (session length) can potentially have a positive impact on the 

ZWD error estimates without negatively impacting the accuracy of the LS ZWD 

estimates significantly. Thus, in this section, further investigation is carried out to: 

 

• Determine whether or not the encouraging results in the simulation study 

can carry over to real practical application, and  

• Investigate the impact of a reduced network (i.e. smaller number of 

stations) on the tropospheric solutions and the corresponding error 

estimates (theoretical discussion given in Section 5.2.3). 
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Data from a baseline between the Alice Springs (ALIC) and Hobart (HOB2) were 

chosen for testing. The tropospheric solution from the baseline-campaign will be 

compared to those of the network solutions in Section 6.1. The close proximity of the 

RS launching sites from ALIC (~14 km from RS site) and HOB2 (~6 km from RS 

site) stations is the reason for choosing these stations for this investigation. The 

distance between the two stations is approximately 2447 km. The long baseline 

length between the two stations also ensures that “absolute” tropospheric delays can 

be estimated appropriately (Kouba, 2009). Tregoning (1998) also indicated that a 

baseline length of more than 2000 km is more appropriate in providing sufficient 

decorrelation of the observations between the two baseline stations to enable better 

absolute estimation of the PWV. 

 

A week of data, from March 31st to April 6th in 2004, was used for this study. The 

processing strategy is identical to that outlined in the Australian campaigns (Section 

6.1). As it was difficult to incorporate the (S)MINQUE programs into the original 

Bernese GNSS software, the DD design matrices, which contained the parameter 

coefficients, were instead outputted as text files and analysed externally to Bernese. 

The analysis was performed twice. The first involves only constraining the 

coordinates of ALIC, whereas the coordinates of both stations are constrained in the 

second analysis. The coordinates of the stations are constrained to within 0.1 mm 

from the ITRF2000 coordinate solutions. The a-priori ITRF coordinates remained 

unchanged throughout the test. 

 

6.3.1 Baseline Analysis – ALIC Constrained 

The accuracy (in comparison to the ITRF solutions) and precision of the final 

coordinates of HOB2 for the first analysis are summarised in Tables 6.13 to 6.16. 

The mean, standard deviation and RMSE of the coordinate and height offsets at 

various window sizes were presented as the three main columns for each of these 

tables. The values in these tables are determined from all solutions over the whole 

week. 
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Table 6.13 Summary of the coordinate offsets (cm) at HOB2 with the EWM 
 

EWM 

Window 
Mean Std Deviation RMSE 

X Y Z HGHT X Y Z HGHT X Y Z HGHT 

1-h -3.8 0.4 -2.7 4.3 23.0 22.4 10.1 20.6 23.3 22.4 10.4 21.0 

2-h 1.6 -1.7 0.2 -1.8 10.0 11.9 6.5 12.6 10.1 12.0 6.5 12.7 

3-h 3.4 -3.4 0.8 -4.0 7.0 5.7 3.4 7.6 7.7 6.6 3.5 8.6 

6-h 2.3 -4.7 1.1 -4.0 3.4 2.9 2.1 4.4 4.0 5.5 2.3 5.9 

12-h 3.2 -3.6 1.2 -4.2 2.1 2.4 1.9 3.5 3.7 4.3 2.2 5.3 

24-h 2.6 -3.4 1.0 -3.6 2.0 2.4 1.8 3.3 3.2 4.0 1.9 4.7 

 

Table 6.14 Summary of the coordinate offsets (cm) at HOB2 with the EADM 
 

EADM 

Window 
Mean Std Deviation RMSE 

X Y Z HGHT X Y Z HGHT X Y Z HGHT 

1-h -1.8 -0.7 -0.4 1.1 15.9 16.4 8.0 16.0 16.0 16.4 8.0 16.0 

2-h 2.6 -1.4 0.9 -2.8 6.7 6.3 4.5 8.7 7.1 6.4 4.6 9.1 

3-h 1.8 -1.7 0.6 -2.2 3.7 3.5 2.5 5.0 3.3 3.1 2.1 4.4 

6-h 1.9 -2.6 1.0 -2.9 2.7 3.1 2.3 4.1 1.9 2.3 1.4 2.9 

12-h 2.1 -1.9 1.0 -2.7 2.6 2.6 2.2 4.1 1.3 1.3 1.0 2.0 

24-h 2.0 -1.8 0.9 -2.6 2.6 2.5 2.3 4.1 0.9 0.9 0.7 1.3 

 

Table 6.15 Summary of the coordinate offsets (cm) with the MINQUE model 
 

MINQUE 

Window 
Mean Std Deviation RMSE 

X Y Z HGHT X Y Z HGHT X Y Z HGHT 

1-h -2.4 1.7 -1.6 3.2 17.6 18.2 8.9 17.2 17.7 18.3 9.0 17.4 

2-h 1.3 -0.6 0.1 -1.1 6.8 7.8 4.9 8.9 6.9 7.8 4.9 8.9 

3-h 1.3 -2.4 0.4 -2.0 4.5 4.7 2.4 5.6 4.6 5.2 2.4 6.0 

6-h 1.9 -3.2 0.9 -3.0 2.9 3.0 1.9 3.7 3.4 4.4 2.1 4.7 

12-h 2.3 -2.4 0.8 -2.9 2.7 2.7 2.2 4.2 3.5 3.6 2.3 5.0 

24-h 2.5 -2.9 0.9 -3.3 2.6 2.6 2.2 4.1 3.4 3.8 2.2 5.0 

 

Table 6.16 Summary of the coordinate offsets (cm) with the SMINQUE model 
 

SMINQUE 

Window 
Mean Std Deviation RMSE 

X Y Z HGHT X Y Z HGHT X Y Z HGHT 

1-h -2.5 2.3 -1.9 3.7 17.7 17.9 8.5 16.9 17.8 18.0 8.6 17.3 

2-h 1.5 -0.6 0.2 -1.3 8.0 8.1 5.0 9.6 8.0 8.1 5.0 9.7 

3-h 2.0 -2.9 1.0 -3.0 4.7 4.6 2.8 5.8 5.1 5.4 3.0 6.5 

6-h 1.8 -3.3 0.9 -3.0 3.1 3.0 2.3 4.0 3.5 4.4 2.4 5.0 

12-h 2.2 -2.4 0.8 -2.9 2.7 2.8 2.3 4.2 3.4 3.6 2.3 5.0 

24-h 2.5 -2.9 0.9 -3.3 2.6 2.6 2.2 4.1 3.4 3.8 2.2 5.0 
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From Tables 6.13 to 6.16, the EADM consistently produced the best results among 

the four presented stochastic models with respect the mean, standard deviation and 

RMSE of the coordinate offsets. The EWM was the worst performer, which is not 

unexpected since all raw GNSS measurements are assumed to have equal weighting 

(e.g., Wang et al., 2002; Jin et al., 2005). The MINQUE method did perform 

marginally better with the 2-h processing window than the EADM, with mixed 

results when a 3-h window is applied. The differences between the MINQUE and 

SMINQUE are generally in the sub-millimetre range, a result consistent with 

Satirapod et al., 2002. However, differences of up to a few millimeters are also 

observed. The magnitude of the offsets may be attributed to the large baseline length 

(e.g., King and Bock, 2002; Schön and Kutterer, 2006). Additionally, HOB2 is 

located at low latitude (see Figure 6.1) and thus, the geometry of the satellites is 

biased towards the north. 

 

The corresponding GNSS PWV estimates, which were estimated along with the 

coordinate partials in LS, were validated against the RS data. The RMSE of the 

differences for ALIC and HOB2 are summarised in the Tables 6.17 and 6.18. The 

corresponding plots for the RMSEs are given by Figures 6.37 and 6.38. GNSS 

estimates of less than 3 mm are achieved with a 3-h or a larger window with all four 

stochastic models. With EADM and MINQUE, a 2-h window seems to suffice. 

Differences between the models are minimal for large (12-h and 24-h) processing 

windows, a result consistent with previous studies by Baker et al. (2001) and Gutman 

et al. (2004).  

 

 

Table 6.17 RMSE (mm) of GNSS-RS PWV at Alice Springs 
 

Window EWM EADM MINQUE SMINQUE 

1-h 5.7 3.2 5.8 5.6 

2-h 4.9 2.2 3.0 4.1 

3-h 2.3 1.1 1.6 2.2 

6-h 2.1 2.3 1.2 1.2 

12-h 2.9 3.0 3.0 2.9 

24-h 2.5 2.8 2.6 2.6 

 

 

 



 136

Table 6.18 RMSE (mm) of GNSS-RS PWV at Hobart 
 

Window EWM EADM MINQUE SMINQUE 

1-h 3.3 2.3 3.7 2.2 

2-h 2.0 1.6 2.0 2.0 

3-h 2.0 2.2 2.4 2.2 

6-h 1.8 2.5 2.5 2.8 

12-h 2.1 2.5 2.3 2.3 

24-h 1.4 1.8 1.6 1.6 

 

 

 

Figure 6.37 A plot of the GNSS-RS RMSE at Alice Springs 
 

 

 

Figure 6.38 A plot of the GNSS-RS RMSE at Hobart 
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The error estimates of the GNSS LS PWV are assessed to determine whether or not 

they can be considered as dependable error information through the use of 

confidence intervals at 2 SEσ  and 3 SEσ  (as discussed in Chapter 5). There are seven 

RS data (one per day) available during this period at ALIC, whilst there are fourteen 

RS data (two per day) available at HOB2. Figures 6.39 and 6.40 show the 

percentages of GNSS LS PWV that are in agreement with the RS PWV estimate  at 

two and three standard errors ( SEσ ), respectively, over various window sizes at 

ALIC, whist Figures 6.41 and 6.42 are for HOB2. 

 

 

Figure 6.39 Percentages of GNSS LS PWV estimates that are in agreement with the RS 

PWV at 2 SEσ  for each of the tested stochastic model at ALIC 

 

 

Figure 6.40 Percentages of GNSS LS PWV estimates that are in agreement with the RS 

PWV at 3 SEσ  for each of the tested stochastic model at ALIC 
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Figure 6.41 Percentages of GNSS LS PWV estimates that are in agreement with the RS 

PWV at 2 SEσ  for each of the tested stochastic model at HOB2 

 

 

Figure 6.42 Percentages of GNSS LS PWV estimates that are in agreement with the RS 

PWV at 3 SEσ  for each of the tested stochastic model at HOB2 
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worth considering as it produced the best set of results at ALIC. The error estimates 

of the LS PWV realised with the 1-h processing window did particularly well at 

HOB2 and for the EADM model. Across the 1-h and 2-h processing windows, the 

EADM yielded the best results.  

 

MINQUE and SMINQUE are iterative procedures that provide global optimal 

solutions when convergence is achieved. The difference in height between using the 
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sessions where both MINQUE and SMINQUE simultaneously converged to their 

optimal solutions. The proportion of differences that are greater than 3 mm, 5 mm, 

and 10 mm, is approximately 27%, 12% and 7% respectively. These differences are 

likely due to the simplification imposed on SMINQUE (Section 4.3). The difference 

in the overall mean and RMSE of the offsets are however, at the sub-millimetre 

level. It is further noted that achieving convergence in MINQUE does not necessarily 

imply the same will happen with SMINQUE in the same session, and vice-versa. 

Such occurrences happened 6% of the time when either one of both MINQUE and 

SMINQUE converged. When MINQUE does converge, the variance factor is always 

“one” or thereabouts depending on the tolerance level set between the solutions 

successive iteration. The variance factor values for SMINQUE conversely are 

generally between the range of 0.96 and one under the same tolerance level. 

 

6.3.2 Baseline Analysis – ALIC and HOB2 Constrained  

GNSS data from a large network are generally processed with the majority of the 

station coordinates being tightly constrained to ensure highly precise tropospheric 

solutions (e.g., Hugentobler et al., 2001; Haase et al., 2003). If ITRF (or any other 

precise reference frame) coordinates are available, a question may arise about the 

possibility of attaining similar accuracy with a smaller network or even a baseline 

whilst constraining all stations. In additional, the error estimates of the LS PW would 

likely to be more realistic as a result (see Section 5.2.3). To investigate this, both 

stations from the ALIC-HOB2 baseline are constrained (0.1 mm). The determination 

of the GNSS PWV estimates, using different stochastic models as discussed earlier, 

are summarised by Tables 6.19 and 6.20. 

 

Table 6.19 RMSEs and biases of GNSS-RS PWV at Alice Springs 

Window 
RMSE (mm) BIAS (mm) 

EWM EADM MINQUE SMINQUE EWM EADM MINQUE SMINQUE 

1-h 1.4 1.3 1.4 1.8 -0.8 -0.3 -0.9 -0.5 

2-h 1.2 1.1 1.4 1.4 -0.4 0.2 -0.3 -0.3 

3-h 1.0 1.2 1.2 1.2 -0.2 0.5 0.4 0.6 

6-h 1.1 1.2 1.2 1.2 -0.2 0.5 0.1 0.0 

12-h 1.0 1.2 0.8 1.0 -0.1 0.5 0.5 0.2 

24-h 1.0 1.3 1.0 1.0 -0.1 0.6 0.3 0.2 
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Table 6.20 RMSEs and biases of GNSS-RS PWV at Hobart 

Window 
RMSE (mm) BIAS (mm) 

EWM EAD MINQUE SMINQUE EWM EAD MINQUE SMINQUE 

1-h 2.1 2.6 2.4 2.3 -1.9 -2.4 -2.2 -2.0 

2-h 2.1 2.8 2.7 2.7 -1.9 -2.6 -2.5 -2.5 

3-h 2.1 2.7 2.5 2.5 -2.0 -2.5 -2.3 -2.3 

6-h 2.2 2.8 2.4 2.4 -2.0 -2.5 -2.2 -2.1 

12-h 2.2 2.8 2.5 2.6 -2.0 -2.5 -2.3 -2.3 

24-h 1.6 1.9 1.9 1.9 -1.5 -1.7 -1.7  -1.8 

 

The RMSEs shown in Tables 6.19 and 6.20 demonstrate that good GNSS PWV 

estimates can be achieved even with a baseline. From the results of the network 

given in Section 6.1, the PWV RMSE of ALIC in the North-eastern Campaign was 

1.43 mm in the same one-week period. Correspondingly, the PWV RMSE of HOB2 

in the Southern Campaign was 1.10 mm. Both stations were constrained to 0.0001 m 

in their respective network. The baseline tropospheric solutions for ALIC in this 

scenario are better than the network solution. Although the same cannot be said for 

HOB2, the baseline solutions are still reliable (<2.8 mm). The difference is decreased 

for the 24-h window with a maximum difference of 0.8 mm.  

 

Glowacki et al. (2006) performed an independent study of a single campaign (with 

discrete 24-h processing window) involving 17 GNSS stations over the Australian 

region for the entire year 2000. The reported RMSEs of the GNSS-RS PWV 

differences for ALIC and HOB2 were 2.7 mm and 2.5 mm, respectively. Although 

the studied period of this baseline campaign is only one week, the results 

demonstrate the potential of the baseline approach to produce quality PWV solutions.  

In the corresponding error analysis of the PWV error estimates, Figures 6.43 to 6.46 

show the percentage of the LS PWV estimates that are in agreement with the 

corresponding RS PWV at 2 SEσ  and 3 SEσ , for ALIC and HOB2 respectively. The 

majority of the LS PWV estimates for ALIC were in agreement with the RS PWV at 

3 SEσ , as shown in Figure 6.43. The results however, were not as good for HOB2 

with around 20% of the LS PWV estimates corresponding well with the RS PWV 

estimates. Comparatively, the network solutions at HOB2 are similar to that of the 

baseline approach. Therefore, there is no real advantage to the network approach in 

estimating the PWV/ZWD.  
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Figure 6.43 Percentages of GNSS LS PWV estimates that are in agreement with the RS 

PWV at 2 SEσ  for each of the tested stochastic model at ALIC  

 

 

Figure 6.44 Percentages of GNSS LS PWV estimates that are in agreement with the RS 

PWV at 3 SEσ  for each of the tested stochastic model at ALIC 

 

 

Figure 6.45 Percentages of GNSS LS PWV estimates that are in agreement with the RS 

PWV at 2 SEσ  for each of the tested stochastic model at HOB2 
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Figure 6.46 Percentages of GNSS LS PWV estimates that are in agreement with the RS 

PWV at 3 SEσ  for each of the tested stochastic model at HOB2 
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The results of the constrained-baseline analysis have shown that the corresponding 

PWV estimates (of all window sizes) are very much comparable to those of the 

network approach (24-h window). Additionally, the resulting LS PWV derived with 

a 1-h window session are statistically equal to the RS PWV measurement at 90% of 

the time, as compared to 0% for those at ALIC in the network analysis. The results of 

the statistical analysis at HOB2 are similar for both the baseline and network 

approach. Overall, the results show that the constrained-baseline approach is a 

dependable strategy when resolving the tropospheric parameters. 

 

 

6.4 ESTIMATION OF ZWD WITH REAL DATA AND VALIDATED WITH 

WVR DATA 
Results from the Section 6.3 are based on comparisons with limited RS profiles. 

Furthermore, no WVR were available in the tested period. To provide further insight 

into the impact of different stochastic models and the shortening of window sizes, a 

baseline campaign was set up between the European GNSS stations of Onsala 

(ONSA) and Wettzell (WTZR). A two-week interval from the 10th to 23rd of 

September in 2003 was chosen as it represents an autumn period where significant 

atmospheric water vapour variation can be observed. The baseline length between 

the two stations is approximately 920km, which allows the “absolute” tropospheric 

estimation to be determined. RS data were not available for this period; however, 

WVR data were accessible for comparisons. The WVR data at Onsala were available 

at every 60 seconds whilst hourly WVR data were provided at Wettzell. However,  

the WVR data Onsala were taken at every hour to ensure that comparisons can be 

made with the hourly GNSS ZWD estimates. The WVR at Onsala can measure the 

slant wet delay with an accuracy of 0.01 cm2 to 0.04 cm2 (Nilsson et al., 2005).  

 

A WVR however is only able to sense the water vapour (i.e. wet delay) in the 

atmosphere. In order for the comparisons to be made, the ZWD had to be extracted 

from the GNSS ZTD estimates. The extraction process is given in Figure 3.1. The 

WVR data at both locations are given in the zenith direction and thus, direct 

comparison can be made after the ZWDs have been extracted from the ZTDs. The 

ONSA-WTZR campaign was processed with EWM, EADM, MINQUE and 

SMINQUE across three different window sizes (1-h, 2-h and 3-h). Only smaller 
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window sizes are considered here since the previous results from the simulated data 

and ALIC-HOB2 baseline analyses suggest more realistic error estimates are 

achieved through such window sizes. Two scenarios will be presented. The 

coordinates of the Onsala station was constrained (0.0001 m) in the first, and both 

stations are constrained in the second. The stations coordinates were calculated with 

ITRF2000 positional solutions. The processing strategy of the GNSS baseline data 

here is similar to the one outlined in Section 6.3. 

 

6.4.1 Baseline Analysis – ONSA Constrained  

The results of the final coordinate solutions at WTZR for each stochastic model are 

summarised in Tables 6.21-6.24. The mean, standard deviation and RMSE (with 

respect to ITRF2000 solutions) of the coordinate and height offsets at various 

window sizes were presented as the three main columns for each of these tables. The 

values in these tables are determined from the all solutions over the 2-week period. 

 

 

Table 6.21 Coordinate offsets (cm) at WTZR with the EWM 
 

EWM 

Window 
MEAN STD DEVIATION RMSE 

X Y Z HGHT X Y Z HGHT X Y Z HGHT 

1-h -0.2 0.4 -0.2 -0.2 7.1 6.7 6.3 8.5 12.2 11.5 10.9 14.6 

2-h 1.9 0.2 1.0 2.0 4.5 3.6 4.3 5.7 5.9 4.4 5.4 7.3 

3-h 1.9 0.1 1.3 2.2 3.4 4.9 3.3 4.5 3.9 4.9 3.6 5.0 

 
 
 
Table 6.22 Coordinate offsets (cm) at WTZR with the EADM 
 

EADM 

Window 
MEAN STD DEVIATION RMSE 

X Y Z HGHT X Y Z HGHT X Y Z HGHT 

1-h -0.4 0.3 -0.4 -0.5 4.4 4.9 3.2 4.8 7.5 8.4 5.5 8.2 

2-h 1.8 0.4 1.1 2.0 4.0 3.6 3.1 4.4 5.2 4.4 3.9 5.9 

3-h 1.5 0.7 1.1 1.9 2.8 3.0 2.5 3.7 3.2 3.1 2.7 4.1 
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Table 6.23 Coordinate offsets (cm) at WTZR with the MINQUE model 
 

MINQUE 

Window 
MEAN STD DEVIATION RMSE 

X Y Z HGHT X Y Z HGHT X Y Z HGHT 

1-h -0.8 0.3 -0.8 -1.1 6.2 6.0 6.5 8.6 10.7 10.3 11.1 14.8 

2-h 1.0 0.1 0.4 0.9 3.5 2.8 2.6 3.9 4.4 3.4 3.2 4.9 

3-h 1.2 0.4 0.7 1.3 2.5 1.8 2.4 3.3 2.7 1.8 2.5 3.5 

 

 

Table 6.24 Coordinate offsets (cm) at WTZR with the SMINQUE model 
 

SMINQUE 

Window 
MEAN STD DEVIATION RMSE 

X Y Z HGHT X Y Z HGHT X Y Z HGHT 

1-h -0.5 0.6 -0.5 -0.6 6.9 6.8 6.4 9.1 11.8 11.8 11.1 15.7 

2-h 1.1 0.0 0.5 1.0 3.5 2.8 2.7 3.9 4.4 3.3 3.3 4.9 

3-h 1.0 0.4 0.5 1.1 2.5 2.1 2.3 3.1 2.6 2.2 2.3 3.3 

 

 

Results for the 1-h processing window are similar to that of the ALIC-HOB2 

baseline in that the (S)MINQUE models performed relatively poorly in comparison 

to that of EADM. However, the (S)MINQUE models show drastic improvements for 

the 2-h and 3-h windows. In fact, the (S)MINQUE models have produced better 

outcomes in terms of coordinate biasedness, repeatability and RMSE. The more 

favourable results from the ONSA-WTZR campaign (as compared to ALIC-HOB2) 

can be attributed to the shorter distance, as well as a smaller difference in latitudes 

between the two stations and thus, both stations experienced similar satellite 

geometry. The EWM have again, but not unexpectedly, yielded the worst results. 

 

Results of the ZWD comparisons for ONSA and WTZR are summarised in Tables 

6.25 and 6.26, respectively. The bias and RMSE, given by Eq. (5.1), of the GNSS 

and WVR ZWD differences are presented in each of these tables for each of the 

aforementioned stochastic models. Additionally, the adjusted RMSEs were given in 

brackets alongside the RMSE values. The adjusted RMSE are calculated by 

subtracting the corresponding bias value from each of the (GNSS-WVR) ZWD-

differences. The RMSE for the adjusted differences is then recalculated. The adjusted 

RMSE has zero bias. 
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Table 6.25 RMSEs and biases (cm) of WVR-GNSS ZWD at ONSA 
 

Window 
RMSE (Adj RMSE) BIAS 

EWM EADM MINQUE SMINQUE EWM EADM MINQUE SMINQUE 

1-h 2.8 (2.8) 2.4 (2.3) 2.8 (2.8) 2.8 (2.8) 0.4 0.6 0.5 0.4 

2-h 2.1 (2.1) 1.7 (1.7) 1.8 (1.7) 1.8 (1.7) 0.4 0.3 0.5 0.5 

3-h 1.8 (1.5) 1.4 (1.4) 1.7 (1.7) 1.7 (1.7) 1.0 0.2 0.1 0.1 

 

 

Table 6.26 RMSEs and biases (cm) of WVR-GNSS ZWD at WTZR 
 

Window 
RMSE (Adj RMSE) BIAS 

EWM EADM MINQUE SMINQUE EWM EADM MINQUE SMINQUE 

1-h 5.5 (3.1) 5.2 (3.0) 5.5 (3.2) 5.6 (3.5) 4.5 4.3 4.5 4.5 

2-h 3.5 (2.4) 3.3 (2.1) 3.9 (2.3) 3.9 (1.7) 2.6 2.5 3.1 3.6 

3-h 3.2 (2.0) 3.2 (1.9) 3.5 (2.0) 3.5 (2.0) 2.5 2.6 2.9 2.9 

 

 

There is no significant ZWD difference between the EWM and (S)MINQUE. The 

EADM achieved the lowest RMSE across all three processing window. The RMSE 

of 1.4 cm given by the EADM with a 3-h window is comparable to that of 24-h 

solutions (not given in Tables 6.25 and 6.26), which has a RMSE of 1.1 cm, or that 

of the GNSS tropospheric solutions, which has a RMSE of 1.0 cm for the same 

period. Figure 6.42 demonstrates the agreement that exists between the WVR and 

GNSS estimates. For the 1-h processing window, the RMSE values of the ZWD 

differences at ONSA are relatively high in comparison to past studies (e.g., Pottiaux 

et al., 2003; Wang et al., 2007). This is not unexpected since the height component 

was not resolved accurately enough as shown in Tables 6.21 to 6.24. The mean 

differences (biases) at ONSA are generally less than 0.5 cm, which is consistent with 

the values given by Wang et al. (2007). The biases at ONSA were not significant 

since there were no real difference between the RMSE and the adjusted RMSE 

values.  

 

The RMSEs at the WTZR station are, however, particularly high. It was later 

discovered that the WVR operated at the time at WTZR was a prototype and that an 

offset of a few centimetres may exist. The offsets can be observed in Figures 6.49 

and 6.50, with majority of the differences indicating a dry bias in the WVR estimates 

at WTZR. Comparison with the GNSS solution also gave a high RMSE value of 3.2 

cm, and thus, reinforcing the existence of a bias in the WVR solutions. The adjusted 
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RMSEs at WTZR corresponded quite well with those at ONSA. The WVR was not 

operating for the period between the 11th to the 13th of September at WTZR. 

 

 

 

Figure 6.47 Wet delay plot of WVR vs GNSS at the Onsala (ONSA) station with a 3-h 
processing window 

 

 

Figure 6.48 GNSS-WVR wet delay difference plot at the Onsala (ONSA) station 
 

 

 

Figure 6.49 Wet delay plot of WVR vs GNSS at the Wettzell (WTZR) station 
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Figure 6.50 GNSS-WVR wet delay difference plot at the Wettzell (WTZR) station 
 

 

Error intervals are then constructed to determine whether the error estimates of the 

LS ZWD are dependable error measures. Figures 6.51 and 6.52 illustrate the 

percentage of LS ZWD that is statistically in agreement with the WVR ZWD. 

Incidentally, the result of the analysis for EWM and EADM are comparatively 

similar to that of the simulation study. Although the performance of the (S)MINQUE 

models did not fare as well, it was still reasonably comparable to those of EWM and 

the EADM.  

 

 

Figure 6.51 Percentages of GNSS LS ZWD estimates that are in agreement with the 

WVR ZWD at 2 SEσ  for each of the tested stochastic model at ONSA 
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Figure 6.52 Percentages of GNSS LS ZWD estimates that are in agreement with the 

WVR ZWD at 3 SEσ  for each of the tested stochastic model at ONSA 

 

 

Figure 6.53 Percentages of GNSS LS ZWD estimates that are in agreement with the 

WVR ZWD at 2 SEσ  for each of the tested stochastic model at WTZR 

 

Figure 6.54 Percentages of GNSS LS ZWD estimates that are in agreement with the 

WVR ZWD at 3 SEσ  for each of the tested stochastic model at WTZR 
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6.4.2 Baseline Analysis – ONSA and WTZR Constrained  

With the coordinates of ONSA and WTZR tightly constrained to 0.0001 m, the 

results of the ZWD analysis are presented in the Tables 6.26 and 6.27. The RMSE 

are presented along with the adjusted RMSE, and as well as the biases. 

 

 

Table 6.26 RMSEs and biases (cm) of WVR-GNSS ZWD at ONSA 

 

Window 
RMSE (Adj RMSE) BIAS 

EWM EAD MINQUE SMINQUE EWM EAD MINQUE SMINQUE 

1-h 2.1 (2) 1.7 (1.6) 1.9 (1.8) 1.9 (1.8) -0.5 -0.6 -0.5 -0.5 

2-h 1.6 (1.6) 1.2 (1.2) 1.6 (1.6) 1.5 (1.5) -0.1 0.0 -0.1 -0.1 

3-h 1.4 (1.4) 1.2 (1.1) 1.3 (1.3) 1.5 (1.5) 0.1 -0.1 -0.2 -0.1 

 

 

Table 6.27 RMSEs and biases (cm) of WVR-GNSS ZWD at WTZR 
 

Window 
RMSE (Adj RMSE) BIAS 

EWM EAD MINQUE SMINQUE EWM EAD MINQUE SMINQUE 

1-h 5.0 (2.7) 4.6 (2.2) 4.8 (2.6) 4.8 (2.4) 4.2 4.1 4.1 4.1 

2-h 3.7 (2.0) 3.6 (1.7) 4.0 (1.9) 3.9 (1.8) 3.1 3.1 3.5 3.4 

3-h 3.6 (1.8) 3.6 (1.5) 3.9 (1.7) 3.9 (1.7) 3.1 3.2 3.5 3.5 

 

 

The differences between the stochastic models are small at ONSA. The largest 

difference observed at WTZR is approximately 4 mm between EADM and EWM. 

This offset corresponds to less than 1 mm in PWV. The mean differences (bias) in 

ZWD are once again very low at ONSA, corresponding well with the aforementioned 

studies. With a 2-h and 3-h window, the EADM (with a RMSE value of 1.2 cm for 

both window sizes) again performed almost just as well as the 24-h processing 

window, which yielded a RMSE value of 1.1 cm. The RMSE for the ONSA GNSS 

solutions is 1.0 cm when compared with the WVR data for the tested period. Offset 

in the RMSEs WTZR can again be observed. The EADM provided the lowest 

RMSEs in all processing window sizes. Although not shown in the Table 6.27, the 

RMSEs for the 2-h and 3-h windows are in fact, identical to that of the 24-h solution. 

The adjusted RMSE of the 24-h solution is 1.5 cm, which is the same as that of the 3-

h window session. Furthermore, the RMSEs (3.6cm for the 2-h and 3-h window) for 

the EADM and EWM are comparable to the RMSE for the GNSS solutions, which 

was 3.2 cm. 
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Statistical analysis of the LS ZWD at ONSA was performed and the results are 

presented in Figures 6.55 and 6.56. The proportions of LS ZWD that are in 

agreement with the WVR ZWD measurements in the constrained network are 

slightly less than that of the free baseline network. However, each of the models is 

still able to provide ZWD estimates that statistically agree with the WVR ZWD at 

least 65% (at 3 SEσ ) of the time at ONSA. The EADM model was again the top 

performer with around 80% success rate. The results for WTZR are presented in 

Figures 6.57 and 6.58, though no definitive interpretation of the results can be made 

due to the large offset in the WVR data, which is not accurately known.  

 

 

 

Figure 6.55 Percentages of GNSS LS ZWD estimates that are in agreement with the 

WVR ZWD at 2 SEσ  for each of the tested stochastic model at ONSA 

 

 

Figure 6.56 Percentages of GNSS LS ZWD estimates that are in agreement with the 

WVR ZWD at 3 SEσ  for each of the tested stochastic model at ONSA 
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Figure 6.57 Percentages of GNSS LS ZWD estimates that are in agreement with the 

WVR ZWD at 2 SEσ  for each of the tested stochastic model at WTZR 

 

 

Figure 6.58 Percentages of GNSS LS ZWD estimates that are in agreement with the 

WVR ZWD at 3 SEσ  for each of the tested stochastic model at WTZR 
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with that of the GNSS solutions, which yield a RMSE of 3.2 cm when compared to 

the same WTZR WVR data set. 

 

Statistical analysis of the LS ZWD estimates for all stochastic models has indicated 

that at least 60% (at 3 SEσ ) of the GNSS estimates are in agreement with the WVR 

ZWD estimates across all window sizes. The 1-h window produced the highest 

success rate with at least 70% for all models, with the EADM achieving a success 

rate of 80%. This also shows that the error estimates from the LS adjustment process 

are adequate measures as a source of error information. In fact, the EADM was the 

top performer among all the stochastic models across all window sizes. Although 

with slightly lesser success rate, the same conclusion applies to the GNSS ZWD 

estimates for the constrained-baseline across all models and window sizes. 

Furthermore, the EADM (with a 2-h and a 3-h window), once again, was able to 

produce ZWD estimates (with a RMSE of 1.2 cm for both cases) that are more than 

comparable to that of the 24-h window (a RMSE 1.1 cm) and the GNSS solution. 

Although the results for WTZR are biased due to an obvious offset in the WVR data 

(see Figure 6.44 and Table 6.27), the RMSE of the GNSS ZWD solutions are similar 

to the RMSE value given by the GNSS solution. 

 

 

6.5 NEAR REAL-TIME ESTIMATION OF THE ZENITH WET DELAY AT A 

SINGLE STATION 

The first-order Gauss-Markov (GM) model given in Eq. (3.49) takes advantage of 

the temporal correlations that exist among the ZWD estimates to provide near real-

time (NRT) wet delay estimates in the Kalman filter (KF) process. However, it was 

shown in Chapter 3 that the corresponding GM autocorrelation function (Eq. (3.50)), 

does not adequately represent the autocorrelation trend as it consistently 

underestimates the actual ZWD autocorrelation values. An alternative autocorrelation 

function was therefore proposed and is given in Eq. (3.58). The proposed 

autocorrelation function was shown to follow the ZWD autocorrelation trend 

significantly more closely than that of the GM function. However, its effect on the 

NRT estimation of the ZWD is still not known. Hence, in this section, the impact of 

the proposed model (PM) on the NRT estimation of the ZWD was investigated. The 
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corresponding results were then compared to that of the GM model, as well as the 

random-walk (RW) model (Eq. (3.47)). 

 

In this investigation, GNSS data (1st of February, March and May) from a Western 

Australian IGS station, namely Yarragadee (YAR2), were used to test the models. 

IGS products, including the IGS final orbital file, satellite clock information, Earth 

Orientation Parameters (EOPs), the coordinates of the ground station and the antenna 

phase centre offsets and variations were used in the analysis. The station was 

processed in Precise Point Positioning (PPP) mode. The processing strategy includes 

an elevation angle cut-off of 50 and the Niell (1996) MFs (see Eqs. (3.64) - (3.67)). 

The ionosphere-free linear combination was implemented to mitigate the ionospheric 

residual errors. In conjunction with the standard surface meteorological data, i.e. 20 
0C in temperature, 50 % humidity and 1010 millibars in pressure, the Saastamoinen 

(1973) hydrostatic model given in Eq. (2.37) was used to provide a-priori ZHD 

estimates. These ZHD estimates, with the aid of the NMFs, were then subtracted 

from the observation equations and thus, leaving behind the ZWD parameters, which 

were to be estimated. The KF process, which models the state vector as defined by 

the RW model, the GM model and the PM in Chapter 3, was used to estimate the 

ZWD at every 30-second interval, along with the station coordinate partials, 

ambiguities and receiver clock error in PPP mode. The station coordinates were not 

fixed as this investigation was carried out to simulate kinematic positioning. For the 

RW, GM and the PM models, the ZWD parameter was estimated as a random 

process in the form by Eq. (3.51). The a-priori standard deviations (SD) for the RW, 

GM and PM models were given as 1 mm, 5 mm and 10 mm, respectively, to 

represent the precision of the phase observations. Based on the autocorrelation 

analysis of the PWV estimates across 10 Australian stations (Section 6.1), the 

correlation time τ  for both the GM model and the proposed model was empirically 

given as 4800 seconds. The empirical β  value for the PM was 
4

3 . Once the ZWD 

was estimated, it was then added to the estimated ZHD, and thus, yielding an 

estimate for ZTD. The estimated ZTD from each of the models was averaged at 

every 5 min and at every 2-h periods, respectively, during the course of the 24-h day 

and was then compared to the IGS tropospheric solutions.  
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Table 6.28 presents the RMSE of the differences between the estimated ZTD and the 

5-min IGS ZTD solution, whilst Table 6.29 provides the RMSE of the estimated 

ZTD when compared with the 2-h IGS solution.  

 

Table 6.28 RMSE (mm) of the differences between the estimated ZTD and the IGS 
tropospheric solution at 5-min resolution 

 

DOY in 2010 
1 mm SD 

RW GM PM 

Feb 1 17 10 10 

Mar 1 22 18 18 

May 1 29 7 7 

DOY in 2010 
5 mm SD 

RW GM PM 

Feb 1 17 10 10 

Mar 1 22 18 18 

May 1 29 7 7 

DOY in 2010 
10 mm SD 

RW GM PM 

Feb 1 17 10 10 

Mar 1 22 18 18 

May 1 29 7 7 

 

Table 6.29 RMSE (mm) of the differences between the estimated ZTD and the IGS 
tropospheric solution at 2-h resolution 

 

DOY in 2010 
1 mm SD 

RW GM PM 

Feb-01 14 5 5 
Mar-01 16 14 14 

May-01 25 5 5 

DOY in 2010 
5 mm SD 

RW GM PM 

Feb-01 14 5 5 
Mar-01 16 14 14 

May-01 25 5 5 

DOY in 2010 
10 mm SD 

RW GM PM 

Feb-01 14 5 5 
Mar-01 16 14 14 

May-01 25 5 5 

 

 

Tables 6.28 to 6.29 indicate that the RMSE differences for when the estimated ZTD 

were compared to the 5-min and the 2-h IGS solution ranged from 2-6 mm, which 
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was within the expected RMSE reported by Kouba (2009). The average RMSE 

difference when compared with the 5-min and 2-h IGS solutions was around 3.9 mm.  

 

One notable observation from Tables 6.28 and 6.29 was that there was no difference 

in the RMSE results for when the a-priori standard deviation was 1 mm, 5 mm, and 

10 mm. The best results were achieved with GM and PM. Moreover, there was 

virtually no difference between two models. This is likely due to the short sampling 

interval (i.e. 30 s) and estimation period (every 5 min) whereby there were minimal 

differences in the correlation coefficients generated by the PM and GM models. Over 

the 3 days, the RMSE results for  GM and PM ranged from 7 to 18 mm, and with an 

average RMSE of  12 mm when compared to the 5-min IGS solutions. This showed 

an average improvement of 11 mm in ZWD when compared to the RW model. 

 

 

6.6 CHAPTER SUMMARY 

Results from Sections 6.2 to 6.4 suggested that reliable ZWD or PWV estimates can 

be obtained from smaller processing window sizes (1-h, 2-h and 3-h), especially 

when the station coordinates are known beforehand. When the coordinates are 

known, the tropospheric solutions from the baselines analyses are comparable to that 

of the network tropospheric solutions (Section 6.1) or the IGS estimates. In addition, 

the combination of shorter window size and a single-baseline processing had resulted 

in 80% of the LS tropospheric estimates in statistical agreement with the external 

RS/WVR data. In other words, there is no obvious bias for the set of LS tropospheric 

estimates and that the corresponding error estimates from the LS adjustment process 

provided a set of realistic error measures, which is essential in the weighting of the 

tropospheric estimates in the NWP assimilation process. 

 

Section 6.5 provided the real data analysis of the proposed autocorrelation model 

given in Chapter 3. The PM was tested against the RW and GM models in the KF 

process in PPP mode at YARR. The RMSE results showed that GM and the PM 

model produced better NRT ZWD estimates than the RW model, with minimal 

difference between each other. 
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CHAPTER 7 

 

INTERPOLATION AND PREDICTION OF ZENITH WET DELAYS 

 

 

7.0 INTRODUCTION 

Temporary breakdowns of GNSS stations result in missing ZWD observations. 

Therefore, a reliable interpolation model can be used to estimate these missing values 

in post-processing. In addition, a properly-chosen interpolation method can be useful 

in providing reliable ZWD estimates for missing RS or WVR data when GNSS is co-

located with these techniques. Thus, one of the aims of this chapter is to investigate 

the best approach for interpolating missing ZWD data. On the other hand, prediction 

of ZWD values is important for some GNSS applications. For instance, a reliable 

real-time prediction model can provide practical ZWD estimates, which has major 

importance for real-time kinematic (RTK) applications. In RTK, tropospheric 

estimates are transmitted every couple of minutes. However, a reliable prediction 

model is required to produces these ZWD during transmission breaks, which can 

lasts several minutes. Thus, the prediction of ZWD values from a number of time-

series (TS) models is also investigated. 

 

The necessary data for the investigation of these aims are provided by the one-hourly 

GNSS ZWD solutions at ONSA (discussed in Section 6.4). To investigate possible 

interpolation and prediction methods that can be used efficiently with the ZWD data, 

the autocorrelation of the ZWD observations must first be studied. Hence, Section 

7.1 will investigate the temporal correlations that exist among the GNSS 

tropospheric delays. The autocorrelation study of the tropospheric delays is carried 

out over the ONSA station, as well as several other Australian GNSS stations. 

Results show that a high autocorrelation exists between successive tropospheric 

measurements.  

 

Based on this finding, Section 7.2 will discuss a number of possible interpolation 

models that can be used to estimate missing ZWD observations. The high 
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autocorrelation that exist between successive ZWD estimates and their time sequence 

behaviour indicates that even a simple model, such as linear interpolation, may prove 

useful. Thus, the linear model, along with other more sophisticated models, is 

investigated. Results of the investigation are summarised in Section 7.3. Using the 

same data set, the performances of a number of possible prediction models are also 

assessed. Section 7.4 briefly outlines the prediction models used in the investigation. 

Section 7.5 discusses the findings.  

 

 

7.1 AUTOCORRELATION OF THE ZENITH WET DELAY ESTIMATES 

A well-defined statistical description for the GNSS-derived tropospheric estimates is 

important for NWP modelling. The autocorrelations, defined in Eqs. (3.58) and 

(3.59), describe the temporal correlations between pairs of GNSS tropospheric 

estimates TS, as a function of time differences (Borre and Tiberius, 2000). These 

correlations need to be defined for the eventual assimilation of the GNSS 

tropospheric estimates into NWP model, especially for the weighting of past data in a 

bias reduction scheme (e.g., Stoew et al., 2007). Furthermore, the autocorrelation 

time length can be used in recursive data processing procedures such as GM Kalman 

filtering (KF) with state vector augmentation (e.g., Borre and Tiberius, 2000). 

 

To better understand the temporal correlations that exist among the GNSS 

tropospheric delay estimates, autocorrelation analysis of the GNSS PWV data from 

14 of the Australia GNSS stations provided in Section 6.1 were performed. As there 

is not sufficient data available in this study to perform a long-term autocorrelation 

analysis, the investigation is restricted to a 12-h window. A smaller window, such as 

the 12-h window, would seem a logical choice for a RTK application, as it is 

generally dependent on the most recent data.  Furthermore, the 12-h window ensures 

a first-order stationarity in the TS. Stationary TS refers to a process whose 

parameters, such as the mean and variance, remain fairly constant over time and 

space (Wei, 2006). Hence, the corresponding autocorrelation of a stationary TS value 

can then be deemed constant in any time interval within the 12-h window.  
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In this investigation, hourly GNSS PWV estimates are analysed over a 12-h interval 

at each station on three different dates in 2003 (Mar 31st, Apr 3rd and 6th). Figures 7.1 

to 7.3 illustrate the autocorrelation of the PWV estimates over ALIC on each of these 

three days. Likewise, Figures 7.4-7.6 provide the autocorrelation plot of the PWV 

estimates over Cocos Island (COCO). In these figures, autocorrelation values that lie 

between the red dotted lines, which represent a 95% confidence interval, are deemed 

insignificant. Over the three days, the average time lengths (lags) in hours, where 

significant autocorrelations are observed, are summarised for each of the 14 stations 

in Table 7.1, whilst Figure 7.7 provides a graphical illustration for the corresponding 

results. 
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Figure 7.1 Autocorrelation plot of the PWV estimates over ALIC on Mar 31st 
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Figure 7.2 Autocorrelation plot of the PWV estimates over ALIC on Apr 3rd 
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Figure 7.3 Autocorrelation plot of the PWV estimates over ALIC on Apr 6th 
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Figure 7.4 Autocorrelation plot of the PWV estimates over COCO on Mar 31st 
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Figure 7.5 Autocorrelation plot of the PWV estimates over COCO on Apr 3rd 
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Figure 7.6 Autocorrelation plot of the PWV estimates over ALIC on Apr 6th 
 
 
 
Table 7.1 Average time length (in hours) where significant autocorrelation is observed 
 

Station 
Time 

Length (h) 

ALIC 1.3 

ARC3 2.0 

BALL 1.7 

BENA 1.3 

BUR1 2.0 

CANN 1.3 

CEDU 1.7 

CLAY 1.3 

COCO 1.3 

COLA 1.7 

DARR 2.0 

DARW 2.0 

EPSO 1.7 

HAMI 1.7 

Overall Mean (Std Dev) 1.6 (0.3) 

 

 

Figure 7.7 A graphical display of the average time lengths (in hours) where significant 
autocorrelations are observed for each of the 14 Australian stations 
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From Table 7.1, it can be observed that the average time lengths are fairly consistent 

across all stations. The overall mean of the time lengths, given as 1.6 hours in Table 

7.1, can be used to provide an estimate for the time correlation constant in a GM 

model for RTK application. 

 

An investigation of the WVR ZWD estimates over ONSA (as used in section 6.4) is 

also performed. The WVR at ONSA was appropriate for this study as it provided 

ZWD data at a very high frequency (every 8 seconds). In this autocorrelation study, 

hourly WVR ZWD were analysed with a 12-h time interval and over three different 

days on September 10th, 13th and 16th in 2003. The autocorrelation plots are given by 

Figures 7.8-7.10. Correspondingly over the same 12-h periods in these three days, 

the WVR ZWD estimates, sampled at every 10-min interval, were also analysed and 

the autocorrelation plots are given in Figures 7.11-7.13. Each unit of lag in Figures 

7.11-7.13 represents a 10-min period. The summary statistics for both the 1-h ZWD 

and 10-min ZWD data sets are given in Table 7.2. The results of the autocorrelation 

analysis between the ZWDs, sampled at different rates, were then compared and 

summarised in Table 7.3. 

  

Table 7.2 Mean and standard deviation (cm) of the WVR ZWD sampled at different 
time intervals 

 

Sampling 
Rate 

Mean and Standard Deviation (cm) 

Sept 10 Sept 13 Sept 16 

10 min 13.5 (1.3) 10.4 (1.0) 13.0 (2.8) 

1-h 13.6 (1.5) 10.4 (1.0) 13.1 (3.1) 
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Figure 7.8 Autocorrelation plot of the 1-hrly WVR ZWDs over ONSA on Sept 10 
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Figure 7.9 Autocorrelation plot of the 1-hrly WVR ZWDs over ONSA on Sept 13 
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Figure 7.10 Autocorrelation plot of the 1-hrly WVR ZWDs over ONSA on Sept 16 
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Figure 7.11 Autocorrelation plot of the 10-min WVR ZWDs over ONSA on Sept 10 
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Figure 7.12 Autocorrelation plot of the 10-min WVR ZWDs over ONSA on Sept 13 
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Figure 7.13 Autocorrelation plot of the 10-min WVR ZWDs over ONSA on Sept 16 
 

 

Table 7.3 Comparison between the time lengths for significant autocorrelation of the 
WVR ZWD sampled at different time intervals 

 

Sampling 
Rate 

Time length with Significant Autocorrelation 

Sept 10 Sept 13 Sept 16 

10 min 1-h 30-min 1-h 50-min 2-h 

1-h 1-h 1-h 2-h 

 
 

Although the analysis of 10-min WVR ZWDs involved a greater number of 

observations than the hourly ZWDs (6 per hour as compared to 1 per hour), there are 

minimal differences between the means and standard deviations of the two sets of 
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data (Table 7.2). Comparison between Figures 7.8 to 7.13 also shows that the shape 

of the autocorrelation plots are maintained even when greater number of observations 

is sampled within the same period. Similarities between the time lengths for 

significant correlation are also observed for both sets of data in Table 7.3. On Sept 

10th and 13th, both data sets agreed that the autocorrelations are insignificant when 

the lag is greater than 2-h. However, the 10-min ZWD data set appeared to provide a 

more precise estimate of the autocorrelation time lag due to the higher sampling rate. 

The autocorrelation results here agree well with those of the Australian stations. 

 

Overall, the results of this study show that the existence of autocorrelations among 

the tropospheric estimates is evident. The autocorrelations are generally significant 

for estimates that are within the 1-h to 2-h lag. An average lag value of 1.6 hours is 

observed for the 14 Australian stations, whilst the results at ONSA are similar at 

around 1.7 hours. In considering the autocorrelation results, the following sections 

will investigate several interpolation and prediction methods for modelling the ZWD 

estimates over ONSA. The correlation plots at ONSA, given by Figures 7.8-7.13, 

will provide some insights into possible models that are appropriate for this study. 

 

 

7.2 INTERPOLATION OF MISSING ZENITH WET DELAYS 

Six interpolation models are considered in this study for interpolating ZWDs. The 

descriptions of these models are outlined briefly in the following sub-sections. The 

models range from the easy-to-implement linear interpolant, to the more 

sophisticated Kriging model. For the purpose of this investigation, the actual and 

estimated ZWD at time it  (where i = 0, 1, …, n) are denoted as ( )itZWD  and 

( )itDŴZ , respectively, where (n+1) is the total number of ZWD values. A set of 

(n+1) ZWD observations is denoted by ( ){ }n

0iitZWD
= ; kt  denotes the time 

corresponding to a missing ZWD observation. 

 

7.2.1 Linear Interpolation 

The linear interpolation (LI) method fits a linear function between each pair of ZWD 

points ( ){ ,tZWD i ( )}1itZWD +  and returns the values of the estimated ZWD, 
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( )ktDŴZ , at a specified value of time kt , where 1iki ttt +<< (e.g., Benesty et al., 

2004). The estimated ZWD can be formulated as: 

 

( ) ( ) ( )iikk tZWDttmtDŴZ +−=  (7.1) 

where 

 
( ) ( )

i1i

i1i

tt

tZWDtZWD
m

−

−
=

+

+   (7.2) 

 

7.2.2 Cubic Spline Interpolation 

Suppose a set of ( ){ }n

0iitZWD
=  observations are given from a reference time 

0
t  until 

nt . A cubic spline (CS) ZWD interpolant, ( )tDŴZ , over the time interval [ ,t i ]1it +  

can be given as (e.g., Burden and Faires, 2004): 

 

,)tt(d)tt(c)tt(ba)t(DŴZ 3
ii

2
iiiii −+−+−+=  for ,0=i  1, .., n-1  (7.3) 

where, 

( )ii tZWDa =  (7.4) 

3

)cc2(h

h

)aa(
b 1iii

i

i1i
i

++ +
−

−
=   (7.5) 

i

i1i
i

h3

)cc(
d

−
= +   (7.6) 

i1ii tth −= +  (7.7) 

The coefficients { } 1n

0iic −

=  are determined by solving a linear system of equations given 

by: 

 

1i

1ii

i

i1i
1iiii1i1i1i

h

)aa(3

h

)aa(3
chc)hh(2ch

−

−+
+−−−

−
−

−
=++ ,  for ,0=i ,1 ..., 1n −       (7.8) 

 

If a ZWD observation is missing at time kt , such that 1iki ttt +<< , the interpolated 

value, ( )ktDŴZ  can be calculated via Eq. (7.3) once the coefficients ia , ib , ic  and 

id  have been determined. To implement the CS interpolant requires at least three 

observations. 
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7.2.3 Cubic Hermite Polynomial Interpolation 

For any pair of epochs [ ,t i ]1it + , the cubic Hermite polynomial (CHP) interpolant, 

)t(DŴZ , between the given points can be estimated as (e.g., Burden and Faires, 

2004): 

 

( ) ( ) ( ) ( ) ( )1i

2

i3

2

i2i1i ttttfttfttftZWD)t(DŴZ +−−+−+−+=   (7.9) 

where, 

 ( )
( ) ( )

1ii

1ii
i1

tt

tZWDtZWD
tZWDf

−

−

−

−
=∆= ,  (7.10) 

 
i1i

14
2 tt

ff
f

−

−
=

+

,  (7.11) 

 
ii tt

ff
f

−

−
=

+1

26
3   (7.12) 

( ) ( )

i1i

i1i
4

tt

tZWDtZWD
f

−

−
=

+

+ ,  (7.13) 

( ) ( )

1i2i

1i2i
5 tt

tZWDtZWD
f

++

++

−

−
= , and  (7.14) 

i1i

45
6 tt

ff
f

−

−
=

+

  (7.15) 

 

7.2.4 Lagrange Polynomial Interpolation  

For a set of ( ){ }n

0iitZWD
=  observations given at (n+1) epochs, then there exists a 

unique polynomial )t(P of a degree n≤ such that (Burden and Faires, 2004) 

   

 ( ) )t(PtZWD ii =  for each i = 0, 1, …, n-1  (7.16) 

 

For each epoch i = 0, 1, …, n-1, the Lagrange polynomial (LP) is given by: 

 

 ( ) ( ) ( )∑
=

=++=
n

0i
i,nin,nn0,n0 )t(LtZWD)t(LtZWD)t(LtZWD)t(P L  (7.17) 

where 
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−−−−−
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ij
0j ji
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ni1ii1ii1i0i

n1i1i10
i,n
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)tt(

)tt()tt)(tt()tt)(tt(

)tt()tt)(tt()tt)(tt(
)t(L

LL

LL
 (7.18) 

 

The estimated value of ZWD at time kt  can be given as: 

 

 ( ) ( )kk tPtDŴZ =   (7.19) 

 

7.2.5 Fast Fourier Transform Interpolation 

To use the fast Fourier transform (FFT) method for the interpolation of the ZWDs, a 

vector of ZWD observations [ ] ( ){ }n

1iitZWDZWD
=

=  of length n (sampled at equally 

spaced points) is firstly transformed to the discrete Fourier transform vector ZWDF

using the algorithm (Frigo and Johnson, 1998) given by: 

 

 ( ) ( )( )∑
=

−−=
n

1i

1t1i
niZWD vtZWDF   (7.20) 

where nv is the complex nth root of unity (with 1−=j ) defined by, 

  n
2ππ

n ev
−

=   (7.21) 

 

The next step of the process is to calculate the inverse Fourier transform vector 

[ ] ( ){ } ,tDŴZDŴZ
N

1ii =
=  i.e. the interpolated values), by using the following 

expression for a user-specified value of N: 

 

[ ] ( )( )∑
=

−−−








=

N

1i

1t1i
NZWDvF

N

1
DŴZ   (7.22) 

 

If Nn < , the vector ZWDF  is padded with trailing zeros to a length of ,N  prior to 

applying the inverse transformation defined by Eq. (7.22). If Nn > , then ZWDF  is 

truncated to the specified length. In this investigation, N is given as: 

 

 ×= nN (number of missing observations)  (7.23) 
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7.2.6  Ordinary Kriging Interpolation 

Kriging is a spatial technique that can be used for interpolating tropospheric delays 

from reference stations in a GNSS network to a user in an unknown location within 

the region (e.g. Zeng et al., 2004). Kriging is known as best linear unbiased estimator 

as it estimates the value of a random function at a point as a linear combination of the 

values at the sample points whilst minimizing the error variance. In essence, Kriging 

is a weighted linear combination of all observations. It assumes that the closer the 

input parameters are, the more correlated the observations are. With this concept, it is 

then worthwhile exploring whether Kriging is appropriate as ZWD interpolator 

whereby time t is the input parameter. More precisely, the use of ordinary Kriging is 

investigated in its simplest one-dimensional form to determine its usefulness for 

interpolating ZWD. 

  

Ordinary Kriging interpolation is performed by using a two-component predictor. 

The first component can be viewed as the generalised LS estimate while the second 

component is treated as the realisation of a Gaussian process. The ZWD can be 

modelled  as (Sacks et al., 1989): 

 

( ) ∑
=

+β=
p

1j
jj )t(Z)t(htZWD   (7.24) 

 

where hj’s are the pre-determined functions of time; p is the number of unknown 

parameter; βj’s are unknown coefficients to be estimated. The Gaussian process, Z(t)

, is assumed to have zero mean and a covariance that can be estimates as: 

 

( ) ( )2i1i
2

2i1it t,tRt,tCovV σ==   (7.25) 

 

between times 1it  and 2it ; 2σ  is the a-priori variance of the model and ( )2i1i t,tR  is 

the correlation, whose form can be given by: 

 

            ( ) ( )q
2i1i tt

2i1it et,tRR −θ−
==    2q0 ≤<   (7.26) 
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In this study, the variable q is selected to equal two to indicate Euclidian norm, 

whilst the unknown parameter θ  is to be estimated. Additionally, the first 

component of Eq. (7.24) can be simplified as an unknown coefficient µ̂ , and the 

ordinary Kriging model can be formulated as (Morris, 1995): 

 

 ( ) ( )tZˆtDŴZ +µ=   (7.27) 

 

The use of µ̂ , instead of  ∑
=

β
p

1j
jj )t(h , will result in less computational effort with no 

significant model degradation (Sacks et al., 1989).  

 

Given a set of times { ,tt 0= ,t 2 ..., }nt  and the corresponding ( ) 11n ×+  vector of 

ZWD estimates, ( ) ( ){ ,tZWDtZWD 0= ( ),tZWD 2 ...,  ( )}T

ntZWD , the best linear 

unbiased predictor (BLUP) at time kt can be written as (Sacks et al., 1989): 

 

 ( ) ( )( )µ−+µ= − ˆHtZWDVvˆtDŴZ 1
t

T
tk k

 (7.28) 

where 

( ) [ ),t(ZCovV iijt =  ])t(Z j ,  (7.29) 

 [{ ,)t(ZCovv k
T
t k

= ])t(Z 1 ...., [ ),t(ZCov k ]})t(Z n   (7.30) 

 ( )( ) ( )tZWDVHVHHˆ T1T −
=µ   (7.31) 

 

and H being a ( ) 11n ×+  vector of ones. 

 

In general, 2σ  and θ  in Eqs. (7.25) and (7.26) are unknowns. They can be estimated 

by a method equivalent to the empirical Bayes approach (Koehler and Owen, 1996), 

which finds the parameters that are most consistent with the observed data. Since 

( )tZ  is Gaussian, the maximum likelihood estimation (MLE) method can be used to 

estimate 2σ  and θ  (Koehler and Owen, 1996). The MLE of 2σ is given as: 

 



 171

( )( ) ( )( )
1n

HˆtZWDRHˆtZWD
ˆ

1
t

T
2

+

µ−µ−
=σ

−

  (7.32) 

 

The maximum likelihood estimation of θ is a one-dimensional optimisation problem 

of the form: 

 

( ) ( ) ( )( )[ ]t
2

R
Rdetlnˆlnn2/1max

1
+σ−

∈θ
,  (7.33) 

subject to ∞≤θ≤0  

 

A nonlinear optimisation subroutine can usually solve Eq. (7.33) with respect to the 

parameter θ  (Koehler and Owen, 1996). Once the optimal value of θ  is obtained, it 

can then be substituted back into Eq. (7.26), and be used to determine tV  and µ̂ . The 

predictor ( )ktZWD  in Eq. (7.28) can then be completely determined. 

 

7.2.7  Least-Squares Modelling 

For a set of ( )1n +  GNSS ZWDs corresponding to time { ,tt 0= ,1t ,K }nt , a least-

squares model can be formulated in a polynomial form using these observations such 

that: 

 

 ( ) ∑
=

+=++++=
p

1j

j
ij0

p
ip

2
i2i10i taatatataatDŴZ L   (7.34) 

 

where p  is the order of the polynomial and ai (for i = 0, 1, …, p) are the unknown 

coefficients to be estimated. The LS solution for the coefficients { }p

0jja
=

 can be 

calculated by using Eq. (3.25) in Chapter 3. Once the coefficients are solved, Eq. 

(7.34) can then be used to estimate the missing observation and time kt . The 

principle of LS is described in Chapter 4.  

 

The LS approach models the data by minimising the sum of squares of the residual 

errors, which may or may not pass through the data points. The LS differs from the 

interpolation models considered here, in that the latter passes through all the 

observation points. 
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7.3 TESTING AND ANALYSIS OF METHODS FOR ESTIMATING MISSING 

ZENITH WET DELAY OBSERVATIONS 

The purpose of this section is to identify the best method of interpolating missing 

GNSS ZWD data. The performances of all the aforementioned interpolation methods 

given in Section 7.2 are assessed and inter-comparisons between the models are 

made using the GNSS ZWD data at ONSA in Section 6.4. These GNSS ZWD data 

were estimated with a fully constrained ONSA-WTZR baseline and a 3-h processing 

window. The GNSS ZWD data has a RMSE of 12 mm (or < 2 mm in PWV) in 

comparison to the WVR ZWD for the corresponding period. Figure 7.14 shows the 

time sequence of the GNSS ZWD data used in this study.  

 

Figure 7.14 GNSS ZWD estimates at ONSA 
 

The number of ZWD observations used to generate the IM and LS models will 

impact the determination of the model coefficients, and consequently the accuracy of 

the missing GNSS ZWD observations. Thus, in this investigation, different sets of 

observations will be used to construct these models. The number of pre-determined 

data points, ZWDm , used to generate these models will range from 4 to 48, i.e. 

{4mZWD ∈ , 6, 8, 12, 18, 24, 30, 36, 40, 44, }48 .  Additionally, in each of these runs, 

the tested models will be used to estimate one, two-consecutive, three-consecutive 

and four-consecutive missing observations, i.e. 4k1 mis ≤≤ . The models are 

generated and analysed using the following procedure: 

 

(1)  Assuming a total of n  observations in the data set, let misk  be the pre-

determined number of missing data points, and ZWDm  the number of data 

points used to generate the model; 
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(2) Set 2
mi ZWD= ; 

(3) Let ( ) { ,ttZWD jmis = ( )} miski

1ijjtZWD +

+=
be the consecutively selected missing 

ZWD data set; 

(4) Let ZWDobs ( ){ ,tZWD 1ki mis +−=  ( ),tZWD i  ( ),tZWD 1ki mis ++ ...,  ( )}
miski2tZWD +  

be the selected data set used to generate the models; 

(5)  Generate the IM or LS model based on the data set ZWDobs and estimate the 

wet delay, ( )jtDŴZ , for { } miski

1ijjt +

+=
; 

(6) To assess the model used at any epoch, the difference between the “true” 

GNSS ZWD (ONSA-WEZ ZWD data set) and the estimated ZWD, i.e. 

( ) ( ) ( ),tZWDtDŴZtZWD misdiff −=∆  is computed;  

(7) Similarly, the next missing data points are estimated by shifting one position 

in time, i.e. { ,t 1j+ ( )}1jtZWD +  becomes { ,jt ( )} 1ki

2ij1j
mistZWD ++

+=+ , until the last 

missing data point has been reached.  

 

The above procedure places the set of missing ZWD observations, ( )tZWDmis , in the 

centre of the modelling data set, ( )tZWDobs . The first set of missing data begins at 

time { ,t 1i+ ,K }
miskit +  and the last set finishes at time { ,t 1kin mis +−− ,L }int − . In all, a 

total of ( )misZWD kmn −−  missing data sets are considered. Given that there are misk  

missing observations in each of these sets, the total number of comparisons is 

therefore, ( )misZWDmis kmnk −− .  

 

When all cases of missing data sets for a given model have been considered, the 

RMSE of the ( )misZWDmis kmnk −−  ZWD differences are then calculated by: 

 

 

( )[ ]
( )

( )misZWDmis

kmnk

1j

2

jdiff

I
kmnk

tZWD

RMSE

misZWDmis

−−

∆

=

∑
−−

=
           (7.35) 

 

The overall estimation (interpolation) error IE , as a percentage, is defined as the 

RMSE divided by the total number of comparisons: 
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( )
( )

( )
%100*

tZWD
kmnk

1

RMSE
E

misZWD kmnk

1j
jmis

misZWDmis

I
I






























−−

=

∑
−−

=

               (7.36) 

 

7.3.1 Interpolation Models 

In an effort to determine a suitable model for the purpose of estimating missing 

ZWDs, the interpolation models outlined in Section 7.1 were tested. The RMSEs, 

calculated via Eq. (7.35), of these models for {4mZWD ∈ , 6, 8, 12, 18, 24, 30, 36, 40, 

44, }48  are summarised in Tables 7.4 to 7.7.  

 

The results show that the Lagrange polynomials (LP) method is the poorest 

performer. As the number of data points increases, the LP exhibits what is known as 

Runge’s phenomenon (Runge, 1901; Fornberg and Zuev, 2007), and thus produces 

poor outcomes. Runge’s phenomenon is an error problem for a high-order 

polynomial interpolant on equidistant intervals, whereby the polynomial oscillates 

towards the end of the interval, as shown in Figure 7.15, resulting in poor ZWD 

estimation between the intervals. This effect was more prominent when estimating 

two, three and four missing ZWD observations.  

 

 

Table 7.4 RMSEs (cm) of the interpolated ZWDs for the case of a single missing 
observation 

Num of 

Data Pts 
Linear Spline CHP FFT Lagrange Kriging 

4 1.27 1.39 1.30 1.35 1.39 1.27 

6 1.27 1.45 1.30 1.36 1.49 1.35 

8 1.27 1.47 1.30 1.36 1.56 1.40 

12 1.27 1.47 1.30 1.35 1.65 1.37 

18 1.27 1.47 1.30 1.33 1.72 1.40 

24 1.27 1.47 1.30 1.32 1.76 1.41 

30 1.27 1.47 1.30 1.32 1.78 1.41 

36 1.27 1.47 1.30 1.32 1.81 1.43 

40 1.27 1.47 1.30 1.32 1.82 1.43 

44 1.27 1.47 1.30 1.32 1.84 1.42 

48 1.27 1.47 1.30 1.32 1.85 1.42 
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Table 7.5 RMSEs (cm) of the interpolated ZWDs for the case of two-successive 
missing observations 

Num of 

Data Pts 
Linear Spline CHP FFT Lagrange Kriging 

4 1.41 1.66 1.46 1.48 1.66 1.41 

6 1.41 1.79 1.46 1.51 1.96 1.58 

8 1.41 1.87 1.46 1.52 2.28 1.54 

12 1.41 1.89 1.46 1.54 2.88 1.58 

18 1.41 1.89 1.46 1.54 3.65 1.59 

24 1.41 1.89 1.46 1.54 4.26 1.65 

30 1.41 1.89 1.46 1.54 4.78 1.68 

36 1.41 1.89 1.46 1.54 5.22 1.71 

40 1.41 1.89 1.46 1.54 5.48 1.73 

44 1.41 1.89 1.46 1.54 5.73 1.75 

48 1.41 1.89 1.46 1.53 5.97 1.75 

 

 

Table 7.6 RMSEs (cm) of the interpolated ZWDs for the case of three-successive 
missing observations 

Num of 

Data Pts 
Linear Spline CHP FFT Lagrange Kriging 

4 1.50 1.76 1.53 1.55 1.76 1.54 

6 1.50 1.88 1.53 1.55 2.12 1.53 

8 1.50 1.94 1.53 1.55 2.54 1.55 

12 1.50 1.96 1.53 1.55 3.59 1.66 

18 1.50 1.96 1.53 1.54 5.57 1.72 

24 1.50 1.96 1.53 1.54 7.76 1.82 

30 1.50 1.96 1.53 1.54 10.01 1.88 

36 1.50 1.96 1.53 1.54 12.29 1.93 

40 1.50 1.96 1.53 1.54 13.81 1.95 

44 1.50 1.96 1.53 1.54 15.31 1.98 

48 1.50 1.96 1.53 1.54 16.81 1.99 

 

 

Table 7.7 RMSEs (cm) of the interpolated ZWDs for the case of four-successive 
missing observations 

Num of 

Data Pts 
Linear Spline CHP FFT Lagrange Kriging 

4 1.62 2.12 1.68 1.68 2.12 1.65 

6 1.62 2.35 1.68 1.70 2.99 1.71 

8 1.62 2.48 1.68 1.71 4.02 1.73 

12 1.62 2.51 1.68 1.71 6.45 1.81 

18 1.62 2.51 1.68 1.71 11.03 1.87 

24 1.62 2.51 1.68 1.70 16.62 1.98 

30 1.62 2.51 1.68 1.70 23.04 2.06 

36 1.62 2.51 1.68 1.71 30.20 2.10 

40 1.62 2.51 1.68 1.71 35.42 2.13 

44 1.62 2.51 1.68 1.70 41.04 2.16 

48 1.62 2.51 1.68 1.70 47.04 2.17 
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Figure 7.15  Runge’s phenomenon (Fornberg and Zuev, 2007) 
 

 

Tables 7.4 to 7.7 also indicate that the linear interpolation (LI), the cubic Hermite 

polynomial (CHP) and fast Fourier transform (FFT) models (interpolants that are 

dependent only on the most recent pair of data points) produce better estimates than 

splines and ordinary Kriging, which estimate the missing data points by giving 

greater weights to more recent data points, and lesser weights to those that are further 

away. Kriging did, however, produce comparable results to these models when the 

number of modelling data is low. The LI model, which was the simplest of all to use, 

produced the best results across all scenarios. The LI was able to provide, on 

average, ZWD estimates to within 1.3 cm to 1.6 cm from the actual ZWD data, 

which corresponds to a PWV error of about 2 mm to 2.5 mm. This level of 

discrepancy is comparable to many GNSS PWV studies (e.g., Basili et al., 2001; 

Snajdrova et al., 2006; Wang et al., 2007). Note that both LI and CHP are methods 

that only utilise the two most recent observations, with one on either side of the 

missing data set.  

 

The favourable results for LI, CHP and FFT models can be explained by the 

autocorrelation study in Section 7.1, whereby significant correlations occur among 

the estimates within a 1h to 2-h period. Successive 1-h ZWD estimates have an 

autocorrelation value as high as 0.8. Inclusion of several data points that are, time-

wise, distant from the estimation time may have introduced noise into the splines and 

Kriging models. 
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7.3.2 Least-Squares Polynomials 

A higher-order polynomial will generally model the behaviour of the data better if 

there is a weak linear trend between the observations. However, it is also possible 

that the data is over-parameterised. For example, a data set that exhibits a parabolic 

behaviour is best modelled by a quadratic function. In this instance, the model will 

not benefit from a polynomial of an order higher than two. In some cases, over-

parameterisation of the observations may reduce the reliability of the model 

(Walpole et al., 2007). In this study into the LS modelling of ZWDm observations, 

polynomials 
ZWDmP of an order up to ( ZWDm -2) are analysed for each run, with the 

maximum order of 18 allowed. Tables 7.8 to 7.11 summarise the results of 

estimating one, two-consecutive, three-consecutive and four-consecutive missing 

observations. The polynomial with the lowest RMSE, given by Eq. (7.35), in each of 

these runs, is presented. The fourth and fifth columns in these tables are the 

percentages of the interpolated ZWD that are not statistically significant different to 

the GNSS ZWD at 2 SEσ  and 3 SEσ , respectively. These corresponding error 

estimates can be useful as error measures in an assimilation process. 

 

From Tables 7.8 to 7.11, it can be seen that the best results are achieved with 

polynomials of order greater than two when 6m ≥ . This is always the likely case 

since greater variations are observed in the data sets as m increases. Therefore, it is 

expected that higher-order polynomials are more appropriate in following the data 

trends.  

 

Table 7.8 The LS polynomial in the estimation of a single missing observation 

Polynomial 
Order of 

Polynomial 
RMSE (cm) 

% of agreement  

at  2 SE 

% of agreement at  

3 SE 

P4 1 1.32 68% 77% 

P6 3 1.32 76% 85% 

P8 3 1.30 82% 91% 

P12 7 1.30 87% 94% 

P18 6 1.30 88% 95% 

P24 9 1.30 87% 96% 

P30 13 1.30 86% 96% 

P36 15 1.31 89% 97% 

P40 15 1.30 87% 96% 

P44 16 1.30 88% 96% 

P44 18 1.30 87% 97% 
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Table 7.9 The LS polynomial in the estimation of two-successive missing observations 

Polynomial 
Order of 

Polynomial 
RMSE (cm) 

% of agreement  

at  2 SE 

% of agreement 

at  3 SE 

P4 1 1.44 68% 80% 

P6 3 1.46 78% 87% 

P8 3 1.45 81% 91% 

P12 5 1.48 85% 95% 

P18 7 1.42 87% 97% 

P24 9 1.43 87% 97% 

P30 12 1.43 89% 98% 

P36 15 1.46 88% 97% 

P40 15 1.44 89% 97% 

P44 17 1.44 88% 97% 

P44 18 1.42 89% 97% 

 

Table 7.10 The LS polynomial in the estimation of three-successive missing 
observations 

Polynomial 
Order of 

Polynomial 
RMSE (cm) 

% of agreement  

at  2 SE 

% of agreement 

at  3 SE 

P4 1 1.55 69% 79% 

P6 3 1.63 79% 87% 

P8 3 1.54 82% 92% 

P12 4 1.57 87% 96% 

P18 7 1.54 88% 96% 

P24 7 1.58 88% 95% 

P30 13 1.58 89% 97% 

P36 14 1.59 89% 97% 

P40 16 1.59 89% 97% 

P44 18 1.58 91% 98% 

P44 18 1.62 89% 96% 

 

Table 7.11 The LS polynomial in the estimation of four-successive missing 
observations 

Polynomial 
Order of 

Polynomial 
RMSE (cm) 

% of agreement  

at  2 SE 

% of agreement 

at  3 SE 

P4 1 1.65 67% 79% 

P6 2 1.73 85% 92% 

P8 3 1.66 82% 92% 

P12 5 1.72 86% 95% 

P18 7 1.70 88% 96% 

P24 9 1.76 88% 95% 

P30 13 1.77 90% 97% 

P36 16 1.77 90% 98% 

P40 6 1.77 75% 88% 

P44 18 1.74 91% 98% 

P44 9 1.77 76% 89% 
 

 

However, the polynomial with maximum polynomial order allowed, did not always 

yield the best results. This is a classic case of over-parameterisations. Figure 7.16 is a 



 179

graphical illustration of this issue, for {4mZWD ∈ , 6, 8, 12, 18, 24, 30, 36, 40, 44, 

}48 , in the case of estimating a single missing ZWD observation. 

 

Among the best polynomials of these runs, the differences, in regards to the ZWD 

RMSEs, are marginal. On the other hand, the performance of the error estimates 

improves as m increases from four to 18, but gave similar results for 18mZWD > . 

Overall for this data set, one can make the case that the best LS polynomial model 

for the estimation of missing ZWDs is generated with 18 data points, denoted as 18P , 

with results in Table 7.11 being the only exception. Although 4P  and 8P  have 

yielded lower ZWD RMSE results in this case, 18P  provided ZWD estimates that are 

statistically more agreeable to the GNSS ZWD estimates (with 96% success rate at 

three SE, as compared to 79% and 92% with 4P  and 8P , respectively). The 

corresponding error estimates can be useful if the nature of the user’s work requires 

not just the actual ZWD estimates, but the corresponding precisions as well. 

 

Comparisons of the performances of the LS polynomials and IMs were also made. 

Figures 7.17 to 7.20 illustrate the estimation errors, given by Eq. (7.36), for each of 

the modelling techniques given in Section 7.2 at each {4mZWD ∈ , 6, 8, 12, 18, 24, 

30, 36, 40, 44, }48 . As can be seen from Tables 7.9 to 7.12, the results of the LP 

were comparatively large, and thus were excluded from Figures 7.17 to 7.20. 

 

 

Figure 7.16 Variation in the RMSEs as the order of the polynomial increases 
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Based on the results of the above tests, the LS polynomials have outperformed all the 

investigated interpolation models, except for the linear interpolation model. The LI 

was marginally better than the LS model. The average difference between the 

interpolation errors of the linear interpolation and the least-squares approach is about 

0.2%, which corresponds to less than a millimetre difference in estimating the 

ZWDs. The advantage of the former approach is in its simplicity, whereas the LS 

model has the added benefit of (standard) error estimation as a measure of precision 

for the estimates. If the error estimates is of no interest to the user, the linear 

interpolant suffices. 

 

Figure 7.17 Comparison between the estimation errors of different modelling techniques 
for the case of one missing observation 

 

 

Figure 7.18 Comparison between the estimation errors of different modelling techniques 
for the case of two-successive missing observations 
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Figure 7.19 Comparison between the estimation errors of different modelling techniques 
for the case of three-successive missing observations 

 

 

Figure 7.20 Comparison between the estimation errors of different modelling techniques 
for the case of four-successive missing observations 
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section, several TS models are examined to investigate their performance in 
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and smoothing models. The trend models are implemented with the LS principle. 

Descriptions of these models are outlined in the following sub-sections. 

 

7.4.1 Linear Trend (LT) Model 

The LT model describes the relationship between the ZWD observations, 

( ){ }n

1iitZWD
=  and time { }n

1iit
= , in the following linear form (e.g., Johnson and 

Wichern, 2007): 

 

( )
iti10i ettZWD +β+β=   (7.37) 

 

where 0β  and 1β  are coefficients to be determined in a least-squares estimation 

process and 
ite  is the model error. 

 

7.4.2 Quadratic Trend (QT) Model 

The QT Model attempts to model the association between the ZWD observations, 

( ){ }n

1iitZWD
= , and time { ,tt 1= ,t 2 .., }nt  as a quadratic function, which can be 

formulated as (e.g., Farnum and Stanton, 1989): 

 

( )
it

2
i2i10i etttZWD +β+β+β=   (7.38) 

 

where 0β , 1β  and 2β  are coefficients to be determined in a LS estimation process as 

above, and 
ite  is the model error. 

 

7.4.3 Exponential Growth Trend (EGT) Model 

The EGT model expresses the relationship between the ZWD observations, 

( ){ }n

1iitZWD
= , and time { ,tt 1= ,t 2 .., }nt , in the form (e.g., Farnum and Stanton, 

1989): 

 

( ) ( )
i

i

t

t

10i etZWD ×β×β=   (7.39) 
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Eq. (7.39) can be redefined in its linearised form by taking the natural logarithm of 

both sides of the equation, resulting in: 

 

( )( ) ( ) ( ) ( )
iti10i elntlnlntZWDln +β+β=   (7.40) 

 

By letting ( )( )itZWDlnz =  and taking ( ) α=β0ln  and ( ) γ=β1ln , this translates to: 

 

titz ε+γ+α=   (7.41) 

 

The coefficients α  and γ can then be resolved via the LS process and α=β e0  and 

γ=β e1  can subsequently be determined. 

 

7.4.4 Decomposition (DCP) Model 

The decomposition model represents the ZWD data as a TS with a linear trend and 

seasonal components, along with the errors. The multiplicative decomposition TS 

model can be given as (e.g., Bowerman and O' Connell, 1993; Makridakis et al., 

1998): 

 

 ( ) ErrorSeasonalTrendtZWD i ××=  (7.42) 

 

The multiplicative decomposition model involves the following steps: 

(i) The ZWD data is initially fitted by a linear regression trend line. 

(ii)  The data is then detrended by dividing the data by the trend component. 

(iii) The detrended data is then smoothed using a centred moving average. 

(iv) Once the moving average is obtained, it is divided by the detrended data to 

obtain what is referred to as raw seasonals. 

(v) Within each seasonal period, the median value of the raw seasonals is found. 

The medians are then adjusted so that the mean is one. These adjusted 

medians constitute the seasonal indices. 

(vi) The seasonal indices are then used to seasonally adjust the data. 
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7.4.5 Moving Average (MA) Model 

The moving average time-series model smoothes the ZWD data by averaging 

consecutive observations in a series and provides a short-term prediction. The 

procedure is a likely choice if the ZWD data exhibits neither a trend nor a seasonal 

component.  The smoothed statistic at time it , ( )itMA , for the previous m ZWD 

observations, ( ){ } 1m

0jjtZWD −

=
, where ji > , is given by (e.g., Bowerman and O' 

Connell, 1993; Makridakis et al., 1998): 

 

 ( ) ( )∑
−

=

=
1m

0j
ji tZWD

m

1
tMA   (7.43) 

 

For a set of ( )1n +  ZWD observations given by ( ){ }n

0jjtZWD
=

, the forecasted value, 

( )kntDŴZ + , for k epochs after time nt  can be given as: 

 

( ) ( )nkn tMAtDŴZ =+   (7.44) 

 

7.4.6 Single-Exponential Smoothing (SES) Model 

The SES model smoothes the n  ZWD data, at { ,tt 1= ,t2 .., }nt , by computing 

exponentially weighted averages, allowing it to provide short-term predictions. The 

SES model is (e.g., Bowerman and O' Connell, 1993; Makridakis et al., 1998): 

 

 ( ) ( )
1ii1i1iii ttwttwtwt SESwSESSES1wSES

−−−
−α+=α−+α=  (7.45) 

 

with an initial value 
0tSES  at time 0t  given by: 

 

 ( )1t tZWDSES
1

=  (7.46) 

 

where 10 w <α<  is the weight factor. Values of wα  closer to one will result in rapid 

changes in the fitted line as more weights are given to recent changes in the data, 

whilst smaller values have greater smoothing effects and are less responsive to recent 

data. Thus, smaller values for wα  are recommended for data with a high noise level. 
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The Auto-Regressive Integrated Moving Average (ARIMA) (Box and Jenkins, 1994) 

procedure is used to determine the optimal value for wα . The forecasted value, 

( )kntDŴZ + , for k epochs after time nt  is given by: 

  

( )
ntkn SEStDŴZ =+  (7.47) 

 

7.4.7 Double-Exponential Smoothing (DES) Model 

If the ZWD data exhibits a trend, the SES method may not model the ( ){ }n

1iitZWD
=  

observations adequately. The DES model overcomes this deficiency by introducing a 

second equation to capture the trend component and provide short-term predictions. 

The two associated equations at time it , defined as the level ( )
itLv  and trend ( )

it
Tr  

components, are (LaViola, 2003): 

   

 ( )( ) ( )( )
1i1ii ttwiwt TrLv1tZWDLv

−−
−α−+α=  (7.48) 

( ) ( )
1i1iii twttwt Tr1TrTrTr

−−
γ−+−γ=  (7.49) 

 

where wα  and wγ are the weight factors, and wγ  has to be chosen in conjunction 

with wα . The chosen values for both wγ  and wα  have to be between zero and one. 

The ARIMA method can be used to obtain the optimal values for the weights. The 

initial value for 
it

Lv  at 1it =  is generally set to the value of the first observation, i.e. 

( )
1i1 tt tZWDLv

=
= , whilst 

1t
Tr  may be chosen in one of the following ways: 

 

 (i) ( ) ( )12t tZWDtZWDTr
1

−=  (7.50) 

 (ii) ( ) ( )[ ]∑
=

+ −=
3

1i
i1it tZWDtZWD

3

1
Tr

1
 (7.51) 

 (iii) ( ) ( )[ ] m/tZWDtZWDTr 1mt i
−= , for a selected period m (7.52) 

 

The forecasted value, ( )kntDŴZ + , for k epochs after time nt  is given by: 

 

 ( )
nn ttkn kTrLvtDŴZ +=+  (7.53) 
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7.4.8 Winters’ Method (WM) 

WM smoothes the data by utilising the Holt-Winters exponential smoothing 

technique and provide short- to medium-range predictions (Chatfield and Yar, 1988). 

WM is appropriate when trend and seasonality are present. Thus, WM calculates 

dynamic estimates for three components, namely; level ( )
itLv , trend ( )

it
Tr  and 

seasonal ( )
itSn . The multiplicative WM model can be defined as (Chatfield and Yar, 

1988): 

 

 ( )( )
1i1i

1i

i

i ttw

t

t

wt TrLv1
Sn

ZWD
Lv

−−

−

+α−+













α=  (7.54) 

 ( ) ( )
1i1iii twttwt Tr1LvLvTr

−−
γ−+−γ=  (7.55) 

 ( ) ϖ−ζ−+













ζ=

i

i

i

i tw

t

t
wt Sn1

Lv

ZWD
Sn  (7.56) 

  

where wα , wγ and wζ  are the weights for the level, trend and seasonal components, 

respectively; ϖ  is the seasonal period. Unlike the SES and the DES models, the 

optimal values for the weights ( ,wα ,wγ )wζ  cannot be computed with the ARIMA 

model. The magnitudes of the weights are, however, similar to that of SES and DES 

methods, i.e. greater smoothing is achieved through smaller weights, which is 

recommended for noisy data. 

 

The forecasted value, ( )kntDŴZ + , for k epochs after time nt  can be given by: 

 

 ( ) ( )
nnn tttkn kTrLvSntDŴZ +=+  (7.57) 

 

 

7.5 TESTING AND ANALYSIS OF METHODS FOR PREDICTING ZENITH 

WET DELAY OBSERVATIONS 

In order to assess the accuracy and reliability of the TS prediction models given in 

Section 7.4, ZWD estimates were predicted using each of these models separately, on 

ZWD data from days Sept 13th, 15th and 18th of the ONSA data set (see Figure 7.14 
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in Section 7.3). The models were generated based on the previous 24-h of data for 

each of these dates. For each model, ZWD were forecasted for the next 24-h from 

each of the above dates. The forecasted values, ( )tDŴZ , were then compared to the 

actual GNSS ZWD estimates. Based on the combined differences between the 

forecasted and the actual GNSS ZWD estimates for each of the dates, the RMSE 

(cm) for a given prediction model is: 

 

 ( ) ( )( )∑
=

−=
cn

1j

2

jj

c

F tZWDtDŴZ
n

1
RMSE   (7.58) 

 

where cn  is the total number of comparisons. For a better perspective of the RMSEs, 

the overall forecast error (%), FE , is also calculated for each of the prediction 

models:  

 

( )
%100*

tZWD
n

1

RMSE
E

cn

1j
j

c

F
F





















=

∑
=

  (7.59) 

 

The complete results of the investigation are presented in Tables 7.12, which shows 

the average forecast errors up to the jth hour of prediction, for j = 1-h, 2-h, …, 24-h. 

Correspondingly, Figure 7.21 provides a graphical illustration of the forecast error 

trend for each of the tested models. 

 

 

Figure 7.21 Forecast error trend exhibited by each of the tested model 
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Table 7.12 Forecast errors (%) of the next 24-h of prediction for each of the tested 
models 

Number of 
hours forecasted 

LT QT EGT DCP WM MA SES DES 

1 15% 8% 17% 11% 6% 6% 4% 8% 
2 13% 15% 16% 12% 13% 9% 11% 11% 
3 13% 17% 15% 13% 12% 8% 11% 13% 
4 12% 18% 15% 14% 12% 7% 11% 14% 
5 13% 23% 16% 14% 15% 9% 13% 18% 
6 14% 25% 17% 15% 16% 9% 14% 20% 
7 16% 27% 20% 16% 16% 10% 14% 22% 
8 23% 30% 27% 23% 20% 15% 17% 24% 
9 24% 32% 29% 24% 21% 16% 18% 25% 
10 26% 35% 31% 26% 23% 17% 19% 28% 
11 28% 37% 34% 29% 24% 18% 19% 29% 
12 31% 42% 37% 31% 27% 19% 21% 33% 
13 32% 45% 38% 32% 27% 20% 22% 34% 
14 33% 48% 40% 32% 28% 20% 22% 35% 
15 35% 51% 42% 35% 29% 21% 22% 37% 
16 37% 54% 46% 38% 30% 21% 23% 38% 
17 41% 57% 51% 41% 33% 24% 24% 40% 
18 44% 60% 55% 44% 34% 25% 25% 42% 
19 47% 64% 58% 46% 36% 26% 26% 44% 
20 49% 69% 62% 49% 38% 27% 27% 46% 
21 51% 73% 64% 51% 39% 27% 27% 48% 
22 53% 78% 67% 53% 40% 28% 27% 50% 
23 53% 82% 69% 54% 40% 27% 27% 50% 
24 54% 86% 70% 54% 40% 27% 27% 51% 

 

 

As expected, the accuracy of all the forecast models decreases with forecast time as 

shown in Figure 7.21. This behaviour is somewhat anticipated from the 

autocorrelation analysis in Section 7.1, whereby the correlations among the ZWD 

estimates decays over time and are only really significant within the first two hours. 

The QT and the DES models are the worst-performing models.  

 

Previous studies (e.g., El-Mowafy, 2006) had shown that the DES model is very 

effective in providing real-time GNSS ZWD solutions for short-term prediction (15 

min). However, for the longer periods considered here, its performance was bettered 

by the MA, the SES, and the WM prediction models. The MA and SES were able 

provide ZWD estimates with a forecast error of less than 10% for the first 4 hours of 

prediction. Within these 4 hours, the percentages of predicted ZWD that are in 

statistical agreement with the actual GNSS ZWD values are 100% and 92% for MA 



 

and SES, respectively. As the forecast time increases, the 

between the predicted and actual ZWD estimates for SES 

after 4 hours to around 43% at the end of the 2

model is still able to maintain the level of statistical agreement at 75% mark at the 

end of the 24-h period.

Figure 7.22 Percentage of 
actual GNSS ZWD estimates
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In the efforts to determine the most appropriate models for the interpolation and 

prediction of ZWD estimates, an autocorrelation analysis of the tropospheric 

estimates TS was ini

12-h time interval to ensure a degree of stationarity in the time series. It was found 

that for 14 of the Australian 

autocorrelation was observed at 1.6 hours. If a Gauss Markov model is assumed, this 

value can be of significant help in KF processing with state augmentation.

 

and SES, respectively. As the forecast time increases, the proportion

between the predicted and actual ZWD estimates for SES deteriorates 

after 4 hours to around 43% at the end of the 24-h period. On the other hand, the MA 

model is still able to maintain the level of statistical agreement at 75% mark at the 

h period. 

Percentage of predicted ZWD estimates that are in good agreement with the 
GNSS ZWD estimates 

model was the best performer and is recommended for practical 

applications such as RTK. The SES model is also worth considering.

SUMMARY 

In the efforts to determine the most appropriate models for the interpolation and 

prediction of ZWD estimates, an autocorrelation analysis of the tropospheric 

itially carried out. The autocorrelation study was restricted to a 

nterval to ensure a degree of stationarity in the time series. It was found 

that for 14 of the Australian GNSS stations, the average time lag for significant 

autocorrelation was observed at 1.6 hours. If a Gauss Markov model is assumed, this 

f significant help in KF processing with state augmentation.
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deteriorates significantly 

h period. On the other hand, the MA 

model is still able to maintain the level of statistical agreement at 75% mark at the 
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The SES model is also worth considering. 

In the efforts to determine the most appropriate models for the interpolation and 

prediction of ZWD estimates, an autocorrelation analysis of the tropospheric 

carried out. The autocorrelation study was restricted to a 

nterval to ensure a degree of stationarity in the time series. It was found 

stations, the average time lag for significant 

autocorrelation was observed at 1.6 hours. If a Gauss Markov model is assumed, this 

f significant help in KF processing with state augmentation. 
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With the autocorrelation study in mind, an investigation into the accuracy and 

precision of several modelling techniques was carried out to determine the best 

approach for estimating missing data points for a set of ZWD observations.  Such 

interpolation processes are needed for post processing applications. For the 

investigated data set, results indicate that the LI model and an 18-point polynomial 

model, 18P , of order seven, are the best interpolant and regression model, 

respectively. The favourable results for the LI model, which only depends on the two 

most recent data points, were reflected in the autocorrelation plot of the GNSS ZWD 

estimates, whereby significant autocorrelation values were observed for up to 2-h 

only. The advantage of the regression model approach to the LI model is in the added 

benefit of precision estimation, which acts as a source of quality indication. The 

errors of the 18P  model were able to successfully summarise over 95% of the GNSS 

ZWD differences between the estimated and the actual values at three standard errors 

for all of the investigated cases of missing data.  

 

A ZWD prediction study was also implemented over several prediction models. 

From Figure 7.21, the MA and the SES models appear to produce the most accurate 

ZWD predictions with forecast error of less than 10% up to 4 hours, and increasing 

to around 27% at the end of the 24-h period. This is expected as the ZWD 

autocorrelation is only significant to 1.6 hours. With at least 75% statistical 

agreement between the predicted and the actual ZWD estimates within the 24-h 

period, the MA model has outperformed the SES model in this respect. Overall, the 

MA is recommended model for predicting ZWD. 
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CHAPTER 8 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

8.0 INTRODUCTION 

The major conclusions and recommendations that can be drawn from the 

developments and the test results of this study are outlined in this Chapter. The study 

began by discussing the use of GNSS measurements for the estimation of the ZWD 

in static mode. Next, factors that can impact the ZWD estimation process were 

identified. These include the choice of stochastic model, the length of the processing 

session, and the number of stations involved in the data processing. By examining 

these factors, a strategy was proposed to estimate the ZWD more efficiently for 

practical use. The impact of proposed strategy on the ZWD estimation was tested 

with a statistical procedure that includes cross-validation with external data, and the 

analysis of the error (precision) estimates. An autocorrelation study on the ZWD 

estimates was also performed. By observing the autocorrelations at various stations, 

it was found that the commonly-used Gauss-Markov (GM) autocorrelation model 

does not effectively model the autocorrelation trends. Therefore, a new 

autocorrelation model was proposed and tested. The study concluded with an 

investigation into various ZWD interpolation and prediction models that can provide 

estimates during data breaks in network real-time applications and other practical 

considerations. The following section presents the main conclusions drawn from the 

numerical results of the study. 

 

 

8.1 Conclusions 

The GM KF process utilises the first-order GM autocorrelation function, given in Eq. 

(3.50). However, for the purpose of ZWD or PWV estimation, it has been shown in 

Section 3.2 that the GM autocorrelation function decays much too rapidly and thus, it 

often fails to properly follow the actual ZWD autocorrelation trend. Therefore, a new 
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autocorrelation function was proposed for the KF process. The following provides a 

summary of the performances for the proposed model: 

 

• The hyperbolic function is the basis of the proposed autocorrelation function, 

which is generated based on the small number of autocorrelation values 

determined with the standard autocorrelation formula given by Eqs. (3.58) 

and (3.59). With these estimates, the LS method is then used to determine the 

parameter coefficient of the proposed model. Once solved, the proposed 

model is then fully defined;  

• This study has shown that the proposed model is able to follow the 

autocorrelation closely for a significant number of time lags, unlike the GM 

function; 

• Real data analysis had also shown that the proposed model is able to provide 

near real-time ZTD estimates to within 1-2 cm accuracy, and had performed 

just as well as the GM model. The marginal difference between the proposed 

model and the GM model is likely due to the short sampling interval (30 s) 

and estimation period (every 5 min), whereby minimal differences were 

observed in the estimated correlation coefficients from the two models. 

However, the proposed model demonstrated an average improvement of 

around 11 mm in ZWD when compared to the RW model.  

 

The functional model of a GNSS observation, given in Chapter 3, is not particularly 

controversial and is widely accepted by the GNSS community. However, the 

stochastic modelling of the GNSS measurements remains a challenging prospect, and 

a properly-defined stochastic model is essential in providing highly accurate ZWD 

and geodetic solutions.  

 

A stochastic model of interest here is a rigorous method known as the Minimum 

Norm Quadratic Unbiased Estimator (MINQUE). The MINQUE method was shown 

to improve coordinate solution over short-baselines (e.g., Wang et al., 1998). 

However, prior to this study, the impact of MINQUE on the estimation of the ZWD 

was still unclear. Therefore, one contribution of this research is the investigation into 

the MINQUE method and its effect on the ZWD estimates (Sections 6.2 to 6.4). 
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Results from the MINQUE technique was compared to typical methods such as the 

equal-weighting model (EWM) and the elevation-angle dependent model (EADM). 

A simplified version of MINQUE, known as the SMINQUE (Satirapod et al., 2002), 

was also studied and tested. In Section 4.4, a simple, but significant adjustment was 

made to the original MINQUE and SMINQUE algorithms. The following gives a 

summary of developments and conclusions drawn from the simulation and real data 

studies: 

 

• The adjustment made to the MINQUE and SMINQUE methods increases the 

flexibility of these methods to accommodate uneven numbers of satellites in 

the observing epochs of the processing session. The modification is given in 

Chapter 4; 

• Previous studies mentioned that the differences in the coordinate solution 

between MINQUE and SMINQUE are of the sub-millimetre level, a 

theoretical investigation into their formulations suggests that it is not always 

the case. This was demonstrated by the results of the Australian baseline 

campaign whereby sub-millimetre differences in the height offsets between 

the two methods were observed at only 43% of the time. In 7% of the results, 

the height solutions of MINQUE differ to that of SMINQUE by over 10 mm; 

• The simulation study has shown that although both MINQUE and SMINQUE 

produced better height solutions than the EWM and the EADM (by an 

average of 71% and 51 % respectively) in point positioning. For the long-

baseline campaigns, it was demonstrated that there is not real advantage in 

using MINQUE or SMINQUE over the EADM; 

• Although using MINQUE and SMINQUE resulted in better height resolution, 

this superiority did not translate into better ZWD estimation in the simulation 

study. The EADM was the best model in this case. The baseline-campaigns 

have also shown that the EADM is the preferred stochastic model when 

estimating the ZWD or PWV. In addition, error analysis of the corresponding 

tropospheric LS error estimates has shown that the EADM is able to provide 

better precision or error estimates that are agreeable to the true accuracy of 

the LS tropospheric estimates. For the purpose of ZWD and LS error 
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estimation, the study concludes that the EADM is the optimal stochastic 

model among all the tested methods. 

 

Another contribution of this research work is to propose the use of a baseline strategy 

with a reduced processing window in estimating the ZWD and the error parameters, 

instead of the network approach. The solutions from the baseline strategy were 

compared to the solutions from multi-station networks, IGS solutions or 24-h 

solutions. Statistical analysis was performed to determine the validity of the baseline 

approach. 

 

• Analysis of 35 Australian stations over a 3-week campaign was initially 

performed. This campaign resulted in quality PWV estimates when compared 

to the corresponding RS data. The accuracies of the PWV estimates (less than 

3 mm in most cases) corresponded well with past studies. However, the 

corresponding error estimates (i.e. square root of the LS error variance of the 

tropospheric delay estimates) were inadequate as a source of error 

information for the NWP data assimilation; 

• The simulation study has shown that a reduced processing window can have a 

positive impact on the error estimates of the LS ZWD as a dependable source 

of error measures, whilst providing ZWD estimates that are more than 

comparable to that of the 24-h solutions. Results also show that for the 

EADM, a 2-h processing window was able to provide ZWD estimates with a 

root mean squared error (RMSE) that is only 15% bettered by the 24-h 

solution. In addition, more than 80% (at 3 standard deviations) of the GNSS 

ZWD estimates determined with the 2-h processing window were in 

statistical agreement with the actual WVR ZWD values. The proportion of 

agreement for the 24-h solution was only at 50%; 

• Two baseline studies were conducted in Australia and Europe with real data, 

which showed that if the station coordinates in each baseline are known and 

are constrained, a 2-h processing window is sufficient in providing ZWD and 

PWV estimates that are in good agreement with the IGS solutions, the 

network solutions and the 24-h solution. In addition, the baseline approach 

was able to generate ZWD and PWV estimates that are in statistical 

agreement with tropospheric measurements from RS and WVR. If there is 
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only one reference station in the baseline, a 3-h window is necessary to 

increase the redundancy level so that the coordinates of the other unknown 

station can be resolved adequately, and subsequently the estimation of 

tropospheric parameter will improve.  

 

The final contribution of the study is to provide insight into several interpolation and 

prediction (trend and smoothing) models for ZWD estimation. An autocorrelation 

analysis of the ZWD data was initially carried out to provide insight into possible 

models which may aid the study. The findings are as follows: 

 

• Results of the autocorrelation analysis of the ONSA ZWD data indicated that 

the ZWDs are significantly correlated to each other for approximately 2-h; 

• The interpolation models considered in the missing ZWD study in Section 7.3 

include the linear interpolation (LI) model, the cubic spline models, the cubic 

Hermite and Lagrange polynomial interpolation models, the fast-Fourier-

transform model, the simple Kriging model, and the LS regression models. 

The results have shown that the LI model provided the most accurate ZWD 

estimation for when there are up to 4-h of missing data. The LI model only 

relies on the two most recent observed data surrounding the missing values. 

This outcome is in agreement with the ZWD autocorrelation analysis; 

• The linear trend model (LT), the quadratic trend model (QT), the exponential 

growth trend (EGT) model, along with the smoothing models such as the 

decomposition (DECOMP) model, the moving average (MA) models, the 

single-exponential-smoothing model (SES) and the double-exponential-

smoothing (DES) model, were used in the study to determine the best model 

for predicting ZWD. Results given in Section 7.5 indicated that the MA and 

the SES models are able to provide ZWD estimates with forecast errors of 

less than 10% for the first 4 hours of prediction. Beyond that the results are 

significantly worse. This outcome is expected as the autocorrelation analysis 

of the ZWD estimates indicated that the ZWDs are only significantly 

correlated up to 1.6 hours. Furthermore, the ZWD values predicted from the 

MA model were able to be in statistical agreement (at three standard 

deviations) with the actual ZWD estimates at a rate of at least 75% within the 

24-h period (see Figure 7.22). 
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8.2 RECOMMENDATIONS 

Based on the theoretical and experimental results in this study, the following 

recommendations are made for future research. Note that although the experimental 

data in this thesis were from GPS, the proposed recommendations are applicable to 

other GNSS systems such as Glonass and Galileo. 

 

• The new autocorrelation function proposed in Chapter 3 was shown to be 

able to produce good NRT ZWD estimates in PPP mode. Further studies are 

required to determine how well the model can when the receiver is in roving 

mode, and whether or not the model can be improved; 

• The choice of stochastic model is an important issue in GNSS data 

adjustment. An incorrectly defined stochastic model can lead to unrealistic 

ZWD results, as well as LS error estimates. The MINQUE and SMINQUE 

methods considered in this study model the spatial correlations among the 

observations in reference to the satellites (or satellite pairs for DD 

observations). However, the study has shown that MINQUE and SMINQUE 

are unable to improve the estimation of the tropospheric and error parameter 

estimates. In fact, the EADM, a model that depends on the satellite elevation 

angles and ignores all correlations, produced better tropospheric estimates. 

Therefore further research is required to investigate the impact of other 

spatial and temporal models on the determination of the tropospheric 

parameter, and whether or not the outcome for MINQUE and SMINQUE is 

just an isolated case; 

• The proposed strategy in this study for estimating the tropospheric delays at 

reference stations is via a baseline approach with a shortened processing 

window session. If the coordinates of all stations are known, results show that 

the baseline strategy will suffice in estimating the tropospheric parameter to a 

degree of accuracy comparable to that of the network solution, whilst 

producing realistic error estimates that are able to correspond well with the 

true accuracy of the parameter estimates. The chosen stations for this study 

are located at mid to low latitudes where the atmospheric conditions are 

considered as mild. However, for stations that are located in tropical and sub-

tropical regions, the quality of the GNSS signals in these regions can be 
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severely degraded due to the constant changes in the weather activities, as 

well as heavy humidity on a day to day basis. Therefore, further research is 

required to determine how well this baseline strategy will work in regions 

that experience more volatile weather conditions and greater atmospheric 

delay; 

• The study has shown that good LS tropospheric estimates and realistic error 

estimates can be achieved with a baseline approach. To fully realise the 

effects of the GNSS tropospheric and the corresponding error estimates on 

weather forecasts, further research should be directed to assimilating these 

baseline-generated tropospheric solutions into NWP models to determine its 

full impact; 

• The tropospheric estimates generated through the appropriate prediction 

model should be tested to determine the effectiveness of the predicted 

estimates, in different locations and under various measuring conditions, and 

as well as its impact on the results of network RTK applications.  
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APPENDIX 

 

Table A1 Formulations of the established hydrostatic delay models. 
Model Formulation Parameters 
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Table A3 Formulations of different mapping functions 
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Table A4 Formulations of IMF and VMF1 

MF Formulation Parameters 

IMFs 

(Niell, 2000) 
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( )drydry c,b  are as defined in the IMF. 
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drya  and weta are determined by inverting the 

continued fractions. 
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