1,585 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robust H

    Get PDF

    Finite-time stochastic input-to-state stability and observer-based controller design for singular nonlinear systems

    Get PDF
    This paper investigated observer-based controller for a class of singular nonlinear systems with state and exogenous disturbance-dependent noise. A new sufficient condition for finite-time stochastic input-to-state stability (FTSISS) of stochastic nonlinear systems is developed. Based on the sufficient condition, a sufficient condition on impulse-free and FTSISS for corresponding closed-loop error systems is provided. A linear matrix inequality condition, which can calculate the gains of the observer and state-feedback controller, is developed. Finally, two simulation examples are employed to demonstrate the effectiveness of the proposed approaches

    Robust Fault-Tolerant Tracking Control for Nonlinear Networked Control System: Asynchronous Switched Polytopic Approach

    Get PDF
    This paper is concerned with the robust fault-tolerant tracking control problem for networked control system (NCS). Firstly, considering the locally overlapped switching law widely existed in engineering applications, the NCS is modeled as a locally overlapped switched polytopic system to reduce designing conservatism and solving complexity. Then, switched parameter dependent fault-tolerant tracking controllers are constructed to deal with the asynchronous switching phenomenon caused by the updating delays of the switching signals and weighted coefficients. Additionally, the global uniform asymptotic stability in the mean (GUAS-M) and desired weighted l2 performance are guaranteed by combining the switched parameter dependent Lyapunov functional method with the average dwell time (ADT) method, and the feasible conditions for the fault-tolerant tracking controllers are obtained in the form of linear matrix inequalities (LMIs). Finally, the performance of the proposed approach is verified on a highly maneuverable technology (HiMAT) vehicle’s tracking control problem. Simulation results show the effectiveness of the proposed method

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    New H∞ control design for polytopic systems with mixed time-varying delays in state and input

    Full text link
    This paper concerns with the problem of state-feedback H∞ control design for a class of linear systems with polytopic uncertainties and mixed time-varying delays in state and input. Our approach can be described as follows. We first construct a state-feedback controller based on the idea of parameter-dependent controller design. By constructing a new parameter-dependent Lyapunov-Krasovskii functional (LKF), we then derive new delay-dependent conditions in terms of linear matrix inequalities ensuring the exponential stability of the corresponding closed-loop system with a H∞ disturbance attenuation level. The effectiveness and applicability of the obtained results are demonstrated by practical examples

    Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults

    Get PDF
    The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the framework of fault tolerant control (FTC) the challenge is to develop an FTTC design strategy for nonlinear systems to tolerate simultaneous actuator and sensor faults that have bounded first time derivatives. The main contribution of this paper is the proposal of a new architecture based on a combination of actuator and sensor Takagi-Sugeno (T-S) proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators together with a T-S dynamic output feedback control (TSDOFC) capable of time-varying reference tracking. Within this architecture the design freedom for each of the T-S estimators and the control system are available separately with an important consequence on robust Lâ‚‚ norm fault estimation and robust Lâ‚‚ norm closed-loop tracking performance. The FTTC strategy is illustrated using a nonlinear inverted pendulum example with time-varying tracking of a moving linear position reference. Keyword
    • …
    corecore