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This paper is concerned with the robust fault-tolerant tracking control problem for networked control system (NCS). Firstly,
considering the locally overlapped switching law widely existed in engineering applications, the NCS is modeled as a locally
overlapped switched polytopic system to reduce designing conservatism and solving complexity. Then, switched parameter
dependent fault-tolerant tracking controllers are constructed to deal with the asynchronous switching phenomenon caused by
the updating delays of the switching signals and weighted coefficients. Additionally, the global uniform asymptotic stability in the
mean (GUAS-M) and desired weighted 𝑙

2
performance are guaranteed by combining the switched parameter dependent Lyapunov

functionalmethodwith the average dwell time (ADT)method, and the feasible conditions for the fault-tolerant tracking controllers
are obtained in the form of linear matrix inequalities (LMIs). Finally, the performance of the proposed approach is verified on
a highly maneuverable technology (HiMAT) vehicle’s tracking control problem. Simulation results show the effectiveness of the
proposed method.

1. Introduction

In recent years, the networked control system (NCS) has
received increasing interest due to the advantages of simple
installation and maintenance, reduced weight, and power
requirement (see [1–5]). However, the insertion of the com-
munication network brings about some new drawbacks, such
as the network-induced delays, data packet dropouts, and
bandwidth limitation (see [6]), which may significantly dete-
riorate the performance of the system or even render the
whole system unstable (see [3, 6]). For nonlinear NCS with
both the nonlinear characteristics and the network transmis-
sion characteristics, the modeling, design, and analysis are
more complex and challenging. Due to the increasing com-
plexity, the probability of faults increases rapidly, which has
motivated researchers to concentrate on fault-tolerant control
for nonlinear NCS.

Several approaches on fault-tolerant control for nonlinear
systems have been proposed, which include fuzzy approaches
(see [7, 8]), neural network approaches (see [9, 10]), and
switched system approaches (see [11–13]). Compared with
other approaches, switched system approach combines the
merits of less calculation amount with abundant engineering
experience, which is of major interest in this paper.

Over last decades, switched system approaches for non-
linear systems have been studied intensively, and significant
achievements have been obtained (see [12, 14–19]). In [12],
a multiple Lyapunov function control method is presented
for a broad class of switched nonlinear systems with input
constraints. In [17], an observer-based fault-tolerant control
method is proposed for a class of nonlinear switched systems
that are output-input stable. A robust fault-tolerant control
method is investigated for a class of uncertain switched
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nonlinear systems in lower triangular form in [18]. A safe-
parking fault-tolerant scheme and a fault-tolerant scheme are
designed for different switching schedules in [19].

Though these methods are effective switched system
approaches, there are still some poorly developed but impor-
tant theoretical issues in switched fault-tolerant control, such
as the global stability certification and the slow variation req-
uirement (see [20]). As a modified switched system analysis
method, switched polytopic approach combines the advan-
tages of higher precise modeling with lower computational
complexity and has been applied widely. In [21], a switched
polytopic system is established to describe the highly maneu-
verable technology vehicle within the full flight envelope
and a robust dynamic output feedback control method is
designed for the switched polytopic system. In [22], switched
polytopic 𝐻

2
controllers are designed for linear parameter

varying system to decrease design conservatism.
Before applying switched polytopic approach to engineer-

ing problems, significant researches remain to be done in
constrained switching laws. “Locally overlapped” switching
is a constrained switching law which exists in many practical
engineering problems, where the order of the activated sub-
systems is predetermined. Meanwhile, the measurement and
transmission of the switching signals, such as the time and
system state, need external delays, which may result in the
asynchronous phenomenon between the system modes and
the switching signals (see [23, 24]). However, most switched
polytopic methods are based on the assumption that the
systemmodes and the corresponding controllers are switched
synchronously, which is not always satisfied in industrial
occasions.

Initiated by Zhang and his coworkers (see [25, 26]), many
researchers have focused their attention on asynchronous
switched system. In [27], state feedback stabilization con-
trollers are designed for asynchronous switched system with
time-varying state delays to guarantee the system’s stability.
Consider the existence of time delays and missing measure-
ments simultaneously; [28] propose a state feedback control-
ler in a more practical asynchronous switching case. To the
best of the authors’ knowledge, research about robust fault-
tolerant tracking control for overlapped switched polytopic
system under asynchronous switching is still challenging and
has not been fully investigated yet.

Motivated by the above analysis, this paper investigates
the robust fault-tolerant tracking control problem for nonlin-
ear networked system under asynchronous switching. Firstly,
the nonlinear NCS is modeled as a linear polytopic system
by linearization on the equilibrium points. Secondly, con-
sidering the locally overlapped properties and asynchronous
switching phenomenon, the polytopic system is augmented
into a locally overlapped asynchronous switched polytopic
system. Then, switched parameter dependent fault-tolerant
tracking controllers are constructed to guarantee the tracking
performance in the presence of external disturbances and
faults. Moreover, the global uniform asymptotic stability in
the mean (GUAS-M) of the system and the weighted 𝑙

2
per-

formance are analyzed by combining the parameter depen-
dent Lyapunov function method with average dwell time
(ADT) method, and the feasible conditions and parameters

for the controllers are obtained in the form of LMIs. Finally,
a full envelope highly maneuverable technology (HiMAT)
flight example is given to demonstrate the effectiveness of the
proposed approach.

2. Model Description

The switched system builds a bridge between linear systems
and complex uncertain systems, which make it possible to
extend the abundant linear control theories to nonlinear sys-
tems effectively. The equilibrium points’ linearization appro-
ach is a widely used nonlinear model describing method in
engineering applications (see [3, 14, 15, 21]). Without loss of
generality, suppose that the nonlinear model concerned in
this paper can be linearized on equilibrium points; then a
set of linear subsystems are obtained by linearizationmethod
and the dynamics of the original nonlinear system can be des-
cribed by a linear switched system which consists of different
equilibrium points. The model of 𝑖th equilibrium point can
be presented as

𝑥 (𝑘 + 1) = 𝐴
𝑖
𝑥 (𝑘) + 𝐵

𝑖
𝑢 (𝑘) + 𝐵

𝑑,𝑖
𝑑 (𝑘) + 𝐵

𝑓,𝑖
𝑓 (𝑘)

𝑦 (𝑘) = 𝐶𝑥 (𝑘),

(1)

where 𝑥 ∈ 𝑅
𝑛 is the state vector, 𝑢 ∈ 𝑅𝑚 is the control input,

𝑦 ∈ 𝑅
𝑐 is the output, 𝑑 ∈ 𝑅

𝑏 is the external disturbance, and
𝑓 ∈ 𝑅

𝑎 is the unknown fault. Meanwhile, 𝑑 and 𝑓 are all
belonging to 𝐿

2
[0,∞); 𝑖 ∈ Ω = {1, 2, . . . ,𝑀} is mark number

of the equilibriumpoints. For∀𝑖 ∈ Ω, the real systemmatrices
𝐴

𝑖
, 𝐵

𝑖
, 𝐵

𝑑,𝑖
, 𝐵

𝑓,𝑖
, and 𝐶 are of appropriate dimensions.

The above linear system can only express the dynamics
in the vicinity of the corresponding equilibrium point. To
improve the precision of the systemmodeling, inspired by the
switched linear parameter varying (LPV) approach, switched
polytopic approach is adopted to describe the system dynam-
ics.

Themain idea of switched polytopic systemmodeling can
be illustrated in Figure 1. Without loss of generality, suppose
the dimension of the system state space is 2. All equilibrium
points within the two-dimensional linear state space are
divided into 𝑁 regions according to the similar dynamics,
and each region corresponds to one polytopic subsystem
(PS). For each PS, referring to the gain scheduling approach
(see [15]), the nonequilibrium point dynamics is described by
dynamical weighting through several adjacent equilibrium
points. For the whole state space, the system dynamics can be
viewed as a linear switching between different PSs. Then the
original dynamics of the nonlinear system can be described
by a switched polytopic system.

After the manipulations above, the dynamics of the non-
linear system can be expressed by

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

(𝑎
𝑘
) 𝑥 (𝑘) + 𝐵

𝜎(𝑘)
(𝑎

𝑘
) 𝑢 (𝑘)

+ 𝐵
𝑑,𝜎(𝑘)

(𝑎
𝑘
) 𝑑 (𝑘) + 𝐵

𝑓,𝜎(𝑘)
(𝑎

𝑘
) 𝑓 (𝑘)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(2)

where 𝑘 is the sampling moment, switching law 𝜎(𝑘) : 𝑁 →

Γ represents the changing rule of the polytopic system along
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Figure 1: Linearization of equilibrium points for nonlinear system.

with time, Γ = {1, 2, . . . , 𝑁} is the mark number collection of
the polytopic system.Moreover, thematrices in (2) satisfy the
following equation:

[
𝐴

𝑚
(𝑎

𝑘
) 𝐵

𝑚
(𝑎

𝑘
)

𝐵
𝑑,𝑚

(𝑎
𝑘
) 𝐵

𝑓,𝑚
(𝑎

𝑘
)
] = ∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
[
𝐴

𝑖
𝐵

𝑖

𝐵
𝑑,𝑖

𝐵
𝑓,𝑖

] , (3)

where ∑
𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
= 1, 𝑎

𝑖,𝑘
≥ 0, ∀𝜎(𝑘) = 𝑚 ∈ Γ.

Generally, the switching law is not always arbitrary in
practical engineering. A constrained switching law with the
property of “locally overlapped” (see [21]) exists extensively in
many engineering problems, such as car shifting, temperature
regulation, and assembly line work. As depicted in Figure 1,
PS 1 contains equilibrium points 1, 2, 3, and 4 and PS 2
contains 2, 4, 5, 6, and 7. Equilibriums points 2 and 4 are their
common equilibrium points. That means PS 1 and PS 2 are
locally overlapped on points 2 and 4. Considering the locally
overlapped characteristic for switching law 𝜎(𝑘), the region
division of the polytopic system must satisfy the following
equation:

(a) ⋃
𝑚∈Γ

Ω
𝑚
= Ω

(b) Ω
𝜎(𝑘)

∩ Ω
𝜎(𝑘+1)

̸= 0, ∀𝑘 ∈ 𝑁.

(4)

Remark 1. Condition (a) ensures that the division results of
the polytopic system can cover the whole nonlinear state
space. Condition (b) ensures that switching occurs between
two adjacent regions that share common equilibrium points.
Under these conditions, only the common equilibriumpoints
of the adjacent polytopic subsystems are used to calculate the
corresponding polytopic weighted coefficient 𝑎

𝑘
. Therefore,

the switching on the boundary of two adjacent regions will
not result in a nonsmooth change of 𝑎

𝑘
. Then the system

dynamics can vary smoothly.

3. Problem Formulation

In this section, parameter dependent robust fault-tolerant
tracking controllers are proposed. The network’s effects will
be discussed firstly. The following assumptions are made to
the network without loss of generality.

Assumption 1. The sampling period of the network is 𝑇. The
sensors, the controllers, and actuators are all time-division-
driven with the same time-driven period. The data packets
that cannot be transmitted successfully on the sampling
moment are discarded, which means the imperfect transmis-
sions are all treated as dropouts (see [1]).

Assumption 2. Let 𝑧(𝑘) be the signal transmitted from the
sensor to the controller; suppose the imperfect transmission
can be represented by a Bernoulli distributed white sequence
𝜃(𝑘) ∈ {0, 1}, where 𝜃(𝑘) = 1 stands for a normal transmission
and 𝜃(𝑘) = 0 stands for a failed one (see [6]). Let Pr{𝜃(𝑘) =
1} = 𝜌, and Pr{𝜃(𝑘) = 0} = 1 − 𝜌.

Since there are zero-order holders in the control system,
the real signal 𝑧(𝑘) can be written as

𝑧 (𝑘) = 𝜃 (𝑘) 𝑦 (𝑘) + (1 − 𝜃 (𝑘)) 𝑧 (𝑘 − 1) . (5)

The purpose of fault-tolerant tracking control is to make
the output 𝑦(𝑘) track the command signal 𝑟(𝑘) and satisfy a
desired 𝐻

∞
tracking performance even in fault case; define

the tracking error 𝑒(𝑘) in the following equation:

𝑒 (𝑘) = 𝑟 (𝑘) − 𝑦 (𝑘) . (6)

Since 𝑦(𝑘) cannot always be obtained on every sampling
second, the actual available tracking error is 𝑒(𝑘) = 𝑟(𝑘)−𝑧(𝑘);
the error integral action can be rewritten as follows:

𝑥 (𝑘) =

𝑘−1

∑

𝑖=0

𝑒 (𝑖) =

𝑘−1

∑

𝑖=0

(𝑟 (𝑖) − 𝑧 (𝑖)) . (7)

Then the tracking problem can be converted to find track-
ing controllers such that the following equation holds:

lim
𝑘→∞

[𝑥 (𝑘)] = 0. (8)

Furthermore, one has

𝑥 (𝑘 + 1) = 𝑥 (𝑘) + 𝑟 (𝑘) − 𝜃 (𝑘) 𝑦 (𝑘)

− (1 − 𝜃 (𝑘)) 𝑧 (𝑘 − 1) .

(9)

To ensure the stability of the system and the tracking pre-
cision, the real output signal and the tracking error integral
action are synthesized to construct the controllers in the
following equation:

𝑢 (𝑘) = 𝐾
1,𝜎(𝑘)

𝑧 (𝑘) + 𝐾
2,𝜎(𝑘)

𝑥 (𝑘) , (10)

where 𝐾
𝜎(𝑘)

= [𝐾1,𝜎(𝑘)
𝐾

2,𝜎(𝑘)] are the controller parameters
which need to be designed.

Then the local controller 𝐾
𝑚
(𝑎

𝑘
), ∀𝜎(𝑘) = 𝑚 ∈ Γ of

polytopic subsystem𝑚 can be written as

𝐾
𝑚
(𝑎

𝑘
) = ∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
𝐾

𝑖
= ∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
[𝐾1,𝑖

𝐾
2,𝑖] ,

∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
= 1, 𝑎

𝑖,𝑘
≥ 0,

(11)

where𝐾
𝑖
is the controller’s parameters of equilibrium point 𝑖,

which is confirmed from (10).
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Remark 2. The state parameters of the equilibrium points
are all stored in internal storage and measured by sensors.
The switching signal 𝜎(𝑘) is confirmed by looking up the
data tables online. The weighted coefficient 𝑎

𝑘
is calculated

by graph functional method.

Remark 3. Due to the imperfect transmission of the system
states transmitted by the network, the updating of 𝜎(𝑘) and 𝑎

𝑘

may lag behind those of the systemmodes.The asynchronous
polytopic switched system considered in this paper is more
complex than that investigated in [25, 26], since both the
delays of 𝜎(𝑘) and 𝑎

𝑘
are considered.

Because of the unmatched interval between controllers
and system modes, the Lyapunov function of the polytopic
system will increase, but the increasing rate should be
bounded. Define 𝑘V and 𝑘V+1, V ∈ 𝑁, as the active and over
moments of subsystem 𝜎(𝑘V). Themaximal updating delay of
the state parameters is expressed by 𝛿

𝑚
𝑇, where 𝛿

𝑚
is a given

constant. Under the influence of maximal asynchronous
delay, the controllers in (10) can be rewritten as

𝑢 (𝑘) = 𝐾
1,𝜎(𝑘−𝛿

𝑚
)
(𝑎

𝑘−𝛿
𝑚

) 𝑧 (𝑘)

+ 𝐾
2,𝜎(𝑘)

(𝑎
𝑘−𝛿
𝑚

) 𝑥 (𝑘) .

(12)

Define augmented state vector 𝜉(𝑘) =

[𝑥
𝑇
(𝑘) 𝑧

𝑇
(𝑘 − 1) 𝑥

𝑇
(𝑘)]

𝑇

and augmented disturbance

vector 𝑤(𝑘) = [𝑑𝑇
(𝑘) 𝑓

𝑇
(𝑘) 𝑟

𝑇
(𝑘)]

𝑇

. Combine (2), (5), and
(9)∼(12); the augmented locally overlapped polytopic system
under asynchronous switching can be written as

𝜉 (𝑘 + 1) = 𝐴
𝑛
(𝑎

𝑘
) 𝜉 (𝑘) + 𝜃 (𝑘) 𝐴

1,𝑛
(𝑎

𝑘
) 𝜉 (𝑘)

+ 𝐵
𝑛
(𝑎

𝑘
) 𝑤 (𝑘)

𝑒 (𝑘) = 𝐶𝜉 (𝑘) + 𝐷𝑤 (𝑘)

∀𝑘 ∈ [𝑘V, 𝑘V + 𝛿𝑚)

𝜉 (𝑘 + 1) = 𝐴
𝑚
(𝑎

𝑘
) 𝜉 (𝑘) + 𝜃 (𝑘) 𝐴

1,𝑚
(𝑎

𝑘
) 𝜉 (𝑘)

+ 𝐵
𝑚
(𝑎

𝑘
) 𝑤 (𝑘)

𝑒 (𝑘) = 𝐶𝜉 (𝑘) + 𝐷𝑤 (𝑘)

∀𝑘 ∈ [𝑘V + 𝛿𝑚, 𝑘V+1) ,

(13)

where ∀{𝜎(𝑘V) = 𝑚, 𝜎(𝑘V − 𝛿
𝑚
) = 𝑛} ∈ Γ × Γ, 𝑚 ̸= 𝑛 and

Ω
𝑚
∩ Ω

𝑛
̸= 0; the system matrices are defined as

[
𝐴

𝑛
(𝑎

𝑘
) 𝐴

1,𝑛
(𝑎

𝑘
)

𝐵
𝑛
(𝑎

𝑘
) 0

]

= ∑

𝑙∈Ω
𝑛

𝑎
𝑙,𝑘

∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
[
𝐴

𝑖,𝑙
𝐴

1,𝑖,𝑙

𝐵
𝑖

0

] ,

[
𝐴

𝑚
(𝑎

𝑘
) 𝐴

1,𝑚
(𝑎

𝑘
)

𝐵
𝑚
(𝑎

𝑘
) 0

]

= ∑

𝑙∈Ω
𝑚

𝑎
𝑙,𝑘

∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
[
𝐴

𝑖,𝑙
𝐴

1,𝑖,𝑙

𝐵
𝑖

0

] ,

𝐴
𝑖,𝑙
=
[
[
[

[

𝐴
𝑖
+ 𝜌𝐵

𝑖
𝐾

1,𝑙
𝐶

𝑖
(1 − 𝜌) 𝐵

𝑖
𝐾

1,𝑙
𝐵

𝑖
𝐾

2,𝑙

𝜌𝐶 (1 − 𝜌) 𝐼 0

−𝜌𝐶 (𝜌 − 1) 𝐼 𝐼

]
]
]

]

,

𝐴
1,𝑖,𝑙

=
[
[

[

𝐵
𝑖
𝐾

1,𝑙
𝐶

𝑖
−𝐵

𝑖
𝐾

1,𝑙
0

𝐶 −𝐼 0

−𝐶 𝐼 0

]
]

]

,

𝐵
𝑖
=
[
[

[

𝐵
𝑑,𝑖

𝐵
𝑓,𝑖

0

0 0 0

0 0 𝐼

]
]

]

,

𝐶 = [−𝐶 0 0] ,

𝐷 = [0 0 𝐼] ,

𝑘 = 𝑘 − 𝛿
𝑚
,

𝜃 (𝑘) = 𝜃 (𝑘) − 𝜌,

𝐸 {𝜃 (𝑘)} = 0,

𝐸 {𝜃 (𝑘) 𝜃 (𝑘)} = 𝜌 (1 − 𝜌) .

(14)

According to the stability concept of the asynchronous
polytopic switched system (see [29]), the augmented system
(13) is said to be GUAS-M with a weighted 𝑙

2
performance

𝛾 > 0, if

(1) system (13) is GUAS-M with 𝑤(𝑘) ≡ 0,
(2) under zero initial condition, the following inequality

holds for all nonzero 𝑤(𝑘) ∈ 𝐿
2
[0,∞):

𝐸{

∞

∑

𝑠=0

(1 − 𝛼)
𝑠
𝑒
𝑇
(𝑠) 𝑒 (𝑠)} ≤

∞

∑

𝑠=0

𝛾
2
𝑤

𝑇
(𝑠) 𝑤 (𝑠) . (15)

Remark 4. From the definition 𝜉(𝑘) =

[𝑥
𝑇
(𝑘) 𝑧

𝑇
(𝑘 − 1) 𝑥

𝑇
(𝑘)]

𝑇

, the augmented state vector 𝜉(𝑘)
consists of system state, system output, and tracking error
integral action, which means the GUAS-M of (13) can
guarantee a sufficiently small tracking error. Furthermore,
the performance index in (15) can guarantee the performance
of the command tracking under the influences of the external
disturbances and unknown faults.

4. Main Result

In this section, the global uniform asymptotic stability of
(13) is analyzed. Firstly, the following definitions and lemmas
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that will be used in the derivation of the main results are
introduced.

Definition 5 (see [30]). For a switching signal𝜎(⋅) and any 𝑘 >
𝑘
0
, let 𝑁

𝜎
[𝑘

0
, 𝑘) denote the number of switching 𝜎(⋅) during

the time interval [𝑘
0
, 𝑘). If𝑁

𝜎
[𝑘

0
, 𝑘) ≤ 𝑁

0
+ (𝑘 − 𝑘

0
)/𝜏

𝑎
holds

for𝑁
0
≥ 0 and 𝜏

𝑎
> 0, then 𝜏

𝑎
is called the average dwell time,

and𝑁
0
is the chatter bound.

Lemma 6. Consider asynchronous switched polytopic system
(13); let 0 < 𝛼 < 1, 𝛽 > −1, and 𝜇 ≥ 1 be given constants.
Suppose that there exist 𝐶1 functions 𝑉

𝜎(𝑘)
, 𝜎(𝑘) = 𝑚 ∈ Γ, and

two class 𝜅
∞

functions 𝜅
1
and 𝜅

2
such that

𝜅
1
(
𝜉 (𝑘)

) ≤ 𝑉𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) ≤ 𝜅

2
(
𝜉 (𝑘)

) (16)

𝐸 (Δ𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)))

≤
{

{

{

−𝛼𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) ∀𝑘 ∈ [𝑘V + 𝛿𝑚, 𝑘V+1)

𝛽𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) ∀𝑘 ∈ [𝑘V, 𝑘V + 𝛿𝑚)

(17)

𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) ≤ 𝜇𝑉

𝑛
(𝑎

𝑘
, 𝜉 (𝑘))

∀ (𝑚, 𝑛) ∈ Γ × Γ, 𝑚 ̸= 𝑛.

(18)

Then asynchronous switched polytopic system (13) is
GUAS-M for any switching signal with ADT:

𝜏
𝑎
> 𝜏

∗

𝑎
= −

{𝛿
𝑚
[ln𝛽 − ln �̃�] + ln 𝜇}

ln �̃�
, (19)

where �̃� = 1 − 𝛼, 𝛽 = 1 + 𝛽, and 𝛿max = max 𝛿
𝑙
, ∀𝑙 ∈ 𝑁.

Proof. Referring to the approach in [25], for ∀𝑘 ∈ [𝑘V, 𝑘V+1),
one has

𝐸 (𝑉
𝜎(𝑘)

(𝜉 (𝑘)))

≤ �̃�
T
↓
(𝑘−𝑘V)𝛽

T
↑
(𝑘−𝑘V)𝐸 (𝑉

𝜎(𝑘V)
(𝜉 (𝑘V)))

≤ �̃�
(𝑘−𝑘V)𝜃

𝛿
𝑚𝐸 (𝑉

𝜎(𝑘V)
(𝜉 (𝑘V)))

≤ �̃�
(𝑘−𝑘V)𝜃

𝛿
𝑚𝜇𝐸 (𝑉

𝜎(𝑘V−1)
(𝜉 (𝑘V))) ≤ ⋅ ⋅ ⋅

≤ �̃�
(𝑘−0)

(𝜃
𝛿
𝑚𝜇)

𝑁
𝜎
[0,𝑘)

𝑉
𝜎(0)

(𝜉 (0))

≤ 𝜇
𝑁
0𝜃

𝑁
0
𝛿
𝑚 (�̃�𝜃

𝛿
𝑚
/𝜏
𝑎𝜇

1/𝜏
𝑎)

𝑘

𝑉
𝜎(0)

(𝜉 (0)) .

(20)

If ADT 𝜏
𝑎
satisfies (19), defining 𝜅 ≜ − ln �̃�/(𝛿

𝑚
ln 𝜃 +

ln 𝜇), one has

�̃�𝜃
𝛿
𝑚
/𝜏
𝑎𝜇

1/𝜏
𝑎 < �̃�𝜃

−𝛿
𝑚
ln �̃�/(𝛿

𝑚
ln 𝜃+ln 𝜇)

𝜇
− ln �̃�/(𝛿

𝑚
ln 𝜃+ln 𝜇)

= �̃� (𝜃
𝛿
𝑚𝜇)

𝜅

= �̃� (𝑒
𝛿
𝑚
ln 𝜃+ln 𝜇

)
𝜅

=
�̃�

�̃�
= 1.

(21)

Therefore, one can obtain that𝐸(𝑉
𝜎(𝑘)

(𝜉(𝑘))) → 0when 𝑘 →

∞.Then, with the aid of (16), system (13) is GUAS-Mby using
the same approach in [31].

Lemma 7. Consider asynchronous switched polytopic system
(13); let 0 < 𝛼 < 1, 𝛽 > −1, 𝜇 > 1, and 𝛾

𝑚
> 0, ∀𝑚 ∈

Γ be given constants. Suppose that there exist 𝐶1 functions
𝑉
𝜎(𝑘)

, 𝜎(𝑘) = 𝑚 ∈ Γ, such that (18) and (22) hold. Consider

𝐸 (Δ𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)))

≤
{

{

{

−𝛼𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) − 𝜑 (𝑘) ∀𝑘 ∈ [𝑘V + 𝛿𝑚, 𝑘V+1)

𝛽𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) − 𝜑 (𝑘) ∀𝑘 ∈ [𝑘V, 𝑘V + 𝛿𝑚) ,

(22)

where 𝜑(𝑘) = 𝐸{𝑒
𝑇
(𝑘)𝑒(𝑘)} − 𝛾

𝑚
𝑤

𝑇
(𝑘)𝑤(𝑘). Then asyn-

chronous switched polytopic system (13) is GUAS-M under any
switching signal whose ADT 𝜏

𝑎
satisfies (19) and has weighted

𝑙
2
performance of no more than 𝛾 = max

𝑚∈Γ
{√𝜇𝑁

0𝜃𝛿𝑚𝑁0𝛾
𝑚
}.

Proof. Using the stochastic system analysis method in
[32] for reference, replace 𝑉

𝑚
(𝑥(𝑘)) and Δ𝑉

𝑚
(𝑥(𝑘)) with

𝐸(𝑉
𝜎(𝑘)

(𝑎
𝑘
, 𝜉(𝑘))) and 𝐸(Δ𝑉

𝜎(𝑘)
(𝑎

𝑘
, 𝜉(𝑘))). The stability anal-

ysis of Lemma 7 which is suitable for switched polytopic
system (13) can be obtained directly. The proof is omitted
here.

Lemma 8 (see [33]). For given matrix 𝐶 ∈ 𝑅
𝑛×𝑚, assume

rank(C) = 𝑛without loss of generality; then there always exists
𝐶 = 𝑈 [Σ 0] 𝐸 by performing the singular value decomposi-
tion to 𝐶, where 𝑈 ∈ 𝑅

𝑛×𝑛 and 𝐸 ∈ 𝑅
𝑚×𝑚 are two orthogonal

matrices; 𝐸 = [𝐸
𝑇

1
𝐸

𝑇

2
]
𝑇

, 𝐸
1
∈ 𝑅

𝑛×𝑚, 𝐸
2
∈ 𝑅

(𝑚−𝑛)×𝑚, and Σ =

diag{𝜎
1
, . . . , 𝜎

𝑛
} with 𝜎

1
, . . . , 𝜎

𝑛
denote the nonzero singular

values of 𝐶.
If𝑋 ∈ 𝑅

𝑛×𝑛 is of the structure

𝑋 = 𝑈Σ𝑋
1
Σ

−1
𝑈

𝑇
, (23)

where 𝑋
1
∈ 𝑅

𝑛×𝑛
> 0, then there exists a nonsingular matrix

𝑋 ∈ 𝑅
𝑚×𝑚 such that 𝑋𝐶 = 𝐶𝑋.

4.1. Stability Analysis and Controller Design. Based on the
above definition and lemmas, the following theorems provide
the feasible conditions and solving methods of the fault-
tolerant tracking controllers.

Theorem 9. Consider system (13) and let 0 < 𝛼 < 1, 𝛽 > −1,
and 𝛾

𝑚
> 0, ∀𝑚 ∈ Γ be given constants. Let 𝜗 = √𝜌(1 − 𝜌); if

there is existence of matrices 𝑃
𝑖
> 0, 𝑖 ∈ Ω

𝑚
, and ∀𝑚 ∈ Γ, such

that the two inequalities,

Υ
𝑖,𝑗,𝑙

=

[
[
[
[
[
[
[
[
[

[

−𝑃
𝑗

0 0 𝑃
𝑗
𝐴

𝑖,𝑙
𝑃
𝑗
𝐵

𝑖

∗ −𝑃
𝑗

0 𝜗𝑃
𝑗
𝐴

1,𝑖,𝑙
0

∗ ∗ −𝐼 𝐶 𝐷

∗ ∗ ∗ − (1 − 𝛼) 𝑃
𝑖

0

∗ ∗ ∗ ∗ −𝛾
2

𝑚
𝐼

]
]
]
]
]
]
]
]
]

]

< 0

∀𝑖, 𝑗, 𝑙 ∈ Ω
𝑚
,

(24)
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Υ
𝑖,𝑗,𝑙

=

[
[
[
[
[
[
[
[
[

[

−𝑃
𝑗

0 0 𝑃
𝑗
𝐴

𝑖,𝑙
𝑃
𝑗
𝐵

𝑖

∗ −𝑃
𝑗

0 𝜗𝑃
𝑗
𝐴

1,𝑖,𝑙
0

∗ ∗ −𝐼 𝐶 𝐷

∗ ∗ ∗ − (1 + 𝛽) 𝑃
𝑖

0

∗ ∗ ∗ ∗ −𝛾
2

𝑚
𝐼

]
]
]
]
]
]
]
]
]

]

< 0

∀𝑖, 𝑗 ∈ Ω
𝑚
, 𝑙 ∈ Ω

𝑛
, Ω

𝑚
∩ Ω

𝑛
̸= 0, 𝑚 ̸= 𝑛

(25)

hold, then system (13) is GUAS-M for any switching signal
satisfying (26) and has a weighted 𝑙

2
performance 𝛾 =

max{𝛾
𝑚
}, ∀𝑚 ∈ Γ defined in (15). Consider

𝜏
𝑎
> 𝜏

∗

𝑎
= −

{𝛿
𝑚
[ln𝛽 − ln �̃�]}

ln �̃�
, (26)

where 𝜃 = 𝛽/�̃�, �̃� = 1 − 𝛼, 𝛽 = 1 + 𝛽, 𝛿max = max
∀𝑙∈𝑁

𝛿
𝑙
,

and asterisk (∗) denotes a term that is induced by symmetry in
symmetric block matrices.

Proof. First of all, choose (27) as a parameter dependent
Lyapunov function:

𝑉
𝑚
(𝜉 (𝑘)) = 𝑉

𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) = 𝜉

𝑇
(𝑘) 𝑃

𝑚
(𝑎

𝑘
) 𝜉 (𝑘) . (27)

For ∀𝜎(𝑘) = 𝑚 ∈ Γ, the weighted matrices for PS (𝐴
𝑚
(𝑎

𝑘
),

𝐴
1,𝑚
(𝑎

𝑘
), 𝐵

𝑚
(𝑎

𝑘
)) are 𝑃

𝑚
(𝑎

𝑘
) = ∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
𝑃
𝑖
. From Remark 1,

one knows that the switching between two adjacent poly-
topic regions will not result in a step varying on weighted
coefficient 𝑎

𝑘
. Therefore 𝑎

𝑘
is calculated by only the common

equilibrium points within the adjacent region; one has

𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘V)) = 𝜉

𝑇
(𝑘V) 𝑃𝑚 (𝑎𝑘V) 𝜉 (𝑘V)

= 𝜉
𝑇
(𝑘V)( ∑

𝑠∈{Ω
𝑚
∩Ω
𝑛
}

𝑎
𝑠,𝑘V
𝑃
𝑠
)𝜉 (𝑘V)

𝑉
𝑛
(𝑎

𝑘
, 𝜉 (𝑘V)) = 𝜉

𝑇
(𝑘V) 𝑃𝑛 (𝑎𝑘V) 𝜉 (𝑘V)

= 𝜉
𝑇
(𝑘V)( ∑

𝑠∈{Ω
𝑚
∩Ω
𝑛
}

𝑎
𝑠,𝑘V
𝑃
𝑠
)𝜉 (𝑘V) .

(28)

Then one has𝜇 = 1when switching occurs from (18). Accord-
ing to (19), the ADT of (13) only needs to satisfy the limitation
in (26).

To make the following statement clear, the rest of the
proof is divided into two parts.

Part I. System (13) is GUAS-M with 𝑤(𝑘) ≡ 0.
When𝑤(𝑘) = 0 and ∀𝑘 ∈ [𝑘V+𝛿𝑚, 𝑘V+1), for any arbitrary

𝜉(𝑘) ̸= 0 and switching signal ∀𝜎(𝑘) = 𝑚 ∈ Γ, one has

𝐸 {𝑉
𝑚
(𝑎

𝑘+1
, 𝜉 (𝑘 + 1))} − 𝑉

𝑚
(𝑎

𝑘
, 𝜉 (𝑘))

+ 𝛼𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) = 𝐸 {𝜉

𝑇
(𝑘 + 1) 𝑃

𝑚
(𝑎

𝑘+1
)

⋅ 𝜉 (𝑘 + 1)} − 𝜉
𝑇
(𝑘) (1 − 𝛼) 𝑃

𝑚
(𝑎

𝑘
) 𝜉 (𝑘)

= 𝐸 {𝜉
𝑇
(𝑘) (𝐴

𝑚
(𝑎

𝑘
) + 𝜃 (𝑘) 𝐴

1,𝑚
(𝑎

𝑘
))

𝑇

𝑃
𝑚
(𝑎

𝑘+1
)

⋅ (𝐴
𝑚
(𝑎

𝑘
) + 𝜃 (𝑘) 𝐴

1,𝑚
(𝑎

𝑘
)) 𝜉 (𝑘)} − 𝜉

𝑇
(𝑘) (1

− 𝛼) 𝑃
𝑚
(𝑎

𝑘
) 𝜉 (𝑘) = 𝜉

𝑇
(𝑘) Λ

1,𝑚
(𝑎

𝑘
, 𝑎

𝑘+1
) 𝜉 (𝑘) ,

(29)

where Λ
1,𝑚
(𝑎

𝑘
, 𝑎

𝑘+1
) = 𝐴

𝑇

𝑚
(𝑎

𝑘
)𝑃

𝑚
(𝑎

𝑘+1
)𝐴

𝑚
(𝑎

𝑘
) +

𝜗
2
𝐴

𝑇

1,𝑚
(𝑎

𝑘
)𝑃

𝑚
(𝑎

𝑘+1
)𝐴

1,𝑚
(𝑎

𝑘
) − (1 − 𝛼)𝑃

𝑚
(𝑎

𝑘
).

In a similar way, when 𝑤(𝑘) = 0 and ∀𝑘 ∈ [𝑘V, 𝑘V + 𝛿𝑚),
for any arbitrary 𝜉(𝑘) ̸= 0 and switching signal ∀{𝜎(𝑘) =

𝑚, 𝜎(𝑘) = 𝑛} ∈ Γ × Γ andΩ
𝑚
∩ Ω

𝑛
̸= 0,𝑚 ̸= 𝑛, one has

𝐸 {𝑉
𝑚
(𝑎

𝑘+1
, 𝜉 (𝑘 + 1))} − 𝑉

𝑚
(𝑎

𝑘
, 𝜉 (𝑘))

− 𝛽𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘))

= 𝐸 {𝜉
𝑇
(𝑘 + 1) 𝑃

𝑚
(𝑎

𝑘+1
) 𝜉 (𝑘 + 1)}

− 𝜉
𝑇
(𝑘) (1 + 𝛽) 𝑃

𝑚
(𝑎

𝑘
) 𝜉 (𝑘)

= 𝜉
𝑇
(𝑘) Λ

2,𝑚
(𝑎

𝑘
, 𝑎

𝑘+1
) 𝜉 (𝑘) ,

(30)

where Λ
2,𝑚
(𝑎

𝑘
, 𝑎

𝑘+1
) = 𝐴

𝑇

𝑛
(𝑎

𝑘
)𝑃

𝑚
(𝑎

𝑘+1
)𝐴

𝑛
(𝑎

𝑘
) +

𝜗
2
𝐴

𝑇

1,𝑛
(𝑎

𝑘
)𝑃

𝑚
(𝑎

𝑘+1
)𝐴

1,𝑛
(𝑎

𝑘
) − (1 + 𝛽)𝑃

𝑚
(𝑎

𝑘
).

Due to the fact that 𝑃
𝑖
≥ 0, 𝑖 ∈ Ω

𝑚
, ∀𝑚 ∈ Γ, by

performing congruence transformation to (24) and (25) via
diag{𝑃−𝑇

𝑗
, 𝑃

−𝑇

𝑗
, 𝐼, 𝐼, 𝐼} and further by Schur complement, (24)

and (25) are equal to the following equation:

Θ
𝑖,𝑗,𝑙

=
[
[
[

[

𝐴
𝑖,𝑙

𝐵
𝑖

𝜗𝐴
1,𝑖,𝑙

0

𝐶
𝑖

𝐷
𝑖

]
]
]

]

𝑇

[
[

[

𝑃
𝑗
0 0

0 𝑃
𝑗
0

0 0 𝐼

]
]

]

[
[
[

[

𝐴
𝑖,𝑙

𝐵
𝑖

𝜗𝐴
1,𝑖,𝑙

0

𝐶 𝐷

]
]
]

]

− [
(1 − 𝛼) 𝑃

𝑖
0

0 𝛾
2

𝑚
𝐼
] < 0 ∀𝑖, 𝑗, 𝑙 ∈ Ω

𝑚

Θ
𝑖,𝑗,𝑙

=
[
[
[

[

𝐴
𝑖,𝑙

𝐵
𝑖

𝜗𝐴
1,𝑖,𝑙

0

𝐶
𝑖

𝐷
𝑖

]
]
]

]

𝑇

[
[

[

𝑃
𝑗
0 0

0 𝑃
𝑗
0

0 0 𝐼

]
]

]

[
[
[

[

𝐴
𝑖,𝑙

𝐵
𝑖

𝜗𝐴
1,𝑖,𝑙

0

𝐶 𝐷

]
]
]

]

− [
(1 + 𝛽) 𝑃

𝑖
0

0 𝛾
2

𝑚
𝐼
] < 0

∀𝑖, 𝑗 ∈ Ω
𝑚
, 𝑙 ∈ Ω

𝑛
, Ω

𝑚
∩ Ω

𝑛
̸= 0, 𝑚 ̸= 𝑛.

(31)
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Noticing (1, 1) of matrices Θ
𝑖,𝑗,𝑙

and Θ
𝑖,𝑗,𝑙

, one has

Λ
𝑖,𝑗,𝑙

= 𝐴
𝑇

𝑖,𝑙
𝑃
𝑗
𝐴

𝑖,𝑙
+ 𝜗

2
𝐴

𝑇

1,𝑖,𝑙
𝑃
𝑗
𝐴

1,𝑖,𝑙
− (1 − 𝛼) 𝑃

𝑖
< 0

Λ̂
𝑖,𝑗,𝑙

= 𝐴
𝑇

𝑖,𝑙
𝑃
𝑗
𝐴

𝑖,𝑙
+ 𝜗

2
𝐴

𝑇

1,𝑖,𝑙
𝑃
𝑗
𝐴

1,𝑖,𝑙
− (1 + 𝛽) 𝑃

𝑖
< 0.

(32)

Then

Λ
1,𝑚

(𝑎
𝑘
, 𝑎

𝑘+1
) = ∑

𝑙∈Ω
𝑚

𝑎
𝑙,𝑘
∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
∑

𝑗∈Ω
𝑚

𝑎
𝑗,𝑘+1

(Λ
𝑖,𝑗,𝑙
) < 0

Λ
2,𝑚

(𝑎
𝑘
, 𝑎

𝑘+1
) = ∑

𝑙∈Ω
𝑛

𝑎
𝑙,𝑘
∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
∑

𝑗∈Ω
𝑚

𝑎
𝑗,𝑘+1

(Λ̂
𝑖,𝑗,𝑙
)

< 0.

(33)

From (33), one knows that every PS is GUAS-M. From (29)
and (30), one has (34) holding:

𝐸 (Δ𝑉
𝑚
(𝜉 (𝑘)))

≤
{

{

{

−𝛼𝑉
𝑚
(𝜉 (𝑘)) , ∀𝑘 ∈ [𝑘V + 𝛿𝑚, 𝑘V+1)

𝛽𝑉
𝑚
(𝜉 (𝑘)) , ∀𝑘 ∈ [𝑘V, 𝑘V + 𝛿𝑚) .

(34)

Combining (26), (34), and Lemma 6, the asynchronous
switched polytopic system (13) is GUAS-M under the ADT
limitation of (26).
Part II. Under zero initial condition, the asynchronous
switched polytopic system (13) has the weighted 𝑙

2
perfor-

mance defined in (15) for all nonzero 𝑤(𝑘) ∈ 𝐿
2
[0,∞).

Defining the augmented vector 𝜁(𝑘) = [𝜉
𝑇
(𝑘) 𝑤

𝑇
(𝑘)]

𝑇

,
under zero initial condition, for anynonzero𝑤(𝑘) ∈ 𝐿

2
[0,∞)

and ∀𝑘 ∈ [𝑘V + 𝛿𝑚, 𝑘V+1), one has

𝐸 {𝑉
𝑚
(𝑎

𝑘+1
, 𝜉 (𝑘 + 1))} − 𝑉

𝑚
(𝑎

𝑘
, 𝜉 (𝑘))

+ 𝛼𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) + 𝐸 {𝑒

𝑇
(𝑘) 𝑒 (𝑘)} − 𝛾

2

𝑚
𝑤

𝑇
(𝑘)

⋅ 𝑤 (𝑘) = 𝐸 {𝜉
𝑇
(𝑘 + 1) 𝑃

𝑚
(𝑎

𝑘+1
) 𝜉 (𝑘 + 1)}

− 𝜉
𝑇
(𝑘) (1 − 𝛼) 𝑃

𝑚
(𝑎

𝑘
) 𝜉 (𝑘) − 𝛾

2

𝑚
𝑤

𝑇
(𝑘) 𝑤 (𝑘)

+ 𝐸
{

{

{

𝜁
𝑇
[
𝐶

𝑇

𝐷
𝑇
][

𝐶
𝑇

𝐷
𝑇
]

𝑇

𝜁
}

}

}

= 𝜁
𝑇

{{

{{

{

[

[

𝐴
𝑇

𝑚
(𝑎

𝑘
)

𝐵
𝑇

𝑚
(𝑎

𝑘
)

]

]

𝑃
𝑚
(𝑎

𝑘+1
) [

[

𝐴
𝑇

𝑚
(𝑎

𝑘
)

𝐵
𝑇

𝑚
(𝑎

𝑘
)

]

]

𝑇

+ 𝜗
2
[
𝐴

𝑇

1,𝑚
(𝑎

𝑘
)

0

]𝑃
𝑚
(𝑎

𝑘+1
) [
𝐴

𝑇

1,𝑚
(𝑎

𝑘
)

0

]

𝑇

+ [
𝐶

𝑇

𝐷
𝑇
][

𝐶
𝑇

𝐷
𝑇
]

𝑇

− [
(1 − 𝛼) 𝑃

𝑚
(𝑎

𝑘
) 0

0 𝛾
2

𝑚
𝐼
]

}}

}}

}

𝜁

= 𝜁
𝑇
(𝑘) Γ

1,𝑚
(𝑎

𝑘
, 𝑎

𝑘+1
, 𝑎

𝑘
) 𝜁 (𝑘) ,

(35)

where

Γ
1,𝑚

(𝑎
𝑘
, 𝑎

𝑘+1
, 𝑎

𝑘
) =

[
[
[

[

𝐴
𝑚
(𝑎

𝑘
) 𝐵

𝑚
(𝑎

𝑘
)

𝜗𝐴
1,𝑚

(𝑎
𝑘
) 0

𝐶
𝑇

𝐷
𝑇

]
]
]

]

𝑇

⋅
[
[

[

𝑃
𝑚
(𝑎

𝑘+1
) 0 0

0 𝑃
𝑚
(𝑎

𝑘+1
) 0

0 0 𝐼

]
]

]

[
[
[

[

𝐴
𝑚
(𝑎

𝑘
) 𝐵

𝑚
(𝑎

𝑘
)

𝜗𝐴
1,𝑚

(𝑎
𝑘
) 0

𝐶
𝑇

𝐷
𝑇

]
]
]

]

− [
(1 − 𝛼) 𝑃

𝑚
(𝑎

𝑘
) 0

0 𝛾
2

𝑚
𝐼
] .

(36)

In a similar way, for any nonzero 𝑤(𝑘) ∈ 𝐿
2
[0,∞) and

∀𝑘 ∈ [𝑘V +𝛿𝑚, 𝑘V+1), under arbitrary switching signal {𝜎(𝑘) =
𝑚, 𝜎(𝑘) = 𝑛} ∈ Γ × Γ, Ω

𝑚
∩ Ω

𝑛
̸= 0, 𝑚 ̸= 𝑛, one has

𝐸 {𝑉
𝑚
(𝑎

𝑘+1
, 𝜉 (𝑘 + 1))} − 𝑉

𝑚
(𝑎

𝑘
, 𝜉 (𝑘))

− 𝛽𝑉
𝑚
(𝑎

𝑘
, 𝜉 (𝑘)) + 𝐸 {𝑒

𝑇
(𝑘) 𝑒 (𝑘)}

− 𝛾
2

𝑚
𝑤

𝑇
(𝑘) 𝑤 (𝑘)

= 𝐸 {𝜉
𝑇
(𝑘 + 1) 𝑃

𝑚
(𝑎

𝑘+1
) 𝜉 (𝑘 + 1)}

− 𝜉
𝑇
(𝑘) (1 + 𝛽) 𝑃

𝑚
(𝑎

𝑘
) 𝜉 (𝑘) − 𝛾

2

𝑚
𝑤

𝑇
(𝑘) 𝑤 (𝑘)

+ 𝐸
{

{

{

𝜁
𝑇
[
𝐶

𝑇

𝐷
𝑇
][

𝐶
𝑇

𝐷
𝑇
]

𝑇

𝜁
}

}

}

= 𝜁
𝑇
(𝑘) Γ

2,𝑚𝑛
(𝑎

𝑘
, 𝑎

𝑘+1
, 𝑎

𝑘
) 𝜁 (𝑘) ,

(37)

where

Γ
2,𝑚𝑛

(𝑎
𝑘
, 𝑎

𝑘+1
, 𝑎

𝑘
) =

[
[
[

[

𝐴
𝑛
(𝑎

𝑘
) 𝐵

𝑛
(𝑎

𝑘
)

𝜗𝐴
1,𝑛
(𝑎

𝑘
) 0

𝐶
𝑇

𝐷
𝑇

]
]
]

]

𝑇

⋅
[
[

[

𝑃
𝑚
(𝑎

𝑘+1
) 0 0

0 𝑃
𝑚
(𝑎

𝑘+1
) 0

0 0 𝐼

]
]

]

[
[
[

[

𝐴
𝑛
(𝑎

𝑘
) 𝐵

𝑛
(𝑎

𝑘
)

𝜗𝐴
1,𝑛
(𝑎

𝑘
) 0

𝐶
𝑇

𝐷
𝑇

]
]
]

]

− [
(1 + 𝛽) 𝑃

𝑚
(𝑎

𝑘
) 0

0 𝛾
2

𝑚
𝐼
] .

(38)

It is easy to obtain (39) from (31):

Γ
1,𝑚

(𝑎
𝑘
, 𝑎

𝑘+1
, 𝑎

𝑘
) = ∑

𝑙∈Ω
𝑚

𝑎
𝑙,𝑘
∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
∑

𝑗∈Ω
𝑚

𝑎
𝑗,𝑘+1

(Θ
𝑖,𝑗,𝑙
)

< 0

Γ
2,𝑚𝑛

(𝑎
𝑘
, 𝑎

𝑘+1
, 𝑎

𝑘
) = ∑

𝑙∈Ω
𝑛

𝑎
𝑙,𝑘
∑

𝑖∈Ω
𝑚

𝑎
𝑖,𝑘
∑

𝑗∈Ω
𝑚

𝑎
𝑗,𝑘+1

(Θ
𝑖,𝑗,𝑙
)

< 0.

(39)
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Thus one has

𝐸 (Δ𝑉
𝑚
(𝜉 (𝑘))) ≤

{

{

{

−𝛼𝑉
𝑚
(𝜉 (𝑘)) + 𝐸 {𝑒

𝑇
(𝑘) 𝑒 (𝑘)} − 𝛾

2

𝑚
𝑤

𝑇
(𝑘) 𝑤 (𝑘) , ∀𝑘 ∈ [𝑘V + 𝛿𝑚, 𝑘V+1)

𝛽𝑉
𝑚
(𝜉 (𝑘)) + 𝐸 {𝑒

𝑇
(𝑘) 𝑒 (𝑘)} − 𝛾

2

𝑚
𝑤

𝑇
(𝑘) 𝑤 (𝑘) , ∀𝑘 ∈ [𝑘V, 𝑘V + 𝛿𝑚) .

(40)

Combining (26), (40), and Lemma 7, one can obtain that
system (13) is GUAS-M under the switching signal with the
ADT 𝜏

𝑎
satisfying (26).When 𝜇 = 1 and𝑁

0
= 0, the weighted

𝑙
2
performance in (15) is degenerated to 𝛾 = max{𝛾

𝑚
}, ∀𝑚 ∈

Γ. This completes the proof.

4.2. Controller Design. Based on Theorem 9, Theorem 10
provides the solving method for the tracking controllers in
the form of (12).

Theorem 10. Consider system (13) and let 0 < 𝛼 < 1, 𝛽 > −1,
and 𝛾

𝑚
> 0, ∀𝑚 ∈ Γ be given constants. Let 𝜗 = √𝜌(1 − 𝜌); if

there exist positive-definition matrices 𝑆
11𝑖
, 𝑆

3𝑖
, 𝑖 ∈ Ω

𝑚
, ∀𝑚 ∈

Γ and matrices 𝐾
1,𝑖
, 𝐾

2,𝑖
, 𝑖 ∈ Ω

𝑚
, ∀𝑚 ∈ Γ ∀𝑖 ∈ Ω, such that

for ∀(𝑚, 𝑛) ∈ Γ × Γ (41) and (42) hold, then system (13) with
controllers (12) is GUAS-M under the switching signal whose
ADT 𝜏

𝑎
is satisfying (26) and has the weighted 𝑙

2
performance

defined in (15), where 𝛾 = max{𝛾
𝑚
}, ∀𝑚 ∈ Γ. Consider

[
[
[
[
[
[
[
[
[

[

−𝑆
𝑗

0 0 𝜑
14

𝐵
𝑖

∗ −𝑆
𝑗

0 𝜑
24

0

∗ ∗ −𝐼 𝜑
34

𝐷

∗ ∗ ∗ (1 − 𝛼) (𝑆
𝑖
− 𝑆

𝑙
− 𝑆

𝑇

𝑙
) 0

∗ ∗ ∗ ∗ −𝛾
2

𝑚
𝐼

]
]
]
]
]
]
]
]
]

]

< 0

∀𝑖, 𝑗, 𝑙 ∈ Ω
𝑚

(41)

[
[
[
[
[
[
[
[
[

[

−𝑆
𝑗

0 0 𝜑
14

𝐵
𝑖

∗ −𝑆
𝑗

0 𝜑
24

0

∗ ∗ −𝐼 𝜑
34

𝐷

∗ ∗ ∗ (1 + 𝛽) (𝑆
𝑖
− 𝑆

𝑙
− 𝑆

𝑇

𝑙
) 0

∗ ∗ ∗ ∗ −𝛾
2

𝑚
𝐼

]
]
]
]
]
]
]
]
]

]

< 0

∀𝑖, 𝑗 ∈ Ω
𝑚
, 𝑙 ∈ Ω

𝑛
, Ω

𝑚
∩ Ω

𝑛
̸= 0, 𝑚 ̸= 𝑛,

(42)

where

𝜑
14
=
[
[
[

[

𝐴
𝑖
𝑆
1𝑙
+ 𝜌𝐵

𝑖
𝐾

1,𝑙
𝐶 (1 − 𝜌) 𝐵

𝑖
𝐾

1,𝑙
𝐵

𝑖
𝐾

2,𝑙

𝜌𝐶𝑆
1𝑙

(1 − 𝜌) 𝑆
2𝑙

0

−𝜌𝐶𝑆
1𝑙

(𝜌 − 1) 𝑆
2𝑙

𝑆
3𝑙

]
]
]

]

,

𝜑
24
= 𝜗

[
[
[

[

𝐵
𝑖
𝐾

1,𝑙
𝐶 −𝐵

𝑖
𝐾

1,𝑙
0

𝐶𝑆
1𝑙

−𝑆
2𝑙

0

−𝐶𝑆
1𝑙

𝑆
2𝑙

0

]
]
]

]

,

𝜑
34
= [−𝐶𝑆1𝑙 0 0] .

(43)

Moreover, the parameters of the controllers can be deter-
mined by

𝐾
𝑖
= 𝐾

1,𝑖
𝑆
−1

2𝑖
,

𝐾
2,𝑖
= 𝐾

2,𝑖
𝑆
−1

3𝑖
,

𝑖 ∈ Ω
𝑚
, ∀𝑚 ∈ Γ,

(44)

where 𝑆
𝑖
= diag{𝑆

1𝑖
, 𝑆

2𝑖
, 𝑆

3𝑖
} > 0, 𝑆

1𝑖
= 𝐸

𝑇

1𝑖
𝑆
11𝑖
𝐸

1𝑖
, 𝑆

2𝑖
=

𝑈
𝑖
Σ

𝑖
𝑆
11𝑖
Σ

−1

𝑖
𝑈

𝑇, and 𝑈, 𝐸 = [𝐸
𝑇

1
𝐸

𝑇

2
]
𝑇

are the orthogonal
matrices in Lemma 8 which satisfy the singular value decom-
position 𝐶 = 𝑈 [Σ 0] 𝐸.

Proof. Let the matrix 𝑃
𝑖
in Theorem 9 have the form 𝑃

𝑖
≜

diag{𝑃
1𝑖
, 𝑃

2𝑖
, 𝑃

3𝑖
} and let 𝑆

𝑖
= 𝑃

−1

𝑖
= diag{𝑆

1𝑖
, 𝑆

2𝑖
, 𝑆

3𝑖
}. By per-

forming congruence transformation to (24) via diag{𝑆
𝑗
, 𝑆

𝑗
,

𝐼, 𝑆
𝑙
, 𝐼}, one has

[
[
[
[
[
[
[
[
[

[

−𝑆
𝑗

0 0 𝐴
𝑖,𝑙
𝑆
𝑙

𝐵
𝑖

∗ −𝑆
𝑗

0 𝜗𝐴
1,𝑖,𝑙
𝑆
𝑙

0

∗ ∗ −𝐼 𝐶𝑆
𝑙

𝐷

∗ ∗ ∗ − (1 − 𝛼) 𝑆
𝑇

𝑙
𝑃
𝑖
𝑆
𝑙

0

∗ ∗ ∗ ∗ −𝛾
2

𝑚
𝐼

]
]
]
]
]
]
]
]
]

]

< 0. (45)

From (𝑆
𝑖
−𝑆

𝑙
)
𝑇
𝑆
−1

𝑖
(𝑆

𝑖
−𝑆

𝑙
) ≥ 0, one has 𝑆

𝑖
−𝑆

𝑙
−𝑆

𝑇

𝑙
≥ −𝑆

𝑇

𝑙
𝑆
−1

𝑖
𝑆
𝑙
;

then (45) can be formulated into

[
[
[
[
[
[
[
[
[

[

−𝑆
𝑗

0 0 𝐴
𝑖,𝑙
𝑆
𝑙

𝐵
𝑖

∗ −𝑆
𝑗

0 𝜗𝐴
1,𝑖,𝑙
𝑆
𝑙

0

∗ ∗ −𝐼 𝐶𝑆
𝑙

𝐷

∗ ∗ ∗ (1 − 𝛼) (𝑆
𝑖
− 𝑆

𝑙
− 𝑆

𝑇

𝑙
) 0

∗ ∗ ∗ ∗ −𝛾
2

𝑚
𝐼

]
]
]
]
]
]
]
]
]

]

< 0, (46)

where

𝐴
𝑖,𝑙
𝑆
𝑙

=
[
[
[

[

𝐴
𝑖
𝑆
1𝑙
+ 𝜌𝐵

𝑖
𝐾

1,𝑙
𝐶𝑆

1𝑙
(1 − 𝜌) 𝐵

𝑖
𝐾

1,𝑙
𝑆
2𝑙

𝐵
𝑖
𝐾

2,𝑙
𝑆
3𝑙

𝜌𝐶𝑆
1𝑙

(1 − 𝜌) 𝑆
2𝑙

0

−𝜌𝐶𝑆
1𝑙

(𝜌 − 1) 𝑆
2𝑙

𝑆
3𝑙

]
]
]

]

,

𝐴
1,𝑖,𝑙
𝑆
𝑙
=
[
[

[

𝐵
𝑖
𝐾

1,𝑙
𝐶𝑆

1𝑙
−𝐵

𝑖
𝐵

𝑖
𝐾

1,𝑙
𝑆
2𝑙

0

𝐶𝑆
1𝑙

−𝑆
2𝑙

0

−𝐶𝑆
1𝑙

𝑆
2𝑙

0

]
]

]

.

(47)
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From Lemma 8, for any roll full rankmatrix𝐶 ∈ 𝑅
𝑐×𝑛, the

singular value decomposition of 𝐶 is 𝐶 = 𝑈 [Σ 0] 𝐸, where
𝐸 = [𝐸

𝑇

1
𝐸

𝑇

2
]
𝑇

. Suppose that 𝑆
1𝑖
and 𝑆

2𝑖
can be written as

𝑆
1𝑖
= 𝐸

𝑇

1
𝑆
11𝑖
𝐸

1
,

𝑆
2𝑖
= 𝑈Σ𝑆

11𝑖
Σ

−1
𝑈

𝑇
.

(48)

Then one has

𝐶𝑆
1𝑖
= 𝑆

2𝑖
𝐶. (49)

Further defining the matrix variables 𝐾
1,𝑙

≜ 𝐾
1,𝑙
𝑆
2𝑙
and

𝐾
2,𝑙
≜ 𝐾

2,𝑙
𝑆
3𝑙
, 𝑙 ∈ Ω

𝑚
, ∀𝑚 ∈ Γ, one can readily obtain that

(41) holds by substituting the system matrices, (48) and (49),
into (46). In a similar way, (42) holds according to (25). If
the solutions of (41) and (42) exist, then the parameters of
admissible controllers are obtained by (44) according to the
definitions of𝐾

1,𝑖
and𝐾

2,𝑖
. The proof is completed.

To minimize 𝑙
2
performance 𝛾

𝑖
, set 𝜂

𝑖
= 𝛾

2

𝑖
and solve the

following optimization problem:

min {𝜂
𝑖
}

s.t. LMIs (41) and (42) .
(50)

5. Numerical Example

In this section, the effectiveness of the proposed method will
be demonstrated. The longitudinal short-period dynamics of
the HiMAT flight vehicle in [34] is used as the simulation
model. The system states are angle of attack (AOA) 𝛼 and
pitch rate 𝑞. The control inputs are 𝛿

𝑒
(elevator deflection), 𝛿V

(elevon deflection), and 𝛿
𝑐
(canard deflection). To make the

statement clear, the simulation process is divided into three
steps.

Step 1 (asynchronous switched polytopic model description).
In this paper, 20 linear equations are obtained by using
linearization techniques on the equilibrium points within the
flight envelope as depicted in Figure 2. The trim conditions
for every operating point are illustrated in Table 1 in [21].

According to the partition method for polytopic regions
in (4), the flight envelope is divided into 3 PSs. Consider

Γ = {1, 2, 3} ,

Ω
1
= {1, 2, 3, 4, 5, 6, 7} ,

Ω
2
= {6, 7, 8, 9, 10, 11, 12, 13} ,

Ω
3
= {12, 13, 14, 15, 16, 17, 18, 19, 20} .

(51)

From the partition result, one knows thatΩ
1
andΩ

2
have

the common equilibrium points 6 and 7, while Ω
2
and Ω

3

have the common equilibrium points 12 and 13.
The sampling period of the network is chosen as 𝑇 =

0.02 s (see [1]).The packet dropout rate is chosen as 0.05, and
that means 𝐸{𝜃(𝑘)} = 𝜌 = 0.05. The varying case of 𝜃(𝑘) is
shown in Figure 3.
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Figure 2: Flight envelope of the HiMAT vehicle.
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The system matrices 𝐴
𝑖
and 𝐵

𝑖
in (1) can be obtained by

the discretization of the equilibrium equations. The parame-
ters of the system dynamics on every sampling moment are
interpolated by (3). The disturbance 𝑑(𝑘) is supposed to be a
disturbance of harmonics wind gust which is generated by an
exogenous system described by

𝜇 (𝑘 + 1) = [
0.9922 0.1247

−0.1247 0.9922
] 𝜇 (𝑘)

𝑑 (𝑘) = [1 0] 𝜇 (𝑘) ,

(52)

where the initial value of 𝜇(𝑘) is set to be [0.01 0]
𝑇. It has

been shown that this model can be used to describe many
kinds of disturbances in engineering (see [35]).

The fault 𝑓(𝑘) is set to be a bias fault of the elevator 𝜉
𝑒

in the simulation, while the elevon 𝜉V and the canard 𝜉
𝑐
are
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set to be fault-free. Thus, the matrix 𝐵
𝑓,𝑖

should be equal to
the first column of the system matrices 𝐵

𝑖
. Concretely, the

elevator bias fault can be described by

𝑓 =
{

{

{

0, 𝑡 < 40 s

−0.1 rad, 𝑡 ≥ 40 s.
(53)

The remaining system matrices are given as 𝐵
𝑑,𝑖

=

[0.01 0.01]
𝑇

, 𝑖 ∈ Ω
𝑚
, ∀𝑚 ∈ Γ, 𝐶 = [1 0].

Step 2 (controller design). Given that 𝛼 = 0.01, 𝛽 = 0.01,
and the maximal updating delay of asynchronous switching
caused by the network transmission is assumed to be 𝛿max =
5. Then, according to (26), it can be obtained that the allowed
ADT 𝜏

∗

𝑎
= 10 (0.2 s). The flight trajectory is chosen as 2-

4-5-7-8-11-12-15-17-18 as depicted in Figure 2. The system
dynamics of the HiMAT flight vehicle in the simulation can
be described by a switching process between the chosen equi-
librium points. The simulation time is set to be 120 s; then,
according to Definition 5, it can be calculated that 𝜏

𝑎
= 40 s >

𝜏
∗

𝑎
.
By setting 𝛾

𝑚
as the optimization variable simultaneously,

the YALMIP toolbox in MATLAB (see [36]) is adopted to
solve the optimization problemof (50).Theobtainedminimal
𝐻

∞
inhibition performance is 𝛾∗ = 1.9237, and the param-

eters of the controllers on the equilibrium equations can be
obtained as follows:

𝐾
2
=
[
[

[

40.3090 −19.5439

44.9207 −21.9663

105.9873 −52.5667

]
]

]

,

𝐾
4
=
[
[

[

41.5828 −20.5246

28.5197 −14.0826

101.2166 −50.9280

]
]

]

,

𝐾
5
=
[
[

[

52.3953 −24.9725

56.8270 −27.2393

137.6653 −66.6733

]
]

]

,

𝐾
7
=
[
[

[

76.6366 −35.9072

78.2575 −36.7847

198.7008 −94.0566

]
]

]

,

𝐾
8
=
[
[

[

67.3576 −32.4876

22.6869 −10.8490

148.3147 −72.1669

]
]

]

,

𝐾
11
=
[
[

[

62.4412 −30.0254

36.3125 −17.4411

162.6648 −78.7089

]
]

]

,

𝐾
12
=
[
[

[

46.4942 −23.0647

37.6284 −18.6757

148.6060 −73.9876

]
]

]

,

𝐾
15
=
[
[

[

68.7054 −32.5613

65.4663 −31.0557

218.1911 −103.8117

]
]

]

,

𝐾
17
=
[
[

[

81.5338 −38.6687

71.2526 −33.7991

275.2488 −130.6901

]
]

]

,

𝐾
18
=
[
[

[

135.3210 −65.0831

99.7142 −47.8251

339.1521 −161.1666

]
]

]

.

(54)

The controller gains for the equilibrium points are given
above. According to (11), the parameters of controllers within
each PS can be obtained by linear interpolation. In this
paper, the gain-scheduled subcontrollers are interpolated in
triangular regions. Three equilibrium points that have the
smallest geometrical distance to the current one are chosen.
For example, within the flight region𝐻 ∈ [2.5, 10) and𝑀𝑎 ∈

[0.5, 0.7), the gain-scheduled subcontrollers are interpolated
by three gains 𝐾

3
, 𝐾

4
, and 𝐾

6
. The weighted coefficient 𝑎

𝑘

satisfies

𝑎
3,𝑘
+ 𝑎

4,𝑘
+ 𝑎

6,𝑘
= 1

𝑎
3,𝑘
ℎ
3
+ 𝑎

4,𝑘
ℎ
4
+ 𝑎

6,𝑘
ℎ
6
= ℎ

𝑎

𝑎
3,𝑘
𝑀𝑎

3
+ 𝑎

4,𝑘
𝑀𝑎

4
+ 𝑎

6,𝑘
𝑀𝑎

6
= 𝑀𝑎,

(55)

where ℎ
𝑖
and𝑀𝑎

𝑖
, 𝑖 ∈ Ω are altitude and Mach number for

the 𝑖th equilibrium point.

Step 3 (controller verification). To illustrate the effectiveness
of the proposed method, the command signal 𝑟(𝑘) is chosen
to be the angle of attack.

From the partition result in Step 2, there exist two poly-
topic switchings. One occurs on the common equilibrium
point 7, and the other occurs on the common equilibrium
point 12. The simulation results are depicted in Figures 4∼7.

The response of the angle of attack is shown in Figure 4,
and it can be concluded that the tracking performance of the
angle of attack can be satisfiedwithin the flight envelope, even
when a constant bias fault occurs during the time interval
[40 s, 120 s]. As depicted in the partial enlarged detail, when
asynchronous switching occurs on 75 s (equilibrium point
12), the angle of attack jumps about 0.02∘ and converges to
nearly zero within about 4 s. That shows the effectiveness of
the smooth switching for weighted coefficient 𝑎

𝑘
.

The control surface deflections are shown in Figures 5∼7
which are practical and acceptable, and the simulation results
of fault case and no fault case have been given together. Obvi-
ously, comparing with the no fault case, the control inputs
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Figure 4: Angel of attack response.
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Figure 5: Elevator deflection.
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Figure 6: Elevon deflection.
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Figure 7: Canard deflection.
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Figure 8: Contrastive simulation.

become larger when the fault occurs, and the influences of
the fault on the system have been reduced.

To verify the advantage of the proposed controller for
switched systems under asynchronous switching, contrastive
simulation ismade with a gain-scheduled switched controller
in [37]. The simulation result of AOA response is shown
in Figure 8. It can be seen that both of the two controllers
achieve good tracking performance, and the tracking of the
proposed controller is closer to theAOAcommand compared
with the gain-scheduled controller. Moreover, the proposed
controller shows better tracking performance when asyn-
chronous switching occurs. It validates that the proposed
method is more suitable for switched polytopic system with
asynchronous phenomenon.

6. Conclusions

This paper proposed a robust fault-tolerant tracking control
approach for nonlinear NCS under asynchronous switching.
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Considering the imperfect transmission problems, a locally
overlapped polytopic switched system with Bernoulli process
is established to present the nonlinear NCS dynamics. The
parameters of the tracking controllers are obtained by linear
interpolation within polytopic subsystems and the locally
overlapped regions. To overcome the asynchronous switching
phenomenon caused by the updating delays of the switching
signals and weighted coefficients, an asynchronous switching
synthesis approach is used to obtain a prescribed tracking
performance. A simulation of the HiMAT flight vehicle is
given to show the effectiveness of the proposed approach.
Compared with a gain-scheduled switched controller, the
proposed controller has a better tracking performance.
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