6 research outputs found

    Distributed Reasoning in a Peer-to-Peer Setting: Application to the Semantic Web

    Full text link
    In a peer-to-peer inference system, each peer can reason locally but can also solicit some of its acquaintances, which are peers sharing part of its vocabulary. In this paper, we consider peer-to-peer inference systems in which the local theory of each peer is a set of propositional clauses defined upon a local vocabulary. An important characteristic of peer-to-peer inference systems is that the global theory (the union of all peer theories) is not known (as opposed to partition-based reasoning systems). The main contribution of this paper is to provide the first consequence finding algorithm in a peer-to-peer setting: DeCA. It is anytime and computes consequences gradually from the solicited peer to peers that are more and more distant. We exhibit a sufficient condition on the acquaintance graph of the peer-to-peer inference system for guaranteeing the completeness of this algorithm. Another important contribution is to apply this general distributed reasoning setting to the setting of the Semantic Web through the Somewhere semantic peer-to-peer data management system. The last contribution of this paper is to provide an experimental analysis of the scalability of the peer-to-peer infrastructure that we propose, on large networks of 1000 peers

    Three algorithms for causal learning

    Get PDF
    The field of causal learning has grown in the past decade, establishing itself as a major focus in artificial intelligence research. Traditionally, approaches to causal learning are split into two areas. One area involves the learning of structures from observational data alone and the second, involves the methodologies of conducting and learning from experiments. In this dissertation, I investigate three different aspects of causal learning, all of which are based on the causal Bayesian network framework. Constraint based structure search algorithms that learn partially directed acyclic graphs as causal models from observational data rely on the faithfulness assumption, which is often violated due to inaccurate statistical tests on finite datasets. My first contribution is a modification of the traditional approaches to achieving greater robustness in the light of these faults. Secondly, I present a new algorithm to infer the parent set of a variable when a specific type of experiment called a `hard intervention\u27 is performed. I also present an auxiliary result of this effort, a fast algorithm to estimate the Kullback Leibler divergence of high dimensional distributions from datasets. Thirdly, I introduce a fast heuristic algorithm to optimize the number and sequence of experiments required towards complete causal discovery for different classes of causal graphs and provide suggestions for implementing an interactive version. Finally, I provide numerical simulation results for each algorithm discussed and present some directions for future research

    Efficient Probabilistic Inference Algorithms for Cooperative Multiagent Systems

    Get PDF
    Probabilistic reasoning methods, Bayesian networks (BNs) in particular, have emerged as an effective and central tool for reasoning under uncertainty. In a multi-agent environment, agents equipped with local knowledge often need to collaborate and reason about a larger uncertainty domain. Multiply sectioned Bayesian networks (MSBNs) provide a solution for the probabilistic reasoning of cooperative agents in such a setting. In this thesis, we first aim to improve the efficiency of current MSBN exact inference algorithms. We show that by exploiting the calculation schema and the semantic meaning of inter-agent messages, we can significantly reduce an agent\u27s local computational cost as well as the inter-agent communication overhead. Our novel technical contributions include 1) a new message passing architecture based on an MSBN linked junction tree forest (LJF); 2) a suite of algorithms extended from our work in BNs to provide the semantic analysis of inter-agent messages; 3) a fast marginal calibration algorithm, designed for an LJF that guarantees exact results with a minimum local and global cost. We then investigate how to incorporate approximation techniques in the MSBN framework. We present a novel local adaptive importance sampler (LLAIS) designed to apply localized stochastic sampling while maintaining the LJF structure. The LLAIS sampler provides accurate estimations for local posterior beliefs and promotes efficient calculation of inter-agent messages. We also address the problem of online monitoring for cooperative agents. As the MSBN model is restricted to static domains, we introduce an MA-DBN model based on a combination of the MSBN and dynamic Bayesian network (DBN) models. We show that effective multi-agent online monitoring with bounded error is possible in an MA-DBN through a new secondary inference structure and a factorized representation of forward messages

    Homeostatic epistemology : reliability, coherence and coordination in a Bayesian virtue epistemology

    Get PDF
    How do agents with limited cognitive capacities flourish in informationally impoverished or unexpected circumstances? Aristotle argued that human flourishing emerged from knowing about the world and our place within it. If he is right, then the virtuous processes that produce knowledge, best explain flourishing. Influenced by Aristotle, virtue epistemology defends an analysis of knowledge where beliefs are evaluated for their truth and the intellectual virtue or competences relied on in their creation. However, human flourishing may emerge from how degrees of ignorance are managed in an uncertain world. Perhaps decision-making in the shadow of knowledge best explains human wellbeing—a Bayesian approach? In this dissertation I argue that a hybrid of virtue and Bayesian epistemologies explains human flourishing—what I term homeostatic epistemology. \ud \ud Homeostatic epistemology supposes that an agent has a rational credence p when p is the product of reliable processes aligned with the norms of probability theory; whereas an agent knows that p when a rational credence p is the product of reliable processes such that: 1) p meets some relevant threshold for belief (such that the agent acts as though p were true and indeed p is true), 2) p coheres with a satisficing set of relevant beliefs and, 3) the relevant set of beliefs is coordinated appropriately to meet the integrated aims of the agent. \ud \ud Homeostatic epistemology recognizes that justificatory relationships between beliefs are constantly changing to combat uncertainties and to take advantage of predictable circumstances. Contrary to holism, justification is built up and broken down across limited sets like the anabolic and catabolic processes that maintain homeostasis in the cells, organs and systems of the body. It is the coordination of choristic sets of reliably produced beliefs that create the greatest flourishing given the limitations inherent in the situated agent. \u

    Asynchronous dynamic Bayesian networks

    No full text
    Systems such as sensor networks and teams of autonomous robots consist of multiple autonomous entities that interact with each other in a distributed, asynchronous manner. These entities need to keep track of the state of the system as it evolves. Asynchronous systems lead to special challenges for monitoring, as nodes must update their beliefs independently of each other and no central coordination is possible. Furthermore, the state of the system continues to change as beliefs are being updated. Previous approaches to developing distributed asynchronous probabilistic reasoning systems have used static models. We present an approach using dynamic models, that take into account the way the system changes state over time. Our approach, which is based on belief propagation, is fully distributed and asynchronous, and allows the world to keep on changing as messages are being sent around. Experimental results show that our approach compares favorably to the factored frontier algorithm.
    corecore