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Abstract

The field of causal learning has grown in the past decadelesstang itself as a major
focus in artificial intelligence research. Traditionalpproaches to causal learning are
split into two areas. One area involves the learning of stines from observational data
alone and the second, involves the methodologies of comduand learning from exper-
iments. In this dissertation, | investigate three différaspects of causal learning, all of
which are based on the causal Bayesian network frameworkst@ont based structure
search algorithms that learn partially directed acyclepips as causal models from obser-
vational data rely on the faithfulness assumption, whidftisn violated due to inaccurate
statistical tests on finite datasets. My first contributi®aimodification of the traditional
approaches to achieving greater robustness in the lighesktfaults. Secondly, | present
a new algorithm to infer the parent set of a variable when &ifpaype of experiment
called a ‘hard intervention’ is performed. | also presentariliary result of this effort,

a fast algorithm to estimate the Kullback Leibler divergen€high dimensional distribu-

tions from datasets. Thirdly, | introduce a fast heuristgoathm to optimize the number

Vil



and sequence of experiments required towards completalcdissovery for different
classes of causal graphs and provide suggestions to imptergen interactive version.
Finally, | provide numerical simulation results for eacga@ithm discussed and present

some directions for future research.
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Chapter 1

Introduction

“A physical symbol system has the necessary and sufficiarisifer gen-

eral intelligent action.”- Alan Newell and Herbert Simon [NS76]



Chapter 1. Introduction

Since the beginnings of enquiry and intelligent thoughthas have tried to find ex-
planations for the world around them. Observations abaaintktural world were often
regarded agffectsof somecausalentity, the actions of fantastic and powerful god(s) or
some other natural entity. Today, our understanding of &teral world is much better de-
veloped than in primitive times, and an increasing amouekpfanations for observations
are based on well documented and tested cause and effeclsméldsvever, the search
for causal knowledge seems to be growing at an increasieg Ydith new technologies
developed by enhanced knowledge, we are now able to obsamessnew phenomenain
much greater detail, thereby increasing the need for mgrkaeations of these phenom-
ena. The growth in the fields of electronics, computing, setechnologies, imaging, etc.
have proven to be great accelerants to fields like biologylica¢ sciences, geology and
meteorology, etc., where previously data was scarce amtktbabtain. Today, these fields
have become data-rich and what has become sparse (inedkatins) is the availability of
skillful human resources to analyze this data and gathéulissights. One way to bridge
this increasing gap between data and the limited abilitfesuonan faculties, including
memory and reasoning mechanisms, is by building compuiatisugmentations of our

native cognitive abilities.

In his Posterior AnalyticsAristotle wrote, “... we have scientific knowledge when we
know the cause...” [Aric]. The practice of explaining ohsat phenomena is the overall
objective of all scientific inquiry. The multitude of huma@nsory abilities: vision, hear-
ing, touch, etc., extended by the increasing sophistinaifdools and measuring devices
has enabled us to access and manipulate our environmentehways. To systematically
construct causal knowledge out of the environment we oles@enedern scientists around
the globe follow a set of guidelines in the recording of oliagons, building hypotheses
and validating them with controlled and repeatable testsis Tias been termeitie sci-
entific methodand one of its most popular forms is known as bypothetico-deductive

modelof scientific research [Whe47].
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An example of an algorithmic statement of the hypothetiedtettive method outlined
in Peter Godfrey-Smith’s “Theory and Reality” [GS03] is aidws.

1. Gather data (observations about something that is unknanexplained, or new).
2. Hypothesize an explanation for the data.

3. Deduce a consequence of that explanation (a predictrmhfa@mulate an experi-

ment to see if the predicted consequence is observed.

4. Wait for corroboration. If there is corroboration, go tegs3. If not, the hypothesis

is falsified. Go to step 2.

Progress in the field of artificial intelligence (Al) has a$sd in the development of
computer algorithms that replicate and augment severalfgpleuman cognitive abilities.
Towards this goal, most Al systems follow paradigms that@mabinations of several
tasks that each mimic some abstract component of humantmygniThese include but
are not restricted to: receiving sensory input [Dav04, Bl88erpreting it in a format
susceptible to the platform of computation (feature exioad [Web02]; distinguishing
patterns (mining) [RCKWO05]; developing a concise représigon of it in memory (learn-
ing) [Mit97]; and retrieving this stored information fortfure tasks (inference and predic-
tion) [Pea88]. These developments provide the essentils &amd set the stage for the next

big step in Al.

The pursuit of science and the ability to discern causadiyrie of the most advanced
and unique cognitive ability of our species. It has beerrimséntal in our progress from
primitive hunter-gatherers roaming the wild to our colieetself-view as civilized and
‘sentient’ beings. Replicating this ability in Al would begaeat accelerant to the progress
of science and humanity. To infuse the spirit and rigor ostfic inquiry into Al systems,
the automation of casual learning is a key goal and an impbrtalestone towards the

creation of an “artificial scientist”.
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As an example to how machines can contribute to scientifievienge, we introduce
a very interesting recent development. The advances intiosband the streamlining
of biological testing methodologies support the creatibmobotic scientists [SAB10,
KRO"09]. AdamandEve are two large integrated robotic systems which advance the
automation of both the hypothetico-deductive model andelcerding of experiments in
sufficient detail to enable reproducibilibAdamis reported to have autonomously gener-
ated functional genomics hypotheses about the ye@stharomyces cerevisiaad exper-
imentally tested these hypotheses by using laboratorynaation[SABF10]. The method-
ology for generating hypotheses is driven by inductivedqgiogramming that is guided
by heuristics set in place according to the expert opinidrisalogists. The conclusions
of these robotic scientists have been verified through masyzeriments. The central
hope of this dissertation is that these robotic scientagily namedAdamandEve and
their successors, equipped with more powerful learningrélgns, take a proverbial bite
from the apple of causal knowledge to usher in an excitingmodising era for artificial

intelligence, and science in general.
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1.1 “True” Al and Causality

The construction of knowledge often begins with the obgerxaof a correlation (covari-
ance) between events or quantities. To make an assertidre@atisal mechanism related
to a covariance, we must also be able to discern the direofidinis influencing mech-
anism. This usually involves a more careful examinatiorhefe trends, under multiple

conditions, often supplemented by laboratory tests.

Analogous to the problem of acquiring causal knowledgeespitoblem of recording
it with a suitable representation. Many Al systems reprekeowledge without explicitly
stating the direction of influence, perhaps because they haparticular method of dis-
cerning it in the first place. For example, consider an anifideural Network (ANN), a
very popular tool in Al systems used as function approximsamd non-linear discrimina-
tors. An ANN when trained on a suitable set of sample inputshe “back propagation”
algorithm can successfully provide a 'black box’ approxiimaof a function withn inputs

andm outputs [Hay94].

Y = f(X),whereX ={z;...2,},Y ={y1...2} (1.1)

The direction of influence which is most common when we thihkuactions is that
inputs “cause” outputs. We understand and often speak o¥dghene of traffic on the
roads as a function of the day of the week, not the other wayratoHowever, it might
be convenient to do just that, when we are interested in ngakibackward inference
about the day of the week, given that we observe a certaifictkafiume. In probabilistic
models, such a semantic reversal is accomplished by ancapph of the Bayes’ rule
[BP63]. ANN'’s can help us do that as well, as directionaldyeintirely artificial and
and its interpretation is external to its capabilities. #seg sufficient data, one could

reverse the input-output semantics and obtain a neuralonktinat approximateX =
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f7YY), just as easily. While such semantic inversions are heipfsbme applications, in
other applications it is desirable to identify the direngmf causality unambiguously so
that it is possible to explicitly represent it. ThereforaJesirable feature of a knowledge

representation for causality is to make explicit the dicewlity of relationships.

Knowledge is more meaningful when it is represented by dausdels, as opposed
to associative models. It provides us with valuable inbmtabout the mechanism of the
underlying system. For example, the following truth tal@presenting the relationship
between three Boolean variabldsB andC' is an associative model. It does not provide
insight into how this relationship has come to be, in otherdsp ‘how does it work’?
The AND-gate with independent inputs B and outpuC = A A B, however, is a causal

model that has much better explanatory power.

(A[B|C

1 )
B

PR OO
R Ol O
= O|O| O

Figure 1.1: A Truth Table for 3 Boolean variables, B andC and a corresponding AND-
gate causal model.

1.2 Causal Models in Artificial Intelligence

The two most popular forms of causal models are

1. Structural Equations

2. Causal Bayesian Networks

Structural equations first appeared in studies in the fieldgenetics and economics

[Wri21, Haa43, Sim53]. In its most general form, a strudt@wguation is a functional
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causal model of the form

xi:fi(paiaui)a i=1,....n (12)

wherepa; denotes the “parents” or the set of variables that are theeudiate causes of
X;, andU; represents the errors in each equation due to omitted &ElB01]. Eq (1.2) is
a non-linear generalization of the linear Structural EquaModel (SEM) which is very

popular in econometrics and the social sciences [Haa43Z3im

%:Z%‘k%JrUz‘, i1=1,....n (1.3)
k+#i

In the linear model the set of parenis;, is simply represented by the variables on
the r.h.s. that have non-zero coefficients. Each equati@nsisuctural causal model
representing an autonomous mechanism which determingaltieeof a single variable on
thel.h.s. The difference between structural equations and algelinaiar equations is that
while the latter are characterized by solutions to the erstat of equations the former are
characterized by solutions for each individual equatiohisTneans that each individual
equation in itself represents a valid model of reality. Riomal causal models can also be
visualized as a graphical representation of causality &keach variable is a node in the
graph, where there is an arc directed towards the |.h.salars node from every other
variable that has a nonzero coefficient in the r.h.s. of etrciotsiral equation. When we
have multiple variables of interest, it is also useful tmkwf dependencies among then to
be represented by a directed acyclic graph (DAG), where it & the graph represent
similar functional dependencies like in SEMs (sourcassetargets). Causal Bayesian
networksintroduced by Pearl in [Pea88] is one such representatiomterprets causal
structure as a DAG whose nodes are the variables or the teardf interest and every

direct causal link between two quantities is representeddigected arc.
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Technically, the absence of an arc between two nodes imfiesthe two nodes
are conditionally independent, i.e., given some backgildnformation other than these
nodes, namely the values of another disjoint set of nodes,cannot gain any extra in-
formation about one node from the other. Moreover, Bayes&mworks model the re-
lationships among the nodes probabilistically rather thenctionally. They encode the
joint probability distribution among these variables asetdrization of a set of condi-
tional probability distributions along a particular oroey of the variables. The DAG-
based causal representations in Bayesian networks aldaddme human-readable and
coincide with intuition. It has been suggested that humhemselves represent causal
knowledge in their brain in abstractions similar to Bayasiatworks [GGS04]. We will
focus on causal Bayesian networks as our primary experah&atmework in this thesis

and will introduce them in greater detail in chapter 2.

Some of the early work on Bayesian networks made the assomitat the causal
structure was given as prior knowledge elicited from exparid the designers of such
systems [Pea88]. Later on, researchers started focusingetrods to learn dependencies
among the quantities from data automatically (structuaeli|mg systems) [HGC95, KDO5,
RDO06, CL68, CH92]. While many of these methods have provecessful in terms of
detecting and recording conditional independence relatiocoincidence with the actual
causal structure is either by chance or is an artifact of saledesigned and human

conditioned heuristics.

In the past decade a lot of research has focused on the aetbieatrning of causal
structures from data. The area has attracted interest fronmeer of fields, ranging
from economics, bio-informatics, to artificial intelligesm[Pea00, Rub06, ROR07]. Judea
Pearl and his colleagues have been the most important lsoturs to the field, and have
proposed a refreshing, formal, and thorough treatmentisftdpic paving the way for
very promising future research [Pea00, SGS00, TPOla, ES06]
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TriDow | 1 2 3 4 5 6 7
high Nip | Non | N3k | Man | Nsh | Nen | N7a
low ny | Moy | Mgy | Mgy | My | Mer | Tt

Table 1.1: A contingency table between traffic and day of the weekolV

1.3 Causal Learning

The first step towards discerning causal structure is teednsihe structures of covariance.
Let us briefly step back to our example regarding traffic aedithy of the week mentioned
in Section 1.1. Let us assume that the variabterepresents the total traffic volume on a
particular road in a city and it can take one of two valbégh, low, and Dol represents
the day of the week and takes values frim- 7]. Suppose we record observations on
a large sample of instances and measure the frequencigg/ofindlow vs. DoW in a
contingency tablgPea04] as shown in Table 1.3. In the tablg,represents the count for

observations wher®oW isi andT'r is j.

We can use one of several possible statistical tests todieteif there is an association
between these quantities. One such test which is widely isfeearson’shi-square(y?)
test for unconditional independence [Pea04]. The testssdan computing thg? test
statistic based on a two dimensional contingency table witbws andc columns (see
above), and rejecting the null hypothesis that the two evard independent based on its
value. With the hypothesis of independence, we can caketitet theoretically expected
values of each cell in the contingency table as the nornhjizeduct of the marginals for

a sample size oV as follows:

) N

The value of the/? test statistic is
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(1.5)

A widely accepted practice is to reject the null hypothesimdependence if the?
probability for (r — 1)(c — 1) degrees of freedom is less than or equal to a pre-determined
significance level (typically 0.05). Several other testisifor other kinds of applications
and some (like thé&:? test and conditional cross entropy) can check for condifiorde-
pendence given observations that include a third vari&¢d5]. With multiple variables
we can now carry out a series of pairwise tests among thesbles, and whenever we
reject independence, conditional or otherwise, we carudelan undirected arc in our
causal model. The undirected arc represents the fact thabserve a covariance or de-
pendency, but are yet unaware of its direction of influent¢so(termed a®rientation.
For example, we observe that the value§of= high always coincides with the values
for2 < DoW < 6 anTr = low always coincides with the weekenB¢WW = 1 or 7).

It has been shown that under assumptions of minimality, Sofntige orientations can
be determined from clues obtained from independence téwsta more than two variables
are involved [VP91]. The conditioning variable in an indegence test can be viewed as
a control variable and the results of these tests can he§prdete whether certain causal
links remain persistent across all possible models. In sutdse, these links are “stable”
and must exist in the causal model. We will delve into the néxdl details of this method
and discuss it in more detail in Section 2.2. However, nair@intations can be determined
using the previous method. In scientific experimentatiotage “control variables” are set
to predetermined values and observations are recorded thves® conditions. This idea
has been formalized into the theory of causal learning ascdleulus of interventions”
[Pea00]. Suppose the city in our previous example builds ladesigned and popular
underground metro-rail system effectively shifting thstiiution on7'r towardslow and
we record observations under this condition. Suppose werebshat there is no changein

the marginal frequencies @lolV than we did previously, nameﬁ/each, we can conclude

10
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that7r does not have any causal effect ODall (as expected). On the other hand we can
modify the nature oDolV. The town adds an extra day, Friday, to the weekend holiday. |
we now record a change in the marginal distributiorfefnwhich would now presumably
reflect the drop in Friday traffic, we can then conclude thatl” does indeed have a
causal effect oi¥'r. Note that interventions on a variable have the potentiahtange
mechanisms that are influenced by that variable. Intereeatare different and should not
be confused with the concept of conditioning in probabititgory. Conditioning merely
allows us to observe different projections of the the emgsdistribution and has no ability

to modify the underlying high-dimensional distribution.

These principles have been used in work on detecting cau$adm interventional
distributions and changing contexts [CY99, TP0la]. We digicuss the formalisms of
these methods in section 2.5. Further, if we observe no ehangjther marginal distribu-
tion when performing an intervention on the other variable are forced to conclude that

there is a latent (hidden) variable that must be the commuosecaf both [VP91].

At times, as illustrated with the absurd interventions jasgd in the previous para-
graph, it may not be practical, ethical or even possible rop@ certain interventions.
Sometimes only ‘soft’ interventions can be performed (big lemission vehicles) or in-
terventions are performed by some external agent unrelatear causal study but we are
aware of it (companies offer workers an extra paid holidaywpeek). Typically, one en-
counters a combination of such interventions when obsgsystem that is complex and
dynamic. We believe the secret to causal learning is to betal@xploit all aspects of the
dynamism in a system, where dynamism means that interventibdiff rent types take
place in several contexts. Whether we perform intervestmmbecome aware that one
has been effected, a rigorous analysis of observations tineége conditions can help us
discover true causal structure. We provide a brief motveti example in the next section
(1.4).
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Chapter 1. Introduction

1.4 Motivational example: An Aircraft Monitor

Let us consider causal learning in the context of an agenttorarg a dynamic system
under several contexts or external interventions. We examidynamic system instead of
a static one for the reason that dynamic systems enable uthéo eonduct experiments

or make observations that are akin to those collected frqrergxents.

Suppose that we wish to monitor an aircraft’'s componentesystand their behavior
under several conditions. As is the case with sophisticaiachinery, the capabilities of
laboratory design in terms of being able to provide a sufficEusal understanding of
the system are limited. Modern machinery like military eaft are constructed out of
several thousand individual components each often a catibmof mechanical, electri-
cal, electronic, pneumatic and hydraulic parts. One exspchave a sufficient model of
most of the aircraft and its components’ expected behawidypical and atypical con-
ditions, based on human expert knowledge, past experiemtengticulous laboratory
experiments. However, this combined knowledge can stilhbemplete and several as-
pects of the aircraft's behavior are left to be determinethattesting stage. Often, test
pilots are asked to put the aircraft through a series of marsuhat take the aircraft
through several modes of operation and the results of tles$e &re used to establish a

better understanding of the aircraft’s behavior in prattaperation.

Typically this is not only for the purposes of ground engisesnd designers to ensure
that each component works satisfactorily and as expectedlbo to learn some of the
previously unknown or unexpected relationships betweampoments of the aircraft sys-
tem. For example, the designers may have expected thatwheving design affects the
behavior of the ailerons at certain flight speeds and adjustat, but did not expect that
the rate of fuel supply becomes intermittent as well, forgame reason. If they are un-
aware of the cause of this discrepancy (say, climbing argfleseding a certain value) and

hypothesize that it could be one or many of several potectiakes, verification of this

12
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Figure 1.2: An example causal diagram between quantitiestored in an aircraft.

cause-effect relationship will involve meticulous labttesiew flight plans, and several

more man hours spent on trial-and-error.

In this situation, an automatic real-time causal learniggra mounted on the aircraft,
can be very valuable. A causal learning agent that is exgeotéearn relationships be-
tween quantities, can record critical flight data, by segingnt into several sections, each
corresponding to a particular condition or context of @ftoperation and environment.
With a causal model, we expect it to be able to answer queb@stdcounterfactual” con-
texts, and make assessments about situations yet uneacetinfdditionally, we expect
that it augment the test pilot’s flight plan by suggesting tietake the aircraft into a new
state. For example, it could request “Can you execute a 4fedatpscent at Mach 2 for
30 seconds before flattening out at 10000 ft and reducingdsjee200 mph? That would

help estimate effect of supersonic speed and turbulencerandvag.”

This dissertation, | address the problem of causal learfimmg three distinct direc-
tions. First, | improve upon existing methods for learnihg tequivalence classes of
Bayesian networks representing a distribution from olzt@wal data alone. Second, |
iintroduce a novel method of causal inference that can be wben a certain type of ex-
perimental observations are known. This method searclstseam from the experimental

variable and infers the set of its parents resulting in aifg@rtamong its adjacent nodes

13



Chapter 1. Introduction

as parents vs. children. Thirdly, | present a new fast metbatktermine an experimen-
tal order among the variables that is aimed at full causalwexy with a small number

of experiments. | present empirical results obtained bypdizug the space of networks
varying in their size and their density. | also study expermtal parameters that affect
performance in causality detection, including sample agtdvark size, confidence levels
for conditional independence tests and strengths of cdingal Finally, | provide hints

of how to incorporate all our methods into an incrementainieavork that learns causal

structure from streams of multivariate data.

In Chapter 2, we discuss previous work from philosophicpéats to practical issues in
the field and lay down the foundations. In Chapter 3 we disthesdetails and formalisms
of the proposed algorithms. We run experiments on theseaidiges and present our
findings on several test cases in Chapter 4. Finally, in Gnaptwe discuss how our
work paves the way for future research and can be incorgbiate related fields like
learning dynamic causal Bayesian networks, includingicysdusal paths and extensions

into continuous domains and conclude.
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Chapter 2

Background

“You jest about what you suppose to be a triviality, in askivigether the
hen came first from an egg or the egg from a hen, but the pointlghee re-
garded as one of importance, one worthy of discussion, arefudaliscussion
at that” - Macrobius [395-423 AD]

The goal of this chapter is to introduce the relevant baakgdo literature and termi-
nologies that will be used in the rest of this dissertatiohisithapter is divided into six
sections. Section 2.1 addresses the history and curremglihon philosophical debates
concerning causality. Section 2.2 delves into the relebackground on Bayesian net-
works and their application as causal models. Section 3@&idses the two main types of
structure learning methods that are currently populararebetopics among researchers,
score based and constraint based search methods. In S&dtiatiscuss the IC (Inductive
Causation) algorithm that provides the framework for canst based structure learning
methods, its assumptions and the limits of its performaext, Section 2.5 introduces
prior work on two main types of interventions that are refevim this dissertation and
discusses methods for causality determination that aredo@sthem. Finally, Section 2.6

discusses some previous results on the theoretical nurhbgperiments required for full
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Chapter 2. Background

causal discovery under different types of interventions.

2.1 Philosophical Primer

In western philosophy, the earliest known writings on cétysare by Aristotle, who iden-
tifies the Four Causes: Material, Formal, Efficient and FAaila, Arib]. Of the four,
the type of cause that is closest to our modern notion of candesffect is “the efficient
cause”, which he defines as the thing that brings somethiogtais the primary source of
the change. In India, thidyayaschool was an epistemology and methodology of thought
that also developed some early views on a theory of causg@anCE]. Their notion
of the Nimitta’ cause is close to Aristotle’s efficient cause. Moreovely identify con-
ditions for causality including antecedence, invariapiind unconditionality. They also
identify five types of accidental antecedents which showtbe confused with causal
antecedents. An interesting accidental antecedent tleeyifd is that “the co-effects of a
cause are not the cause”, which leads us to believe that thEea@ated the difficulty in
attributing orientation to a covariance and the presenamofmon and possibly hidden

causes.

David Hume was an eminehg* century philosopher whose view was that while one
can empirically verify constantly conjoined and succes&vents, the complete idea of
causation requires mecessary connexiooetween the events that should be taken into
consideration. He further argued that we can have no perakatcess to the necessary

connection but we are compelled to believe in one [Hum40].

In the 20" century, Max Born, a German physicist and mathematiciaordesd three

assumptions that were dominant in the definition of caysalg cited in [Sow00].

1. “Causality postulates that there are laws by which theiseace of an entity B of

a certain class depends on the occurrence of an entity A ehanolass, where the
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word entity means any physical object, phenomenon, sinatir event. A is called

the cause, B the effect.”

2. "Antecedence postulates that the cause must be prior tat least simultaneous

with, the effect.”

3. “Contiguity postulates that cause and effect must be atiglpcontact or connected

by a chain of intermediate things in contact.”

In more modern literature, the best known and most thorgugjaborated counterfac-
tual theory of causation was proposed by David Lewis in 19&{73], which he later
refined and extended [Lew86]. In this work, he describes ttattuals and counterpart
worlds. According to Lewis, a counterfactual condition&tiee form ‘Had | made that
shot our team would have won the ganeeuld be true in a world, as concrete as ours and
significantly similar to it. Except that, my counterpart reakhe shot rather than misses it
and the counterpart of our team wins the game. Had there b&eridieven more similar
to ours in which my counterpart makes the shot but the copateof our team still loses,
then the counterfactual would have been false. When we sgeadunterfactual possibil-
ities we speak of what is the case in some possible world oldaofActual”, according
to Lewis, is merely an indexical label we give to a world whea lcate ourselves in
it. Things are necessarily true when they are true in alliptssvorlds. Causation is true
when its counterfactual is true in all other possible warlgsing the shotvasthe actual
causefor our team to lose the game when in all other possible warlisre the shot was

made, the game was won by our counterpart team.

Paul Holland identifies th&undamental Problem of Causal Inferenadich states
that it is impossible to measure the effect of two differexpposure®n the same unit. For
example, if administering a medical treatment (or not) igposure, it is impossible to
measure their isolated effects on the same patient [Hol&summarizes how the differ-

ent fields of economics, sociology, medicine, and philogagdal with causal inference.
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He was also the proponent of the paradigm “No causation with@nipulation”, which
means that without experimenting upon a phenomenon systaitg one cannot truly

discriminate causation from association.

This gives rise to the idea of “interventions” which is cuntlg a popular topic of
causal inference research. In [Pea00], Judea Pearl itescaCalculus of Interventions
and thedo(.) operator, which enables the empirical causal researchieokoat models
under the influence of actions that force events or variaolepecific values. The idea
allows the statistical researcher to perform “experinfemtsthe data, and to reason about
potential counterfactuals, under some standard assunsp#dso, Pearl argued that, using
a normative assumption of Occam’s Razor (principle of paosiy) some causation can
be inferred without manipulation. He proposed the alganghC andIC* that construct
and orient a causal Bayesian Network [Pea00] under thesenas®ns. Most interesting
current research in causality follows this tradition anedsuBayesian networks as diagrams

representing causality. In the next section we describe8iap networks in detail.

2.2 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) comsisbf nodes that represent
random variables. Although it is customary to view a DAG amposed of its explicit
links, it is also conceptually useful to think of a Bayesiagtwork as a structure that
encodes a conditional independence relation betweengfaregiables by th@absenceof

a direct link between them. A causal interpretation of thegbical structure where each
directed edge represents a direct cause, leads to the mftcausal Bayesian networks
We shall also refer to causal Bayesian networkeaassal Modelsvhen referring to their
structure and parameters together. We shall call tb@nsal diagram®r causal graphs

when referring to their structures alone.

Associated with its DAG structure, a Bayesian network emsoda joint probability
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distribution among its component variables as a produtbfecation of conditional prob-
ability distributions (one per variable) along a particwdedering of these variables. With-
out a causal interpretation, the ordering can be arbitrlgya recursive application of
the definition for conditional probability (Equation 2.Blso known as the Chain Rule
of Probability (Equation 2.2), any ordering among the valga can decompose the joint
distribution [BP63].

P(X,Y) = P(X)P(Y|X) (2.1)

P(Xl,...7Xn) — P(Xl)P<X2|X1)P(Xn|X1,,anl)

) 2.2)
= HP(XZ|X1, cee 7Xi—1)

=1

For example, consider the joint probability distributiom@ng three variablesl, B
and C, where there is no pairwise independence among the vasidblevariables are
connected to each other by an arc). Using Eg. 2.1 along eaehing of the variables,
the joint distribution can be factorized in six differentysacorresponding to six different
Bayesian networks as shown in Figure 2.1.

1. P(A,B,C)= P(A)P(B|A)P(C|A, B)

2. P(A,C,B) = P(A)P(C|A)P(BJA,(C)

3. P(B,A,C)= P(B)P(A|B)P(C|A, B)

4. P(B,C,A) = P(B)P(C|B)P(A|B,C)

5. P(C,A,B) = P(C)P(A|C)P(B|A,C)

6. P(C, B, A) = P(C)P(B|C)P(A|B,C)

19



Chapter 2. Background

L

Figure 2.1: The six different configurations of a Bayesiatwoek with 3 nodes and no
conditional independence.

Now let us incorporate into this expression information wboonditional indepen-

dence that we can read off the DAG. Conditional independandefined as follows:

Definition 2.2.1 (Conditional Independencelet X = X, X,, ... be a finite set of vari-
ables. LetP(.) be a joint probability function over the variables i, and letA, B, C

stand for any three subsets of variableXinThe setsA and B are said to be condition-

ally independent give@' if

P(A|B,C) = P(A|C) whenever P(B,C) > 0. (2.3)
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We use the notatiofA L B|C)p to denote the conditional independencefénd
B givenC, or simply(A 1L B|C) when P, the specific distribution that is referred to is
unambiguous. Note that conditional independence is synunee., (A I B|C) =
(B 1 A|C) % Unconditional independence shall be denoted 1L B|}) or simply
(A 1L B).

Applying this definition to the recursive factorization igiation 2.2, we are left with
a factorization of the joint distribution into conditionaitobability terms containing only

a select subset of predecessors for each varighldenotedP A;:

n

P(z) = | [ P(wilpas). (2.4)
=1
We use the notational shorthando represenk’; = z;, i.e., the case when the variable
X, takes the value;. As a general rule, throughout this dissertation, unlebsratise
specified, we use uppercase letters without subscripts X8.tp denote sets of variables,
uppercase letters with subscripts (e.§;) to denote singleton variables and lower case

letters ¢ or x;) to denote the values these variables (or sets) can take.

The setPA; is called the ‘parents’ or Markovian Parents of nakigand is defined
below. This becomes easier to visualize when we view eadhblaras a node in a DAG,
and that each of the Markovian parents of that variable gseto arcs directed towards

the variable, thus describing the structure of the Bayes&work.

Definition 2.2.2(Markovian Parents)Let X = X, ..., X,, be an ordered set of variables,
and letP(v) be the joint probability distribution on these variablessét of variables® A;

is said to beMarkovian parentsf X, if PA; is a minimal set of predecessors.¥f that

1There are other properties of conditional independence ipan symmetry, but they are not
trivial or very intuitive and we will not refer to them here. prartial list of properties of conditional
independence relations discovered so far have been supadday Spohn et al. in [SPB94] and
also by Pearl and Geiger in [GP93]. Despite several prouisitivances and contributions by
several researchers during the past three decades, a tengste result still eludes.
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rendersX; independent of all its other predecessors. In other wakt4; is any subset of
Xi,...,X,_ satisfying

P(zj|pa;) = P(xj|z;, ... xj-1), (2.5)

such that no proper subset 6fA; satisfies Eq. 2.5.

Once, the Bayesian network is described this way, the oridieieovariables becomes
irrelevant. When we are giveR and GG, we can test whetheP decomposes into the
product as described ky. Another advantage of Bayesian networks is that they peovid

a tractable representation of the joint distribution.

Consider that the joint distribution we need to represeffbrisa set ofn binary vari-
ables. The distribution would be a real numbered probghiéitue for all possible config-
urations of these variables, demanding a storag#®@f) floating point memory locations.
Except for very smalk, this is intractable. However, consider the same distidutepre-
sented by a Bayesian network. From the factorization meatlon Eq. 2.4, we know we
needn conditional probability tables. If the maximum in-degrdele DAG isk, the total
space required i©(n2%) (the storage for the DAG needs ortly{nk) and can be ignored).

If k& is reasonably small and invariant 49 as we expect for most real applications, then

there is an enormous space savings achieved.

Definition 2.2.3 (Markov Compatibility) If a probability functionP admits the factor-
ization of Eq. 2.4 relative to DAG;/, we say thatG representsP, that P and G are

compatible, or that? is Markov relative taG.

Compatibility between DAGs and probability functions ig tkey to statistical model-
ing and is a necessary and sufficient condition for a DA® explain empirical evidence
represented by’. If each conditional probability satisfies a set of condiibindepen-
dence relationships, Markov compatibility ensures thaséhcan be read off the DAG by

a criterion known asl-separationd stands fodirectional)).
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Definition 2.2.4(d-Separation) A pathp is said to bed-separate¢or blocked by a set of
nodes” if and only if

1. p contains a chain — m — j or a forki < m — j such that the middle node

isin Z, or

2. p contains an inverted fork (also known as a “collide’y—~ m « j such that the

middle noden is not in Z and such that no descendantrofis in 7.

A setZ is said to d-separatX fromY if and only if Z blocks every path from a node

in X to anode inY.

We will use the notatiot.X Il Y'|Z). to denote thafX andY are d-separated hy
in DAG G

The correspondence between d-separation and its praiebdnalogue is summa-

rized by this theorem from [Pea88].

Theorem 2.2.1(Probabilistic Implications ofl-separation) If X andY are two sets of
variablesd-separated by séf in a DAGG, thenX is independent of” conditional onZ

in every distribution compatible witt¥. Conversely, ifX andY are not d-separated by
Z ina DAGG, thenX andY are dependent conditional af in at least one distribution

compatible withG.

Let us revisit the example of unconstrained Bayesian nétsvon the variables!, B
andC shown in Fig.2.1. Using these results, we can now apply theitonal indepen-
dence statementd I B|C)p for all P compatible with(z, leading to the implication that
(A L B|C)¢. Using Definition2.2.4, for d-separation, we get the set A3 in Fig.2.2,
each compatible with the conditional independence statefae L B|C'). The introduc-
tion of the conditional independence statement reduceduheer of Bayesian networks

that encode the distribution from 6 (in Fig.2.1) to 3 (in Ri&).
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LI

Figure 2.2: The configurations of a Bayesian network with 8asowithA I B|C

Figure 2.3: The Bayesian network with 3 nodes and. B

Now, consider that we introduce the unconditional indepecd statementA 1L
B|0). The number of Bayesian networks that encode this reducasitegle unique net-
work (Fig. 2.3).

The key insight that we learn from this is that when a condalondependence state-
ment(A 1L B|Sp) is introduced, the link betweea and B disappears in all cases, but
the nature of the separating setz further determines the set of Bayesian networks that
are compatible with that statement. From this example, wdlgg common neighbors of
A andB that are not inS 45 form v-structuresor colliders withA and B, i.e. arcs fromA

andB converge on alC' ¢ S5 where(C' AL A|Sac) A (C L B|Spc) for any S4c and

Spe.

This provides us the intuition for the notion of observaibequivalence, as specified

by the following theorem from [VP90].

Theorem 2.2.2(Observational EquivalenceYwo DAGs are observationally equivalent
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if and only if they have the same skeletons and the same sedtafctures, that is, two

converging arrows whose tails are not connected by an arrow.

From this theorem we see that a certain equivalence classy#dtan networks are
observationally indistinguishable. All networks belomgiio an equivalence class have the
same undirected skeleton, and the same “unshielded asllided there are no statistical
tests (however perfect) that can be performed on distohat(or from data generated
from these distributions) that can ascertain which one@dé¢metworks in the equivalence
class represents the true causal relationships. Howéexpérimental data is available,
then one can further reduce the size of the equivalence dldi$is a sufficient number of
experiments we can narrow down the set of possible networisstingle causal network
[ES06, ESO7]. In the next section we present current methodgisucture learning. We

then have further discussion on this topic Section 2.5 odsvar

2.3 Structure Learning in Bayesian Networks

Bayesian network structure learning from data is hard padrly because of the ex-
tremely large search space. The number of Bayesian netviugtwres (DAGS) over

n nodes is given by Robinson’s formula [Rob76]:

1 ifn=0
G(n) = Z(_Um (”) 2{=G(n —4i)  otherwise. 9

Table 2.3 shows the value 6f(n) for the first 10 values ofi. Fig. 2.4 shows the
growth of the logarithm of the number of DAGs with respect tonber of nodes. This

formula tells us that the space of Bayesian networks is sexgonential w.r.t. the number
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Figure 2.4: The greater than linear growth of the logaritlirime number of DAGs calcu-
lated by Robinson’s formula.

of variables. Any kind of strategy to exhaustively searoh space of networks for any

realistic problem becomes intractable.

There have been two main approaches to Bayesian netwodtstdearning.
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1. Score based search

2. Constraint based search

Score based searcimethods mostly follow a common format. A score is a measure of
guality of fit between a given Bayesian network and data. dalpy, it is an indicator of the
likelihood that the observations were generated by the 8lagenetwork. This measure
of quality on Bayesian network structure, allows us to disorate between the individual
networks in the search space with respect to the applitabfleach network in a particu-
lar domain. Usually, we desire that the network structuitefially captures the underlying
dependencies in the data and is a good explanation for tlae thabther words, we look
for a “goodness of fit” score which maps a value to each netwotlke search space, and
this is exploited by search algorithms to find maxima on timelégape of scores over the
search space. There are many types of scores used in tl¢uieerbut the most common
and successful ones are based on the Minimum Descriptiogth€MDL) principle and
the Bayesian Information Criterion (BIC). The graph spaogdscribed in terms of neigh-
borhoods of edge additions, removals and reversals. Thelsstrts at some random or
heuristically chosen graph, and executes a greedy seattais imeighborhood until no fur-
ther improvement in score is obtained. To avoid gettingdeabin local minima, several
techniques are applied, including random restarts, TABUWde simulated, annealing and

data bootstrapping.

The MDL principle [Ris78] is a formalization dDccam’s Razoalso known as the
“Principle of Parsimony”. It is based on the idea that thet Inesdel of a database is the
model that minimizes the sum of the length of the encodingn tinis case, the Bayesian

network.

Some of the earliest work on learning structure for knowéedgpresentations was
done in 1968. Chow and Liu [CL68] proposed the first ever algor that learns a tree

structure that maximally approximates the database loigtan. Their method, based
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on a minimum difference in information, finds the maximunelikood estimate of the

distribution when the structure is restricted to trees.

More recently, Buntine proposed an algorithm that searthespace of all DAGS,
using a greedy blind search [Bun91]. An important point dlibis work is that it had
an incremental flavor, assumes an existing knowledge baktharalgorithm augments it
with more rules when provided with more data. Cooper and késitz [CH92] took the
Bayesian approach and proposed an algorithm that when givenable ordering delivers
a DAG. An interesting feature of their method is that theyriesthe search to finding one
single network among an equivalence class of DAGs. Latestelaand Kocka [KCO01]
emphasize that thlodel inclusionprinciple imposes an ordering among DAGs and they
propose an improvement to Bayesian network learning thaitlavthe problem of local

minima.

In 2004, Koivisto and Sood presented an exact algorithm &yeBian structure discov-
ery [KS04]. While being exact, it was the first algorithm widss than super-exponential
complexity with respect to the number of nodes. They alseraizat in some special cases
where suitable restrictions can be placed on the strugtexest methods can be made fea-
sible or can be combined with inexact methods to create a{oéidbetween exactness and

feasibility.

Batch learning methods have their limitations with respeatatabase size and com-
plexity. Another consideration is that in realistic sggrnearning algorithms have to be
designed to operate incrementally, using “online” leagriechniques. These algorithms
operate on the premise that the learning task uses only fireteory and finite compu-
tational resources, and therefore can neither store ariytiarge amounts of data nor
can it relearn from scratch each time it updates its knovdedgpically, the aim of most

incremental algorithms is to visit each record just once.

Buntine’s batch algorithm [Bun91] has an incremental flav®uantine also provides
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guidelines for an incremental version. Lam and Bacchus geem technique [LB94]
revising Bayesian networks incrementally based on impigthe description length (DL)
of a subgraph, and also show how this reduces the DL of theendralph if no cycles are
introduced. Friedman and Goldszmidt [FG96] propose antyaaahree approaches: the
firstis to store all the data and simply relearn everythiogiscratch; the second approach
uses a single structure for storing prior data; the third@g@gh is a combination of the two

and exhibits natural trade-offs.

In the related domain of undirected graphical models, Dgosnand Kok propose
both a batch and revision based algorithm for Markov Logioadeks based on relational
databases [KD05]. Markov logic networks (MLNs) combineitognd probability by at-
taching weights to first-order clauses, and view these apl&ges for features of Markov
networks. Combining ideas from inductive logic programg(iLP) and feature induc-
tion in Markov networks, their algorithm performs a beamrekaf the space of clauses,

guided by a weighted pseudo-likelihood measure.

In JAlc05], Alcobé proposes two general search heuristies tonvert batch learning
algorithms to incremental ones. One of their heuristics, Traversal Operators in Correct
Order (TOCO) ensures that the structure will be revised dnlyis invalidated by new
data; when it must be revised, the learning algorithm do¢degin from scratch. The
second Reduced Search Space (RSS) heuristic, uses theskigevgathered from previous
learning steps stating that structures that had very lovitgua past learning steps will

still have low quality with respect to the new dataset in the@nt learning step.

While all these methods enjoy varying degrees of successdinfij high scoring
graphs, the Bayesian methods are compatible with the ids#abflity. Methods of in-
corporating mixtures of observational and experimenttd tafind pairwise causal links
have also been investigated under the Bayesian approac®9JCYhey tend to operate
well for small datasets but suffer when there are hiddenab#es and large networks.

Evaluating the Bayesian score involves computing an exypemstegral (summation) in
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discrete domains. As a consequence of Observational Hgonog(Theorem 2.2.2) we can
expect to find a graph that belongs to the same equivalenss atathe causal network,
if not the true causal network itself. This is not guarantbgall of the score-and-search

methods and graphs.

Constraint Based searchmethods, are an interesting alternative to greedy seacth te
niques. These methods start with an unconstrained steu¢tomplete and undirected
graph) and apply successive constraints on this structiimplied by Conditional In-
dependence Statements (CISs) to arrive at an intermedidiesated skeleton, and then
orient the edges as implied by the CISs (d-separation iagpios) and DAG acyclicity.
The earliest algorithm in this family of methods is the ICaithm (Inductive Causation)
described by Verma and Pearl [VP91], and it guaranteeshbagidrtially directed acyclic
graph (PDAG) describes the equivalence class of structbeggepresent the given Cls.
In this dissertation we take the constraint based approagil&cuss the IC algorithm in

the following section.

2.4 The IC algorithm

The IC algorithm relies on three assumptions: the CausakdaCondition, Stability, and

Sufficiency. We briefly discuss these assumptions.

Theorem 2.4.1(The Causal Markov Condition [VP91]Every Markovian causal model
M induces a distributiorP(z4, . . ., z,,) that satisfies the parental Markov condition rela-
tive to the causal diagrar@ associated with\/; that is, each variableX; is independent

of all its non-descendants, given its pareftd; in G.

Intuitively, ignoring a variable’s effects, all relevangbabilistic information about a
variable that can be obtained from a system is available ftegauses. This is similar to

an interpretation of a first-order Markov process; knowkedgout the current state allows
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Figure 2.5: An example of amnfaithfulcausal graph. The +/- links correspond to positive
vS. negative influences.

us to predict its next states, but it is not necessary to knmwthe process came to be in
the current state. While the Markov condition (Definitio8.3) allows us to use an elegant
graphical theory to interpret a probability distributidhe causal Markov condition goes
a step further and interprets the DAGs causally. It makesd¢méral assumption that the
Markov condition andd-separation are in fact the correct link between causatsire

and probabilistic independence.

Definition 2.4.1(Stability). Let /(P) denote the set of all conditional independence rela-
tionships embodied i. A causal modeM = (D, Op) generates a stable distribution
if and only if P({D,©p)) contains no extraneous independencies, that is, if and ibnly
I(P((D,©p))) CI(P((D,0'p)) forany set of paramete®’

Although Pearl defined the conceptsifbility as an interpretation of Occam’s razor
w.r.t. the causal Markov condition [Pea00], it is more comigoeferred to as the Faithful-

ness criterion, an equivalent definition introduced by KCkard Glymour[SGS00, SGS01].

Definition 2.4.2 (Faithfulness) Let G be a causal graph an@ a probability distribution
generated by~. (G, P) satisfies the Faithfulness condition if and only if everyditanal

independence relation true iR is entailed by the Causal Markov condition applied®o

Intuitively, while the causal Markov condition ensuresttaay distribution” produced

by the graphG has the corresponding probabilistic independencies edgdy applying
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d-separation td~., faithfulness ensures that has exactly those and no additional inde-
pendence relationships. Cartwright [Car83] introducetiftilowing example of a causal
graph that isunfaithful Consider a graph of three variabl8swoking, Exercise and
Health as shown in Figure 2.5. Let us assuffealth is positively affected by xercise
and negatively bysmoking, as is generally believed. Further, assume thavking has

a positive effect onEzercise (absurd as this may be). If the parameters of these rela-
tionships are just “right”, such that the positive effectfioking (through Exercise)
cancels its direct negative effedmoking and Health might become probabilistically
independent. While it is acknowledged that such graphs daté the Faithfulness as-
sumption, it is also believed that such graphs are extrenagdyin practice and that such
contrived parametrizations (where Nature is acting likeuelcadversary) are ‘unstable’
and that they do not prevail across multiple instanceshfitess allows us to ignore all

these cases in causal analysis and is widely accepted asomadde assumption.

Definition 2.4.3(Causal Sufficiency)The set of measured variabl&sinclude all of the

common causes, if any, of each pair of variable¥in

The final assumption is causal Sufficiency, which makes amagton on the ability
to make all relevantneasurements.e., all the common causes of all measured variables.
In other words, Causal Sufficiency assumes there are nd laidden variables that could
be the cause of more than one variable measured in the sy$temis perhaps the most
unrealistic assumption among those presented, as it isteasyagine several practical
situations when observations ansufficient However, there is a large class of problems
that satisfy this requirement and it is worth pursuing tlupraach. Moreover, algorithms
that make the Sufficiency assumption are conceptually €nguid provide the framework
for extension to more sophisticated algorithms that can wéh hidden variables. For
example the IC*, algorithm, extends IC to the case where tiféc&ncy assumption is
not made. We will however assume Sufficiency throughoutdtssertation, and will not
discuss further the implications of not assuming SufficgeisVR95, SG09].
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The following algorithm takes as input a stable probabditstribution P generated by
some underlying DAQ@), and outputs a PDAG that represents the equivalence cldsg of
[VPO1].

Algorithm IC (Inductive Causation)

Input: P, a stable distribution on a set bf variables

Output: H(P), a PDAG

1. For each pair of variablesandb in V, search for a se$,, such that(a 1L b[S,;)
holds inP. Construct an undirected grapghsuch that verticeg andb are connected
with an edge if and only if no sef,, can be found.

2. For each pair of nonadjacent variabteandb with a common neighbaot, check if
c € Sy Ifitis, continue, otherwise add arrowheads pointing.gt.e.,a — ¢ < b).

3. In the partially directed graph that results, orient asynaf the undirected edges
as possible subject to two conditions: (i) the orientatibawdd not create a new

structure; and (ii) the orientation should not create aatie cycle.

It has been shown [Mee95, Zha08] that there exist a set o mfl@rientation (for
step 3) which upon repeated application, guaranteeahatrrows that are common to
the equivalence class @, will eventually be oriented. The IC algorithm, thereforeais
very powerful and valuable tool in causal structure leagnand provides a guarantee of
the quality or closeness of the structure found to the acaasal structure. In a typical
causal learning problem the IC algorithm orients a largetioa of the edges and allows
us to focus on experiments that focus on learning only thdge®that are still undirected.
Interventions, experimental data and dynamism, are sontbeotoncepts that can be
used to learn further causal information about the systensecttion 2.5 we characterize
interventions, discuss some of the existing methods fosadearning from interventions,
and finally end the chapter with a section on the number ofuetgions required for full

causal learning.
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2.5 Interventions

Pearl introduced thealculus of interventionas a theory of causality by manipulability
[Pea95, Peal0]. In other words, the test for a causal caonestby the ability to force
a change on the effect by manipulation of its causes. Maaijmng a variable or a set of
variables is called an intervention, and is represented&yd(.) operator. For example,
do(X = x) represents thatomic interventiorof setting a single variabl& to the value
x. A distribution measured on another variableunder this intervention is represented
as P(Y|do(X = x)). Alternatively, throughout this dissertation, we use tlotational

shorthands”(Y'|z) or P,(Y") to represent atomic interventions.

In contrast to the conditional operator in probability thedhe atomic intervention
P(Y|z) does not represent the distribution Bnwhen X' is given to bex, but rather it
represents the distribution dn when X is “set” to z. The termP(Y'|X) represents the
distribution onY” given that we observ& whereX varies freely according to its governing
distribution. Whereas the “causal effect” tei{Y |do(.X)), represents the distributions
onY when X is held at fixed values. It has the effect of neutralizing tfieat of X'’s

predecessors oN.

Definition 2.5.1(Causal Effect) Given two disjoint sets of variable&; andY’, the causal
effect ofX onY’, denoted either a®(y|z). or as P(y|do(x)), is a function fromX to the
space of probability distributions olf. For each realizationz of X, P(y|z) gives the
probability of Y = y induced by deleting from the model of 1.2 all equations gpond-

ing to the variables inX and substituting = z in the remaining equations.

One way to conceptualizB(Y'|do(X; = x;)) is to consider the effect of the interven-
tion on a causal diagram. The intervention®neffectively severs all the parental arrows
from pa;) to X;. Thus, the atomic intervention renders the intervenecgiindependent
of its normal causes. Another notation used is to considéentarnvention by the introduc-

tion of an interventional nodé; as a parent o, (Figure 2.6) which takes two values
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E
K off ° € fon

Figure 2.6: An intervention nodg,. that represents an atomic intervention performed on
variableC'

'on” and 'off’. The ’off’ state represents no interventiondthe 'on’ state refers to the

atomic interventionlo(X; = z;).

Recall the factorization of the joint probability repretehby the Bayesian network
(Equation 2.4) in terms of its conditionals. When an atomiefiventiondo(x}) is per-
formed on a variableX; setting them to the set of value$ the conditional that are not
consistent with the interventions disappear, and when #neyconsistent they become
unity. Let the interventional node be an additional parergdch of the intervened vari-
ables pa; = pa; U F;) . The altered conditional probabilities of this augmerBagesian

network can now be written as:

P(z;|pa;) if [;=off
P(zi|pa;) = 0 if F} = do(x}) andz; # (2.7)
1 if F;, = do(z}) andz; = x/
The effect of the interventiodo(x)) is to transform the pre-interventional probability
distribution P(z;, ..., z,) to the the post-interventional distributid®(z;, . . ., z,|%}) =
P'(z;,...z,|F; = do(z})). In terms of the conditional probability factors of the pre-

intervention distribution, we can write thrincated factorizatioiormula 2.8:
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H P(x;|pa;) if v, =2}
P(xi, ..., z,|2}) = j#i (2.8)
0 if z; #

So far, we have only talked about théomic interventiorwhere we set the value of
the intervened variablg ; to a fixed constant. This could be termekaad intervention.
We can conceive of several practical situations where sutara intervention may not
be possible, but perhaps we are able to make a subtler, moeeajehange td;, asoft
intervention. If we replace the “mechanisms” that determiXidoy another equation such

that P A*(X') are now the new parents a&f we can write the new joint distributioR* as

P*(x]pa;)

P (xy,...,x,) = P(x1,...,2,) Pz |pas)

(2.9)

Note that the parents af, pa; is replaced bya; indicating that the set of parents could
potentially be different. A simplifying assumption thatnche applied is thapa; does
not change across the interventional boundary, but onlp#nameters of the conditional
distribution P(z;|pa;) on thefocal variablex; changes taP*(z;|pa;) [TPO1a]. In other
words, the structure of the causal model remains invaridnikevthe parametrization is

altered by the “mechanism change”.

There are several other models of intervention discusseecient literature, includ-
ing uncertain interventions, fat-hand interventions and infget interventiondEMOO,
TKPO6]. In this dissertation, we employ only hard and sofementions. In the next

section we will discuss how interventions are useful in deteing causal structure.
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2.5.1 The Power of Interventions

In section 2.2 we discussed Observational EquivalenceaiEne 2.2.2) and how when
given a distribution that echoes a set of conditional indelpace statements, there are
several indistinguishable networks that form a Markov egjeince class given the distri-
bution. Under interventions, however, we are able to redeesize of this equivalence
class and under the right set of interventions we are abledover the true causal struc-
ture. For example, consider the CANCER network [FMR98] asashin Figure 2.7.
Reading off the graph by the rules dfseparation we see that it encodes the following
setof Cls: {A I D|B,C), (A 1L E|C), (B 1L C|A), (B 1L E|A), (D 1 E|C)}.
Given only this, and using theorem 2.2.2, we can now draw tituetsires with the same
skeletons and same setwstructures as shown in Figure 2.8 that are observatiofaily
Markov) equivalent to the CANCER network. With observatibdata, this equivalence

class represents the limit of our causal inference.

Each intervention, however, helps us determine the otienta of the edges to the
neighbors of the intervened variable [ES06, ES07, TP0181BP Figure 2.9 shows the
set of structures equivalent under an interventionBonStructureiv from figure 2.8 has
the wrong parents foB and hence gets eliminated. Some other non-neighborhoasedg
might also be forced towards an orientation due-eparation and DAG acyclicity. The
variable chosen for intervention also plays a significateé ne the number of edges that
get oriented. Figure 2.10 shows the unique causal strutitatecan be determined from
an intervention ormA. Interventions onA determine the arcs out of to its neighbors,
A — BandA — D and the ar&” — FE, since we cannot introduce nemstructures. In
general, given interventional data, we can eliminate sgvextworks out of the observa-
tional equivalence class and determine the interventieqaivalence class, as proved in
[TPO1a]. In chapters 3 and 4, we will discuss algorithms angigcal considerations that

extend previous methods that do this.
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Figure 2.7: The CANCER network

W

Figure 2.8: Markov equivalent structures of the CANCER ruelkv Dashed edges are the
edges that differ from the original network.

2.6 Onthe Number of Experiments

We saw in section 2.5.1 that different interventions deteendifferent sets and numbers
of orientations in the causal model. Some interesting gquestrise naturally from that

discussion.

1. How many interventions are needed to determine full daisacture?

Figure 2.9: Markov equivalent structures of the CANCER metwunder an intervention
on B. Dashed edges are a result of the intervention.
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» N

Figure 2.10: Unique causal structure of the CANCER netwedovered under an inter-
vention on A. Dashed edges are a result of the intervention.

2. Is there an optimal ordering of these interventions sbweacan determine maxi-

mum causal structure soonest?
3. Does the type of intervention affect the number of intetians required?

4. If there are some specific links whose orientations we raerasted in more than

others, which and what kind of interventions should be [irzed?

Tian and Pearl [TPOl1a], consider a transition sequence ¢ Sft interventions on
single focal variables at each transition to detect mafgihanges in descendants. Rely-
ing on intuition, they construct this sequence as a trawsdind construct a Marked Order
Graph (MOG) that is then used to constrain learning algorith In a series of papers,
Eberhardt, Scheines and Glymour address these questiG®0f ES06, ES07, Ebe06,
Ebe08, EGS06, Ebel10]. In [EGSO05, EGS06], they show thatruhdausual assumptions
of Faithfulness, Markov compatibility, causal Sufficienanpd perfect datay — 1 exper-
iments suffice and in the worst case are necessary to detethencausal links among
N > 2 variables. An experiment here corresponds to the equivaferandomized con-
trolled trial (a perfect intervention) on one variable atirae. But this bound does not
hold whenN > 4 and experiments are performed on more than one variableiiea t
In fact, surprisingly, this bound reduces, [twg,(N) + 1| when multiple simultaneous
experiments are allowed [EGSO05]. Further, parametriawetgions that do not alter the

structure of the model are more powerful under correlatioests of causal pathways,
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and the number of experiments required reduces to one, whengarameters of all the

variables are simultaneously changed.

Eberhardt [Ebe08] provides results of a simulation to suppaconjecture that the
worst case number of experiments necessary and sufficiesistover a causal graph
uniquely given its observational Markov equivalence classa function of the largest
clique in the Markov equivalence class. An interesting esi@n to this approach ad-
dresses the problem with a game theoretic focus [Ebe10]piidi@em of causal discovery
is framed as a game of the Scientist against Nature, in whathifd attempts to hide its
secrets for as long as possible, and the Scientist makesbkeeffort at discovery while
minimizing the cost involved in running experiments. A kewitation of these results is
that they rely on the assumption that it is possible to petfthrese experiments in the first
place. Additionally, some experiments may be more diffitudn others, or be very ex-
pensive, and some may be unethical or impractical to perfdtevertheless, they provide
valuable guidance to a causal learner in making choicegwleilermining an order among

the possible set of interventions.

In chapter 3, based on the background of chapters 1 and 2séipréhe primary hy-

potheses of this dissertation and how they will be supported
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Three Improvements to Algorithms for

Causal Learning

“Frustra fit per plura quod potest fieri per pauciora.”
- Franciscan friar William of Ockham4!" Century
“Simplicity is the ultimate sophistication.”
- Leonardo Da Vinci1l5" Century
“We are to admit no more causes of natural things than suchra®ath true
and sufficient to explain their appearances”
-Sir Isaac Newton] 7¢* Century
“Make everything as simple as possible, but not simpler”
- Albert Einstein 20" Century
“When you have eliminated the impossible, whatever remaiosever
improbable, must be the truth.”
- Sherlock Holmes (Sir Arthur Conan Doyle) in The Sign of tleeiFfDoy90].

Chapter 1 introduced the general idea of learning causadtsiie and its applicability

across several types of domains. In Chapter 2, presentadlévant background related
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to this problem and discussed formal frameworks for modirance, including causal
Bayesian networks, and presented related definitions.oliateoduced the IC algorithm
for inferring partial causal structure from observatiodata and presented some types of

interventions and their utility in augmenting causal stnoe.
In this chapter, | present the three hypotheses that makeyugigsertation research.

Hypothesis 1 (Robust Constraint-Based Structure Seard®ynstraint-based structure
search algorithms that operate on finite samples are vulbleréo faulty statistical tests
that are used to infer conditional independence infornmatibpropose a new algorithm
based on a tunable parameter that provides an alternativeréen greedy and conserva-

tive methods of choosing independence constraints thabisst to faulty tests.

In section 3.1 of this chapter | first introduce the PC aldponit a greedy and com-
putationally tractable adaptation of the IC algorithm. Td m perspective the practical
means of determining conditional Independence statenj@tg} in section 3.2 | present a
mutual information based empirical technique for determngrCls from multinomial data
samples. | then discuss a conservative version of the PQithigo C' PC,,,., that relaxes
the faithfulnessassumption and accounts for certain types of problems int afsketer-
mined CISs statements. In section 3.4, | presenstieCPC algorithm §C' PC,,.), a less
conservative approach that trades off betw€érC,,. and PC,,. | present arguments that
justify this trade-off in lieu of faulty CISs from sampledtdaln section 4.2, | present the
results ofsC'PC,,, comparing it toPC,, andC PC,,,., for several networks across sample

and network sizes.

| then move on to algorithms that exploit experimental disttions. | handle two types
of experimental distributions, i.e., distributions dugtyfect multi-variable interventions

and distributions due to soft interventions on single \a@aa.

Hypothesis 2 (Parent Detection)Perfect interventions on a set of variables sever the

causal connections from the parents of the intervened b&sato the intervened set,
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which exhibits a certain specific type of difference betwkenpre-interventional and
post-interventional distributions. | present an algonththat exploits this difference to

determine the most likely parental connections of the v@etional variables.

In section 3.5, | present thgarentalSearclalgorithm that exploits the difference be-
tween pre- and post-interventional distributions of perfaterventions on multiple vari-
ables to execute a search upstream in the causal order. ddrishsis tractable as it is
constrained among the undirected neighbors of a causah grhpse adjacency informa-
tion is already determined through constraint based msthbdsection 4.3, | show the
performance of this algorithm across varying sample sizesyork complexity and the

choice of interventional sets.

In section 3.5.1, | then present thpproximateKLDtechnique that | developed that
is required by theparentalSearch approximateKLDis an algorithm that estimates the
KL-divergence of two high-dimensional distributions eely from data samples. While it
suffers from not being accurate to the true KLD, | show enggity that it performs well
as a relative metric (this suiparentalSearc)y which is sometimes what algorithms need.
Further it has the advantage of being computationally @tdet Section 4.4 presents the

corresponding results.

Hypothesis 3(A interactive algorithm to prioritize interventions)Vhile soft interventions
do not sever any causal connections in the causal model bigad introduce a change in
the governing mechanisms. Pre- and post-interventiorsatidutions of soft interventions
can be thought of as a randomized controlled trial and thegyanithe philosophy of
causality through manipulability. Combining from constitabased methods, | present a
novel and fast incremental algorithm that can also be degdoteractively that learn
orientations to the PDAGs from parametric interventionsnoyimizing the number of

interventions required.
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In section 3.6 | present an interactive algorithnteractiveCausalDiscoveryat starts
with the pre-interventional distribution, and suggests fouman experimenter, a priori-
tized set of interventions that she may choose to perfornonlgcepting this choice, and
the corresponding data, the algorithm incorporates thignmation into the causal model
and returns an updated set of choices to the human. Thisqascmtil all orientations are
determined. In cases where it is possible to automate theriexentation and data collec-
tion process, the algorithm would simply choose the higpestity experiment at each
iteration and proceed. | also discuss the conjecture on thistwase minimum number of

experiments required and its connection to graphs of @iffedensity.

The algorithm supporting hypotheses 1 and 2 complementthgpis 3. When the in-
terventions are parametrioteractiveCausalDiscoveigeploys a constraint based method
(like sC'PC,,) by augmenting the causal model with intervention nodesetedat orien-
tations. When given hard interventioparentalSearctexecutes an “upstream search” in
the causal order. Note that other methods like descend#attae with marginal distribu-
tions can also be used, with threeractiveCausalDiscoveglgorithm, but | do not discuss

the details in this dissertation.

Section 4.5 contains the results of applying this techntquzausal graphs of varying
size and complexity. Finally, | discuss how a combinatiortha above algorithms can
be used in an incremental fashion in practical causal Iegrio conclude chapter 3. The

results of these combined experiments concludes 4.

3.1 The PC Algorithm

The PC algorithm, named after its creators P. Spirtes andy®n@ur [SGSO01], improves
on the basic idea of the IC algorithm by exploiting the spaess of the causal graph. The
IC algorithm has a subset search routine where, for a pagmices{a, b}, a separating set

Sap € V\{a, b} is to be found. The powerset of the remaining vertie&s{®*}, specifies
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the exponential search space. An edgé) exists in the causal graph only if there exists
no conditional independence between the two vertices tondd on any subset of the
remaining vertices. For graphs that have a degree muchemtldn thanV’|, we can
get significant reduction in the time complexity by restrigtthe search for5,, only to
nodes that are still adjacent toandb. Indeed, the PC algorithm enjoys, polynomial
complexity in graphs of finite degree, as it systematicatlyieres the search space in sets
of increasing cardinality, removing the edge b) as soon as a separating set is found,
automatically preferring smaller separation sets to laoges, following the principle of

parsimony.

Following [KB07], we discuss the PC algorithm as proceedimiyvo stages.

1. PCy;, : The first stage of the algorithm that determines the unticegraph (skele-

ton) among the variables.

2. PC,,: The second stage which uses a set of rules to orient as mdimgcted edges

as possible.

For the sake of clarity in describing the algorithm, the fessige assumes perfect
knowledge about the set of all conditional independencaticgiships among the vari-
able set). In other words, we assume that we are given &set that can be queried for
membership of statements of the tyget 1L B|C'), whereA and B are variables and’
is such that” C V' A, B. However, in the next subsection we will relax this assuopti

and describe an empirical method to determine these redtips.
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Algorithm PCy,

Input: V, Scrs

(x Vertex set and set of conditional independence statemegnts

Output: G(V, E), S

(x An undirected graph, set of separating sgts

1. G(V,E)whereE = {(v;,v;)|Vv;,v; € V'} (x Initialize G as the complete undirected
graph onl” x)

2. setSize +— —1

3. repeat

4, setSize < setSize + 1

5. repeat

6. Select a (new) ordered pair of variables (;) that are adjacent it¥ such
that|adj (G, v;) \ {v;}| > setSize

1. repeat

8. Choose (newk C adj(G,v;) \ {v;} with | K| = setSize

if (v; AL v;|K)

10. then £ — E'\ (v;,v;) (x Delete edgéu;, v,) *)

11. S(i,7) « K; S(j,i) + K (x Store the separating s€t

12. until edge(v;, v;) is deleted or allX’ C adj(G, v;) \{v; } with | K| = setSize
have been chosen

13. until all ordered pairs of adjacent variablesand v; such thatjadj(G,v;) \

{v;}] > land K C adj(G,v;) \ {v;} with |K| = setSize have been tested
for conditional independence

14. until for each ordered pair of adjacent nodes;, |adj(G, v;) \ {v;}| < setSize

Spirtes et al. provide the proof that this algorithm produtiee correct skeleton in
[SGSO00]. The maximum value reached by the varialeleSize is determined by the
maximum degree of the underlying graph, proved in [KB0O7].e Tiext stage in the PC
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algorithm is to orient the edges.

Algorithm PC,,

Input: G(V, E),S

(x An undirected graph, set of separating sgts
Output: G(V, E, A)

(x An partially oriented graph that represents the Markov etance class)

1. GG A—0,E—F

2. for all (v;,v;) ¢ E such thaBuy, (v;, vx) € E'A (vj,v) € E (x Rule 0%)

3 if v, & S(3,7)

4. then £ — E\ {(v;,v), (v;, v)}

5 A — AU{(v;, ), (05, 0%) } (x Orientv,—vy—uv; asv; — vy, + v; *)

6. Inthe resulting CPDAG, repeatedly apply the followingesuuntil no more rule can

be applied.

7. R1: Orienty,—ov; into v; — v; whenever there is an atg — v; such that,, andv;
are nonadjacent.

8. R2: Orienty,—v, into v; — v; whenever there is a chain — v, — v,.

9. RS: Orienty,—v; into v; — v; whenever there are two chains—v;, — v; and
v;—uv; — v; such that, andv;, are nonadjacent.

10. R4: Orienty,—v; asv; — v; whenever there are two chains—v;, — v; andv, —

v — v, such thaty, andv; are nonadjacent and andv; are adjacent.

As reported by Pearl [Pea00], the repeated application ef afsules are sufficient to
orientall arrows that are common to the equivalence class of the censd¢l [Mee95].
Rules 1 through 4 are also termed as the Meek orientatios.rufePC; outputs the
correct graph and the correct separation ge¢s,. is simply a deterministic application of

thed-separation criterion.

Rarely in practice is perfect conditional independencermfation available and one
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has to infer these relationships from data samples. Heneeare forced to relax the
assumption that perfect conditional independence infaaonas available to the algorithm
PCy.. Although PC,, does not need conditional independence information diyeict
indirectly uses this information reflected both in the stwue of the skeleton and in the
content of the separation se&fs In the next section we discuss a method for determining

conditional independence from data.

3.2 Determining Conditional Independence

In this thesis | assume that all the variables are multinbraredom variables and | focus
on determining conditional independence based on thisygstson. Mutual Information
of two random variables is a quantity that measures the rhde@endence of the two

variables. Formally mutual information can be defined aeva:

1(X,Y) =Y 3" P(z,y)log (%) (3.1)

Mutual information is usually measured in bits, and thusldgarithmic term is of
base 2. Mutual information quantifies the dependence betieejoint distribution ofX
andY, P(X,Y) and what the joint distribution would be X andY were independent.
I(X,Y) = 0ifand only if X andY” are independent random variables; the logarithm term

vanishes if for every: € X andy € Y, p(x,y) = p(x)p(y).

Intuitively, mutual information measures the informattbat is shared by andY’. It
is a measure of how much the knowledge of one of these vasiabtieices our uncertainty
about the other. For example Xf andY” are independent, then knowledge ab&utioes
not diminish the uncertainty we have abdatby any amount and vice versa; therefore

we say that their mutual information is zero. On the otherdh&nX andY are identical
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then knowledge abouk gives us identical knowledge about and vice versa. As a
result, in the case of identity the mutual information is Hane as the uncertainty in

Y (or X) alone, which can also be termed as the entropy dbr X), where entropy

= P(a)log(P(x).

rzeX

I(X,Y) = H(X) - HX]Y)

(3.2)

(

(Y) = H(Y]X)
(X)+H(Y) - H(X,Y)
(

H
H
H(X,Y) — H(X|Y) - H(Y|X)

However, we are interested in a quantity that measures @mtkgmce among two vari-
ables, given information about another set of variable® dimalogous quantity that does
this is calledconditional mutual informationsometimes referred to asnditional cross
entropy In equation 3.2 we replace the entropy terms by terms coneid on a third vari-
ableset: [(X,Y|Z) = H(X|Z)—H(X|Y, Z). More formally, we can write conditional

mutual information as:

1(X,Y12) =3 P) Y3 Playl- log< (fx)ytyﬁ )) (3.3)

2€Z yeY zeX

This value iszeroonly when there is perfect conditional independence amdrand
Y, givenZ. To test for conditional independence from data samplea faadistribution,
| first compute the maximum likelihood (ML) estimates of th@lpability terms in the
above expression. | assume complete datasets, that iy, @ater item has valid values
for each variable. IX = {X;,..., X,,} is the set of variables, a complete dataset can be
written asD = {D,, ... D,,}. The maximum likelihood estimate for the probability of a

variable is then
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N.:
P(X = xj)MLE - Ej (3-4)

where N, is the number of data items in whick took the valuer;. ML estimates for
joint distributions among more than one variable can beutated similarly by treating
the variables as one composite variable where their set sdilple values is from their
Cartesian product. For example, for binary variablfeandY the set of possible values
are{00,01,10,11}. For small sample set sizes (smal), the ML estimate can suffer
from zero counts, i.e. some configurations of the variablag never appear in the data
set. Typical methods used to correct for this are by usingaelca correction or by setting
a Dirichlet prior. The Laplace correction assumes that edithe data configurations has
appeared at least once in the data set and starts the coomi frestead of 0. This gives

us a different estimateq ) for the probability (equation 3.5).

N; +1
m-+r

P(X =)0 = (3.5)

s

wherer is the arity of X. Note thatm = Z N;. This has however been criticized as

biasing the estimate “too much” towards]:tae uniform disttibn. A refinement that is
commonly used among Bayesian practitioners is to use atbetiprior with parameters
a ={ay,...,a,}. The parameters of the Dirichlet prior (or simply Dirichfgirameters)
can be thought of as pseudo-counts that represent our iief Bbout the distribution,

as can been seen in equation 3.6.

Nj + Oéj -
P(X = 2))pi = = ~ wherea, = ;aj (3.6)

Note that as sample size increases the effect of the priors vanish and they all con-
verge on the ML estimate. As suggested by Heckerman [Hec8699] | use a uniform

conjugate Dirichlet prior withy; = 1/r.
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The test statistic used for independencets which is2mI(X,Y|Z) wherem is
the sample size (equation 3.7). Under assumptions of imdigmee, it is known thaf?

follows a? distribution (equation 3.7) witl degrees of freedom (equation 3.8) [Fis29].

G?est = X?est = Qm[(X7 Y‘Z) (37)
Y= =D -D]] (3.8)
ac”Z

The y? distribution has the following probability distributionriction fory degrees of

freedom.

2_ - on/2-1,-x/2
X5 27/2F(7/2):1: e ,x € [0,00) (3.9

TheT function is an extension of the factorial function to reatlamomplex numbers,
and has the property(n) = nI'(n — 1) for all real and complex values with non-negative
real parts. It has closed form values for half-integers, sinde~ is always an integer in

our problem, it is computable, and

['(z) = /O Tty (3.10)

The probability() that ay? value calculated for an experiment wittdegrees of free-

dom is due to chance is

1 o0
P — v/2-le—a/2g 3.11
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| now use the ubiquitously used Pearson’s chi-squareddeigtermine whetheraull

hypothesistating that the distribution of certain events observea sample is consistent
with a particular theoretical distribution [Pea04]. Whepked to a test for independence,
the null hypothesis is that the observations, consistinfp@falues of two outcomes, are
statistically independent. For the test of independeiee,t probability can be calculated
by using a look-up table or by a fast approximate numerigaton technique since there
is no closed form for equation 3.11. If thé probability is less than or equal to the chosen
value of parametet, known as thesignificance valug(or the X2 statistic is larger than
the critical point), we reject the null hypothesis of indegence. In other words, when
the test of independence succeeds, we can declare theiooatihdependence statement

(X 1L Y|Z)true. Itis common practice among statisticians to cheogebe(.05.

3.3 Problems with the PC algorithm

Recall that the PC algorithm assunfegthfulnessi.e. the independence relationships
among the variables are exactly those represented in tisalcaodel and the d-separation
criterion [Pea88]. When we have to rely on finite sample detts@nd a statistical methods
to infer conditional independence, we stand the risk ofatia the faithfulness assump-
tion. An example is shown in Figure 2.5. A similar examplewhdy [RZS06], is as
follows. Consider the causal graph— B — C, where(A 1L B|C)aswellag A 1L C).
We can think of the second independence statement becormaabeécaus® cancelsA’s
direct effect onC'. The PC algorithm, would find thatd 1 C'), remove the edgd — C
and record) as the separating sét;. In the orientation stage, this would result in the
following incorrectresuld — B «— C' asB ¢ S,c. Note however, that due to the special
nature of the unfaithfulness of this example, the algoritimas the right skeleton anyway.
This motivates the division of the faithfulness assumpirda two separate implications,

Adjacency-FaithfulnesandOrientation-Faithfulness
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Definition 3.3.1(Adjacency Faithfulness)Given a set of variable® whose causal struc-
ture can be represented by a DAG if two variablesX, Y are adjacent ini, then they

are dependent conditional on any subseVof { X, Y'}.

This definition emphasizes that two variables are non-adjaic G if and only if no
separating set is found. The second part, deals wighielded triplesi.e. a set of three

variables that has exactly one non-adjacency.

Definition 3.3.2(Orientation Faithfulness)siven a set of variableB whose causal struc-

ture can be represented by a DAG let (X, Y, Z) be any unshielded triple in G.

1. If X - Y «— ZthenX andZ are dependent given any subselof { X, Y} that

containsY'.

2. OtherwiseX and Z are dependent conditional on any subselof {X,Y} that

does not contairy”.

Orientation faithfulness specifies the conditions for thhespnce or absence of un-
shieldedv-structures (also called unshielded colliders). For trehigided tripleg X, Y, Z)
to exist, it only requires that a conditioning set is foundt for the orientations to be di-
rected towards” we require information that” was not part of that set, or any other set
that rendersX independent of". In practice, we find that statistical tests of independence
are more robust with respect to adjacency faithfulness thi#im respect to orientation
faithfulness, as is expected. Orientation faithfulnesgdses a stronger and hence more

statistically error prone constraint than adjacency falttess.

The Conservative PC (CPC) algorithm by Ramsey et. al. [RZ&0é&xes the faithful-
ness assumption by assuming only adjacency faithfulneésgtempts to verify orientation
faithfulness to the extent possible. Previously, the S@8rdadhm by Spirtes et.al. [SGSO00]
checks for the unshielded collider and non-collider canditbut barely fails short of cor-

rectness as it does not check torfaithfulunshielded triples that fail both these condition.
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Additionally, the SGS algorithm is terribly inefficient, ftecase exponential, as it checks
for dependence betweenandZ conditional on every subset ®f\ { X, Z}. CPC,, does
better, as it uses the same intuitions as the PC algorithnhégking only for subsets that
include potential parents of andZ. The CPC algorithm replaces collider orienting lines

3,4 and 5 inPC,,, with checks that mimic the orientation faithfulness arda.

Algorithm CPC,,
Input: An undirected grapld:
Output: A partially oriented DAG with unfaithful triples marked
for all subsets of the potential parentsigfandv;
if v, is NOT in any subset conditional on whichandv; are independent
then Orient (v;, vy, v;) as an unshielded collider

1
2
3
4, if v, is in all subsets conditional on whieh andv; are independent
5 then Leave(v;, vy, v;) as an unshielded triple

6

Otherwise mark the tripl&;, vy, v;) as unfaithful

The output of the CPC algorithm is an extended pattern (efqrgtthat contains undi-
rected and directed edges, as well as unshielded triplelseshamfaithful. Note that e-
patterns are no longer in the Markov equivalence class of §Aght they represent a
larger class that includes the set of graphs that unfaithéttibutions can entail. Proof of
correctness under the adjacency-faithfulness assumptovided in [RZS06]. The rest
of the algorithm proceeds as the PC algorithm does by applyie orientation rules (R1
through R4) inPC,,,., avoiding the unfaithful triples. If further orientationles result in

resolving some of the orientation triples, the unfaithéda mark is removed.
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3.4 Thesoft-CPC algorithm

In practice, the PC algorithm has a tendency to label urgdndketriples as colliders too
often, due to a single faulty CI test that appeared first inaifieer of CI tests conducted.
The C' PC,, algorithm, “conservative” as its name suggests, orienligdess only when
the common neighbor is not present in all of the separatitgy 8®th approaches are cor-
rect, given their assumptions. While PC assumes perfed With respect to faithfulness,
CPC,, assumes perfect CISs with respect to adjacency faithfslnk#shas been noted
that additional adjacency checks for unshielded triplagdccbelp resolve some of these
problems. Additionally, they also refrain from incorpongf any sort of tolerance for un-
faithful triples detected due to faulty CISs. Ta&C,,. algorithm performs two extremely
constrained tests, namely the membership or non-membpew$lai common neighbor in
all separating sets. Suppose that there are a large numisepafation sets for a non-
adjacent pair, and one of the common neighbor is a memberynome of these sets. In
Cl tests on finite samples, it is possible that the singlettest makes the condition for
unshielded colliders fail is faulty, rather than that thésdoreal example of unfaithfulness.

The alternate condition is also symptomatic: if it is absmrly in one separation set.

As pointed out elsewhere, we reiterate here that unfaitlefs is a highly unlikely
occurrence in many causal models [Pea00, SGSO01]. Itis paesisiependent and requires
the precise tuning of several parameters to manifest it#gijluments that justify their
occurrence rely on the presence of some meta-mechanismgsrexas to the causal model
that regulate and tune these parameters. Some exampledhfuiness inducing meta
mechanisms could be evolution, other kinds of ecologictriz® mechanisms, market
self regulatory phenomenon in economics, etc. Discourianthese sort of mechanisms,
it is far more likely that thePC,, algorithm errs in the adjacency detection stage, which

will lead to an incorrect inference about unfaithfulnestriples adjacent to that error.

Unfaithful markings in e-patterns are a cumbersome weigleatry around in causal
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models. They represent a larger family of DAGs than the CP®A@®duced by the PC
algorithm and it is worth marking unfaithfulness only whee are confident about the

detected unfaithfulness.

Additionally, performance of the CPC algorithm is hardeetaluate. Simple metrics
based on edge comparisons are not sufficient as one needskpoiwledge about the
unfaithful triples in the true causal graph. Even if this vaiéable for validation tests, it
requires meticulous parameter tuning when we generatgrisghs. Even when we have
access to the true distributions, verifying the unfaithéds of an unshielded triple requires

a series of Bayesian inference queries, which is NP-hard9GoPea00, WBO05].

In practical applications, the prior knowledge about uthifail triples is almost never
available, needed for validating the results’aPC,,.. Further, the additional information
about an unfaithful unshielded triple is that it could pdiaity be a collider, whereas a
faithful triple cannot. In the context of using future exipeental data, this difference is
not significant, as experimental data almost always supplsewith superior orientation
information, as we shall see in sections 3.5 and 3.6. Howélec’,,. reduces the number
wrongly marked unshielded colliders and this is a valuabilprovement that we would
like to incorporate. | propose a simple modification to thedhgdrithm which we call the
soft CPC algorithm (sCPC) that reduces the number of unfaitinfoles by a quantifica-

tion of unfaithfulness.

My contribution is to introduce a tunable parameter callathithfulness tolerandg’)
that supports the determination of the level of consereatss that is applied to constraint
based search algorithms. Th€ PC,, algorithm replaces thé' PC,,. algorithm with the

following lines.
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Algorithm sCPC,,
Input: An undirected grapld-, tolerance parameter
Output: A partially oriented DAG with unfaithful triples marked
1. for all subsets of the potential parentswpfanduv;
2. if v, is NOT in at least & fraction of subsets conditional on whichanduv;
are independent
then Orient (v;, v, v;) as an unshielded collider

if v is in at least & fraction of all subsets conditional on whichandv; are

independent
5. then Leave(v;, vy, v;) as an unshielded triple
6. Otherwise mark the tripl&;, vy, v;) as unfaithful

Additionally, we also propose theC,,i,sepse: @lgorithm, a simple but less greedy
modification to the PC algorithm. The difference betwée,,,i,,sepse: and PC' is that
when testing for conditional independence among sets efsihe PC algorithm chooses
the first separating set that it finds, whie”,,,;,,se,se: cOntinues Cl testing for all sets of
sizek and stores all the separating sets for each pair of non adjeagables in increasing
order of conditional mutual information. HencB(C,,i.sepse: Performs a larger number
of Cl tests (on average) than PC but the same in the worst €8Sg;,,sepse: SIMply uses
these stored separating sets for the orientation state antbw CI tests are evaluated
unlike CPC and sCPQ@j versions.

We will discuss the comparative performance of all theserélyms in section 4.2.
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3.5 Parental Search Algorithm

The PC family of constraint based algorithms representithie 6f what can be learned
from static distributions or observational data alone. His section we explore an al-
gorithm that combines information from both static and atemventional distributions.
We examine perfect interventions on multiple variableat sletvariables to fixed values.
We derive inspiration for these assumptions from relatsgéaech that exploits notion of
contexts in graphical models. Context partitioned modelehbeen used to reduce the
complexity of representation and inference by includinty éhe most relevant stochastic
variables, and pruning away the contextual variables[S[.Sd this way, we are able to
store more concise contextual models in a context modelrijpa more descriptive form

or representing a dynamic stochastic system [SRLSO08].

An operational context is a period of stability in the dynarbehavior of the system
where a subset of the observed variables remain at fixeds/allree contextual variables
define the current context by remaining instantiated at glsipoint throughout the dura-
tion of the context while the stochastic variables maingastable joint distribution during
that context [SLS07, SRLSO08].

Let a set” be the set o€ontextualariables and” \ C, the set otochastiovariables.
The assignment’ = ¢, is a context and represents a hard intervention. Notelibatai”

is not unique to a context but can be identical for severaleds /¢! of them).

Contexts are InterventionsThe learning agent may not always have interventional con-
trol over the quantities it measures, nor is it realistid thia given this information explic-

itly at all times. It is desirable that it has the ability tden that these interventions have
occurred entirely from observations. There has been somle iwdhe Bayesian learning
community on detecting the targets of interventions [EM®Lit an analogous method is
not available for constraint-based methods in the genasg.c Although this is a very

intriguing related area [KBDGO04, LJY07] methods to detet¢iventions in real-time are
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not in the scope of this dissertation. However, contexthand interventions, are easy to
detect. In this dissertation, any variable that takes desvaue throughout the data set is

determined to be a contextual variable.

A Context Transition occurs in a system when the interventional state is changed f
C = cinto any of the other states of the systéin= c,. In lieu of these definitions, the

null context represents a stable distribution obtained undérteosentions.

Recall that joint distributionP, represented by a causal Bayesian network factorizes
as the product of the conditional distributions of its val&s given its parents (Equation
2.4). LetC' C X be the set of variables on which the intervention is perfalritgpi-
cally |C] << |X]). Letc; represent the values taken by variablee C. ThenF; is
the post-interventional joint distribution for a partiaulcontext which we can also rep-
resent asP(X|do(C = ¢)) or P(z;,...,x,|¢;). Generalizing Equation 2.8 to multiple

interventional variables we have the following:

H P(xjlpa;)  ifz;=¢, Vo, eC
0 if x; # ¢,

From equation 3.12 we get the relationship between thentegventional and multi-

variable post-interventional distributions as follows.

P
P = whenever:; = ¢, Va; € C (3.13)
11 Pjlpa;)
z;€C;
Note that we have the right hand side of equation 3.13 ewntireffactors of the pre-
interventional distributior”. Conditional probability factors corresponding to the teom

setC' increases the density dhin specific locations. Suppose we have sufficient samples
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to estimateP and its relevant factors, the right hand side of equatio 8dn be calcu-
lated purely from the pre-interventional distributiongivthat we knowa,. We denote an
estimate obtained such &%(pa;). FP: can also be estimated from the post-interventional
distribution, and this should matd¥(pa;), given that we know the unknown parent set
pa; for the contextual variables; € C. We turn this search problem, of finding a pét

that satisfies the above relationship, into a minimizatiabfem.

pa; = argmin D(FP;, Pi(pa;))|z; € C (3.14)

pajggX\{zi}

whereD() is a suitable measure of divergence between two distribsitio

The search fopa; in the powerset ofX \ {z,} looks worrisome, but we can reduce
the complexity of this search by using several methodst,Fis restrict the search to the
Markov blanket (set of neighbors of a node in the skeletonkefh variable or restrict
the cardinality of the parent set to a maximum for graphs awkmfinite degree. Even
better, we can usg as input to the PC algorithm described earlier in this chapted use
the PDAG to constrain the potential set of parents. Potiepaigent sets can be restricted
to those that contain nodes that are already determinedrastpdy the PC algorithm,

unioned with each subset of the set of adjacent nodes thgeatmoriented.

When such a seta; is found, we can orient each edge adjacent taalt C' and then
update the PDAG.
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Algorithm parentalSearctP, P:)
Input: P, P,
(x Pre and post Interventional distributicrs
Output: pas|x; € Ci, H'(P)
(x parent set for each contextual variable, augmented PRAG
1. H(P)«— PC(P)
(x A partially oriented DAG compatible with «)
2. forz;eC
3. Computepa; 4, the set of parents af; in H(P)
4. Computend; 4, the set of undirected neighborsin H(P)
for n, € 2"n
paj < pajpUn;
Compute difference metrit,,,
pa; < argmin d,,,

pa;

UpdateH (P) with orientations(pa;, z;) and(x;, nb; \ pa;) for eachz; € C.

© © N o 0

In the resulting PDAG apply rules R1 through R4 as specifigdC,,, in lines 7,8,9
& 10.

Note that the number of variables chosen for interventiorefch context affects the
size of the search space. However, with the constraintsfigabby H (P), we expect
that this number is not too large when considering contdsdsget two or three variables
at a time. Importantly, note that contexts of size 2 can beaafly useful, considering
the unfaithfulness problem discussed in section 3.3. UsargntalSearchunfaithful un-
shielded triples can be oriented by measuring the distabwntailed by subjecting the
two non-adjacent nodes in the triple to an intervention. gage the maximum degree
for all variables computed froni/ (P) is d, then the total size of the search space‘fs
when contexts are set withvariables at a time. Moreover, &8(P) is updated at each

context transition, the number of undirected neighborsiced by at least one for each of
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the parents of the contextual variables, potentially mghthe search spaces involved in
future contexts. Therefore, we can expect the algorithnetéopm reasonably in practical

domains. | present the results of this algorithm in secti@n 4

Note that we did not specify the divergence mettjg that is to be used. Commonly,
the Kullback-Leibler (KL) divergence [KL51] is a popular amure that is used to mea-
sure the information loss between two distributions. Gitreat the dimensionality of the
distributions can be arbitrarily high, KL-divergence cahbe measured directly. In the
next section, | describe an algorithm that computes thecequpiate KL-Divergence from

data sampled from two distributions.

3.5.1 Approximate Kullback-Leibler Divergence

The Kullback-Leibler divergence is a non-symmetric measafrthe difference between
two probability distributions? and(@. It measures the expected number of bits required
to code samples fron¥ using a code based ap, rather than using a code based on
P. Typically, P represents the “true” distribution and the KL-divergenceasures how
different the “approximation?), is from P. If P and( are defined over discrete random
variables, then the KL-divergence is defined as :

7)

P
)

Dkr(P||Q) = P(x)log (3.15)
We consider the problem of computing the KL-divergence ai thistributions when
we are given sparse datasets sampled from each of the diginb. Intuition suggests
that we simply compute the ML (maximum likelihood) estinsaté each distribution and
compute the summation in equation 3.15. However, the digions can be of arbitrarily
high dimension)V. A distribution that is represented by Ahnode Bayesian network with
binary nodes hag&" possible configurations. Such a large distribution caneostbred,

which is precisely one of the utilities of using a Bayesiatwmek. We have to assume
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that we are unaware of the Bayesian network structure, astwed to use this measure
in the process of causal discovery. Alternatively, we cauase a Bayesian network, or
construct one that is compatible with the Markov equivatdass of networks determined
by the IC/PC algorithm. However, the summation in 3.15 is&tipplingly slow; the loop

is 2V long and the time complexity is exponential.

| propose a simple alternative in the following algorithpproximateKLDthat enjoys
a polynomial time complexity with respect to the size of tiatedetn and the dimension-
ality N. Therefore, each dataset can be considered a set (or vetterdata samples
where each data sample is a vector of lenjthNote that each data sample can also be

thought of as an index into its respective distribution.
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Algorithm approximateKLDD,, D,)

Input: Dy, Dy

(x Two i.i.d. data sets from two distributions of the same disienality. )
Output: KLD,,,

(x Approximate KL-divergence betwedn, and D, x)

1. D}« sortj.(Dy)

D), — sorte.(Ds) (* Sort both the data sets in lexicographical oreler

my <« length(D]); my < length(D5);

> w N

currentIndex « min(Dy(1), D5(1)) (+ D(i) returns the'" data sample in dataset
D %)

5. i—1,j«1

6. KLD,y,

7. N;=0,Ng=0
8

9

— 0

do
10. if (currentIndex = D;(i) V currentIndex = Ds(1))
11. then if (Dy (i) = Do(4))
12. then Ny — N1+ 1,i— i+ 1, Ng— No+ 1,5 j+1
13. else if(Dy(i) < Dy(1))
14. then Ny «— N; + 1,717+ 1
15. else Ny« No+1,j«—j+1
16. else

K LDy = KLDupy + 515355 log (32500

17.
18. Ny «—0, Ny —0
19. currentIndex — min(D (1), D}(1))

The two lexicographical sortsin lines 1 and 2, have complexX{m /N log m) each (as-
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suming equally long datasets). Theterm is due to the fact that the comparison operator
has a worst case @¢(/V), when comparing two data vectors of length The rest of the
algorithm can be likened to threergeoperation of merge sort, where we co-iterate through
two sorted lists, but instead of merging the two lists, weraggte the component of the
KLD in a sum. Co-iteration has a complexity(m; + ms) or rather,O(m) for datasets of
comparable sizes and is dominated by the two sorts. Therefus algorithm has a time
complexity ofO(Nmlogm) in the worst case, which is a tractable quantity. Thus, we can
compute an approximate measure of distance between twibdigins given only their

datasets.

Note that in line 16 of the algorithm, | use a Bayesian estméth a Dirichlet prior
with the uniform parameters, for all configurations. We expect that for very small
sample sizes, th& LD,,,, will deviate from the true KL-divergence but in the large gden
limit (m >> 2%) the summation converges on the true KL-divergence. We initdyd to
use this measure to measure the relative difference of tetalaitions with respect to a
third distribution, and we find that this method works wellgractice. Some exemplary

results can be found in section 4.4.

3.6 Interactive Causal Discovery

In the previous section | presented an algorithm to learsalaelationships from hard in-

terventions on multiple variables by finding the most liket of parents of the intervened
variables. In this section | describe an interactive atpanithat can be used to discover
causal relationships from a series observational andve¢ional (hard or soft) datasets.
Soft interventions are also termed as “parametric intdigas” [ES06] or “mechanism

changes” [TP01a]. In section 2.5, Equation 2.9 describeg¢hationship between the
pre- and post-interventional joint distributions with pest to a parametric intervention

performed on a single focal variahle € X. We noted that the potential parents of the
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focal variable could change fropu, to pa;, thereby implying a potential change in the
causal graph. In this section we assume that the causal grafatic and does not change
with respect to parametric interventions following [ESO6] P and P* are the pre- and

post-interventional distributions respectively, and eapa@etric change is performed on a

single focal variable;;, we have the following.

P*(x|pa;)

P*(xy,...,2) = Play, ..., 2,) Plar|pay)

(3.16)

In 2001, Tian and Pearl show that by carrying out a seriesgfisivariable parametric
interventions [TP0O1a]/N of them, and by testing only for marginal changes, they can
detect the hierarchy of descendants in the causal graphseQaently, if this hierarchy
can be used as additional constraints in the PC algorith can recover the complete
causal graph. In the empirical part of their study, Tian aedrPcollect a large number
of samples for each distribution representing the paramietierventions as a controlled

perturbation of the original parameters.

Later in 2006, Eberhardt [ES06] provided the following thedcal result that proved
to be a significant advancement to the idea. The idea inv@ugsnenting the causal
graph with interventional nodes and then deploying thedmiga of the PC algorithm
to establish the orientations of the nodes upon which ietgrens have been performed.
Unlike ordinary nodes, interventional nodes can have onkyvard arcs, and this helps
us establish not only the unshielded colliders associaiiéid tive interventional nodes,
but also the orientation of the unshielded triples. Thisléetb some remarkable results
and provides great insight into the experimental methagiptbat is to be used in causal

learning. For clarity, | reproduce this important theoremd @roof by Eberhardt here.

Theorem 3.6.1.0ne experiment is sufficient and necessary to discover thgatatruc-
ture among a set oV causally sufficient variables if multiple variables can beepen-

dently and simultaneously subjected to a parametric irgetion per experiment.
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The proof given in [ES06] can be summarized as follows:

Proof. Given faithfulness, observational data alone is sufficiertetermine adjacencies.
Then, consider that we augment the causal structure amoiabhs X = {z;...zxn}
with the intervention nodes = {/;... Iy}, where each intervention noderepresents
an independent parametric changexgnEach/; has exactly one outward edge directed
towardszx;. Given the distribution entailed by an experiment représeioy this aug-
mented graph, we can find the separation set that obtainsotiditional independence
(I; 1L z;|S), wherez; is a node adjacent to,. If z; ¢ S, then(l;, z;, z;) form an
unshielded collider at; and we obtain the edge;, z;). Otherwisex; blocks the path
from /; to x; and since we already know the orientati0i, z;), this implies the edge
(wi, ). O

The result is to be understood as a worst case analysis amdasponds to the class of
fully connected causal graphs. Due to the absence of anyaldst colliders in complete
graphs, the orientation phase of the PC algorithm is unabdgiént any edge. However,
knowledge of the worst case result is very encouraging. ses®etter than worse case,
while the single experiment result still holds, we can do mbetter thanV in the number
of variables chosen for intervention. AN intervention nodes id are not necessary as
some of the orientations are already available from the P@lyeof algorithms run on

observational data alone.

Let us discuss the general case. It has been suggested [Eb&i8e key difficulty in
uniquely identifying the causal structure is to determime ¢rientation of the edges that
belong to cliques. Cliques are subsets of the vertex set fichwevery pair of vertices
is connected by an edge in the true causal structure. A cliggiees edge-orientations
maximally independent, because fewer orientations aréiechpabsence of v-structures)
and the only constraints are the acyclicity constrainttier words, each clique acts like

a worst-case subgraph. For an algorithm to minimize the murabexperiments it has
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to break down the cliques and find orientations in cliguesaas ds possible. Eberhardt
conjectures that the worst case number of experiments deedidly orient a causal graph

iS [logy (| Crmaz|) | Where|C...| is the size of the largest clique in the graph. To support this
conjecture, he also suggests an algorithm based on findirgmabcliques and provides
experimental results on graphs up to 12 nodes [Ebe08]. Hemvevdrawback of this
algorithm is that finding maximal cliques is NP-complete #melalgorithm does not scale

well for larger graphs.

For graphs of a certain maximum degree, saique sizes are limited té. Finding
ak-clique has complexity) (n*k?) for graph sizes ofi. Although we can expedt to be
small for a large class of graphs, this is still a limitingtfacfor algorithms that employ
k-clique finding. We need a faster alternative of scoringigestfor experimental priority,

depending on the number of small cliques they belong to.

Prior to Eberhardt’s conjectured bound, Meganck et. algesjanother method based
on decision theory [MMO6], to establish a scoring functibatttakes into account the
possible number of edges that may become oriented due topmmiment. In their of
experiments, they present the results of their algorithra emple, but interesting exam-
ple of a 5 node causal model. They show that in some casespties nith the smallest
degree, and hence most unintuitive, may in fact be the best ttmbe chosen for inter-
vention. In the example, a node with degree 1, orients theirmax number of edges
[MMO6]. However, the decision theoretic approach is alskywxpensive even for small
graphs. For each possible choice of intervened node, ontolesumerate all possible
orientation configurations of its neighbors, and recutgiegplore all subsequent orien-
tations to the full depth. The DAG members of the equivaleriass of CPDAGSs is in
general unknown and is hard to compute. A scoring functiothese DAGs is also very
hard to formalize and the authors resort to an approximatimhadd in other heuristics

like experimental costs and expert opinion to deal with tlodjem.

The works described above address either the worst caseses avhere intuitive
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methods fail. Hence, they resort to sophisticated and estpeformulations to score the
nodes. My hypothesis is that, in the average case, the pnoble€hoosing interventional

nodes is not that hard. In practice, we can choose an inteovahnode based on a simple
and fast heuristic. In this section, we propose such a heyrighich is intuitive and

computationally inexpensive.

Our heuristic approach is simple, at each stage we evalnaterdirected degree of
each node and assign it as the score. Nodes with higher Seavesa higher priority
for intervention. For each connected subgraph, clique si@d®ild get a node score of
at least their clique size, so larger cliques would get gxiasver smaller cliques and
lone undirected edges (2-cliques) would get the lowesescorthe clique size hierarchy.
Therefore, this is compatible with Eberhardt’s conjectiNedes with a small clique size
but with high undirected degree and these will get a highriyiol believe that in the
average case, orientations that are determined by an eémion on these nodes have a
high probability of resulting in subsequent “free” orietdas. In essence, this method
is a first degree approximation of the decision theoretia@ggh while also accounting
for the conjecture about clique-size. With this method,enodervention priorities can
be initialized very quickly (afte”C,,), in O(Elog(E)) time. Subsequent updates to the
node scores would only requi® £ log(E,...,)) whereE,,.,, is the number of orientations

found after each intervention.

An automated causal learning algorithm, could simply cledbg interventions based
on this priority score. Alternatively, an interactive atgbom could provide this list to a
human experimenter and allow her to make a choice based @artgydgment, experi-
mental costs and other considerations. We provide bel@intaractiveCausalDiscovery

algorithm that can be used as a framework for interactiveimmatic causal discovery.
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Algorithm interactiveCausalDiscove(y)
Input: P

(* Pre-interventional distribution)

Output: G(V, E)

(x a fully oriented causal DAG)

1. H(P)«— PC(P)

(x A partially oriented DAG compatible with «)

2. Assign to each node a score equal to the number of undirediges it is connected

to.

3. while There is at least one undirected edgéfifiP)

4. Suggest a set of interventions in descending order ofdde scores.
Accept the experimental data, estimate the experimdigalbution Px, and
apply the PC algorithm té/ (P) with the new informationPx, (including ori-
entation rules R1 through R4)

6. Update the node scores corresponding to the new oriensati

The elegance of this algorithm lies in the observation thatane able to prompt the
experimenter on the order of experiments she should catryoth the highest priority
given to the most difficult graph motifs (cliques and high degnodes). The intervened
node always disappears from priority list, and forced deagans (due to the Meek orien-
tation rules [Mee95]) may cascade into further orientatiamong adjoining nodes. Some
of the low priority nodes may also disappear from the nexatten of choices or may get
rearranged in the node priority list. If the experimenteaibi¢e to perform a single experi-
ment intervening on all the suggested variables, the dlgorierminates in one iteration.
Given practical, ethical or other constraints, if the expenter is able to perform only a
subset of the interventions suggested, one may still betabl@cover the entire causal

graph.

If the ubiquitously used ALARM network [BSCC89] is an inditee example of a typ-
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ical causal graph, in terms of the number and size of cliqmesage and maximum degree
of the nodes, then a majority of typical causal graphs wiliies very few interventional
experiments towards full causal discovery and simple k&as such as suggestedim

teractiveCausalDiscovenyill be sufficient to restrict the number of required expesits.

In section 4.5, we provide some very interesting resultaiobtl on an empirical study
of the above algorithm on sparse graphs like the ALARM nekwdWe perform several
tests varying several network parameters such as netwaglasid complexity to demon-

strate their effects on the number of experiments required.

Finally, in chapter 4, | present the results of using all ¢hadgorithms, at different
stages in the task of causal discovery on several dataget¢ste$ults of my approach are

compared to the results of the traditional approaches amt@ak.

71



Chapter 4

Experiments, Results and Discussion

“However beautiful the strategy, you should occasionabigk at the re-
sults” - Sir Winston Churchill (1874 - 1965)

4.1 The Experimental Framework

This chapter begins by describing the experimental setahyding popularly used causal
models, the generation of new and random models and the gy @fegenerating both
observational and experimental data from these modelsedtigh 4.1.1, | describe the
ALARM network, and in the subsequent section 4.1.2, how legate several other net-
works of varying complexity and size. Section 4.1.3 preséiné¢ simple recursive sam-

pling algorithm used in our tests.

In the next three sections 4.2, 4.3 and 4.5, | describe thergwpnts and results ob-
tained on the three algorithms for causal learning we pregpas chapter 3. Section 4.3
also contains independent test results for the approxilKitBivergence algorithm de-
scribed in 3.5.1. Next, | provide a demonstration of the sege of steps in causal discov-

ery from the initial skeleton construction stage to fulloeery of the causal graph applied
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vt >
7: PulmEmbolus 14: VentTube 10: KinkedTube
: ia @ 23: Catechol
3: StrokeVolume 28: ErrCaut @ 31: ErrLowOutput

Figure 4.1: The ALARM causal Bayesian network

on a typical example with 50-nodes. Finally, Section 4.&en¢s the indicative results of
applying a constraint based causal learning algorithm erAfincraft network (Fig. 1.2)

modeled as an SEM.

4.1.1 The ALARM network

The ALARM network is a non-trivial Bayesian network which svéirst developed by
medical experts for monitoring patients in intensive c88CC89]. As shown in figure
4.1, it has 37 nodes and 46 arcs with variable arities ranfyorg two to four. It is a

very popular and well understood network in the field of Bagresietwork inference and
structure learning research, and used as a benchmark fimgtesveral algorithms. The

key to the popularity of the network is that it is of a reasdaaize and complexity that
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several of its features can be exactly computed, while aséime time it provides as a
suitable challenge framework. We use the ALARM network vp#iltameters (conditional
probability tables) as provided by Norsys Software Corpora[Cor], as well as with

modified parameters.

4.1.2 Random Causal Models

Apart from the ALARM network, | also carry out tests on a ramjeandomly generated
causal Bayesian networks. | generate random DAGs with peteasifor size, maximum
degree and undirected average degree. | make use of thamBoest graph library in

C++ for the relevant data structures and algorithms in th@ementation. My procedure

for generating random causal models is as follows.

Algorithm MakeRandomBayesN&t, max Degree, avgDegree)
Input: N, maxDegree,avgDegree
(x network size, maximum in-degree, average degree (unddgex
Output: G(V, A, ©)
(* Random Bayesian Networ
V —{v1,v9,...,un} (x Set of nodes)
numedges «<— 0
while num.dges < (avgDegree x N)
do Choose a random pair of nodgs, v;) from V.
if (inDegree(v;) < maxDegree) A v; +— v; (x — implies “reachable’)
then Add arc(v;, v;) to A.
for eachv; € V

do for each configuration of parents; ;

© © N o 00 bk~ wDdRE

do Assign uniformly randon®; ; and normalize.
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In this manner, | am able to generate a large collection o$alamodels with a wide
range of parameters to test the robustness of my algorithinis supports the presentation
of average performance of these algorithms across sevffeakdt networks of compara-

ble size and complexity.

In sections 2.5 and 3.6 | described parametric change oingeftentions. | implement

this using two different methods:

1. For a given parameter changel randomly choose a single probability parameter
0k € ©;;. If 0, < 0.5, add¢ to it, otherwise subtract. Then the rest of the

entries in©, ; are re-normalized

2. Reassign new random values3p;.

4.1.3 Sampling

In this subsection I briefly describe the sampling algorghueed for generating data from

causal Bayesian networks.

Algorithm SampleBayesNgt, M)
Input: G(V,A,0), M
(x Bayesian network, number of samplgs
Output: Dg
(x Set of samples)
1. Dg« {Di1,D12,...,Dyn} (x N =|V] %)
D;; < 0,VYD; ; € D¢ (x valid multinomial samples are 0 x)
for i from 1 toM

do for j from 1 to N

doif D, ; =0

a bk~ w DN
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6. then D, ; < sampleV ariable(v;)

The procedureampleV ariable() in line 6 is defined recursively and proceeds as fol-

lows:

1. If sampleD; ; > O returnD; ;.

2. else ify; is a root node, generate a random numbeén the interval(0, 1) and find
the first binbd in v;’s marginal distribution, such that the cumulative disitibn of

bin b is lesser tham. Returnb.

3. else make recursive calls ftampleV ariable() on each of the parents of. Once
parents are sampled choose the corresponding probahbity $pecified by the par-
ent’s samples (instead of the marginal in step 2) and gemaraample similar to

step 2.

For generating samples from interventional distributifhesd interventions), we sim-
ply ignore thesampleV ariable() procedure for the interventional variables, and use their
“set” values instead. The rest of the variables are sampeloefore. Sampling from
soft interventions proceeds identically once the Bayesetwork has been modified as

described in the previous section.

4.2 Comparative Performance of sCPC

In this section we describe the results of #tePC,, in comparison to thé’C (PCy, +
PC.,.), PChinsepse: andC' PC algorithms. In identifying the unshielded colliders, the’
is most greedy and thé PC' is most conservative, WhilBC,,;,scpse: and thesC' PC,, are

ordered in between.
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In the following set of figures (4.2 through 4.5, | present pleeformance metrics of
sC PC,,. with 4 different3 (unfaithfulness tolerance) parameter settings (0.2,064and
0.8) and PCinsepser @gainstPC' and CPC,,. We vary sample sizes for the datasets
from 500 to 50000, noted on the abscissa of each chart. Eaalt shown is the mean
performance of each algorithm over 10 different datasefpéesn The error bars denote
the standard deviation of these metrics across these thathlsgte that, in these charts, the

abscissas are just treated as categories and are not to scale

True Positives i
Unshielded Colliders Truungwell\geedgcoa\lltdle‘{ses

24 64
20

16 E PC
cpc 40
M sPCo8 E c;é:og
W sPC06 s
a 12 h z 32 | sPC06

[ DsPcos [
W sPCO2 24 O sPCo4
8 B PC_MinSep B sPC02
M PC_MinSep
16
4
0 0
500 500

1000 5000 10000 1000 5000 10000
Sample size Sample size

HPC

©

Figure 4.2: True positives and negativesuwrshielded colliders(vs. unshielded triples)
by various algorithms on the ALARM network.

Detecting unshielded colliders is a crucial step in caussdavery upon which the
success of future steps rely. Figure 4.2 shows the trueipesifTP) and true negatives
(TN) obtained in detecting unshielded colliders on the AIMRetwork. The maximum
value of the Y-axis on these charts denotes the true numbaobfs in the ALARM net-
work which has 24 unshielded colliders, and 64 unshieldptes which are not colliders.
Across all small sample sizes we can see that almost albreysif thesC' PC',,. algorithms
and PClyinsepse: oUtperformPC andC' PC,,, by around 5, suggesting that the ALARM
network has around 5 unshielded colliders that consisterifuscatePC' and C'PC,,
due to faulty CI tests that result in adjacency unfaithfakieNote that while the perfor-
mance ofsC' PC,,.(0.8) is better thaw' PC,, it is quite close to it as wellsC PC,,(0.2)
with a lower 3 better tolerates adjacency unfaithfulness and perforgrsfgiantly bet-

ter. PCnsepser'S performance is also quite good and comparable to thedo@-PC,,
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algorithms.
False Positives False Negatives
Unshielded Colliders Unshielded Colliders
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Figure 4.3: False positives and negativesioshielded colliders(vs. unshielded triples)
of various algorithms on the ALARM network.

The next pair of charts in Figure 4.3 shows the corresponalimgber of false positives
(Type | errors) and false negatives (Type Il errors) on theesgests as described above.
With large enough sample size (5000) , sC PC,, and PC\insepser OUtperformC PC,,
but PC performs best by detecting the least number of false pesitiSince thePC'
encounters and stores the least number of separating setadb removed edge, (just
one), it detects the fewest number of unshielded collideesall, explaining its low false

positive rate.

Sensitivity Specificity
Unshielded Colliders Unshielded Colliders
1 1
0.9 0.9
0.8 0.8
0.7 0.7
mPC HPC
0.6 Dcpc Z 06 Dcpc
@ B sPCo8 o M sPCo8
a 05 M sPC06 + 05 I sPC06
= O sPCo4 - O sPcoa
0.4 B sPC02 0.4 B sPC02
0.3 B PC_MinSep 0.3 B PC_MinSep
0.2 0.2
0.1 0.1
0 0
500 1000 5000 10000 500 1000 5000 10000

Sample size Sample size

Figure 4.4: Sensitivity and Specificity amshielded colliders(vs. unshielded triples) of
various algorithms on the ALARM network.
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Sample size~ 500 | 1000| 5000 10000
PCrinsepset VS. PC 6.32 | 248 | 3.26 | 4.92
PCinsepset VS. CPC | 10.99| 6.2 | 5.39 | 52.44
sCPC,, (0.2)vs.PC" | 359 | 2.48| 3.58| 4.92
sCPC,. (0.2)vs.CPC | 35.78| 7.07 | 5.93 | 10.83

Table 4.1: Independent two-sampjg; statistics.

| summarize the results of figures 4.2 and 4.3 as sensitinifyspecificity' metrics in
figure 4.4. As a reminder, sensitivity (recall rate) measuhe proportion of actual pos-
itives that are correctly identified, while specificity messs the proportion of negatives

that are correctly identified.

TP TN

Sensitivity = TPR = m, Speci ficity = 1—FPR = m

(4.1)

where TPR stands for true positive rate and FPR stands & fadsitive rate.

Statistical significance : To test whether the improvements in performance for [ow-
sCPC,, and PCinsepser are statistically significant, | computed the independesut-t
samplet,., statistic, betwee®C,,;y,sepse: andsC PC,,.(0.2), vs.PC andC' PC [Box87].
The number of degrees of freedom for= 10 trials isd = 2n—2 = 18. The corresponding
single-tailedp-value of thet,.,; statistic is1.734. To reject the null hypothesis that the
difference in performance of these algorithms is due to cbaall thet,. ,; statistics, should
be above this threshold. Table 4.2 shows the computgdtatistic for all sample sizes in

the above experiment, establishing that the results atistgtally significant.

From figure 4.4, and Table 4.2, we confirm that overall, lewC PC,,. as well as
PCinsepset @re clearly among the better of choices of algorithms foectetg unshielded

colliders.

INot to be confused with Yager’s concept of specificity forduzets and possibility distribu-
tions [Yag08].
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In the next pair of charts, (figure 4.5) we present the redaled values of sensitivity
and specificity after applying the deterministic oriergatiules of thePC algorithm. Once
again, we find that low3 sC PC,, and PC,,;,sepse: Outperform bothPC andC'PC, and
for the largest sample sizes tested, they are able to d&@obf the true DAG edges while
PC andCPC,, hover around’0%.

Sensitivity Specificity
DAG Edges DAG Edges

0.9 0.9
0.8 0.8

0.7 0.7
mPC mrC
0.6 dcpc 0.6 dcpc
M sPCOo8 M sPCo8
0.5 W sPC06

0.5 W sPC06
O sPco4 O sPCo4

0.4 B sPC0o2 0.4 W sPCo2
0.3 B PC_MinSep 0.3 B PC_MinSep
0.2 0.2
0.1 0.1

0 0
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1000 5000 10000 500 1000 5000 10000
Sample size Sample size

TPR
1-FPR

Figure 4.5: Sensitivity and Specificity oDAG edges of various algorithms on the
ALARM network.

It is important to note that the success of finding unshietdiders and consequently
the DAG edges, depends primarily on the success of findingrideected skeleton first.
While thesC PC,,. andC' PC,, come into play only at the orientation phase, &, and
PCinsepser WOrk at the edge removal phase. Figure 4.6 shows the rela¢ifermance
of these algorithms and th&C,,;,s.,s.: performs better on low sample sizes. However,
with a large sample size%(50000), both algorithms detect the skeletons perfectly. We do
not show the corresponding specificity metric here as bagbrahms have near-perfect

specificity throughout all sample sizes.

Finally, I compare the running time of each algorithm witlspect to the size of the
dataset in figure 4.7. In this chart, the x-axis is a lineatesc#\s expected, the con-
servative algorithmsC PC,, andC PC,, perform a much larger number of conditional
independence tests making them the slowéxt. performs the fewest number of condi-

tional independence tests and is fastest, wRilg,,;,,s.,s.: performs a few more thaRC
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Sensitivity
ALARM Skeleton

B PC
Il PC MinSep

TPR
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Sample Size

Figure 4.6: Sensitivity of PC vs. PC min Sep on finding the etcel of the ALARM
network.

but not as many as the conservative algorithms. The mostriargigpoint to note is that
PCinsepser and PC' are not significantly affected by sample size and therefoosvghe

best promise for scalability.

From these results on the ALARM network, and especially Bininto account run-
ning time considerations?C,.,;,.sepse: IS the winner. While there does seem to be utility
in exercising some conservativeness by computing a largerber of relevant separa-
tion sets, the results indicate that the appropriate lelveboservativeness is achieved by
computing a few extra separation sets at the skeleton firslagg itself and choosing the

separation set that entails the least conditional mutdiainmation.

Next, | tested whether the significance level used intheest for conditional inde-
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Running Time
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Figure 4.7: Running time of various algorithms on the ALARtwork.

pendence had any effect on the performance of these algwitiVe tested three different
significance levels (0.1, 0.05, and 0.01). The typical valuesen by statistical practition-
ers is 0.05, mainly due to historic reasons (it was suggdstdtearson [Pea04]) and also
for preserving the uniformity of meaning of the term “stagally significant” across all
scientific literature. However, it has also been suggestatthe 0.05 value may not be
suitable in certain domains in which case, a lower or gresfre may be chosen with
justification [J.71]. In the results as shown in figure 4.8,deenot see any consistent dif-
ference among the different significance levels on any oatgerithms, across all sample
sizes. It is good to note that the test is robust across a reasonably wide range of sig-
nificance levels on the ALARM network and that the typicalueabf 0.05 can be reliably

used for this domain and for learning causal Bayesian nésiargeneral.

Next, | evaluate these algorithms on causal graphs of vausiire (in terms of number

82



Chapter 4. Experiments, Results and Discussion

Sensitivity w.r.t. Significance Level Specificity w.r.t. Significance Level
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Figure 4.8: Effect of the significance leval¥) of Cl testing on the Sensitivity and Speci-
ficity of various algorithms on the ALARM network.

of nodes). | generate random causal graphs between sizesd180&y the method de-
scribed in 4.1.2. While doing so, | keep the other parametitise graph similar to those
of the ALARM network. Thus, all graphs | generate for this espent have an average
degree o% = 1.24 and a maximum degree of 6. As before, all results are presastan

average of 10 trials.

Figure 4.9 shows the performance®f’ and PC,,;,s.pse: ON finding the skeleton on
these random graphs. A note on reading this chart: blue ewuepresent’C,,;,sepset
while yellow columns represenf3C'. In the set of columns for each sample size, network
size grows from left to right (10, 20, 30, 50, 80). and the esponding comparable
columns are placed next to each other (refer to legend). &s kefore, both algorithms
attain very good performance for large sample sizes. Asaggdethe algorithms perform
better on smaller networks than large networks. Howeké€t,,;,,s.,s.: does not perform
significantly better tha®C' in detecting the skeleton, in fact it is almost identicalorar
this, we can infer that even though th&”,,,;,,sc,s.: Provides no improvement in terms of
the adjacency errors, the additional separation sets ipotes is responsible for its better

performance in the orientation phase.

While the two skeleton finding algorithms perform similaoly random graphs, there is
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Sensitivity in Skeleton
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Figure 4.9: Sensitivity of finding the skeleton (undirectgdph) across network and sam-
ple size.

a significant variation in the performance of the orientattgorithms. Figure 4.10 shows
the sensitivity and specificity metrics of each algorithf{, PC..insepset, SCPCor(0.2)

& C'PC,,}across network and sample sizes. A note on reading the:dbagach sample
size, the first half of the columns (yellow and blue pairs)theeperformances aPC' and
PCinsepser ACross increasing network size and the right half of thernaki(magenta &
orange pairs) are the corresponding performances ofle@w-"C,,.(0.2) andC' PC,, The

integer numbers on the legend denote network size.

PC andPC,nsepse Nave comparable performances everywhere, but are sigrtlfica
and consistently less specific than both the conservaeithms.sC PC,,. andC PC,,
are however comparably specific. With respect to sensitithe low+3 sC PC,, is always

better than any of the other algorithms.

We see that the overall sensitivities on random graphs isfgigntly less than the
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sensitivities on the ALARM network (figure 4.4). This can bederstood if one looks
at the significant difference in the nature of the parametéithe ALARM network as
opposed to the parameters assigned to these randomly teghemadels. As provided
by the Norsys Software Corporation, and as commonly usedarML community, the
ALARM network’s parameters render it nearly deterministith a large majority of the
CPT tables having one of their probabilities close to unity ¢0.99, 0.01]. On the other
hand, the parameters of the randomly generated modelscedpiniformly from the unit

interval, which results in weaker correlations among thesablinks than in the ALARM

Sensitivity - Unshielded Colliders Specificity - Unshielded Colliders
Across Network Size Across Network Size
1 O PC 10 1 O PC 10
@ PC min Sep 10 @ PC min Sep 10
09 O pc2o 09 n O Pc 20
B PC min Sep 20 - @ PC min Sep 20
O PC 30 O pC30
08 @ PC min Sep 30 0.8 Il
O rceo PC min Sep 30
07 & PC min Sep 50 07 n B pcso
@ PC8o . ; zg mo Sep 50
@ PC min Sep 80
08 @ sCPC0.2 1PU 06 @ PC min Sep 80
| cPc 10 x W sCPC0.210
E 05 M sCPC0.220 & o5 W cpPC 10
[ @ CPC 20 & W sCPC0.220
04 B sCPC 0230 0.4 . W cPC 20
@ cPc 30 E scPC0.230
B sCPC0.250 I CcPC 30
03 @ cPcs0 03 B sCPC0.250
W sCPC0.280 B cPC 50
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01 I | I 0.1
0 o L - -
1000 5000 10000 50000 1000 5000 10000 50000

Sample Size Sample Size

Figure 4.10: Sensitivity and Specificity in finding unshediccolliders across network and
sample size.

Finally, | present the running time of these algorithms witlspect to network and
sample size. A theoretical analysis of the running time efRIC-family of algorithms is
hard. It is known that”’C' is bounded by a polynomial of degree equal to the maximum
degree of the nodes of the graph but the actual running tirperdis on the structure of
the graph. The conservative algorithms also have the saper lpopund on complexity,
but tend to perform close to this upper bound, as they ewalalhtpossible conditional
independence tests. We show empirical values for thesemgitimes (in seconds) in fig-
ure 4.11. All like-colored columns represent the perforogaof the same algorithm. For

each set of columns in the same sample size, left to righttdemacreasing network size.
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Running Time
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Figure 4.11: Running time across network and sample size.

As expected, the conservative algorithms are significantlye expensive tha®C' and
PCinsepser, both of which have comparable running times. The additionaditional
independence tests thB(C,,,;,s.pse: Performs compared t&C does not seem to affect

the running time significantly (green vs. blue columns). ®a other hand, among the

conservative algorithms&” PC,,. is consistently faster thati PC,,.

In conclusion, with the confidence obtained from the adddlaesults on multiple
graphs of varying size, | have the same result as statedd@ltiARM network. The most
reasonable algorithm to choose for practical use whenegaect a certain number of
violations of the faithfulness assumption in the causaplgralong with the problem of
imperfect conditional independence tests evaluated froite fdatasets i$C,,insepser. It

evaluates a fewer number of conditional independence tieststhe conservative algo-
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rithms but still performs as well as the soft-conservatigeathm sC PC,,,. in most cases.
However, if computing time is not a concern and the problemaa is of a sufficiently
tractable sizesC PC,, should be used as it is more sensitive in the case of causaécen

tions of weak strength.
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4.3 Performance of Parent Search

In section 3.5 | described thgarentalSearctalgorithm to find the parents of the set of
context variables when subjected to a hard interventiothigisection, we show its per-
formance on the ALARM network. First we show the accuracyhefmethod on a single
context setting. In our experiments testing this algorithve assume that none of the
edges have been oriented and thus search for parent setg athpossible subsets of the
neighbors for each node. Note that in the realistic caseptbielem is less challenging:
fewer number of neighbors will have to be taken into consitien on an average, as un-
shielded colliders may already be oriented. The algorithmssessed as successful only
when it finds the exact parent set and even if the detectedmsetis off by one variable,

| denote it as an error.

Accuracy of Parent Search on ALARM

With learnt and perfect skeletons

B with PC Skeleton
B with Exact Skeleton

Accuracy

250 500 2500 5000 25000 50000

Sample Sizes

Figure 4.12: Performance of single variable context Pe®eitch.
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Figure 4.12 shows the average accuracy obtained over a@&singtext setting of each
variable in the causal graph. Additionally, for each vaeabach result is an average
obtained over 10 different sampled datasets of the denated Ehe error bars represent
standard deviation. For single variable contexts,ghrentalSearclperforms quite well
when provided with the exact skeleton, climbing very qudid 95% accuracy even for
small sample sizes and asymptotically reaches perfeabnpeaihce with growing sample
size. However, when the skeleton has errors (is computedhyit8 accuracy drops. This
is understandable, as tparentalSearclalgorithm searches in the space of the subsets of
its neighboring nodes. If provided with the wrong set of idigrs, it is not searching
the correct search space. The performance drop is thusodihe £C' and not due to

parentalSearch

Accuracy of Parent Search

Vs. Context Size
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Figure 4.13: Performance of Parent Search vs. context size

Next, | test this algorithm in multiple variable context@rkhis experiment, | chose a
set of|C'| variables at random, set them each at specific values. Imd~L3 | present the

performance oparentalSearclon contexts of size {1,2,3 & 4}. Each point is an average
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of 50 different randomly chosen contexts. The error barsesemt standard deviation as
usual. | already observed that the algorithm performs veeltbntexts of size 1, however
there is significant drops in performance as context sizeases. Accuracy is as low as
60% for contexts of size 4 even for very large sample sizes. Bl to the explosion of
the search space. Each variable has a search space expbnédht size of its neighbors,
which by itself is not too bad when | consider graphs of a maahte maximum degree.
For multiple variable contexts, the search space beconse€dhtesian product of these
spaces, and thus it quickly becomes very large. ThagntalSearcimakes significantly

more errors.

Additionally, | tested the performance of the parent seaigorithm using the true
KL-divergence, making the assumption that the actualibigions are known. This was
performed on a Bayesian network with 15 variables, as trualkkrgence is practically
infeasible beyond this limit. In this case, the parent setsafl sizes of contexts tested,
one through four, were returned perfectly. When the coipacént set was used, the true
KL-divergence metric was eitheeroor a very small floating point number of the order
10723, typical of inaccuracies in floating-point operations. BMether parent set returned
with significantly higher values, several orders of magiatgreater. This reinforces the
idea that theoretically, KL-divergence is a suitable neetoi use for this application. In
cases where the empirical KL-divergence metric is useddoemt search, the probability
of error involved with each hard intervention due to limitinple size, might translate
to the wrong set of parents for a small percentage of intéimes: If this is not taken into
account, this might potentially magnify the error ratesuifife experiments. To address
this, one might use the idea of redundancy as a method ofcatrdn and decrease the
probability of error in orientation. For example, if an exipgent on A, detectsB as a
parent ofA, we can verify the linkB — A by an experiment o®. However, this method
will potentially require twice the number of experimentsit lsould be very valuable in

domains with very weak causal links that are hard to deteat fa single direction only.
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Figure 4.14: Running time of vs. context size and sample size

Figure 4.14 shows the corresponding running times acrasplsasizes. As a result, |
think theparentalSearcltan be used confidently for finding the parents of single tégia
hard interventions even when we have relatively low samigkss However, for contexts
of larger size, the algorithm loses accuracy very quicklg ahould not be used. Nev-
ertheless, the method is novel and improvements to its pedoce may be possible if a

solution is found for the problem of the exploding searctcsdar larger contexts.
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4.4 Performance of approximate KL-Divergence

The parentalSearctalgorithm required a fast algorithm to measure divergerete/éen
two distributions as estimated from their respective sachplatasets. | proposed and de-
veloped theapproximateKLDfor that purpose. However, | noted in section 3.5.1 that
this algorithm can also be used in the general case for otlrpopes, especially for high
dimensional distributions. Therefore, it is valuable tsesms the performance of this ap-

proximate KL-Divergence measure on its own merit. | pregieese results in this section.

In experiments not reported here, | found that the closeaktse approximateKLD
to the true KL-Divergence depends on the parameters of thehlat prior adjustments
used in the algorithm and it is very difficult (and | conje&uimpossible) to find a suit-
able setting for these parameters that is robust acrossiby faindistributions. However,
it was only necessary to find if the algorithm has good retaperformance. In other
words, given three distribution®,, P, and P, approximateKLDmaintains the same or-
dering as the true KL-Divergence, i.e. fLD(P,, P\) < KLD(P,, P,) thenapproxi-
mateKLIXFP,,P;) < approximateKLDF,,) and vice versa. For the purpose of testing
this, we performed the following experiment on differentwarks of size 5, 10, 15 and
18. 18 was the maximum network size for which we can comp@exiact KLD in a rea-
sonably short time. First we randomly generate a causal Bayaetwork of given size
and set its parameters. This network represépisrhen, to generat&; and P, we first
chose a random number of nodes ranging between 1 and 4,pexfperturbation on each
of the selected nodes and compute whether the true KLD ord&rhas the approximate
KLD order. Figure 4.15 shows the average results of 1000 suich across graph and
sample size. Note that the algorithm performs very well deersmall sample sizes of
around 450 regardless of the graph size. However, the ineprent in performance over

sample size is rather slow.

To conclude this section, | can state that when a researklotdg requires a test for

92



Chapter 4. Experiments, Results and Discussion

Performance of Approx. KLD
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Figure 4.15: Performance of approximate KLD algorithm. liEpaint represents the mean
of 1000 comparison tests for randomly chosen parametringggon a causal Bayesian
network.

relative divergence between distributions, the approtéra.-Divergence algorithm from

data is useful in two scenarios.

1. When the true distribution is not available and only saspire available.

2. For distributions of large dimensionality, even whenttiie distribution is available,
the true KLD computation will take)(2™), wheren is the dimensionality of the
distribution, whereaapproximateKLDruns inO(m log m), wherem is the size of

the dataset.
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4.5 Evaluation of Interactive Causal Discovery

In section 3.6, | hypothesized that a large class of causalefsdhat are of interest to
practitioners may be very different from the worst case ahgsaphs analyzed in earlier
work. Such causal graphs do not require computationallgesipe algorithms for de-
termining experimental priority towards the goal of kegpthe number of experiments
low enough for efficient causal recovery. | proposed a simapla fast heuristic based on
undirected degree, to compute the scores that translat@aate priorities and described

an interactive algorithm that uses this heuristic.

In this section, to evaluate the algorithm, | remove the obllhe human experimenter
in the algorithm and instead allow the causal learning atgeptoceed as though a single
experiment was performed on the node with highest priotigaah step. For each causal
model, we then evaluate the number experiments for everyiedbe graph to be oriented.
Most causal models of interest are relatively sparse, wienpared to the worst case
analyses of Eberhardt and others [ES06, MMO06]. For exantpe ALARM network,
commonly used by the Al community as a benchmark, has onligRe$ of size 3 and an
average degree of 1.24. We are interested in finding out hawy experiments are needed
on the class of causal models similar to ALARM. Note that fdrARM, if one ignores
the 2- and 3-cliques, the node scores based on verticesgiedptio the maximum number
of the largest cliques (now only cliques of size 2), simplylddown to the suggested

heuristic, highest undirected degree.

| generate a large sample of graphs of varying network siae) L0 through 50, and
for each graph size | set the average degree of the causisg@pe { = % = |V[EY
for different values ofK. | call K, the density index, antl < K < 2. Note that for
K =1,|E| = |V|. Graphs with K| = 1 are guaranteed not to be connected and likely to
consist of several sparse disconnected subgraphs. Onhéehatnd, wherk is close to

2, the graphs approach fully connectedness, which haveharglence of large cliques.
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| vary K in steps of 0.1 from 1.0 to 1.7 and for each valudofnd for each graph size,
| generate 10,000 different causal models. Computing thennmeimber of experiments

Ne.ptowards full causal discovery, gives the result as showrgimé 4.16.

The average number of experiments is initially high for spagraphs, ranging from
2 to 8 for graph sizes of 10 to 50. For loW, the graphs are barely connected and are
probably several disjoint subgraphs or have low values paisging cuts. Therefore, an
orientation discovery in one subgraph does not help deterisuny new orientations in an
of the other disconnected subgraphs, forcing us to carrymumue interventions. As the
connectivity of these graphs improves with 1.4 < K < 1.5, a minimum of around
1.5 is reached in the average number of experimenits,. With K > 1.5 larger cliques
become more likely and the number of experiments requiradssto rise again. With
my method for random graph generation, | am unable to gemgraphs with/x' > 1.7
efficiently, and therefore restrict our results within thééige. However, intuition related
to connectivity and earlier work by Eberhardt suggests g will keep increasing with
K for all graphs ofK' > 1.7. Note that ALARM network would belong to the class of
graphs as indicated by the pointer in figure 4.16.

The graphs generated for the above experiment belong tdabke afrandom graphs
There are no high level structural constraints on the typegsaphs generated other than
the restriction based on average degree determined by lineswaf X'. Graphs pertaining
to specific domains might be constrained by a vast range af & global properties. For
example, there is a great deal of difference between “typazusal models of biology,
like gene regulatory networks, and causal models in ingusiich as a factory control sys-
tem. Biological causal models may have properties thategegrgly more random, and
are constrained by the mechanisms of macro-moleculardproladustrial causal models,
being human designed tend to be more constrained and havesamhative causal flow.
In such cases, special treatment and analysis of chasiatserof these causal models are

requred. In fact, an investigation into a domain specifiaati@rization of causal models
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Figure 4.16: Number of Experiments required for full caudeicovery over random
graphs across different sizes and densities

is suggested as an area of future research. The results albdive experiments should be
interpreted as pertaining to causal models that have deaistcs similar to the class of

random graphs generated according to the description itho&et1.2.

In conclusion, while | may not be using the optimal order fgoeriments, these results
suggest and reinforce the intuition that very sparse grafstusrequire a larger number of
experiments close to number for the worst case of fully cotetegraphs. However, for
a large class of graphs with with3 < K < 1.7 and with network size up to 80, large
cligues do not dominate, and even a sub-optimal heuristiiiding node priorities can
result in a very low number of experimenty{,, < 3) towards complete orientation.
Particularly, an interesting result is that the least nundb@xperiments for all the graph

sizes tested seems to have a minimumior: 1.5.
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Newp = 1.5f0r |E| = |V|/|V] (4.2)
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4.5.1 A Demonstration

We conclude this chapter with a demonstration of the steffgiprocess of causal discov-
ery on a randomly generated causal model of 50 nodes. Foakieeo the demonstration
we assume that all tests involving conditional independeparent search and finding

orientations by soft intervention, give perfect results.

(a) The True Graph (b) Skeleton detected by PC

Figure 4.17: The first stage of causal discovery

Figure 4.17a shows the original true causal model. Basedsereational data alone,

the PC algorithm or its variants, finds the undirected skelshown in figure 4.17b.

The next phase in the PC algorithm finds all the unshieldeldeo$ shown in figure
4.18a. This is followed by the application of the Meek rul@is signifies the limit of

what can be learned by observational data alone on this loawske! (figure 4.18).

Next, based on the node scores, the algorithm conducts shexfiperiment by a hard

intervention on variable 32parentalSearchdetects that the set of parents of 32 is the
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(a) Unshielded colliders detected (b) First application of Meek orientation
rules

Figure 4.18: The PDAG in 4.18b with 56 oriented edges ancessmts the limit of learn-
ing from observational data alone.

empty setimplying the orientatior32 — 26. Applying the meek orientation rules, we get
the forced orientation®6 — 13, 13 — 41 and41 — 10.

In the second experiment, a soft intervention on 28 is cduwig, detecting the edge
28 — 34. No new orientations are found by the Meek rules. Finallgréhremains only
one edge to be oriented and it is determined%s- 4 through a soft intervention on node

39, resulting in the recovery of the full causal model.
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(b) Meek orientation rules

(a) Hard intervention on node 32

Figure 4.19: Result after first experiment: 4 new orientetio

(b) Meek orientation rules

(a) Soft intervention on node 28

Figure 4.20: Result after second experiment: 1 new origmtat

100



Chapter 4. Experiments, Results and Discussion

Figure 4.21: Soft intervention on node 39. Full causal gnaggiovered.
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4.6 A Structural Equation Model

So far | have tested the performance of the causal learngayiims described in Chap-
ter 3 on data sampled from causal Bayesian networks. Thigosedemonstrates that
the algorithms can be applied just as successfully to ardiftecausal modeling domain,
namely a model described by a system of structural equatisdescribed in section 1.1.
Recall that, Equation 1.2 describes a system of non-lingastional causal models while
Equation 1.3 is a linearization of the same. In Section 1uéeld an example pertaining to
an aircraft monitoring system to motivate the discussioarohutomated causal learning
agent. The aircraft network of Figure 1.2 is modeled as ahi$EM with the following

equations:

a =1y + ug(o,

4.3)

)
s =715+ us(oy)
W = Ty + Uy (0y)
g = Qa0+ a8 + uy(oy)
V= agS + w4 uy(oy)
wherea stands for cruise altitude for cruise speedy for wind speedg for gear vibration
andv for wing vibration. The independent variabless andw vary along with the corre-
sponding independent linear rampsdefined in the unit interval0, 1) with the additive
Gaussian noise terms,. The noise terms, for each equation are independent of each

other and are modeled as zero-mean Gaussians.

Five thousand continuous domain samples were generatedlimabove model. Each
variables range in the continuous domain was partitionéal tinree equal ranges with
threshold values at the one-third and two-thirds pointsisardtize the samples into the
discrete domaird, 1,2. This table of values was then used as input to B&,,;,,scpset

algorithm. We calculated the performancefof’,,;,s.,s.: On datasets generated in this
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fashion with varying values of,. The results of this experiment are presented as sensitiv-

ity and specificity metrics (average over 30 runs) in Figug24
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Figure 4.22: Sensitivity and Specifity of th&’,,;,,s¢,se: algorithm on a linear SEM model
in finding the DAG of the Aircraft causal network.

Despite the simplistic discretization technique used is &xample, note that the per-
formance is very good and specificity only begins to drop feegy high level of noise.
These results indicate that causal learning algorithmedas the Bayesian network for-
malism are very robust and can be adapted to other causallimgpdemains with very
little modification. Several areas in engineering that yggr@aches similar to SEM to

model causal relationships can benefit from constraintdeaasal learning algorithms.
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Conclusion and Future Work

The primary motivation for this dissertation was the ideat ti'rue Al” is possible only
when algorithms are able to replicate what | believe is thetradvanced cognitive ability
of humans, namely, causal reasoning. Humans incessaktiway?”, and have devel-
oped an ability and pioneered the discipline to carry out@pled scientific investigation
to determine the causal relationships of the world aroued.trAl and robots should be
able to do that too. In essence, | am motivated by a future isiwdin Al system “under-

stands”, in the same quality that humans do.

Towards this goal, | investigated three different aspet&sutomated causal learning
in this dissertation. In the next section, | summarize thendeas of this research effort
and draw some conclusions based on the results obtainecectiors 5.2.1, | introduce
how the concept of interaction information has a potenipgligation in causal learning
research. Finally, in section 5.2.2, | discuss the prospafoextending current formalisms

and methods to temporal causal models and present sommipialy ideas.
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5.1 Summary and Conclusion

My first research focus was on a family of algorithms thatrhesausal models from ob-
servational data alone. In sections 3.4 we presented@#e’,, and PC,,i,sepser algo-
rithms as alternatives that traded off between the convealtigreedy and conservative
approaches in constraint based structure search algaritimsection 4.2 we showed that
these algorithms consistently achieve better performtraseconventional approaches on
several problem instances. | provided the justificationsugported it with numerical re-
sults on finite-sample problem instances to show that the modust to faulty conditional

independence tests and violations of faithfulness.

Next, we explore the area of causal learning from experiai@iatta, when experiments
are performed as hard interventions. | introducedafwentalSearckalgorithm in section
3.5 which infers the parental set of a node under a hard ietg¢ion. Corresponding re-
sults, presented in section 4.3, shows that this algoritasnviery good accuracy for single
variable contexts but suffers for larger contexts. Thesalte suggest that the method is
very successful when exploring the smaller single contexiable search spaces, but is
limited when exploring the Cartesian products of thesectegpaces. However, | claim
that if we can find per-context variable parent sets indegethyg the algorithm can be
scaled up for larger contexts. Therefore, incorporatintebeearch strategies is a poten-

tial area for future research.

In developing the algorithrparentalSearchl devised a new and computationally effi-
cient method of approximating the Kullback Leibler divange between two distributions
from finite datasets. In section 3.5.1, | detail the algonitApproximateKLDand pro-
vide the results in 4.4. | argue the correctness of the dlgarand that it converges to
the true KL divergence in the large sample limit. On reldjive@mall datasets of high di-
mensional distributions, the approximation is not veryatde. However, the algorithm

has a high degree of accuracy as a divergence comparatopaoide numerical results
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to support this. Thus, in applications where one is intexesinly in such comparisons,
and with distributions that are too large to compute the Kletyence exactly (such as

parentalSearc)) this technique is an ideal solution.

Finally, | attack the problem of determining ideal sequarmfeexperiments that reduce
the number of experiments required for complete causal/eggoln section 3.6, | present
theinteractiveCausalDiscovemlgorithm as a fast alternative to the conventional methods
which are computationally expensive. While the convergianethods are claimed to
work well on the worst cases, | show in section 4.5 that therfeethod fares surprisingly
well, for a large class of causal models, particularly f&r ¢hass of models that are of great
interest to the research community. From the results of timeamnical simulation | show
that causal graphs with average degree close to the squarefrihe number of vertices

require the least number of experiments on average.

To conclude, the research implications of this dissentasie four-fold. | presented
three new advancements to causal learning. Each is a sototielated but independent
sub-problems in the field. The fourth contribution is a nagbroximation algorithm for
KL-divergence. All three advancements to causal learniegoased on a a very general
theoretical framework and are tested on domain indepergtebtem instances, suggest-
ing that they have a wide range of applicability to specificndns. Likewise, the KL-
divergence approximation can not only be applied to the fitichusal learning but also

to the wider, more general area of probabilistic and stachasdeling.

5.2 Future Research

During the course of the research that comprises this déts®T, several interesting ques-
tions and ideas arose. While they are beyond the scope adlisdiedéscussion in the context
of this dissertation, they are potential areas for futuseaech and therefore demand some

attention. At this point, | believe that three major resbadeas dominate in terms of their
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potential to improving current techniques and in extendimg scope of causal learning
research. In the next three sections, (5.2.1, 5.2.2 an8)3.Briefly discuss these ideas, as

fuel for further thought.

5.2.1 Using Interaction Information for Causal Learning

Interaction information [McG54, Bel03] is a generalizatiof mutual information. It ex-

presses the amount of information shared by a set of vasatésond the information that
is present in any subset of these variables. Interacti@mnmtion can be either positive or
negative and this property has for a long time not been vetyumeerstood and perhaps
has been the reason it has not been adopted widely as a measoi@mation by the

research community. Recently, Jakulin and Bratko [JBOS8¢btiged a classification algo-
rithm based on interaction information that relaxes theaggion that most conventional
classifiers make; that the attributes are independent. @lseydiscuss some visualization

techniques based on interaction information [JB0O4].

In the three variable case, interaction information can bgem as follows:

[(X;Y;2)=1(X,Y|Z) - I(X,Y) (5.1)

Consider the special case whéepiX,Y) > 0 and/(X,Y|Z) = 0, corresponding to
the case of negative interaction. This special case of ivegateraction corresponds to
the independence stateméid L Y'|7). Recall that the PC family of algorithms uses
this information to mark the unshielded collid& — Z < Y. As agedankenexperi-
ment consider a perturbation of the distribution p, Y, Z} thatrenderd (X, Y|Z) = e,
wheree is a small positive numbef,( X, Y') retains its value, and the negative interaction
condition is still true. GiverZ, X andY become more dependent than whervas not

given.
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e Does this imply a “shielded” collider a&?

e Can interaction information be used to generalize the ocotiore between condi-

tional independence statements arseparation?

If the answer to the above questions is “yes”, it has grealigatons to causal learning
research as well as Bayesian network formalism. There hase some prior attempts to
generalized-separation in the special case of belief propagation igtpes [CDO08], but

a full generalization is yet unknown.

The difficulty arises from a confusing symmetric propertyirdgeraction information

for the three variable case.

I[(X;Y:2)=I(X,Y|Z) - I(X,Y)
=I(X,Z|Y) - I(X,Z) (5.2)
=1(Z,Y|X) = 1(Z,Y)

Unfortunately, symmetry challenges our argument for theldad collider atZ. One
can speculate that the link with the lowest pairwise mutafgrimation should be marked
as the “shield”, in the shielded collider. This means thaiidedge of the third variable
raises the information shared by the “shield” pair by a greadlative value than the other

two pairs.

A 3-cliques is always a shielded collider due to acyclicionstraints, so identifying
the position of the collider leaves only the orientationlod shield unresolved. Addition-
ally, recall that the examples for “unfaithfulness” dissed in this dissertation also belong
to the same class. These are wide ranging and importantdatigins with a potential to
resolve a large class of problems in probabilistic methaudkldelieve they provide suf-
ficient motivation future research on interaction inforiroaf especially in the context of

Bayesian networks.
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5.2.2 Temporal Causal Models

It is a widely accepted fact that almost all causal relatps have a temporal delay be-
tween the cause and effect and in fact some of the earlieksworcausality primarily rely
on this fact [Gra69]. Research in neuroscience, econoesedrid psychology heavily rely
on learning causal relationships from time series datag&r&he97]. Pearl points out
in [Pea00] that temporal asymmetries and biases can beaigadbmto Bayesian network
framework using the concept sfatistical time He cautions however that temporal prece-
dence alone is insufficient for causal inference due to @lility to measure quantities at
the exact moment of occurrence. For example, we might natelile barometer dropped
and soon after that, it rained. Barometers do not cause Iidomains with little back-
ground information, it is easy to draw this erroneous caosiolu if we used only temporal
precedence for causal inference. Hence, modern reseaicdusal learning research has
focused primarily on modeling instantaneous based on #a&siodf independence, coun-

terfactuals and manipulability.

A popular extension to Bayesian networks to include theasgmtation of tempo-
ral dependencies amynamic Bayesian networf&ha98]. Due to the acyclicity con-
straint, a limiting feature of Bayesian networks is in italility to model cyclic causal
relationships, which are a common occurrence in a larges @dphenomenon. Dy-
namic Bayesian networks solve this problem elegantly bylidaging the instantaneous
portion of the Bayesian network in two time slices, and idtraing the “temporal” con-
nections from nodes of the preceding time slice to the neyhamic Bayesian networks
have been successfully used in several areas of machimenigand Al to model tem-
poral causal relationships, the most popular of them bemgghtdden Markov model
[Pea88, Gha02, Rab89]. Several techniques have been pobpasiearning dynamic
Bayesian networks from data and their success has been sh@awmide range of appli-
cations [Gha98, Mur02, SDWO05, Pfe05, Zwe98].
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However, the constraint based structure search commuagynbt significantly at-
tacked the problem of learning explicitly the temporal cections in causal models. It
is an interesting area of future research, to investigatdifications to the PC-family of
algorithms to learn from dynamic data streams. Key ideasiath@ correspondence be-
tween statistical and physical time detailed by Reichehlzaw Pearl provide the basis

and justification for such an effort [Pea00, Rei56].

5.2.3 Incorporating Background Knowledge

Throughout this dissertation we have considered the pnobldearning causal structures
from the point of zero causal knowledge. Except for the aggiom of causal sufficiency

and that we are aware of the variables in question, we makaswngtion on any kind

of prior knowledge about the causal network. In most casgsadftical interest, the agent
conducting the causal inquiry often has some facets of imédion about causation al-
ready. Typically, sources of background causal infornmatice: expert knowledge, in-
formation from a previously conducted experiment in anott@main, knowledge about
physical constraints, etc. Such background informationlmaof several types. We enu-

merate some of them here.

1. There is information (presence or absence) about a dieedal link between two

variables.
2. There is information about an adjacency between two bkesa

3. There is information about a causal path between two basa but not about the

constituents of the path.

4. There is information about an abstract property aboutdlisal graph, for example,
one set of variables are connected to another set of vasiably through a (small)

third set (o)) of variables.
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We can concieve of other kinds of information as well, busthalready indicate the
interesting array of possibilities that categorize theitires of background causal in-
formation. Additionally, each piece of background infotroa may be available with a
varying degree of uncertainty, depending on its sourcesoapplicability to the domain
in question. Some of these types of prior knowledge may aliyube incorporated into
the Bayesian structure learning framework as priors, behitains an interesting question
about how such information can be incorporated into thetcaimé-based and intervention
based causal learning algorithms. TRé' family of algorithms make use of constraints
in the form of conditional independence statements. A ahtuay to incorporate back-
ground information is by rewriting these other forms of imf@tion into statements about
conditional independence and use them to bootstrapthalgorithm. This motivates fu-
ture research into choosing suitable representationgédifferent types of background
information and finding effective methodologies to autanally translate these represen-

tations into conditional independence statements.

One can also expect conflicts between uncertain backgrodoimation and informa-
tion learned from data. In such cases, one needs to be ableatuity the uncertainty
in both types of information and determine principled melitlogies for conflict resolu-
tion. Currently there are no established measures to dudh& degree of uncertainty
related to specific independence statements learned frtam Baperience suggests that
measures based on deviation from zero conditional mut@@inration and sample size
can be devised. The problem of conflict resolution is furtenpglicated by ‘long range’
implications of a conflict. In some cases, the effects of dlmmight not remains local.
A flip’ in an independence statement might affect the suuebf the causal graph several

links away due to implications af-separation and acyclicity.

Another approach would be to learn from data from scratch raadually edit the
causal graph after learning. This approach might be cooeéptsimpler, but even so,

guantifications of uncertainty about causal structure cesgary for the human editors to
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make an unbiased and informed revision of the causal gralpd.afea of causal learning
with facilities to incorporate several types of backgrolndwledge is thus, a promising

direction for future research.
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