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Abstract

The field of causal learning has grown in the past decade, establishing itself as a major

focus in artificial intelligence research. Traditionally,approaches to causal learning are

split into two areas. One area involves the learning of structures from observational data

alone and the second, involves the methodologies of conducting and learning from exper-

iments. In this dissertation, I investigate three different aspects of causal learning, all of

which are based on the causal Bayesian network framework. Constraint based structure

search algorithms that learn partially directed acyclic graphs as causal models from obser-

vational data rely on the faithfulness assumption, which isoften violated due to inaccurate

statistical tests on finite datasets. My first contribution is a modification of the traditional

approaches to achieving greater robustness in the light of these faults. Secondly, I present

a new algorithm to infer the parent set of a variable when a specific type of experiment

called a ‘hard intervention’ is performed. I also present anauxiliary result of this effort,

a fast algorithm to estimate the Kullback Leibler divergence of high dimensional distribu-

tions from datasets. Thirdly, I introduce a fast heuristic algorithm to optimize the number
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and sequence of experiments required towards complete causal discovery for different

classes of causal graphs and provide suggestions to implementing an interactive version.

Finally, I provide numerical simulation results for each algorithm discussed and present

some directions for future research.

viii



Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 “True” AI and Causality . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Causal Models in Artificial Intelligence . . . . . . . . . . . . .. . . . . 6

1.3 Causal Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Motivational example: An Aircraft Monitor . . . . . . . . . . .. . . . . 12

2 Background 15

2.1 Philosophical Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Structure Learning in Bayesian Networks . . . . . . . . . . . . .. . . . 25

2.4 The IC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



Contents

2.5.1 The Power of Interventions . . . . . . . . . . . . . . . . . . . . . 37

2.6 On the Number of Experiments . . . . . . . . . . . . . . . . . . . . . . . 38

3 Three Improvements to Algorithms for Causal Learning 41

3.1 The PC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Determining Conditional Independence . . . . . . . . . . . . . .. . . . 48

3.3 Problems with the PC algorithm . . . . . . . . . . . . . . . . . . . . . .52

3.4 Thesoft-CPC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Parental Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .58

3.5.1 Approximate Kullback-Leibler Divergence . . . . . . . . .. . . 62

3.6 Interactive Causal Discovery . . . . . . . . . . . . . . . . . . . . . .. . 65

4 Experiments, Results and Discussion 72

4.1 The Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 The ALARM network . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.2 Random Causal Models . . . . . . . . . . . . . . . . . . . . . . 74

4.1.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Comparative Performance of sCPC . . . . . . . . . . . . . . . . . . . .. 76

4.3 Performance of Parent Search . . . . . . . . . . . . . . . . . . . . . . .88

4.4 Performance of approximate KL-Divergence . . . . . . . . . . .. . . . . 92

4.5 Evaluation of Interactive Causal Discovery . . . . . . . . . .. . . . . . . 94

x



Contents

4.5.1 A Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 A Structural Equation Model . . . . . . . . . . . . . . . . . . . . . . . .102

5 Conclusion and Future Work 104

5.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Using Interaction Information for Causal Learning . .. . . . . . 107

5.2.2 Temporal Causal Models . . . . . . . . . . . . . . . . . . . . . . 109

5.2.3 Incorporating Background Knowledge . . . . . . . . . . . . . .. 110

xi



List of Figures

1.1 A Truth Table for 3 Boolean variables,A, B andC and a corresponding

AND-gate causal model. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 An example causal diagram between quantities monitoredin an aircraft. 13

2.1 The six different configurations of a Bayesian network with 3 nodes and

no conditional independence. . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The configurations of a Bayesian network with 3 nodes withA ⊥⊥ B|C . 24

2.3 The Bayesian network with 3 nodes andA ⊥⊥ B . . . . . . . . . . . . . 24

2.4 The greater than linear growth of the logarithm of the number of DAGs

calculated by Robinson’s formula. . . . . . . . . . . . . . . . . . . . . 26

2.5 An example of anunfaithfulcausal graph. The +/- links correspond to

positive vs. negative influences. . . . . . . . . . . . . . . . . . . . . . .31

2.6 An intervention nodeFc that represents an atomic intervention performed

on variableC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 The CANCER network . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Markov equivalent structures of the CANCER network. Dashed edges

are the edges that differ from the original network. . . . . . . .. . . . . 38

xii



List of Figures

2.9 Markov equivalent structures of the CANCER network under an inter-

vention on B. Dashed edges are a result of the intervention. .. . . . . . 38

2.10 Unique causal structure of the CANCER network recovered under an

intervention on A. Dashed edges are a result of the intervention. . . . . . 39

4.1 The ALARM causal Bayesian network . . . . . . . . . . . . . . . . . . 73

4.2 True positives and negatives onunshielded colliders (vs. unshielded

triples) by various algorithms on the ALARM network. . . . . . .. . . 77

4.3 False positives and negatives onunshielded colliders(vs. unshielded

triples) of various algorithms on the ALARM network. . . . . . .. . . 78

4.4 Sensitivity and Specificity onunshielded colliders(vs. unshielded triples)

of various algorithms on the ALARM network. . . . . . . . . . . . . . .78

4.5 Sensitivity and Specificity onDAG edgesof various algorithms on the

ALARM network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Sensitivity of PC vs. PC min Sep on finding the skeleton of the ALARM

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Running time of various algorithms on the ALARM network.. . . . . . 82

4.8 Effect of the significance level (χ2
α) of CI testing on the Sensitivity and

Specificity of various algorithms on the ALARM network. . . . .. . . . 83

4.9 Sensitivity of finding the skeleton (undirected graph) across network and

sample size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.10 Sensitivity and Specificity in finding unshielded colliders across network

and sample size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.11 Running time across network and sample size. . . . . . . . . .. . . . . 86

xiii



List of Figures

4.12 Performance of single variable context Parent Search.. . . . . . . . . . 88

4.13 Performance of Parent Search vs. context size . . . . . . . .. . . . . . 89

4.14 Running time of vs. context size and sample size . . . . . . .. . . . . . 91

4.15 Performance of approximate KLD algorithm. Each point represents the

mean of 1000 comparison tests for randomly chosen parametric changes

on a causal Bayesian network. . . . . . . . . . . . . . . . . . . . . . . . 93

4.16 Number of Experiments required for full causal discovery over random

graphs across different sizes and densities . . . . . . . . . . . . .. . . 96

4.17 The first stage of causal discovery . . . . . . . . . . . . . . . . . .. . . 98

4.18 The PDAG in 4.18b with 56 oriented edges and represents the limit of

learning from observational data alone. . . . . . . . . . . . . . . . .. . 99

4.19 Result after first experiment: 4 new orientations. . . . .. . . . . . . . . 100

4.20 Result after second experiment: 1 new orientation. . . .. . . . . . . . . 100

4.21 Soft intervention on node 39. Full causal graph recovered. . . . . . . . . 101

4.22 Sensitivity and Specifity of thePCminSepSet algorithm on a linear SEM

model in finding the DAG of the Aircraft causal network. . . . . .. . . 103

xiv



List of Tables

1.1 A contingency table between trafficTr and day of the weekDoW . . . 9

2.1 The number of DAGsG(n) as a function of number of nodes,n. . . . . 26

4.1 Independent two-samplettest statistics. . . . . . . . . . . . . . . . . . . 79

xv



Chapter 1

Introduction

“A physical symbol system has the necessary and sufficient means for gen-

eral intelligent action.”- Alan Newell and Herbert Simon [NS76]

1



Chapter 1. Introduction

Since the beginnings of enquiry and intelligent thought, humans have tried to find ex-

planations for the world around them. Observations about the natural world were often

regarded aseffectsof somecausalentity, the actions of fantastic and powerful god(s) or

some other natural entity. Today, our understanding of the natural world is much better de-

veloped than in primitive times, and an increasing amount ofexplanations for observations

are based on well documented and tested cause and effect models. However, the search

for causal knowledge seems to be growing at an increasing rate. With new technologies

developed by enhanced knowledge, we are now able to observe several new phenomena in

much greater detail, thereby increasing the need for more explanations of these phenom-

ena. The growth in the fields of electronics, computing, sensor technologies, imaging, etc.

have proven to be great accelerants to fields like biology, medical sciences, geology and

meteorology, etc., where previously data was scarce and hard to obtain. Today, these fields

have become data-rich and what has become sparse (in relative terms) is the availability of

skillful human resources to analyze this data and gather useful insights. One way to bridge

this increasing gap between data and the limited abilities of human faculties, including

memory and reasoning mechanisms, is by building computational augmentations of our

native cognitive abilities.

In hisPosterior Analytics, Aristotle wrote, “... we have scientific knowledge when we

know the cause...” [Aric]. The practice of explaining observed phenomena is the overall

objective of all scientific inquiry. The multitude of human sensory abilities: vision, hear-

ing, touch, etc., extended by the increasing sophistication of tools and measuring devices

has enabled us to access and manipulate our environment in novel ways. To systematically

construct causal knowledge out of the environment we observe, modern scientists around

the globe follow a set of guidelines in the recording of observations, building hypotheses

and validating them with controlled and repeatable tests. This has been termedthe sci-

entific methodand one of its most popular forms is known as thehypothetico-deductive

modelof scientific research [Whe47].

2



Chapter 1. Introduction

An example of an algorithmic statement of the hypothetico-deductive method outlined

in Peter Godfrey-Smith’s “Theory and Reality” [GS03] is as follows.

1. Gather data (observations about something that is unknown, unexplained, or new).

2. Hypothesize an explanation for the data.

3. Deduce a consequence of that explanation (a prediction) and formulate an experi-

ment to see if the predicted consequence is observed.

4. Wait for corroboration. If there is corroboration, go to step 3. If not, the hypothesis

is falsified. Go to step 2.

Progress in the field of artificial intelligence (AI) has assisted in the development of

computer algorithms that replicate and augment several specific human cognitive abilities.

Towards this goal, most AI systems follow paradigms that arecombinations of several

tasks that each mimic some abstract component of human cognition. These include but

are not restricted to: receiving sensory input [Dav04, BG95]; interpreting it in a format

susceptible to the platform of computation (feature extraction) [Web02]; distinguishing

patterns (mining) [RCKW05]; developing a concise representation of it in memory (learn-

ing) [Mit97]; and retrieving this stored information for future tasks (inference and predic-

tion) [Pea88]. These developments provide the essential tools and set the stage for the next

big step in AI.

The pursuit of science and the ability to discern causality is one of the most advanced

and unique cognitive ability of our species. It has been instrumental in our progress from

primitive hunter-gatherers roaming the wild to our collective self-view as civilized and

‘sentient’ beings. Replicating this ability in AI would be agreat accelerant to the progress

of science and humanity. To infuse the spirit and rigor of scientific inquiry into AI systems,

the automation of casual learning is a key goal and an important milestone towards the

creation of an “artificial scientist”.

3



Chapter 1. Introduction

As an example to how machines can contribute to scientific knowledge, we introduce

a very interesting recent development. The advances in robotics and the streamlining

of biological testing methodologies support the creation of robotic scientists [SAB+10,

KRO+09]. Adamand Eve are two large integrated robotic systems which advance the

automation of both the hypothetico-deductive model and therecording of experiments in

sufficient detail to enable reproducibility.Adamis reported to have autonomously gener-

ated functional genomics hypotheses about the yeastSaccharomyces cerevisiaeand exper-

imentally tested these hypotheses by using laboratory automation[SAB+10]. The method-

ology for generating hypotheses is driven by inductive logic programming that is guided

by heuristics set in place according to the expert opinions of biologists. The conclusions

of these robotic scientists have been verified through manual experiments. The central

hope of this dissertation is that these robotic scientists,aptly namedAdamandEve, and

their successors, equipped with more powerful learning algorithms, take a proverbial bite

from the apple of causal knowledge to usher in an exciting andpromising era for artificial

intelligence, and science in general.

4



Chapter 1. Introduction

1.1 “True” AI and Causality

The construction of knowledge often begins with the observation of a correlation (covari-

ance) between events or quantities. To make an assertion on the causal mechanism related

to a covariance, we must also be able to discern the directionof this influencing mech-

anism. This usually involves a more careful examination of these trends, under multiple

conditions, often supplemented by laboratory tests.

Analogous to the problem of acquiring causal knowledge is the problem of recording

it with a suitable representation. Many AI systems represent knowledge without explicitly

stating the direction of influence, perhaps because they have no particular method of dis-

cerning it in the first place. For example, consider an artificial Neural Network (ANN), a

very popular tool in AI systems used as function approximators and non-linear discrimina-

tors. An ANN when trained on a suitable set of sample inputs using the “back propagation”

algorithm can successfully provide a ’black box’ approximation of a function withn inputs

andm outputs [Hay94].

Y = f(X), whereX = {x1 . . . xn}, Y = {y1 . . . xm} (1.1)

The direction of influence which is most common when we think of functions is that

inputs “cause” outputs. We understand and often speak of thevolume of traffic on the

roads as a function of the day of the week, not the other way around. However, it might

be convenient to do just that, when we are interested in making a backward inference

about the day of the week, given that we observe a certain traffic volume. In probabilistic

models, such a semantic reversal is accomplished by an application of the Bayes’ rule

[BP63]. ANN’s can help us do that as well, as directionality is entirely artificial and

and its interpretation is external to its capabilities. Assuming sufficient data, one could

reverse the input-output semantics and obtain a neural network that approximatesX =

5



Chapter 1. Introduction

f−1(Y ), just as easily. While such semantic inversions are helpfulin some applications, in

other applications it is desirable to identify the directions of causality unambiguously so

that it is possible to explicitly represent it. Therefore, adesirable feature of a knowledge

representation for causality is to make explicit the directionality of relationships.

Knowledge is more meaningful when it is represented by causal models, as opposed

to associative models. It provides us with valuable intuition about the mechanism of the

underlying system. For example, the following truth table representing the relationship

between three Boolean variablesA,B andC is an associative model. It does not provide

insight into how this relationship has come to be, in other words, ‘how does it work’?

The AND-gate with independent inputsA,B and outputC = A ∧ B, however, is a causal

model that has much better explanatory power.

A B C

0 0 0
0 1 0
1 0 0
1 1 1

Figure 1.1: A Truth Table for 3 Boolean variables,A, B andC and a corresponding AND-
gate causal model.

1.2 Causal Models in Artificial Intelligence

The two most popular forms of causal models are

1. Structural Equations

2. Causal Bayesian Networks

Structural equations first appeared in studies in the fields of genetics and economics

[Wri21, Haa43, Sim53]. In its most general form, a structural equation is a functional

6



Chapter 1. Introduction

causal model of the form

xi = fi(pai, ui), i = 1, . . . , n (1.2)

wherepai denotes the “parents” or the set of variables that are the immediate causes of

Xi, andUi represents the errors in each equation due to omitted factors[HP01]. Eq (1.2) is

a non-linear generalization of the linear Structural Equation Model (SEM) which is very

popular in econometrics and the social sciences [Haa43, Sim53]:

xi =
∑

k 6=i

αikxk + ui, i = 1, . . . , n (1.3)

In the linear model the set of parents,pai, is simply represented by the variables on

the r.h.s. that have non-zero coefficients. Each equation isa structural causal model

representing an autonomous mechanism which determines thevalue of a single variable on

thel.h.s.The difference between structural equations and algebraiclinear equations is that

while the latter are characterized by solutions to the entire set of equations the former are

characterized by solutions for each individual equation. This means that each individual

equation in itself represents a valid model of reality. Functional causal models can also be

visualized as a graphical representation of causality where each variable is a node in the

graph, where there is an arc directed towards the l.h.s. variable’s node from every other

variable that has a nonzero coefficient in the r.h.s. of each structural equation. When we

have multiple variables of interest, it is also useful to think of dependencies among then to

be represented by a directed acyclic graph (DAG), where the arcs of the graph represent

similar functional dependencies like in SEMs (sourcescausetargets). Causal Bayesian

networksintroduced by Pearl in [Pea88] is one such representation. It interprets causal

structure as a DAG whose nodes are the variables or the quantities of interest and every

direct causal link between two quantities is represented asa directed arc.

7



Chapter 1. Introduction

Technically, the absence of an arc between two nodes impliesthat the two nodes

are conditionally independent, i.e., given some background information other than these

nodes, namely the values of another disjoint set of nodes, one cannot gain any extra in-

formation about one node from the other. Moreover, Bayesiannetworks model the re-

lationships among the nodes probabilistically rather thanfunctionally. They encode the

joint probability distribution among these variables as a factorization of a set of condi-

tional probability distributions along a particular ordering of the variables. The DAG-

based causal representations in Bayesian networks also tend to be human-readable and

coincide with intuition. It has been suggested that humans themselves represent causal

knowledge in their brain in abstractions similar to Bayesian networks [GGS+04]. We will

focus on causal Bayesian networks as our primary experimental framework in this thesis

and will introduce them in greater detail in chapter 2.

Some of the early work on Bayesian networks made the assumption that the causal

structure was given as prior knowledge elicited from experts and the designers of such

systems [Pea88]. Later on, researchers started focusing onmethods to learn dependencies

among the quantities from data automatically (structure learning systems) [HGC95, KD05,

RD06, CL68, CH92]. While many of these methods have proven successful in terms of

detecting and recording conditional independence relations, coincidence with the actual

causal structure is either by chance or is an artifact of somewell designed and human

conditioned heuristics.

In the past decade a lot of research has focused on the automated learning of causal

structures from data. The area has attracted interest from anumber of fields, ranging

from economics, bio-informatics, to artificial intelligence [Pea00, Rub06, ROR07]. Judea

Pearl and his colleagues have been the most important contributors to the field, and have

proposed a refreshing, formal, and thorough treatment of this topic paving the way for

very promising future research [Pea00, SGS00, TP01a, ES06].

8



Chapter 1. Introduction

Tr/Dow 1 2 3 4 5 6 7
high n1h n2h n3h n4h n5h n6h n7h

low n1l n2l n3l n4l n5l n6l n7l

Table 1.1: A contingency table between trafficTr and day of the weekDoW

1.3 Causal Learning

The first step towards discerning causal structure is to discern the structures of covariance.

Let us briefly step back to our example regarding traffic and the day of the week mentioned

in Section 1.1. Let us assume that the variableTr represents the total traffic volume on a

particular road in a city and it can take one of two valueshigh, low, andDoW represents

the day of the week and takes values from[1 − 7]. Suppose we record observations on

a large sample of instances and measure the frequencies ofhigh andlow vs. DoW in a

contingency table[Pea04] as shown in Table 1.3. In the table,nij represents the count for

observations whereDoW is i andTr is j.

We can use one of several possible statistical tests to determine if there is an association

between these quantities. One such test which is widely usedis Pearson’schi-square(χ2)

test for unconditional independence [Pea04]. The test is based on computing theχ2 test

statistic based on a two dimensional contingency table withr rows andc columns (see

above), and rejecting the null hypothesis that the two events are independent based on its

value. With the hypothesis of independence, we can calculate the theoretically expected

values of each cell in the contingency table as the normalized product of the marginals for

a sample size ofN as follows:

Eij =

(

c
∑

k=1

nik

)(

r
∑

k=1

nkj

)

N
. (1.4)

The value of theχ2 test statistic is

9



Chapter 1. Introduction

χ2 =

r
∑

i=1

c
∑

j=1

(nij − Eij)
2

Eij
. (1.5)

A widely accepted practice is to reject the null hypothesis of independence if theχ2

probability for(r− 1)(c− 1) degrees of freedom is less than or equal to a pre-determined

significance level (typically 0.05). Several other tests exist for other kinds of applications

and some (like theG2 test and conditional cross entropy) can check for conditional inde-

pendence given observations that include a third variable [FW95]. With multiple variables

we can now carry out a series of pairwise tests among these variables, and whenever we

reject independence, conditional or otherwise, we can include an undirected arc in our

causal model. The undirected arc represents the fact that weobserve a covariance or de-

pendency, but are yet unaware of its direction of influence (also termed asorientation).

For example, we observe that the values ofTr = high always coincides with the values

for 2 ≤ DoW ≤ 6 anTr = low always coincides with the weekend (DoW = 1 or 7).

It has been shown that under assumptions of minimality, someof the orientations can

be determined from clues obtained from independence tests when more than two variables

are involved [VP91]. The conditioning variable in an independence test can be viewed as

a control variable and the results of these tests can help determine whether certain causal

links remain persistent across all possible models. In sucha case, these links are “stable”

and must exist in the causal model. We will delve into the technical details of this method

and discuss it in more detail in Section 2.2. However, not allorientations can be determined

using the previous method. In scientific experimentation certain “control variables” are set

to predetermined values and observations are recorded under these conditions. This idea

has been formalized into the theory of causal learning as the“calculus of interventions”

[Pea00]. Suppose the city in our previous example builds a well designed and popular

underground metro-rail system effectively shifting the distibution onTr towardslow and

we record observations under this condition. Suppose we observe that there is no change in

the marginal frequencies ofDoW than we did previously, namely1
7

each, we can conclude
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thatTr does not have any causal effect onDoW (as expected). On the other hand we can

modify the nature ofDoW . The town adds an extra day, Friday, to the weekend holiday. If

we now record a change in the marginal distribution onTr, which would now presumably

reflect the drop in Friday traffic, we can then conclude thatDoW does indeed have a

causal effect onTr. Note that interventions on a variable have the potential tochange

mechanisms that are influenced by that variable. Interventions are different and should not

be confused with the concept of conditioning in probabilitytheory. Conditioning merely

allows us to observe different projections of the the existing distribution and has no ability

to modify the underlying high-dimensional distribution.

These principles have been used in work on detecting causality from interventional

distributions and changing contexts [CY99, TP01a]. We willdiscuss the formalisms of

these methods in section 2.5. Further, if we observe no change in either marginal distribu-

tion when performing an intervention on the other variable,we are forced to conclude that

there is a latent (hidden) variable that must be the common cause of both [VP91].

At times, as illustrated with the absurd interventions proposed in the previous para-

graph, it may not be practical, ethical or even possible to perform certain interventions.

Sometimes only ‘soft’ interventions can be performed (ban high emission vehicles) or in-

terventions are performed by some external agent unrelatedto our causal study but we are

aware of it (companies offer workers an extra paid holiday per week). Typically, one en-

counters a combination of such interventions when observing a system that is complex and

dynamic. We believe the secret to causal learning is to be able to exploit all aspects of the

dynamism in a system, where dynamism means that interventions of diff rent types take

place in several contexts. Whether we perform interventions or become aware that one

has been effected, a rigorous analysis of observations under these conditions can help us

discover true causal structure. We provide a brief motivational example in the next section

(1.4).

11
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1.4 Motivational example: An Aircraft Monitor

Let us consider causal learning in the context of an agent monitoring a dynamic system

under several contexts or external interventions. We examine a dynamic system instead of

a static one for the reason that dynamic systems enable us to either conduct experiments

or make observations that are akin to those collected from experiments.

Suppose that we wish to monitor an aircraft’s component systems and their behavior

under several conditions. As is the case with sophisticatedmachinery, the capabilities of

laboratory design in terms of being able to provide a sufficient causal understanding of

the system are limited. Modern machinery like military aircraft are constructed out of

several thousand individual components each often a combination of mechanical, electri-

cal, electronic, pneumatic and hydraulic parts. One expects to have a sufficient model of

most of the aircraft and its components’ expected behavior in typical and atypical con-

ditions, based on human expert knowledge, past experience and meticulous laboratory

experiments. However, this combined knowledge can still beincomplete and several as-

pects of the aircraft’s behavior are left to be determined atthe testing stage. Often, test

pilots are asked to put the aircraft through a series of maneuvers that take the aircraft

through several modes of operation and the results of these tests are used to establish a

better understanding of the aircraft’s behavior in practical operation.

Typically this is not only for the purposes of ground engineers and designers to ensure

that each component works satisfactorily and as expected but also to learn some of the

previously unknown or unexpected relationships between components of the aircraft sys-

tem. For example, the designers may have expected that the new wing design affects the

behavior of the ailerons at certain flight speeds and adjusted for it, but did not expect that

the rate of fuel supply becomes intermittent as well, for thesame reason. If they are un-

aware of the cause of this discrepancy (say, climbing anglesexceeding a certain value) and

hypothesize that it could be one or many of several potentialcauses, verification of this
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Figure 1.2: An example causal diagram between quantities monitored in an aircraft.

cause-effect relationship will involve meticulous lab tests, new flight plans, and several

more man hours spent on trial-and-error.

In this situation, an automatic real-time causal learning agent mounted on the aircraft,

can be very valuable. A causal learning agent that is expected to learn relationships be-

tween quantities, can record critical flight data, by segmenting it into several sections, each

corresponding to a particular condition or context of aircraft operation and environment.

With a causal model, we expect it to be able to answer queries about “counterfactual” con-

texts, and make assessments about situations yet unencountered. Additionally, we expect

that it augment the test pilot’s flight plan by suggesting that he take the aircraft into a new

state. For example, it could request “Can you execute a 45 degree descent at Mach 2 for

30 seconds before flattening out at 10000 ft and reducing speed to 700 mph? That would

help estimate effect of supersonic speed and turbulence on wing drag.”

This dissertation, I address the problem of causal learningfrom three distinct direc-

tions. First, I improve upon existing methods for learning the equivalence classes of

Bayesian networks representing a distribution from observational data alone. Second, I

iintroduce a novel method of causal inference that can be used when a certain type of ex-

perimental observations are known. This method searches upstream from the experimental

variable and infers the set of its parents resulting in a partition among its adjacent nodes

13
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as parents vs. children. Thirdly, I present a new fast methodto determine an experimen-

tal order among the variables that is aimed at full causal recovery with a small number

of experiments. I present empirical results obtained by sampling the space of networks

varying in their size and their density. I also study experimental parameters that affect

performance in causality detection, including sample and network size, confidence levels

for conditional independence tests and strengths of causallinks. Finally, I provide hints

of how to incorporate all our methods into an incremental framework that learns causal

structure from streams of multivariate data.

In Chapter 2, we discuss previous work from philosophical aspects to practical issues in

the field and lay down the foundations. In Chapter 3 we discussthe details and formalisms

of the proposed algorithms. We run experiments on these algorithms and present our

findings on several test cases in Chapter 4. Finally, in Chapter 5 we discuss how our

work paves the way for future research and can be incorporated into related fields like

learning dynamic causal Bayesian networks, including cyclic causal paths and extensions

into continuous domains and conclude.
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Background

“You jest about what you suppose to be a triviality, in askingwhether the

hen came first from an egg or the egg from a hen, but the point should be re-

garded as one of importance, one worthy of discussion, and careful discussion

at that.” - Macrobius [395-423 AD]

The goal of this chapter is to introduce the relevant background, literature and termi-

nologies that will be used in the rest of this dissertation. This chapter is divided into six

sections. Section 2.1 addresses the history and current thought on philosophical debates

concerning causality. Section 2.2 delves into the relevantbackground on Bayesian net-

works and their application as causal models. Section 2.3 discusses the two main types of

structure learning methods that are currently popular research topics among researchers,

score based and constraint based search methods. In Section2.4 I discuss the IC (Inductive

Causation) algorithm that provides the framework for constraint based structure learning

methods, its assumptions and the limits of its performance.Next, Section 2.5 introduces

prior work on two main types of interventions that are relevant to this dissertation and

discusses methods for causality determination that are based on them. Finally, Section 2.6

discusses some previous results on the theoretical number of experiments required for full
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causal discovery under different types of interventions.

2.1 Philosophical Primer

In western philosophy, the earliest known writings on causality are by Aristotle, who iden-

tifies the Four Causes: Material, Formal, Efficient and Final[Aria, Arib]. Of the four,

the type of cause that is closest to our modern notion of causeand effect is “the efficient

cause”, which he defines as the thing that brings something about or the primary source of

the change. In India, theNyayaschool was an epistemology and methodology of thought

that also developed some early views on a theory of causation[GauCE]. Their notion

of theNimitta’ cause is close to Aristotle’s efficient cause. Moreover, they identify con-

ditions for causality including antecedence, invariability and unconditionality. They also

identify five types of accidental antecedents which should not be confused with causal

antecedents. An interesting accidental antecedent they identify is that “the co-effects of a

cause are not the cause”, which leads us to believe that they appreciated the difficulty in

attributing orientation to a covariance and the presence ofcommon and possibly hidden

causes.

David Hume was an eminent18th century philosopher whose view was that while one

can empirically verify constantly conjoined and successive events, the complete idea of

causation requires anecessary connexionbetween the events that should be taken into

consideration. He further argued that we can have no perceptual access to the necessary

connection but we are compelled to believe in one [Hum40].

In the20th century, Max Born, a German physicist and mathematician described three

assumptions that were dominant in the definition of causality, as cited in [Sow00].

1. “Causality postulates that there are laws by which the occurrence of an entity B of

a certain class depends on the occurrence of an entity A of another class, where the
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word entity means any physical object, phenomenon, situation, or event. A is called

the cause, B the effect.”

2. “Antecedence postulates that the cause must be prior to, or at least simultaneous

with, the effect.”

3. “Contiguity postulates that cause and effect must be in spatial contact or connected

by a chain of intermediate things in contact.”

In more modern literature, the best known and most thoroughly elaborated counterfac-

tual theory of causation was proposed by David Lewis in 1973 [Lew73], which he later

refined and extended [Lew86]. In this work, he describes counterfactuals and counterpart

worlds. According to Lewis, a counterfactual conditional of the form ‘Had I made that

shot our team would have won the game.’could be true in a world, as concrete as ours and

significantly similar to it. Except that, my counterpart makes the shot rather than misses it

and the counterpart of our team wins the game. Had there been aworld even more similar

to ours in which my counterpart makes the shot but the counterpart of our team still loses,

then the counterfactual would have been false. When we speakof counterfactual possibil-

ities we speak of what is the case in some possible world or worlds. “Actual”, according

to Lewis, is merely an indexical label we give to a world when we locate ourselves in

it. Things are necessarily true when they are true in all possible worlds. Causation is true

when its counterfactual is true in all other possible worlds. Missing the shotwasthe actual

causefor our team to lose the game when in all other possible worldswhere the shot was

made, the game was won by our counterpart team.

Paul Holland identifies theFundamental Problem of Causal Inferencewhich states

that it is impossible to measure the effect of two differentexposureson the same unit. For

example, if administering a medical treatment (or not) is anexposure, it is impossible to

measure their isolated effects on the same patient [Hol86].He summarizes how the differ-

ent fields of economics, sociology, medicine, and philosophy deal with causal inference.
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He was also the proponent of the paradigm “No causation without manipulation”, which

means that without experimenting upon a phenomenon systematically, one cannot truly

discriminate causation from association.

This gives rise to the idea of “interventions” which is currently a popular topic of

causal inference research. In [Pea00], Judea Pearl introduces aCalculus of Interventions

and thedo(.) operator, which enables the empirical causal researcher tolook at models

under the influence of actions that force events or variablesto specific values. The idea

allows the statistical researcher to perform “experiments” on the data, and to reason about

potential counterfactuals, under some standard assumptions. Also, Pearl argued that, using

a normative assumption of Occam’s Razor (principle of parsimony) some causation can

be inferred without manipulation. He proposed the algorithms IC andIC* that construct

and orient a causal Bayesian Network [Pea00] under these assumptions. Most interesting

current research in causality follows this tradition and uses Bayesian networks as diagrams

representing causality. In the next section we describe Bayesian networks in detail.

2.2 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) consisting of nodes that represent

random variables. Although it is customary to view a DAG as composed of its explicit

links, it is also conceptually useful to think of a Bayesian network as a structure that

encodes a conditional independence relation between pairsof variables by theabsenceof

a direct link between them. A causal interpretation of the graphical structure where each

directed edge represents a direct cause, leads to the notionof causal Bayesian networks.

We shall also refer to causal Bayesian networks ascausal Modelswhen referring to their

structure and parameters together. We shall call themcausal diagramsor causal graphs,

when referring to their structures alone.

Associated with its DAG structure, a Bayesian network encodes a joint probability
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distribution among its component variables as a product factorization of conditional prob-

ability distributions (one per variable) along a particular ordering of these variables. With-

out a causal interpretation, the ordering can be arbitrary:by a recursive application of

the definition for conditional probability (Equation 2.1),also known as the Chain Rule

of Probability (Equation 2.2), any ordering among the variables can decompose the joint

distribution [BP63].

P (X, Y ) = P (X)P (Y |X) (2.1)

P (X1, . . . , Xn) = P (X1)P (X2|X1) . . . P (Xn|X1, . . . , Xn−1)

=

n
∏

i=1

P (Xi|X1, . . . , Xi−1)
(2.2)

For example, consider the joint probability distribution among three variablesA, B

andC, where there is no pairwise independence among the variables (all variables are

connected to each other by an arc). Using Eq. 2.1 along each ordering of the variables,

the joint distribution can be factorized in six different ways, corresponding to six different

Bayesian networks as shown in Figure 2.1.

1. P (A, B, C) = P (A)P (B|A)P (C|A, B)

2. P (A, C, B) = P (A)P (C|A)P (B|A, C)

3. P (B, A, C) = P (B)P (A|B)P (C|A, B)

4. P (B, C, A) = P (B)P (C|B)P (A|B, C)

5. P (C, A, B) = P (C)P (A|C)P (B|A, C)

6. P (C, B, A) = P (C)P (B|C)P (A|B, C)
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Figure 2.1: The six different configurations of a Bayesian network with 3 nodes and no
conditional independence.

Now let us incorporate into this expression information about conditional indepen-

dence that we can read off the DAG. Conditional independenceis defined as follows:

Definition 2.2.1 (Conditional Independence). Let X = X1, X2, . . . be a finite set of vari-

ables. LetP (.) be a joint probability function over the variables inX, and letA, B, C

stand for any three subsets of variables inX. The setsA andB are said to be condition-

ally independent givenC if

P (A|B, C) = P (A|C) whenever P (B, C) > 0. (2.3)
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We use the notation(A ⊥⊥ B|C)P to denote the conditional independence ofA and

B givenC, or simply(A ⊥⊥ B|C) whenP , the specific distribution that is referred to is

unambiguous. Note that conditional independence is symmetric, i.e., (A ⊥⊥ B|C) =⇒

(B ⊥⊥ A|C) 1. Unconditional independence shall be denoted(A ⊥⊥ B|∅) or simply

(A ⊥⊥ B).

Applying this definition to the recursive factorization in Equation 2.2, we are left with

a factorization of the joint distribution into conditionalprobability terms containing only

a select subset of predecessors for each variableXi, denotedPAi:

P (x) =

n
∏

i=1

P (xi|pai). (2.4)

We use the notational shorthandxi to representXi = xi, i.e., the case when the variable

Xi takes the valuexi. As a general rule, throughout this dissertation, unless otherwise

specified, we use uppercase letters without subscripts (e.g. X) to denote sets of variables,

uppercase letters with subscripts (e.g.Xi) to denote singleton variables and lower case

letters (x or xj) to denote the values these variables (or sets) can take.

The setPAi is called the ‘parents’ or Markovian Parents of nodeXi and is defined

below. This becomes easier to visualize when we view each variable as a node in a DAG,

and that each of the Markovian parents of that variable give rise to arcs directed towards

the variable, thus describing the structure of the Bayesiannetwork.

Definition 2.2.2(Markovian Parents). LetX = X1, . . . , Xn be an ordered set of variables,

and letP (v) be the joint probability distribution on these variables. Aset of variablesPAj

is said to beMarkovian parentsof Xj , if PAj is a minimal set of predecessors ofXj that

1There are other properties of conditional independence apart from symmetry, but they are not
trivial or very intuitive and we will not refer to them here. Apartial list of properties of conditional
independence relations discovered so far have been summarized by Spohn et al. in [SPB94] and
also by Pearl and Geiger in [GP93]. Despite several promising advances and contributions by
several researchers during the past three decades, a completeness result still eludes.
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rendersXj independent of all its other predecessors. In other words,PAj is any subset of

X1, . . . , Xj−1 satisfying

P (xj|paj) = P (xj |xi, . . . , xj−1), (2.5)

such that no proper subset ofPAj satisfies Eq. 2.5.

Once, the Bayesian network is described this way, the order of the variables becomes

irrelevant. When we are givenP and G, we can test whetherP decomposes into the

product as described byG. Another advantage of Bayesian networks is that they provide

a tractable representation of the joint distribution.

Consider that the joint distribution we need to represent isfor a set ofn binary vari-

ables. The distribution would be a real numbered probability value for all possible config-

urations of these variables, demanding a storage ofO(2n) floating point memory locations.

Except for very smalln, this is intractable. However, consider the same distribution repre-

sented by a Bayesian network. From the factorization mentioned in Eq. 2.4, we know we

needn conditional probability tables. If the maximum in-degree of the DAG isk, the total

space required isO(n2k) (the storage for the DAG needs onlyO(nk) and can be ignored).

If k is reasonably small and invariant ton, as we expect for most real applications, then

there is an enormous space savings achieved.

Definition 2.2.3 (Markov Compatibility). If a probability functionP admits the factor-

ization of Eq. 2.4 relative to DAG,G, we say thatG representsP , that P and G are

compatible, or thatP is Markov relative toG.

Compatibility between DAGs and probability functions is the key to statistical model-

ing and is a necessary and sufficient condition for a DAGG to explain empirical evidence

represented byP . If each conditional probability satisfies a set of conditional indepen-

dence relationships, Markov compatibility ensures that these can be read off the DAG by

a criterion known asd-separation (d stands fordirectional).
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Definition 2.2.4(d-Separation). A pathp is said to bed-separated(or blocked) by a set of

nodesZ if and only if

1. p contains a chaini → m → j or a fork i ← m → j such that the middle nodem

is in Z, or

2. p contains an inverted fork (also known as a “collide”)i → m ← j such that the

middle nodem is not inZ and such that no descendant ofm is in Z.

A setZ is said to d-separateX fromY if and only ifZ blocks every path from a node

in X to a node inY .

We will use the notation(X ⊥⊥ Y |Z)G to denote thatX andY are d-separated byZ

in DAG G

The correspondence between d-separation and its probabilistic analogue is summa-

rized by this theorem from [Pea88].

Theorem 2.2.1(Probabilistic Implications ofd-separation). If X and Y are two sets of

variablesd-separated by setZ in a DAGG, thenX is independent ofY conditional onZ

in every distribution compatible withG. Conversely, ifX andY are not d-separated by

Z in a DAGG, thenX andY are dependent conditional onZ in at least one distribution

compatible withG.

Let us revisit the example of unconstrained Bayesian networks on the variablesA, B

andC shown in Fig.2.1. Using these results, we can now apply the conditional indepen-

dence statement(A ⊥⊥ B|C)P for all P compatible withG, leading to the implication that

(A ⊥⊥ B|C)G. Using Definition2.2.4, for d-separation, we get the set of DAGs in Fig.2.2,

each compatible with the conditional independence statement (A ⊥⊥ B|C). The introduc-

tion of the conditional independence statement reduced thenumber of Bayesian networks

that encode the distribution from 6 (in Fig.2.1) to 3 (in Fig.2.2).
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Figure 2.2: The configurations of a Bayesian network with 3 nodes withA ⊥⊥ B|C

Figure 2.3: The Bayesian network with 3 nodes andA ⊥⊥ B

Now, consider that we introduce the unconditional independence statement(A ⊥⊥

B|∅). The number of Bayesian networks that encode this reduces toa single unique net-

work (Fig. 2.3).

The key insight that we learn from this is that when a conditional independence state-

ment(A ⊥⊥ B|SAB) is introduced, the link betweenA andB disappears in all cases, but

the nature of the separating setSAB further determines the set of Bayesian networks that

are compatible with that statement. From this example, we see that common neighbors of

A andB that are not inSAB form v-structuresor colliders withA andB, i.e. arcs fromA

andB converge on allC /∈ SAB where(C 6⊥⊥ A|SAC) ∧ (C 6⊥⊥ B|SBC) for anySAC and

SBC .

This provides us the intuition for the notion of observational equivalence, as specified

by the following theorem from [VP90].

Theorem 2.2.2(Observational Equivalence). Two DAGs are observationally equivalent
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if and only if they have the same skeletons and the same set of v-structures, that is, two

converging arrows whose tails are not connected by an arrow.

From this theorem we see that a certain equivalence class of Bayesian networks are

observationally indistinguishable. All networks belonging to an equivalence class have the

same undirected skeleton, and the same “unshielded colliders” and there are no statistical

tests (however perfect) that can be performed on distributions (or from data generated

from these distributions) that can ascertain which one of these networks in the equivalence

class represents the true causal relationships. However, if experimental data is available,

then one can further reduce the size of the equivalence class. With a sufficient number of

experiments we can narrow down the set of possible networks to a single causal network

[ES06, ES07]. In the next section we present current methodsin structure learning. We

then have further discussion on this topic Section 2.5 onwards.

2.3 Structure Learning in Bayesian Networks

Bayesian network structure learning from data is hard particularly because of the ex-

tremely large search space. The number of Bayesian network structures (DAGs) over

n nodes is given by Robinson’s formula [Rob76]:

G(n) =















1 if n = 0
n
∑

i=1

(−1)i+1

(

n

i

)

2i(n−i)G(n− i) otherwise.
(2.6)

Table 2.3 shows the value ofG(n) for the first 10 values ofn. Fig. 2.4 shows the

growth of the logarithm of the number of DAGs with respect to number of nodes. This

formula tells us that the space of Bayesian networks is super-exponential w.r.t. the number
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n G(n)
1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1.1388× 109

8 7.8370× 1011

9 1.2134× 1015

10 4.1751× 1018

Table 2.1: The number of DAGsG(n) as a function of number of nodes,n.

Figure 2.4: The greater than linear growth of the logarithm of the number of DAGs calcu-
lated by Robinson’s formula.

of variables. Any kind of strategy to exhaustively search the space of networks for any

realistic problem becomes intractable.

There have been two main approaches to Bayesian network structure learning.
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1. Score based search

2. Constraint based search

Score based searchmethods mostly follow a common format. A score is a measure of

quality of fit between a given Bayesian network and data. Typically, it is an indicator of the

likelihood that the observations were generated by the Bayesian network. This measure

of quality on Bayesian network structure, allows us to discriminate between the individual

networks in the search space with respect to the applicability of each network in a particu-

lar domain. Usually, we desire that the network structure faithfully captures the underlying

dependencies in the data and is a good explanation for the data. In other words, we look

for a “goodness of fit” score which maps a value to each networkin the search space, and

this is exploited by search algorithms to find maxima on the landscape of scores over the

search space. There are many types of scores used in the literature, but the most common

and successful ones are based on the Minimum Description Length (MDL) principle and

the Bayesian Information Criterion (BIC). The graph space is described in terms of neigh-

borhoods of edge additions, removals and reversals. The search starts at some random or

heuristically chosen graph, and executes a greedy search inthis neighborhood until no fur-

ther improvement in score is obtained. To avoid getting trapped in local minima, several

techniques are applied, including random restarts, TABU search, simulated, annealing and

data bootstrapping.

The MDL principle [Ris78] is a formalization ofOccam’s Razoralso known as the

“Principle of Parsimony”. It is based on the idea that the best model of a database is the

model that minimizes the sum of the length of the encoding, orin this case, the Bayesian

network.

Some of the earliest work on learning structure for knowledge representations was

done in 1968. Chow and Liu [CL68] proposed the first ever algorithm that learns a tree

structure that maximally approximates the database distribution. Their method, based
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on a minimum difference in information, finds the maximum likelihood estimate of the

distribution when the structure is restricted to trees.

More recently, Buntine proposed an algorithm that searchesthe space of all DAGs,

using a greedy blind search [Bun91]. An important point about this work is that it had

an incremental flavor, assumes an existing knowledge base and the algorithm augments it

with more rules when provided with more data. Cooper and Herskovitz [CH92] took the

Bayesian approach and proposed an algorithm that when givena variable ordering delivers

a DAG. An interesting feature of their method is that they restrict the search to finding one

single network among an equivalence class of DAGs. Later, Castelo and Kocka [KC01]

emphasize that theModel inclusionprinciple imposes an ordering among DAGs and they

propose an improvement to Bayesian network learning that avoids the problem of local

minima.

In 2004, Koivisto and Sood presented an exact algorithm for Bayesian structure discov-

ery [KS04]. While being exact, it was the first algorithm withless than super-exponential

complexity with respect to the number of nodes. They also assert that in some special cases

where suitable restrictions can be placed on the structures, exact methods can be made fea-

sible or can be combined with inexact methods to create a trade-off between exactness and

feasibility.

Batch learning methods have their limitations with respectto database size and com-

plexity. Another consideration is that in realistic settings learning algorithms have to be

designed to operate incrementally, using “online” learning techniques. These algorithms

operate on the premise that the learning task uses only finitememory and finite compu-

tational resources, and therefore can neither store arbitrarily large amounts of data nor

can it relearn from scratch each time it updates its knowledge. Typically, the aim of most

incremental algorithms is to visit each record just once.

Buntine’s batch algorithm [Bun91] has an incremental flavor. Buntine also provides
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guidelines for an incremental version. Lam and Bacchus propose a technique [LB94]

revising Bayesian networks incrementally based on improving the description length (DL)

of a subgraph, and also show how this reduces the DL of the whole graph if no cycles are

introduced. Friedman and Goldszmidt [FG96] propose and analyze three approaches: the

first is to store all the data and simply relearn everything from scratch; the second approach

uses a single structure for storing prior data; the third approach is a combination of the two

and exhibits natural trade-offs.

In the related domain of undirected graphical models, Domingos and Kok propose

both a batch and revision based algorithm for Markov Logic Networks based on relational

databases [KD05]. Markov logic networks (MLNs) combine logic and probability by at-

taching weights to first-order clauses, and view these as templates for features of Markov

networks. Combining ideas from inductive logic programming (ILP) and feature induc-

tion in Markov networks, their algorithm performs a beam search of the space of clauses,

guided by a weighted pseudo-likelihood measure.

In [Alc05], Alcobé proposes two general search heuristics that convert batch learning

algorithms to incremental ones. One of their heuristics, the Traversal Operators in Correct

Order (TOCO) ensures that the structure will be revised onlyif it is invalidated by new

data; when it must be revised, the learning algorithm does not begin from scratch. The

second Reduced Search Space (RSS) heuristic, uses the knowledge gathered from previous

learning steps stating that structures that had very low quality in past learning steps will

still have low quality with respect to the new dataset in the current learning step.

While all these methods enjoy varying degrees of success in finding high scoring

graphs, the Bayesian methods are compatible with the idea ofstability. Methods of in-

corporating mixtures of observational and experimental data to find pairwise causal links

have also been investigated under the Bayesian approach [CY99]. They tend to operate

well for small datasets but suffer when there are hidden variables and large networks.

Evaluating the Bayesian score involves computing an expensive integral (summation) in
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discrete domains. As a consequence of Observational Equivalence (Theorem 2.2.2) we can

expect to find a graph that belongs to the same equivalence class as the causal network,

if not the true causal network itself. This is not guaranteedby all of the score-and-search

methods and graphs.

Constraint Based searchmethods, are an interesting alternative to greedy search tech-

niques. These methods start with an unconstrained structure (complete and undirected

graph) and apply successive constraints on this structure as implied by Conditional In-

dependence Statements (CISs) to arrive at an intermediate undirected skeleton, and then

orient the edges as implied by the CISs (d-separation implications) and DAG acyclicity.

The earliest algorithm in this family of methods is the IC algorithm (Inductive Causation)

described by Verma and Pearl [VP91], and it guarantees that the partially directed acyclic

graph (PDAG) describes the equivalence class of structuresthat represent the given CIs.

In this dissertation we take the constraint based approach and discuss the IC algorithm in

the following section.

2.4 The IC algorithm

The IC algorithm relies on three assumptions: the Causal Markov Condition, Stability, and

Sufficiency. We briefly discuss these assumptions.

Theorem 2.4.1(The Causal Markov Condition [VP91]). Every Markovian causal model

M induces a distributionP (x1, . . . , xn) that satisfies the parental Markov condition rela-

tive to the causal diagramG associated withM ; that is, each variableXi is independent

of all its non-descendants, given its parentsPAi in G.

Intuitively, ignoring a variable’s effects, all relevant probabilistic information about a

variable that can be obtained from a system is available fromits causes. This is similar to

an interpretation of a first-order Markov process; knowledge about the current state allows
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Figure 2.5: An example of anunfaithfulcausal graph. The +/- links correspond to positive
vs. negative influences.

us to predict its next states, but it is not necessary to know how the process came to be in

the current state. While the Markov condition (Definition 2.2.3) allows us to use an elegant

graphical theory to interpret a probability distribution,the causal Markov condition goes

a step further and interprets the DAGs causally. It makes thecentral assumption that the

Markov condition andd-separation are in fact the correct link between causal structure

and probabilistic independence.

Definition 2.4.1(Stability). Let I(P ) denote the set of all conditional independence rela-

tionships embodied inP . A causal modelM = 〈D, ΘD〉 generates a stable distribution

if and only if P (〈D, ΘD〉) contains no extraneous independencies, that is, if and onlyif

I(P (〈D, ΘD〉)) ⊆ I(P (〈D, Θ′
D)) for any set of parametersΘ′

D

Although Pearl defined the concept ofstability as an interpretation of Occam’s razor

w.r.t. the causal Markov condition [Pea00], it is more commonly referred to as the Faithful-

ness criterion, an equivalent definition introduced by Clark and Glymour[SGS00, SGS01].

Definition 2.4.2(Faithfulness). LetG be a causal graph andP a probability distribution

generated byG. 〈G, P 〉 satisfies the Faithfulness condition if and only if every conditional

independence relation true inP is entailed by the Causal Markov condition applied toG.

Intuitively, while the causal Markov condition ensures that any distributionP produced

by the graphG has the corresponding probabilistic independencies implied by applying
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d-separation toG., faithfulness ensures thatP has exactly those and no additional inde-

pendence relationships. Cartwright [Car83] introduced the following example of a causal

graph that isunfaithful. Consider a graph of three variablesSmoking, Exercise and

Health as shown in Figure 2.5. Let us assumeHealth is positively affected byExercise

and negatively bySmoking, as is generally believed. Further, assume thatSmoking has

a positive effect onExercise (absurd as this may be). If the parameters of these rela-

tionships are just “right”, such that the positive effect ofSmoking (throughExercise)

cancels its direct negative effect,Smoking andHealth might become probabilistically

independent. While it is acknowledged that such graphs do violate the Faithfulness as-

sumption, it is also believed that such graphs are extremelyrare in practice and that such

contrived parametrizations (where Nature is acting like a cruel adversary) are ‘unstable’

and that they do not prevail across multiple instances. Faithfulness allows us to ignore all

these cases in causal analysis and is widely accepted as a reasonable assumption.

Definition 2.4.3(Causal Sufficiency). The set of measured variablesV include all of the

common causes, if any, of each pair of variables inV .

The final assumption is causal Sufficiency, which makes an assumption on the ability

to make all relevantmeasurements, i.e., all the common causes of all measured variables.

In other words, Causal Sufficiency assumes there are no latent, hidden variables that could

be the cause of more than one variable measured in the system.This is perhaps the most

unrealistic assumption among those presented, as it is easyto imagine several practical

situations when observations areinsufficient. However, there is a large class of problems

that satisfy this requirement and it is worth pursuing this approach. Moreover, algorithms

that make the Sufficiency assumption are conceptually simpler and provide the framework

for extension to more sophisticated algorithms that can deal with hidden variables. For

example the IC*, algorithm, extends IC to the case where the Sufficiency assumption is

not made. We will however assume Sufficiency throughout thisdissertation, and will not

discuss further the implications of not assuming Sufficiency [SMR95, SG09].
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The following algorithm takes as input a stable probabilitydistributionP generated by

some underlying DAGD0 and outputs a PDAG that represents the equivalence class ofD0

[VP91].

Algorithm IC (Inductive Causation)

Input: P , a stable distribution on a set ofV variables

Output: H(P ), a PDAG

1. For each pair of variablesa andb in V , search for a setSab such that(a ⊥⊥ b|Sab)

holds inP . Construct an undirected graphG such that verticesa andb are connected

with an edge if and only if no setSab can be found.

2. For each pair of nonadjacent variablesa andb with a common neighborc, check if

c ∈ Sab. If it is, continue, otherwise add arrowheads pointing atc. (i.e.,a→ c← b).

3. In the partially directed graph that results, orient as many of the undirected edges

as possible subject to two conditions: (i) the orientation should not create a newv-

structure; and (ii) the orientation should not create a directed cycle.

It has been shown [Mee95, Zha08] that there exist a set of rules of orientation (for

step 3) which upon repeated application, guarantee thatall arrows that are common to

the equivalence class ofD0 will eventually be oriented. The IC algorithm, therefore isa

very powerful and valuable tool in causal structure learning, and provides a guarantee of

the quality or closeness of the structure found to the actualcausal structure. In a typical

causal learning problem the IC algorithm orients a large fraction of the edges and allows

us to focus on experiments that focus on learning only those edges that are still undirected.

Interventions, experimental data and dynamism, are some ofthe concepts that can be

used to learn further causal information about the system. In section 2.5 we characterize

interventions, discuss some of the existing methods for causal learning from interventions,

and finally end the chapter with a section on the number of interventions required for full

causal learning.
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2.5 Interventions

Pearl introduced thecalculus of interventionsas a theory of causality by manipulability

[Pea95, Pea00]. In other words, the test for a causal connection is by the ability to force

a change on the effect by manipulation of its causes. Manipulating a variable or a set of

variables is called an intervention, and is represented by thedo(.) operator. For example,

do(X = x) represents theatomic interventionof setting a single variableX to the value

x. A distribution measured on another variableY under this intervention is represented

asP (Y |do(X = x)). Alternatively, throughout this dissertation, we use the notational

shorthandsP (Y |x̂) or Px(Y ) to represent atomic interventions.

In contrast to the conditional operator in probability theory, the atomic intervention

P (Y |x̂) does not represent the distribution onY whenX is given to bex, but rather it

represents the distribution onY whenX is “set” to x. The termP (Y |X) represents the

distribution onY given that we observeX whereX varies freely according to its governing

distribution. Whereas the “causal effect” termP (Y |do(X)), represents the distributions

on Y whenX is held at fixed values. It has the effect of neutralizing the effect of X ’s

predecessors onX.

Definition 2.5.1(Causal Effect). Given two disjoint sets of variables,X andY , the causal

effect ofX onY , denoted either asP (y|x̂). or asP (y|do(x)), is a function fromX to the

space of probability distributions onY . For each realizationx of X, P (y|x̂) gives the

probability ofY = y induced by deleting from the model of 1.2 all equations correspond-

ing to the variables inX and substitutingX = x in the remaining equations.

One way to conceptualizeP (Y |do(Xi = xi)) is to consider the effect of the interven-

tion on a causal diagram. The intervention onXi effectively severs all the parental arrows

from pai) toXi. Thus, the atomic intervention renders the intervened variable independent

of its normal causes. Another notation used is to consider anintervention by the introduc-

tion of an interventional nodeFi as a parent ofXi, (Figure 2.6) which takes two values
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Figure 2.6: An intervention nodeFc that represents an atomic intervention performed on
variableC

’on’ and ’off’. The ’off’ state represents no intervention and the ’on’ state refers to the

atomic interventiondo(Xi = xi).

Recall the factorization of the joint probability represented by the Bayesian network

(Equation 2.4) in terms of its conditionals. When an atomic interventiondo(x′
i) is per-

formed on a variableXi setting them to the set of valuesx′
i, the conditional that are not

consistent with the interventions disappear, and when theyare consistent they become

unity. Let the interventional node be an additional parent to each of the intervened vari-

ables (pa′
i = pai ∪ Fi) . The altered conditional probabilities of this augmentedBayesian

network can now be written as:

P (xi|pa
′
i) =



















P (xi|pai) if Fi = off

0 if Fi = do(x′
i) andxi 6= x′

i

1 if Fi = do(x′
i) andxi = x′

i

(2.7)

The effect of the interventiondo(x′
i)) is to transform the pre-interventional probability

distributionP (xi, . . . , xn) to the the post-interventional distributionP (xi, . . . , xn|x̂
′
i) =

P ′(xi, . . . xn|Fi = do(x′
i)). In terms of the conditional probability factors of the pre-

intervention distribution, we can write thetruncated factorizationformula 2.8:
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P (xi, . . . , xn|x̂
′
i) =











∏

j 6=i

P (xj|paj) if xi = x′
i

0 if xi 6= x′
i

(2.8)

So far, we have only talked about theatomic interventionwhere we set the value of

the intervened variableXj to a fixed constant. This could be termed ahard intervention .

We can conceive of several practical situations where such ahard intervention may not

be possible, but perhaps we are able to make a subtler, more general change toXj , asoft

intervention. If we replace the “mechanisms” that determineX by another equation such

thatPA∗(X) are now the new parents ofX we can write the new joint distributionP ∗ as

P ∗(x1, . . . , xn) = P (x1, . . . , xn)
P ∗(xi|pa

∗
i )

P (xi|pai)
(2.9)

Note that the parents ofxi, pai is replaced bypa∗
i indicating that the set of parents could

potentially be different. A simplifying assumption that can be applied is thatpai does

not change across the interventional boundary, but only theparameters of the conditional

distributionP (xi|pai) on thefocal variablexi changes toP ∗(xi|pai) [TP01a]. In other

words, the structure of the causal model remains invariant while the parametrization is

altered by the “mechanism change”.

There are several other models of intervention discussed inrecent literature, includ-

ing uncertain interventions, fat-hand interventions and imperfect interventions[EM00,

TKP06]. In this dissertation, we employ only hard and soft interventions. In the next

section we will discuss how interventions are useful in determining causal structure.
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2.5.1 The Power of Interventions

In section 2.2 we discussed Observational Equivalence (Theorem 2.2.2) and how when

given a distribution that echoes a set of conditional independence statements, there are

several indistinguishable networks that form a Markov equivalence class given the distri-

bution. Under interventions, however, we are able to reducethe size of this equivalence

class and under the right set of interventions we are able to recover the true causal struc-

ture. For example, consider the CANCER network [FMR98] as shown in Figure 2.7.

Reading off the graph by the rules ofd-separation we see that it encodes the following

set of CIs : {(A ⊥⊥ D|B, C), (A ⊥⊥ E|C), (B ⊥⊥ C|A), (B ⊥⊥ E|A), (D ⊥⊥ E|C)}.

Given only this, and using theorem 2.2.2, we can now draw the structures with the same

skeletons and same set ofv-structures as shown in Figure 2.8 that are observationally(or

Markov) equivalent to the CANCER network. With observational data, this equivalence

class represents the limit of our causal inference.

Each intervention, however, helps us determine the orientations of the edges to the

neighbors of the intervened variable [ES06, ES07, TP01a, TP01b]. Figure 2.9 shows the

set of structures equivalent under an intervention onB . Structureiv from figure 2.8 has

the wrong parents forB and hence gets eliminated. Some other non-neighborhood edges

might also be forced towards an orientation due tod-separation and DAG acyclicity. The

variable chosen for intervention also plays a significant role in the number of edges that

get oriented. Figure 2.10 shows the unique causal structurethat can be determined from

an intervention onA. Interventions onA determine the arcs out ofA to its neighbors,

A → B andA → D and the arcC → E, since we cannot introduce newv-structures. In

general, given interventional data, we can eliminate several networks out of the observa-

tional equivalence class and determine the interventionalequivalence class, as proved in

[TP01a]. In chapters 3 and 4, we will discuss algorithms and empirical considerations that

extend previous methods that do this.
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Figure 2.7: The CANCER network

Figure 2.8: Markov equivalent structures of the CANCER network. Dashed edges are the
edges that differ from the original network.

2.6 On the Number of Experiments

We saw in section 2.5.1 that different interventions determine different sets and numbers

of orientations in the causal model. Some interesting questions arise naturally from that

discussion.

1. How many interventions are needed to determine full causal structure?

Figure 2.9: Markov equivalent structures of the CANCER network under an intervention
on B. Dashed edges are a result of the intervention.
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Figure 2.10: Unique causal structure of the CANCER network recovered under an inter-
vention on A. Dashed edges are a result of the intervention.

2. Is there an optimal ordering of these interventions so that we can determine maxi-

mum causal structure soonest?

3. Does the type of intervention affect the number of interventions required?

4. If there are some specific links whose orientations we are interested in more than

others, which and what kind of interventions should be prioritized?

Tian and Pearl [TP01a], consider a transition sequence (TS)of soft interventions on

single focal variables at each transition to detect marginal changes in descendants. Rely-

ing on intuition, they construct this sequence as a transition and construct a Marked Order

Graph (MOG) that is then used to constrain learning algorithms. In a series of papers,

Eberhardt, Scheines and Glymour address these questions [EGS05, ES06, ES07, Ebe06,

Ebe08, EGS06, Ebe10]. In [EGS05, EGS06], they show that under the usual assumptions

of Faithfulness, Markov compatibility, causal Sufficiency, and perfect data,N − 1 exper-

iments suffice and in the worst case are necessary to determine the causal links among

N > 2 variables. An experiment here corresponds to the equivalent of randomized con-

trolled trial (a perfect intervention) on one variable at a time. But this bound does not

hold whenN > 4 and experiments are performed on more than one variable at a time.

In fact, surprisingly, this bound reduces, to⌊log2(N) + 1⌋ when multiple simultaneous

experiments are allowed [EGS05]. Further, parametric interventions that do not alter the

structure of the model are more powerful under correlational tests of causal pathways,
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and the number of experiments required reduces to one, wherethe parameters of all the

variables are simultaneously changed.

Eberhardt [Ebe08] provides results of a simulation to support a conjecture that the

worst case number of experiments necessary and sufficient todiscover a causal graph

uniquely given its observational Markov equivalence classas a function of the largest

clique in the Markov equivalence class. An interesting extension to this approach ad-

dresses the problem with a game theoretic focus [Ebe10]. Theproblem of causal discovery

is framed as a game of the Scientist against Nature, in which Nature attempts to hide its

secrets for as long as possible, and the Scientist makes her best effort at discovery while

minimizing the cost involved in running experiments. A key limitation of these results is

that they rely on the assumption that it is possible to perform these experiments in the first

place. Additionally, some experiments may be more difficultthan others, or be very ex-

pensive, and some may be unethical or impractical to perform. Nevertheless, they provide

valuable guidance to a causal learner in making choices while determining an order among

the possible set of interventions.

In chapter 3, based on the background of chapters 1 and 2, I present the primary hy-

potheses of this dissertation and how they will be supported.

40



Chapter 3

Three Improvements to Algorithms for

Causal Learning

“Frustra fit per plura quod potest fieri per pauciora.”

- Franciscan friar William of Ockham,14th Century

“Simplicity is the ultimate sophistication.”

- Leonardo Da Vinci ,15th Century

“We are to admit no more causes of natural things than such as are both true

and sufficient to explain their appearances”

-Sir Isaac Newton,17th Century

“Make everything as simple as possible, but not simpler.”

- Albert Einstein,20th Century

“When you have eliminated the impossible, whatever remains, however

improbable, must be the truth.”

- Sherlock Holmes (Sir Arthur Conan Doyle) in The Sign of the Four [Doy90].

Chapter 1 introduced the general idea of learning causal structure and its applicability

across several types of domains. In Chapter 2, presented therelevant background related

41



Chapter 3. Three Improvements to Algorithms for Causal Learning

to this problem and discussed formal frameworks for model inference, including causal

Bayesian networks, and presented related definitions. I also introduced the IC algorithm

for inferring partial causal structure from observationaldata and presented some types of

interventions and their utility in augmenting causal structure.

In this chapter, I present the three hypotheses that make up my dissertation research.

Hypothesis 1 (Robust Constraint-Based Structure Search). Constraint-based structure

search algorithms that operate on finite samples are vulnerable to faulty statistical tests

that are used to infer conditional independence information. I propose a new algorithm

based on a tunable parameter that provides an alternative between greedy and conserva-

tive methods of choosing independence constraints that is robust to faulty tests.

In section 3.1 of this chapter I first introduce the PC algorithm, a greedy and com-

putationally tractable adaptation of the IC algorithm. To put in perspective the practical

means of determining conditional Independence statements(CIs), in section 3.2 I present a

mutual information based empirical technique for determining CIs from multinomial data

samples. I then discuss a conservative version of the PC algorithm, CPCor, that relaxes

the faithfulnessassumption and accounts for certain types of problems in a set of deter-

mined CISs statements. In section 3.4, I present thesoft-CPC algorithm (sCPCor), a less

conservative approach that trades off betweenCPCor andPCor. I present arguments that

justify this trade-off in lieu of faulty CISs from sampled data. In section 4.2, I present the

results ofsCPCor, comparing it toPCor andCPCor, for several networks across sample

and network sizes.

I then move on to algorithms that exploit experimental distributions. I handle two types

of experimental distributions, i.e., distributions due toperfect multi-variable interventions

and distributions due to soft interventions on single variables.

Hypothesis 2 (Parent Detection). Perfect interventions on a set of variables sever the

causal connections from the parents of the intervened variables to the intervened set,
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which exhibits a certain specific type of difference betweenthe pre-interventional and

post-interventional distributions. I present an algorithm that exploits this difference to

determine the most likely parental connections of the interventional variables.

In section 3.5, I present theparentalSearchalgorithm that exploits the difference be-

tween pre- and post-interventional distributions of perfect interventions on multiple vari-

ables to execute a search upstream in the causal order. This search is tractable as it is

constrained among the undirected neighbors of a causal graph whose adjacency informa-

tion is already determined through constraint based methods. In section 4.3, I show the

performance of this algorithm across varying sample sizes,network complexity and the

choice of interventional sets.

In section 3.5.1, I then present theapproximateKLDtechnique that I developed that

is required by theparentalSearch. approximateKLDis an algorithm that estimates the

KL-divergence of two high-dimensional distributions entirely from data samples. While it

suffers from not being accurate to the true KLD, I show empirically that it performs well

as a relative metric (this suitsparentalSearch), which is sometimes what algorithms need.

Further it has the advantage of being computationally tractable. Section 4.4 presents the

corresponding results.

Hypothesis 3(A interactive algorithm to prioritize interventions). While soft interventions

do not sever any causal connections in the causal model but instead introduce a change in

the governing mechanisms. Pre- and post-interventional distributions of soft interventions

can be thought of as a randomized controlled trial and they mirror the philosophy of

causality through manipulability. Combining from constraint-based methods, I present a

novel and fast incremental algorithm that can also be deployed interactively that learn

orientations to the PDAGs from parametric interventions byminimizing the number of

interventions required.
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In section 3.6 I present an interactive algorithm,interactiveCausalDiscoverythat starts

with the pre-interventional distribution, and suggests toa human experimenter, a priori-

tized set of interventions that she may choose to perform. Upon accepting this choice, and

the corresponding data, the algorithm incorporates this information into the causal model

and returns an updated set of choices to the human. This proceeds until all orientations are

determined. In cases where it is possible to automate the experimentation and data collec-

tion process, the algorithm would simply choose the highestpriority experiment at each

iteration and proceed. I also discuss the conjecture on the worst case minimum number of

experiments required and its connection to graphs of different density.

The algorithm supporting hypotheses 1 and 2 complement hypothesis 3. When the in-

terventions are parametric,interactiveCausalDiscoverydeploys a constraint based method

(like sCPCor) by augmenting the causal model with intervention nodes to detect orien-

tations. When given hard interventionsparentalSearchexecutes an “upstream search” in

the causal order. Note that other methods like descendant detection with marginal distribu-

tions can also be used, with theinteractiveCausalDiscoveryalgorithm, but I do not discuss

the details in this dissertation.

Section 4.5 contains the results of applying this techniqueto causal graphs of varying

size and complexity. Finally, I discuss how a combination ofthe above algorithms can

be used in an incremental fashion in practical causal learning, to conclude chapter 3. The

results of these combined experiments concludes 4.

3.1 The PC Algorithm

The PC algorithm, named after its creators P. Spirtes and C. Glymour [SGS01], improves

on the basic idea of the IC algorithm by exploiting the sparseness of the causal graph. The

IC algorithm has a subset search routine where, for a pair of vertices{a, b}, a separating set

Sa,b ⊆ V \{a, b} is to be found. The powerset of the remaining vertices,2V \{a,b}, specifies
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the exponential search space. An edge(a, b) exists in the causal graph only if there exists

no conditional independence between the two vertices conditioned on any subset of the

remaining vertices. For graphs that have a degree much smaller than than|V |, we can

get significant reduction in the time complexity by restricting the search forSab only to

nodes that are still adjacent toa and b. Indeed, the PC algorithm enjoys, polynomial

complexity in graphs of finite degree, as it systematically explores the search space in sets

of increasing cardinality, removing the edge(a, b) as soon as a separating set is found,

automatically preferring smaller separation sets to larger ones, following the principle of

parsimony.

Following [KB07], we discuss the PC algorithm as proceedingin two stages.

1. PCsk : The first stage of the algorithm that determines the undirected graph (skele-

ton) among the variables.

2. PCor : The second stage which uses a set of rules to orient as many undirected edges

as possible.

For the sake of clarity in describing the algorithm, the firststage assumes perfect

knowledge about the set of all conditional independence relationships among the vari-

able set,V . In other words, we assume that we are given a setSCIS that can be queried for

membership of statements of the type:(A ⊥⊥ B|C), whereA andB are variables andC

is such thatC ⊆ V A, B. However, in the next subsection we will relax this assumption

and describe an empirical method to determine these relationships.
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Algorithm PCsk

Input: V, SCIS

(∗ Vertex set and set of conditional independence statements∗)

Output: G(V, E), S

(∗ An undirected graph, set of separating sets∗)

1. G(V, E) whereE = {〈vi, vj〉|∀vi, vj ∈ V } (∗ Initialize G as the complete undirected

graph onV ∗)

2. setSize← −1

3. repeat

4. setSize← setSize + 1

5. repeat

6. Select a (new) ordered pair of variables (vi, vj) that are adjacent inG such

that|adj(G, vi) \ {vj}| ≥ setSize

7. repeat

8. Choose (new)K ⊆ adj(G, vi) \ {vj} with |K| = setSize

9. if (vi ⊥⊥ vj |K)

10. then E ← E \ 〈vi, vj〉 (∗ Delete edge〈vi, vj〉 ∗)

11. S(i, j)← K; S(j, i)← K (∗ Store the separating set∗)

12. until edge〈vi, vj〉 is deleted or allK ⊆ adj(G, vi)\{vj}with |K| = setSize

have been chosen

13. until all ordered pairs of adjacent variablesvi and vj such that|adj(G, vi) \

{vj}| ≥ l andK ⊆ adj(G, vi) \ {vj} with |K| = setSize have been tested

for conditional independence

14. until for each ordered pair of adjacent nodesvi, vj , |adj(G, vi) \ {vj}| < setSize

Spirtes et al. provide the proof that this algorithm produces the correct skeleton in

[SGS00]. The maximum value reached by the variablesetSize is determined by the

maximum degree of the underlying graph, proved in [KB07]. The next stage in the PC
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algorithm is to orient the edges.

Algorithm PCor

Input: G(V, E), S

(∗ An undirected graph, set of separating sets∗)

Output: G̃(V, Ẽ, A)

(∗ An partially oriented graph that represents the Markov equivalence class∗)

1. G̃← G; A← ∅; Ẽ ← E

2. for all 〈vi, vj〉 6∈ E such that∃vk, 〈vi, vk〉 ∈ E ∧ 〈vj, vk〉 ∈ E (∗ Rule 0∗)

3. if vk 6∈ S(i, j)

4. then Ẽ ← Ẽ \ {〈vi, vk〉, 〈vj, vk〉}

5. A← A∪{〈−−→vi, vk〉, 〈
−−−→vj, vk〉} (∗Orientvi—vk—vj asvi → vk ← vj ∗)

6. In the resulting CPDAG, repeatedly apply the following rules until no more rule can

be applied.

7. R1: Orientvi—vj into vi → vj whenever there is an arcvk → vi such thatvk andvj

are nonadjacent.

8. R2: Orientvi—vj into vi → vj whenever there is a chainvi → vk → vj .

9. R3: Orientvi—vj into vi → vj whenever there are two chainsvi—vk → vj and

vi—vl → vj such thatvk andvl are nonadjacent.

10. R4: Orientvi—vj asvi → vj whenever there are two chainsvi—vk → vl andvk →

vl → vj such thatvk andvj are nonadjacent andvi andvl are adjacent.

As reported by Pearl [Pea00], the repeated application of a set of rules are sufficient to

orientall arrows that are common to the equivalence class of the causalmodel [Mee95].

Rules 1 through 4 are also termed as the Meek orientation rules. If PCsk outputs the

correct graph and the correct separation sets,PCor is simply a deterministic application of

thed-separation criterion.

Rarely in practice is perfect conditional independence information available and one
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has to infer these relationships from data samples. Hence, we are forced to relax the

assumption that perfect conditional independence information is available to the algorithm

PCsk. AlthoughPCor does not need conditional independence information directly, it

indirectly uses this information reflected both in the structure of the skeleton and in the

content of the separation setsS. In the next section we discuss a method for determining

conditional independence from data.

3.2 Determining Conditional Independence

In this thesis I assume that all the variables are multinomial random variables and I focus

on determining conditional independence based on this assumption. Mutual Information

of two random variables is a quantity that measures the mutual dependence of the two

variables. Formally mutual information can be defined as follows:

I(X, Y ) =
∑

y∈Y

∑

x∈X

P (x, y) log

(

P (x, y)

P (x)P (y)

)

(3.1)

Mutual information is usually measured in bits, and thus thelogarithmic term is of

base 2. Mutual information quantifies the dependence between the joint distribution ofX

andY , P (X, Y ) and what the joint distribution would be ifX andY were independent.

I(X, Y ) = 0 if and only if X andY are independent random variables; the logarithm term

vanishes if for everyx ∈ X andy ∈ Y , p(x, y) = p(x)p(y).

Intuitively, mutual information measures the informationthat is shared byX andY . It

is a measure of how much the knowledge of one of these variables reduces our uncertainty

about the other. For example, ifX andY are independent, then knowledge aboutX does

not diminish the uncertainty we have aboutY by any amount and vice versa; therefore

we say that their mutual information is zero. On the other hand, if X andY are identical
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then knowledge aboutX gives us identical knowledge aboutY , and vice versa. As a

result, in the case of identity the mutual information is thesame as the uncertainty in

Y (or X) alone, which can also be termed as the entropy ofY (or X), where entropy

H(X) = −
∑

x∈X

P (x)log(P (x)).

I(X, Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) + H(Y )−H(X, Y )

= H(X, Y ) −H(X|Y )−H(Y |X)

(3.2)

However, we are interested in a quantity that measures independence among two vari-

ables, given information about another set of variables. The analogous quantity that does

this is calledconditional mutual information, sometimes referred to asconditional cross

entropy. In equation 3.2 we replace the entropy terms by terms conditioned on a third vari-

able setZ: I(X, Y |Z) = H(X|Z)−H(X|Y, Z). More formally, we can write conditional

mutual information as:

I(X, Y |Z) =
∑

z∈Z

P (z)
∑

y∈Y

∑

x∈X

P (x, y|z) log

(

P (x, y|z)

P (x|z)P (y|z)

)

(3.3)

This value iszeroonly when there is perfect conditional independence amongX and

Y , givenZ. To test for conditional independence from data sampled from a distribution,

I first compute the maximum likelihood (ML) estimates of the probability terms in the

above expression. I assume complete datasets, that is, every data item has valid values

for each variable. IfX = {X1, . . . , Xn} is the set of variables, a complete dataset can be

written asD = {D1, . . .Dm}. The maximum likelihood estimate for the probability of a

variable is then
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P (X = xj)MLE =
Nj

m
(3.4)

whereNx is the number of data items in whichX took the valuexj . ML estimates for

joint distributions among more than one variable can be calculated similarly by treating

the variables as one composite variable where their set of possible values is from their

Cartesian product. For example, for binary variablesX andY the set of possible values

are{00, 01, 10, 11}. For small sample set sizes (smallm), the ML estimate can suffer

from zero counts, i.e. some configurations of the variables may never appear in the data

set. Typical methods used to correct for this are by using a Laplace correction or by setting

a Dirichlet prior. The Laplace correction assumes that eachof the data configurations has

appeared at least once in the data set and starts the count from 1 instead of 0. This gives

us a different estimate (PLC) for the probability (equation 3.5).

P (X = xj)LC =
Nj + 1

m + r
(3.5)

wherer is the arity ofX. Note thatm =

r
∑

j=1

Nj . This has however been criticized as

biasing the estimate “too much” towards the uniform distribution. A refinement that is

commonly used among Bayesian practitioners is to use a Dirichlet prior with parameters

α = {α1, . . . , αr}. The parameters of the Dirichlet prior (or simply Dirichletparameters)

can be thought of as pseudo-counts that represent our prior belief about the distribution,

as can been seen in equation 3.6.

P (X = xj)Dir =
Nj + αj

m + α0
, whereα0 =

r
∑

j=1

αj (3.6)

Note that as sample sizem increases the effect of the priors vanish and they all con-

verge on the ML estimate. As suggested by Heckerman [Hec96, Hec99] I use a uniform

conjugate Dirichlet prior withαj = 1/r.
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The test statistic used for independence isG2, which is 2mI(X, Y |Z) wherem is

the sample size (equation 3.7). Under assumptions of independence, it is known thatG2

follows aχ2 distribution (equation 3.7) withγ degrees of freedom (equation 3.8) [Fis29].

G2
test = χ2

test = 2mI(X, Y |Z) (3.7)

γ = (γx − 1)(γy − 1)
∏

a∈Z

γa (3.8)

Theχ2 distribution has the following probability distribution function forγ degrees of

freedom.

χ2
γ =

1

2γ/2Γ(γ/2)
xγ/2−1e−x/2 , x ∈ [0,∞) (3.9)

TheΓ function is an extension of the factorial function to real and complex numbers,

and has the propertyΓ(n) = nΓ(n− 1) for all real and complex values with non-negative

real parts. It has closed form values for half-integers, andsinceγ is always an integer in

our problem, it is computable, and

Γ(x) =

∫ ∞

0

tx−1e−tdt (3.10)

The probabilityQ that aχ2 value calculated for an experiment withγ degrees of free-

dom is due to chance is

Qχ2,γ =
1

2γ/2Γ(γ/2)

∫ ∞

χ2

xγ/2−1e−x/2dx (3.11)
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I now use the ubiquitously used Pearson’s chi-squared test to determine whether anull

hypothesisstating that the distribution of certain events observed ina sample is consistent

with a particular theoretical distribution [Pea04]. When applied to a test for independence,

the null hypothesis is that the observations, consisting ofthe values of two outcomes, are

statistically independent. For the test of independence, theχ2 probability can be calculated

by using a look-up table or by a fast approximate numeric integration technique since there

is no closed form for equation 3.11. If theχ2 probability is less than or equal to the chosen

value of parameterα, known as thesignificance value, (or theX2 statistic is larger than

the critical point), we reject the null hypothesis of independence. In other words, when

the test of independence succeeds, we can declare the conditional independence statement

(X ⊥⊥ Y |Z) true. It is common practice among statisticians to chooseα to be0.05.

3.3 Problems with the PC algorithm

Recall that the PC algorithm assumesfaithfulness, i.e. the independence relationships

among the variables are exactly those represented in the causal model and the d-separation

criterion [Pea88]. When we have to rely on finite sample data sets and a statistical methods

to infer conditional independence, we stand the risk of violating the faithfulness assump-

tion. An example is shown in Figure 2.5. A similar example shown by [RZS06], is as

follows. Consider the causal graphA→ B → C, where(A ⊥⊥ B|C) as well as(A ⊥⊥ C).

We can think of the second independence statement becoming true becauseB cancelsA’s

direct effect onC. The PC algorithm, would find that(A ⊥⊥ C), remove the edgeA − C

and record∅ as the separating setSAC . In the orientation stage, this would result in the

following incorrect resultA→ B ← C asB 6∈ SAC . Note however, that due to the special

nature of the unfaithfulness of this example, the algorithmfinds the right skeleton anyway.

This motivates the division of the faithfulness assumptioninto two separate implications,

Adjacency-FaithfulnessandOrientation-Faithfulness.
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Definition 3.3.1(Adjacency Faithfulness). Given a set of variablesV whose causal struc-

ture can be represented by a DAGG, if two variablesX, Y are adjacent inG, then they

are dependent conditional on any subset ofV \ {X, Y }.

This definition emphasizes that two variables are non-adjacent inG if and only if no

separating set is found. The second part, deals withunshielded triples, i.e. a set of three

variables that has exactly one non-adjacency.

Definition 3.3.2(Orientation Faithfulness). Given a set of variablesV whose causal struc-

ture can be represented by a DAGG, let 〈X, Y, Z〉 be any unshielded triple in G.

1. If X → Y ← Z thenX andZ are dependent given any subset ofV \ {X, Y } that

containsY .

2. OtherwiseX and Z are dependent conditional on any subset ofV \ {X, Y } that

does not containY .

Orientation faithfulness specifies the conditions for the presence or absence of un-

shieldedv-structures (also called unshielded colliders). For the unshielded triple〈X, Y, Z〉

to exist, it only requires that a conditioning set is found, but for the orientations to be di-

rected towardsY we require information thatY was not part of that set, or any other set

that rendersX independent ofY . In practice, we find that statistical tests of independence

are more robust with respect to adjacency faithfulness thanwith respect to orientation

faithfulness, as is expected. Orientation faithfulness imposes a stronger and hence more

statistically error prone constraint than adjacency faithfulness.

The Conservative PC (CPC) algorithm by Ramsey et. al. [RZS06] relaxes the faithful-

ness assumption by assuming only adjacency faithfulness but attempts to verify orientation

faithfulness to the extent possible. Previously, the SGS algorithm by Spirtes et.al. [SGS00]

checks for the unshielded collider and non-collider condition, but barely fails short of cor-

rectness as it does not check forunfaithfulunshielded triples that fail both these condition.
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Additionally, the SGS algorithm is terribly inefficient, best case exponential, as it checks

for dependence betweenX andZ conditional on every subset ofV \{X, Z}. CPCor does

better, as it uses the same intuitions as the PC algorithm by checking only for subsets that

include potential parents ofX andZ. The CPC algorithm replaces collider orienting lines

3, 4 and 5 inPCor, with checks that mimic the orientation faithfulness criterion.

Algorithm CPCor

Input: An undirected graphG

Output: A partially oriented DAG with unfaithful triples marked

1. for all subsets of the potential parents ofvj andvj

2. if vk is NOT in any subset conditional on whichvi andvj are independent

3. then Orient〈vi, vk, vj〉 as an unshielded collider

4. if vk is in all subsets conditional on whichvi andvj are independent

5. then Leave〈vi, vk, vj〉 as an unshielded triple

6. Otherwise mark the triple〈vi, vk, vj〉 as unfaithful

The output of the CPC algorithm is an extended pattern (e-pattern) that contains undi-

rected and directed edges, as well as unshielded triples marked unfaithful. Note that e-

patterns are no longer in the Markov equivalence class of DAGs, but they represent a

larger class that includes the set of graphs that unfaithfuldistributions can entail. Proof of

correctness under the adjacency-faithfulness assumptionis provided in [RZS06]. The rest

of the algorithm proceeds as the PC algorithm does by applying the orientation rules (R1

through R4) inPCor, avoiding the unfaithful triples. If further orientation rules result in

resolving some of the orientation triples, the unfaithfulness mark is removed.
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3.4 Thesoft-CPC algorithm

In practice, the PC algorithm has a tendency to label unshielded triples as colliders too

often, due to a single faulty CI test that appeared first in theorder of CI tests conducted.

TheCPCor algorithm, “conservative” as its name suggests, orients colliders only when

the common neighbor is not present in all of the separating sets. Both approaches are cor-

rect, given their assumptions. While PC assumes perfect CISs with respect to faithfulness,

CPCor assumes perfect CISs with respect to adjacency faithfulness. It has been noted

that additional adjacency checks for unshielded triples could help resolve some of these

problems. Additionally, they also refrain from incorporating any sort of tolerance for un-

faithful triples detected due to faulty CISs. TheCPCor algorithm performs two extremely

constrained tests, namely the membership or non-membership of a common neighbor in

all separating sets. Suppose that there are a large number ofseparation sets for a non-

adjacent pair, and one of the common neighbor is a member in only one of these sets. In

CI tests on finite samples, it is possible that the single testthat makes the condition for

unshielded colliders fail is faulty, rather than that this be a real example of unfaithfulness.

The alternate condition is also symptomatic: if it is absentonly in one separation set.

As pointed out elsewhere, we reiterate here that unfaithfulness is a highly unlikely

occurrence in many causal models [Pea00, SGS01]. It is parameter dependent and requires

the precise tuning of several parameters to manifest itself. Arguments that justify their

occurrence rely on the presence of some meta-mechanisms exogenous to the causal model

that regulate and tune these parameters. Some examples of unfaithfulness inducing meta

mechanisms could be evolution, other kinds of ecological balance mechanisms, market

self regulatory phenomenon in economics, etc. Discountingfor these sort of mechanisms,

it is far more likely that thePCsk algorithm errs in the adjacency detection stage, which

will lead to an incorrect inference about unfaithfulness intriples adjacent to that error.

Unfaithful markings in e-patterns are a cumbersome weight to carry around in causal
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models. They represent a larger family of DAGs than the CPDAGs produced by the PC

algorithm and it is worth marking unfaithfulness only when we are confident about the

detected unfaithfulness.

Additionally, performance of the CPC algorithm is harder toevaluate. Simple metrics

based on edge comparisons are not sufficient as one needs prior knowledge about the

unfaithful triples in the true causal graph. Even if this is available for validation tests, it

requires meticulous parameter tuning when we generate testgraphs. Even when we have

access to the true distributions, verifying the unfaithfulness of an unshielded triple requires

a series of Bayesian inference queries, which is NP-hard [Coo90, Pea00, WB05].

In practical applications, the prior knowledge about unfaithful triples is almost never

available, needed for validating the results ofCPCor. Further, the additional information

about an unfaithful unshielded triple is that it could potentially be a collider, whereas a

faithful triple cannot. In the context of using future experimental data, this difference is

not significant, as experimental data almost always supplies us with superior orientation

information, as we shall see in sections 3.5 and 3.6. However, CPCor reduces the number

wrongly marked unshielded colliders and this is a valuable improvement that we would

like to incorporate. I propose a simple modification to the PCalgorithm which we call the

soft-CPC algorithm (sCPC) that reduces the number of unfaithfultriples by a quantifica-

tion of unfaithfulness.

My contribution is to introduce a tunable parameter calledunfaithfulness tolerance(β)

that supports the determination of the level of conservativeness that is applied to constraint

based search algorithms. ThesCPCor algorithm replaces theCPCor algorithm with the

following lines.
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Algorithm sCPCor

Input: An undirected graphG, tolerance parameterβ

Output: A partially oriented DAG with unfaithful triples marked

1. for all subsets of the potential parents ofvj andvj

2. if vk is NOT in at least aβ fraction of subsets conditional on whichvi andvj

are independent

3. then Orient〈vi, vk, vj〉 as an unshielded collider

4. if vk is in at least aβ fraction of all subsets conditional on whichvi andvj are

independent

5. then Leave〈vi, vk, vj〉 as an unshielded triple

6. Otherwise mark the triple〈vi, vk, vj〉 as unfaithful

Additionally, we also propose thePCminSepSet algorithm, a simple but less greedy

modification to the PC algorithm. The difference betweenPCminSepSet andPC is that

when testing for conditional independence among sets of sizek, the PC algorithm chooses

the first separating set that it finds, whilePCminSepSet continues CI testing for all sets of

sizek and stores all the separating sets for each pair of non adjacent variables in increasing

order of conditional mutual information. Hence,PCminSepSet performs a larger number

of CI tests (on average) than PC but the same in the worst case.PCminSepSet simply uses

these stored separating sets for the orientation state and no new CI tests are evaluated

unlike CPC and sCPC(β) versions.

We will discuss the comparative performance of all these algorithms in section 4.2.
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3.5 Parental Search Algorithm

The PC family of constraint based algorithms represent the limit of what can be learned

from static distributions or observational data alone. In this section we explore an al-

gorithm that combines information from both static and an interventional distributions.

We examine perfect interventions on multiple variables, that setvariables to fixed values.

We derive inspiration for these assumptions from related research that exploits notion of

contexts in graphical models. Context partitioned models have been used to reduce the

complexity of representation and inference by including only the most relevant stochastic

variables, and pruning away the contextual variables[SLS07]. In this way, we are able to

store more concise contextual models in a context model library, a more descriptive form

or representing a dynamic stochastic system [SRLS08].

An operational context is a period of stability in the dynamic behavior of the system

where a subset of the observed variables remain at fixed values. The contextual variables

define the current context by remaining instantiated at a single point throughout the dura-

tion of the context while the stochastic variables maintaina stable joint distribution during

that context [SLS07, SRLS08].

Let a setC be the set ofcontextualvariables andV \C, the set ofstochasticvariables.

The assignmentC = c, is a context and represents a hard intervention. Note that the setC

is not unique to a context but can be identical for several contexts (2|C| of them).

Contexts are InterventionsThe learning agent may not always have interventional con-

trol over the quantities it measures, nor is it realistic that it is given this information explic-

itly at all times. It is desirable that it has the ability to infer that these interventions have

occurred entirely from observations. There has been some work in the Bayesian learning

community on detecting the targets of interventions [EM07], but an analogous method is

not available for constraint-based methods in the general case. Although this is a very

intriguing related area [KBDG04, LJY07] methods to detect interventions in real-time are
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not in the scope of this dissertation. However, contexts, orhard interventions, are easy to

detect. In this dissertation, any variable that takes a single value throughout the data set is

determined to be a contextual variable.

A Context Transition occurs in a system when the interventional state is changed from

C = c into any of the other states of the systemCx = cx. In lieu of these definitions, the

null context represents a stable distribution obtained under nointerventions.

Recall that joint distributionP , represented by a causal Bayesian network factorizes

as the product of the conditional distributions of its variables given its parents (Equation

2.4). LetC ⊆ X be the set of variables on which the intervention is performed (typi-

cally |C| << |X|). Let ĉ′j represent the values taken by variablexj ∈ C. ThenPĉ is

the post-interventional joint distribution for a particular context which we can also rep-

resent asP (X|do(C = c)) or P (xi, . . . , xn|ĉ
′
i). Generalizing Equation 2.8 to multiple

interventional variables we have the following:

P (xi, . . . , xn|ĉ
′
i) =











∏

xj /∈C

P (xj |paj) if xj = ĉ′i, ∀xi ∈ C

0 if xi 6= ĉ′i

(3.12)

From equation 3.12 we get the relationship between the pre-interventional and multi-

variable post-interventional distributions as follows.

Pĉ =
P

∏

xj∈Ci

P (xj|paj)
wheneverxj = ĉ′i, ∀xi ∈ C (3.13)

Note that we have the right hand side of equation 3.13 entirely in factors of the pre-

interventional distributionP . Conditional probability factors corresponding to the context

setC increases the density onP in specific locations. Suppose we have sufficient samples
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to estimateP and its relevant factors, the right hand side of equation 3.13 can be calcu-

lated purely from the pre-interventional distribution given that we knowpaj . We denote an

estimate obtained such asP ′
ĉ(paj). Pĉ can also be estimated from the post-interventional

distribution, and this should matchP ′
ĉ(paj), given that we know the unknown parent set

paj for the contextual variablesxj ∈ C. We turn this search problem, of finding a setˆpaj

that satisfies the above relationship, into a minimization problem.

p̂ai = argmin
paj⊆2X\{xi}

D(Pĉ, P
′
ĉ(paj))|xj ∈ C (3.14)

whereD() is a suitable measure of divergence between two distributions

The search forpaj in the powerset ofX \ {xj} looks worrisome, but we can reduce

the complexity of this search by using several methods. First, we restrict the search to the

Markov blanket (set of neighbors of a node in the skeleton) for each variable or restrict

the cardinality of the parent set to a maximum for graphs of known finite degree. Even

better, we can useP as input to the PC algorithm described earlier in this chapter, and use

the PDAG to constrain the potential set of parents. Potential parent sets can be restricted

to those that contain nodes that are already determined as parents by the PC algorithm,

unioned with each subset of the set of adjacent nodes that areyet unoriented.

When such a setpai is found, we can orient each edge adjacent to allxj ∈ C and then

update the PDAG.
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Algorithm parentalSearch(P, Pĉ)

Input: P, Pĉ

(∗ Pre and post Interventional distributions∗)

Output: paĵ |xj ∈ Ci, H
′(P )

(∗ parent set for each contextual variable, augmented PDAG∗)

1. H(P )← PC(P )

(∗ A partially oriented DAG compatible withP ∗)

2. for xj ∈ C

3. Computepai,H , the set of parents ofxj in H(P )

4. Computenbi,H , the set of undirected neighborsxj in H(P )

for ni ∈ 2nbj,H

5. paj ← paj,H ∪ ni

6. Compute difference metricdpaj

7. paî ← argmin
pai

dpai

8. UpdateH(P ) with orientations〈paĵ, xj〉 and〈xj , nbj \ paĵ〉 for eachxj ∈ C.

9. In the resulting PDAG apply rules R1 through R4 as specifiedin PCor, in lines 7,8,9

& 10.

Note that the number of variables chosen for intervention for each context affects the

size of the search space. However, with the constraints specified by H(P ), we expect

that this number is not too large when considering contexts that set two or three variables

at a time. Importantly, note that contexts of size 2 can be especially useful, considering

the unfaithfulness problem discussed in section 3.3. UsingparentalSearch, unfaithful un-

shielded triples can be oriented by measuring the distribution entailed by subjecting the

two non-adjacent nodes in the triple to an intervention. Suppose the maximum degree

for all variables computed fromH(P ) is d, then the total size of the search space is2dk

when contexts are set withk variables at a time. Moreover, asH(P ) is updated at each

context transition, the number of undirected neighbors reduces by at least one for each of
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the parents of the contextual variables, potentially halving the search spaces involved in

future contexts. Therefore, we can expect the algorithm to perform reasonably in practical

domains. I present the results of this algorithm in section 4.3.

Note that we did not specify the divergence metricdpai
that is to be used. Commonly,

the Kullback-Leibler (KL) divergence [KL51] is a popular measure that is used to mea-

sure the information loss between two distributions. Giventhat the dimensionality of the

distributions can be arbitrarily high, KL-divergence cannot be measured directly. In the

next section, I describe an algorithm that computes the approximate KL-Divergence from

data sampled from two distributions.

3.5.1 Approximate Kullback-Leibler Divergence

The Kullback-Leibler divergence is a non-symmetric measure of the difference between

two probability distributionsP andQ. It measures the expected number of bits required

to code samples fromP using a code based onQ, rather than using a code based on

P . Typically, P represents the “true” distribution and the KL-divergence measures how

different the “approximation”Q, is fromP . If P andQ are defined over discrete random

variables, then the KL-divergence is defined as :

DKL(P ||Q) =
∑

x

P (x) log
P (x)

Q(x)
(3.15)

We consider the problem of computing the KL-divergence of two distributions when

we are given sparse datasets sampled from each of the distributions. Intuition suggests

that we simply compute the ML (maximum likelihood) estimates of each distribution and

compute the summation in equation 3.15. However, the distributions can be of arbitrarily

high dimension,N . A distribution that is represented by anN node Bayesian network with

binary nodes has2N possible configurations. Such a large distribution cannot be stored,

which is precisely one of the utilities of using a Bayesian network. We have to assume
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that we are unaware of the Bayesian network structure, as we intend to use this measure

in the process of causal discovery. Alternatively, we can assume a Bayesian network, or

construct one that is compatible with the Markov equivalentclass of networks determined

by the IC/PC algorithm. However, the summation in 3.15 is still cripplingly slow; the loop

is 2N long and the time complexity is exponential.

I propose a simple alternative in the following algorithmapproximateKLD, that enjoys

a polynomial time complexity with respect to the size of the datasetm and the dimension-

ality N . Therefore, each dataset can be considered a set (or vector)of m data samples

where each data sample is a vector of lengthN . Note that each data sample can also be

thought of as an index into its respective distribution.
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Algorithm approximateKLD(D1, D2)

Input: D1, D2

(∗ Two i.i.d. data sets from two distributions of the same dimensionality.∗)

Output: KLDapp

(∗ Approximate KL-divergence betweenD1 andD2 ∗)

1. D′
1 ← sortlex(D1)

2. D′
2 ← sortlex(D2) (∗ Sort both the data sets in lexicographical order∗)

3. m1 ← length(D′
1); m2 ← length(D′

2);

4. currentIndex ← min(D′
1(1), D′

2(1)) (∗ D(i) returns theith data sample in dataset

D ∗)

5. i← 1, j ← 1

6. KLDapp ← 0

7. N1 = 0, Nq = 0

8. while (i ≤ m1 ∨ j ≤ m2)

9. do

10. if (currentIndex = D1(i) ∨ currentIndex = D2(i))

11. then if (D1(i) = D2(i))

12. then N1 ← N1 + 1, i← i + 1, N2 ← N2 + 1, j ← j + 1

13. else if(D1(i) < D2(i))

14. then N1 ← N1 + 1, i← i + 1

15. else N2 ← N2 + 1, j ← j + 1

16. else

KLDapp ← KLDapp + N1+αk

m1+α0

log (N1+αk)(m2+α0)
(N2+αk)(m1+α0)

17.

18. N1 ← 0, N2 ← 0

19. currentIndex← min(D′
1(1), D′

2(1))

The two lexicographical sorts in lines 1 and 2, have complexity O(mN log m) each (as-
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suming equally long datasets). TheN term is due to the fact that the comparison operator

has a worst case ofO(N), when comparing two data vectors of lengthN . The rest of the

algorithm can be likened to themergeoperation of merge sort, where we co-iterate through

two sorted lists, but instead of merging the two lists, we aggregate the component of the

KLD in a sum. Co-iteration has a complexityO(m1 + m2) or rather,O(m) for datasets of

comparable sizes and is dominated by the two sorts. Therefore, this algorithm has a time

complexity ofO(Nm log m) in the worst case, which is a tractable quantity.Thus, we can

compute an approximate measure of distance between two distributions given only their

datasets.

Note that in line 16 of the algorithm, I use a Bayesian estimate with a Dirichlet prior

with the uniform parametersαk for all configurations. We expect that for very small

sample sizes, theKLDapp will deviate from the true KL-divergence but in the large sample

limit (m >> 2N ) the summation converges on the true KL-divergence. We onlyintend to

use this measure to measure the relative difference of two distributions with respect to a

third distribution, and we find that this method works well inpractice. Some exemplary

results can be found in section 4.4.

3.6 Interactive Causal Discovery

In the previous section I presented an algorithm to learn causal relationships from hard in-

terventions on multiple variables by finding the most likelyset of parents of the intervened

variables. In this section I describe an interactive algorithm that can be used to discover

causal relationships from a series observational and interventional (hard or soft) datasets.

Soft interventions are also termed as “parametric interventions” [ES06] or “mechanism

changes” [TP01a]. In section 2.5, Equation 2.9 describes the relationship between the

pre- and post-interventional joint distributions with respect to a parametric intervention

performed on a single focal variablexj ∈ X. We noted that the potential parents of the
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focal variable could change frompai to pa∗
i , thereby implying a potential change in the

causal graph. In this section we assume that the causal graphis static and does not change

with respect to parametric interventions following [ES06]. If P andP ∗ are the pre- and

post-interventional distributions respectively, and a parametric change is performed on a

single focal variablexi, we have the following.

P ∗(x1, . . . , xn) = P (x1, . . . , xn)
P ∗(xi|pai)

P (xi|pai)
(3.16)

In 2001, Tian and Pearl show that by carrying out a series of single variable parametric

interventions [TP01a],N of them, and by testing only for marginal changes, they can

detect the hierarchy of descendants in the causal graph. Consequently, if this hierarchy

can be used as additional constraints in the PC algorithm, one can recover the complete

causal graph. In the empirical part of their study, Tian and Pearl collect a large number

of samples for each distribution representing the parametric interventions as a controlled

perturbation of the original parameters.

Later in 2006, Eberhardt [ES06] provided the following theoretical result that proved

to be a significant advancement to the idea. The idea involvesaugmenting the causal

graph with interventional nodes and then deploying the basic idea of the PC algorithm

to establish the orientations of the nodes upon which interventions have been performed.

Unlike ordinary nodes, interventional nodes can have only outward arcs, and this helps

us establish not only the unshielded colliders associated with the interventional nodes,

but also the orientation of the unshielded triples. This leads to some remarkable results

and provides great insight into the experimental methodology that is to be used in causal

learning. For clarity, I reproduce this important theorem and proof by Eberhardt here.

Theorem 3.6.1.One experiment is sufficient and necessary to discover the causal struc-

ture among a set ofN causally sufficient variables if multiple variables can be indepen-

dently and simultaneously subjected to a parametric intervention per experiment.

66



Chapter 3. Three Improvements to Algorithms for Causal Learning

The proof given in [ES06] can be summarized as follows:

Proof. Given faithfulness, observational data alone is sufficientto determine adjacencies.

Then, consider that we augment the causal structure among variablesX = {xi . . . xN}

with the intervention nodesI = {Ii . . . IN}, where each intervention nodeIi represents

an independent parametric change onxi. EachIi has exactly one outward edge directed

towardsxi. Given the distribution entailed by an experiment represented by this aug-

mented graph, we can find the separation set that obtains the conditional independence

(Ii ⊥⊥ xj|S), wherexj is a node adjacent toxi. If xi 6∈ S, then 〈Ii, xi, xj〉 form an

unshielded collider atxi and we obtain the edge〈xj , xi〉. Otherwise,xi blocks the path

from Ii to xj and since we already know the orientation〈Ii, xi〉, this implies the edge

〈xi, xj〉.

The result is to be understood as a worst case analysis and it corresponds to the class of

fully connected causal graphs. Due to the absence of any unshielded colliders in complete

graphs, the orientation phase of the PC algorithm is unable to orient any edge. However,

knowledge of the worst case result is very encouraging. In cases better than worse case,

while the single experiment result still holds, we can do much better thanN in the number

of variables chosen for intervention. AllN intervention nodes inI are not necessary as

some of the orientations are already available from the PC family of algorithms run on

observational data alone.

Let us discuss the general case. It has been suggested [Ebe08] that the key difficulty in

uniquely identifying the causal structure is to determine the orientation of the edges that

belong to cliques. Cliques are subsets of the vertex set for which every pair of vertices

is connected by an edge in the true causal structure. A cliquemakes edge-orientations

maximally independent, because fewer orientations are implied (absence of v-structures)

and the only constraints are the acyclicity constraints. Inother words, each clique acts like

a worst-case subgraph. For an algorithm to minimize the number of experiments it has
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to break down the cliques and find orientations in cliques as fast as possible. Eberhardt

conjectures that the worst case number of experiments needed to fully orient a causal graph

is ⌈log2(|Cmax|)⌉where|Cmax| is the size of the largest clique in the graph. To support this

conjecture, he also suggests an algorithm based on finding maximal cliques and provides

experimental results on graphs up to 12 nodes [Ebe08]. However, a drawback of this

algorithm is that finding maximal cliques is NP-complete andthe algorithm does not scale

well for larger graphs.

For graphs of a certain maximum degree, sayk clique sizes are limited tok. Finding

a k-clique has complexityO(nkk2) for graph sizes ofn. Although we can expectk to be

small for a large class of graphs, this is still a limiting factor for algorithms that employ

k-clique finding. We need a faster alternative of scoring vertices for experimental priority,

depending on the number of small cliques they belong to.

Prior to Eberhardt’s conjectured bound, Meganck et. al. suggest another method based

on decision theory [MM06], to establish a scoring function that takes into account the

possible number of edges that may become oriented due to an experiment. In their of

experiments, they present the results of their algorithm ona simple, but interesting exam-

ple of a 5 node causal model. They show that in some cases, the nodes with the smallest

degree, and hence most unintuitive, may in fact be the best ones to be chosen for inter-

vention. In the example, a node with degree 1, orients the maximum number of edges

[MM06]. However, the decision theoretic approach is also very expensive even for small

graphs. For each possible choice of intervened node, one hasto enumerate all possible

orientation configurations of its neighbors, and recursively explore all subsequent orien-

tations to the full depth. The DAG members of the equivalenceclass of CPDAGs is in

general unknown and is hard to compute. A scoring function onthese DAGs is also very

hard to formalize and the authors resort to an approximationand add in other heuristics

like experimental costs and expert opinion to deal with the problem.

The works described above address either the worst case, or cases where intuitive
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methods fail. Hence, they resort to sophisticated and expensive formulations to score the

nodes. My hypothesis is that, in the average case, the problem of choosing interventional

nodes is not that hard. In practice, we can choose an interventional node based on a simple

and fast heuristic. In this section, we propose such a heuristic, which is intuitive and

computationally inexpensive.

Our heuristic approach is simple, at each stage we evaluate the undirected degree of

each node and assign it as the score. Nodes with higher scoreshave a higher priority

for intervention. For each connected subgraph, clique nodes would get a node score of

at least their clique size, so larger cliques would get priority over smaller cliques and

lone undirected edges (2-cliques) would get the lowest scores in the clique size hierarchy.

Therefore, this is compatible with Eberhardt’s conjecture. Nodes with a small clique size

but with high undirected degree and these will get a high priority. I believe that in the

average case, orientations that are determined by an intervention on these nodes have a

high probability of resulting in subsequent “free” orientations. In essence, this method

is a first degree approximation of the decision theoretic approach while also accounting

for the conjecture about clique-size. With this method, node intervention priorities can

be initialized very quickly (afterPCor), in O(E log(E)) time. Subsequent updates to the

node scores would only requireO(E log(Enew)) whereEnew is the number of orientations

found after each intervention.

An automated causal learning algorithm, could simply choose the interventions based

on this priority score. Alternatively, an interactive algorithm could provide this list to a

human experimenter and allow her to make a choice based on expert judgment, experi-

mental costs and other considerations. We provide below, the interactiveCausalDiscovery

algorithm that can be used as a framework for interactive or automatic causal discovery.
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Algorithm interactiveCausalDiscovery(P )

Input: P

(∗ Pre-interventional distribution∗)

Output: G(V, E)

(∗ a fully oriented causal DAG∗)

1. H(P )← PC(P )

(∗ A partially oriented DAG compatible withP ∗)

2. Assign to each node a score equal to the number of undirected edges it is connected

to.

3. while There is at least one undirected edge inH(P )

4. Suggest a set of interventions in descending order of the node scores.

5. Accept the experimental data, estimate the experimentaldistributionP∗, and

apply the PC algorithm toH(P ) with the new informationP∗, (including ori-

entation rules R1 through R4)

6. Update the node scores corresponding to the new orientations.

The elegance of this algorithm lies in the observation that we are able to prompt the

experimenter on the order of experiments she should carry out, with the highest priority

given to the most difficult graph motifs (cliques and high degree nodes). The intervened

node always disappears from priority list, and forced orientations (due to the Meek orien-

tation rules [Mee95]) may cascade into further orientations among adjoining nodes. Some

of the low priority nodes may also disappear from the next iteration of choices or may get

rearranged in the node priority list. If the experimenter isable to perform a single experi-

ment intervening on all the suggested variables, the algorithm terminates in one iteration.

Given practical, ethical or other constraints, if the experimenter is able to perform only a

subset of the interventions suggested, one may still be ableto uncover the entire causal

graph.

If the ubiquitously used ALARM network [BSCC89] is an indicative example of a typ-
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ical causal graph, in terms of the number and size of cliques,average and maximum degree

of the nodes, then a majority of typical causal graphs will require very few interventional

experiments towards full causal discovery and simple heuristics such as suggested inin-

teractiveCausalDiscoverywill be sufficient to restrict the number of required experiments.

In section 4.5, we provide some very interesting results obtained on an empirical study

of the above algorithm on sparse graphs like the ALARM network. We perform several

tests varying several network parameters such as network size and complexity to demon-

strate their effects on the number of experiments required.

Finally, in chapter 4, I present the results of using all three algorithms, at different

stages in the task of causal discovery on several datasets. The results of my approach are

compared to the results of the traditional approaches on each task.
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Chapter 4

Experiments, Results and Discussion

“However beautiful the strategy, you should occasionally look at the re-

sults.” - Sir Winston Churchill (1874 - 1965)

4.1 The Experimental Framework

This chapter begins by describing the experimental setup, including popularly used causal

models, the generation of new and random models and the process of generating both

observational and experimental data from these models. In Section 4.1.1, I describe the

ALARM network, and in the subsequent section 4.1.2, how I generate several other net-

works of varying complexity and size. Section 4.1.3 presents the simple recursive sam-

pling algorithm used in our tests.

In the next three sections 4.2, 4.3 and 4.5, I describe the experiments and results ob-

tained on the three algorithms for causal learning we proposed in chapter 3. Section 4.3

also contains independent test results for the approximateKL-Divergence algorithm de-

scribed in 3.5.1. Next, I provide a demonstration of the sequence of steps in causal discov-

ery from the initial skeleton construction stage to full recovery of the causal graph applied
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Figure 4.1: The ALARM causal Bayesian network

on a typical example with 50-nodes. Finally, Section 4.6 presents the indicative results of

applying a constraint based causal learning algorithm on the Aircraft network (Fig. 1.2)

modeled as an SEM.

4.1.1 The ALARM network

The ALARM network is a non-trivial Bayesian network which was first developed by

medical experts for monitoring patients in intensive care [BSCC89]. As shown in figure

4.1, it has 37 nodes and 46 arcs with variable arities rangingfrom two to four. It is a

very popular and well understood network in the field of Bayesian network inference and

structure learning research, and used as a benchmark for testing several algorithms. The

key to the popularity of the network is that it is of a reasonable size and complexity that
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several of its features can be exactly computed, while at thesame time it provides as a

suitable challenge framework. We use the ALARM network withparameters (conditional

probability tables) as provided by Norsys Software Corporation [Cor], as well as with

modified parameters.

4.1.2 Random Causal Models

Apart from the ALARM network, I also carry out tests on a rangeof randomly generated

causal Bayesian networks. I generate random DAGs with parameters for size, maximum

degree and undirected average degree. I make use of the generic Boost graph library in

C++ for the relevant data structures and algorithms in the implementation. My procedure

for generating random causal models is as follows.

Algorithm MakeRandomBayesNet(N, maxDegree, avgDegree)

Input: N, maxDegree, avgDegree

(∗ network size, maximum in-degree, average degree (undirected)∗)

Output: G(V, A, Θ)

(∗ Random Bayesian Network∗)

1. V ← {v1, v2, . . . , vN} (∗ Set of nodes∗)

2. numedges← 0

3. while numedges < (avgDegree×N)

4. do Choose a random pair of nodes〈vi, vj〉 from V .

5. if (inDegree(vj) < maxDegree) ∧ vj 6−→ vi (∗ −→ implies “reachable”∗)

6. then Add arc〈vi, vj〉 to A.

7. for eachvi ∈ V

8. do for each configuration of parentspai,j

9. do Assign uniformly randomΘi,j and normalize.
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In this manner, I am able to generate a large collection of causal models with a wide

range of parameters to test the robustness of my algorithms.This supports the presentation

of average performance of these algorithms across several different networks of compara-

ble size and complexity.

In sections 2.5 and 3.6 I described parametric change or softinterventions. I implement

this using two different methods:

1. For a given parameter changeδ, I randomly choose a single probability parameter

θi,j,k ∈ Θi,j. If θi,j,k < 0.5, I addδ to it, otherwise subtract. Then the rest of the

entries inΘi,j are re-normalized

2. Reassign new random values toΘi,j.

4.1.3 Sampling

In this subsection I briefly describe the sampling algorithms used for generating data from

causal Bayesian networks.

Algorithm SampleBayesNet(G, M)

Input: G(V, A, Θ), M

(∗ Bayesian network, number of samples∗)

Output: DG

(∗ Set of samples∗)

1. DG ← {D1,1, D1,2, . . . , DM,N} (∗ N = |V | ∗)

2. Di,j ← 0, ∀Di,j ∈ DG (∗ valid multinomial samples are> 0 ∗)

3. for i from 1 toM

4. do for j from 1 toN

5. do if Di,j = 0
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6. then Di,j ← sampleV ariable(vi)

The proceduresampleV ariable() in line 6 is defined recursively and proceeds as fol-

lows:

1. If sampleDi,j > 0 returnDi,j.

2. else ifvi is a root node, generate a random numberr, in the interval(0, 1) and find

the first binb in vi’s marginal distribution, such that the cumulative distribution of

bin b is lesser thanr. Returnb.

3. else make recursive calls tosampleV ariable() on each of the parents ofvi. Once

parents are sampled choose the corresponding probability table specified by the par-

ent’s samples (instead of the marginal in step 2) and generate a sample similar to

step 2.

For generating samples from interventional distributions(hard interventions), we sim-

ply ignore thesampleV ariable() procedure for the interventional variables, and use their

“set” values instead. The rest of the variables are sampled as before. Sampling from

soft interventions proceeds identically once the Bayesiannetwork has been modified as

described in the previous section.

4.2 Comparative Performance of sCPC

In this section we describe the results of thesCPCor in comparison to thePC (PCsk +

PCor), PCminSepSet andCPC algorithms. In identifying the unshielded colliders, thePC

is most greedy and theCPC is most conservative, whilePCminSepSet and thesCPCor are

ordered in between.
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In the following set of figures (4.2 through 4.5, I present theperformance metrics of

sCPCor with 4 differentβ (unfaithfulness tolerance) parameter settings (0.2, 0.4,0.6 and

0.8) andPCminSepSet againstPC and CPCor. We vary sample sizes for the datasets

from 500 to 50000, noted on the abscissa of each chart. Each result shown is the mean

performance of each algorithm over 10 different dataset samples. The error bars denote

the standard deviation of these metrics across these datasets. Note that, in these charts, the

abscissas are just treated as categories and are not to scale.

Figure 4.2: True positives and negatives onunshielded colliders(vs. unshielded triples)
by various algorithms on the ALARM network.

Detecting unshielded colliders is a crucial step in causal discovery upon which the

success of future steps rely. Figure 4.2 shows the true positives (TP) and true negatives

(TN) obtained in detecting unshielded colliders on the ALARM network. The maximum

value of the Y-axis on these charts denotes the true number ofmotifs in the ALARM net-

work which has 24 unshielded colliders, and 64 unshielded triples which are not colliders.

Across all small sample sizes we can see that almost all versions of thesCPCor algorithms

andPCminSepSet outperformPC andCPCor, by around 5, suggesting that the ALARM

network has around 5 unshielded colliders that consistently obfuscatePC and CPCor

due to faulty CI tests that result in adjacency unfaithfulness. Note that while the perfor-

mance ofsCPCor(0.8) is better thanCPCor it is quite close to it as well.sCPCor(0.2)

with a lowerβ better tolerates adjacency unfaithfulness and performs significantly bet-

ter. PCminSepSet’s performance is also quite good and comparable to the low-β sCPCor
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algorithms.

Figure 4.3: False positives and negatives onunshielded colliders(vs. unshielded triples)
of various algorithms on the ALARM network.

The next pair of charts in Figure 4.3 shows the correspondingnumber of false positives

(Type I errors) and false negatives (Type II errors) on the same tests as described above.

With large enough sample size (≥ 5000) , sCPCor andPCminSepSet outperformCPCor

but PC performs best by detecting the least number of false positives. Since thePC

encounters and stores the least number of separating sets for each removed edge, (just

one), it detects the fewest number of unshielded colliders overall, explaining its low false

positive rate.

Figure 4.4: Sensitivity and Specificity onunshielded colliders(vs. unshielded triples) of
various algorithms on the ALARM network.
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Sample size→ 500 1000 5000 10000
PCminSepSet vs. PC 6.32 2.48 3.26 4.92

PCminSepSet vs. CPC 10.99 6.2 5.39 52.44
sCPCor (0.2) vs. PC 3.59 2.48 3.58 4.92

sCPCor (0.2) vs. CPC 35.78 7.07 5.93 10.83

Table 4.1: Independent two-samplettest statistics.

I summarize the results of figures 4.2 and 4.3 as sensitivity and specificity1 metrics in

figure 4.4. As a reminder, sensitivity (recall rate) measures the proportion of actual pos-

itives that are correctly identified, while specificity measures the proportion of negatives

that are correctly identified.

Sensitivity = TPR =
TP

TP + FN
, Specificity = 1−FPR =

TN

TN + FP
(4.1)

where TPR stands for true positive rate and FPR stands for false positive rate.

Statistical significance : To test whether the improvements in performance for low-β

sCPCor andPCminSepSet are statistically significant, I computed the independent two-

samplettest statistic, betweenPCminSepSet andsCPCor(0.2), vs.PC andCPC [Box87].

The number of degrees of freedom forn = 10 trials isd = 2n−2 = 18. The corresponding

single-tailedp-value of thettest statistic is1.734. To reject the null hypothesis that the

difference in performance of these algorithms is due to chance, all thettest statistics, should

be above this threshold. Table 4.2 shows the computedttest statistic for all sample sizes in

the above experiment, establishing that the results are statistically significant.

From figure 4.4, and Table 4.2, we confirm that overall, lowβ sCPCor as well as

PCminSepSet are clearly among the better of choices of algorithms for detecting unshielded

colliders.

1Not to be confused with Yager’s concept of specificity for fuzzy sets and possibility distribu-
tions [Yag08].
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In the next pair of charts, (figure 4.5) we present the recalculated values of sensitivity

and specificity after applying the deterministic orientation rules of thePC algorithm. Once

again, we find that low-β sCPCor andPCminSepSet outperform bothPC andCPC, and

for the largest sample sizes tested, they are able to detect82% of the true DAG edges while

PC andCPCor hover around70%.

Figure 4.5: Sensitivity and Specificity onDAG edges of various algorithms on the
ALARM network.

It is important to note that the success of finding unshieldedcolliders and consequently

the DAG edges, depends primarily on the success of finding theundirected skeleton first.

While thesCPCor andCPCor come in to play only at the orientation phase, thePCsk and

PCminSepSet work at the edge removal phase. Figure 4.6 shows the relativeperformance

of these algorithms and thatPCminSepSet performs better on low sample sizes. However,

with a large sample sizes (≥ 50000), both algorithms detect the skeletons perfectly. We do

not show the corresponding specificity metric here as both algorithms have near-perfect

specificity throughout all sample sizes.

Finally, I compare the running time of each algorithm with respect to the size of the

dataset in figure 4.7. In this chart, the x-axis is a linear scale. As expected, the con-

servative algorithmssCPCor andCPCor perform a much larger number of conditional

independence tests making them the slowest.PC performs the fewest number of condi-

tional independence tests and is fastest, whilePCminSepSet performs a few more thanPC
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Figure 4.6: Sensitivity of PC vs. PC min Sep on finding the skeleton of the ALARM
network.

but not as many as the conservative algorithms. The most important point to note is that

PCminSepSet andPC are not significantly affected by sample size and therefore show the

best promise for scalability.

From these results on the ALARM network, and especially by taking into account run-

ning time considerations,PCminSepSet is the winner. While there does seem to be utility

in exercising some conservativeness by computing a larger number of relevant separa-

tion sets, the results indicate that the appropriate level of conservativeness is achieved by

computing a few extra separation sets at the skeleton findingstage itself and choosing the

separation set that entails the least conditional mutual information.

Next, I tested whether the significance level used in theχ2 test for conditional inde-
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Figure 4.7: Running time of various algorithms on the ALARM network.

pendence had any effect on the performance of these algorithms. We tested three different

significance levels (0.1, 0.05, and 0.01). The typical valuechosen by statistical practition-

ers is 0.05, mainly due to historic reasons (it was suggestedby Pearson [Pea04]) and also

for preserving the uniformity of meaning of the term “statistically significant” across all

scientific literature. However, it has also been suggested that the 0.05 value may not be

suitable in certain domains in which case, a lower or greatervalue may be chosen with

justification [J.71]. In the results as shown in figure 4.8, wedo not see any consistent dif-

ference among the different significance levels on any of thealgorithms, across all sample

sizes. It is good to note that theχ2 test is robust across a reasonably wide range of sig-

nificance levels on the ALARM network and that the typical value of 0.05 can be reliably

used for this domain and for learning causal Bayesian networks in general.

Next, I evaluate these algorithms on causal graphs of varying size (in terms of number
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Figure 4.8: Effect of the significance level (χ2
α) of CI testing on the Sensitivity and Speci-

ficity of various algorithms on the ALARM network.

of nodes). I generate random causal graphs between sizes 10 and 80 by the method de-

scribed in 4.1.2. While doing so, I keep the other parametersof the graph similar to those

of the ALARM network. Thus, all graphs I generate for this experiment have an average

degree of46
37

= 1.24 and a maximum degree of 6. As before, all results are presented as an

average of 10 trials.

Figure 4.9 shows the performance ofPC andPCminSepSet on finding the skeleton on

these random graphs. A note on reading this chart: blue columns representPCminSepSet

while yellow columns representsPC. In the set of columns for each sample size, network

size grows from left to right (10, 20, 30, 50, 80). and the corresponding comparable

columns are placed next to each other (refer to legend). As seen before, both algorithms

attain very good performance for large sample sizes. As expected, the algorithms perform

better on smaller networks than large networks. However,PCminSepSet does not perform

significantly better thanPC in detecting the skeleton, in fact it is almost identical. From

this, we can infer that even though thePCminSepSet provides no improvement in terms of

the adjacency errors, the additional separation sets it computes is responsible for its better

performance in the orientation phase.

While the two skeleton finding algorithms perform similarlyon random graphs, there is
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Figure 4.9: Sensitivity of finding the skeleton (undirectedgraph) across network and sam-
ple size.

a significant variation in the performance of the orientation algorithms. Figure 4.10 shows

the sensitivity and specificity metrics of each algorithm {PC, PCminSepSet, sCPCor(0.2)

& CPCor} across network and sample sizes. A note on reading the chart: for each sample

size, the first half of the columns (yellow and blue pairs) arethe performances ofPC and

PCminSepSet across increasing network size and the right half of the columns (magenta &

orange pairs) are the corresponding performances of low-β sCPCor(0.2) andCPCor The

integer numbers on the legend denote network size.

PC andPCminSepSet have comparable performances everywhere, but are significantly

and consistently less specific than both the conservative algorithms.sCPCor andCPCor

are however comparably specific. With respect to sensitivity, the low-β sCPCor is always

better than any of the other algorithms.

We see that the overall sensitivities on random graphs is significantly less than the
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sensitivities on the ALARM network (figure 4.4). This can be understood if one looks

at the significant difference in the nature of the parametersof the ALARM network as

opposed to the parameters assigned to these randomly generated models. As provided

by the Norsys Software Corporation, and as commonly used in the ML community, the

ALARM network’s parameters render it nearly deterministicwith a large majority of the

CPT tables having one of their probabilities close to unity e.g. [0.99, 0.01]. On the other

hand, the parameters of the randomly generated models are picked uniformly from the unit

interval, which results in weaker correlations among the causal links than in the ALARM

network.

Figure 4.10: Sensitivity and Specificity in finding unshielded colliders across network and
sample size.

Finally, I present the running time of these algorithms withrespect to network and

sample size. A theoretical analysis of the running time of the PC-family of algorithms is

hard. It is known thatPC is bounded by a polynomial of degree equal to the maximum

degree of the nodes of the graph but the actual running time depends on the structure of

the graph. The conservative algorithms also have the same upper bound on complexity,

but tend to perform close to this upper bound, as they evaluate all possible conditional

independence tests. We show empirical values for these running times (in seconds) in fig-

ure 4.11. All like-colored columns represent the performance of the same algorithm. For

each set of columns in the same sample size, left to right denotes increasing network size.
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Figure 4.11: Running time across network and sample size.

As expected, the conservative algorithms are significantlymore expensive thanPC and

PCminSepSet, both of which have comparable running times. The additional conditional

independence tests thatPCminSepSet performs compared toPC does not seem to affect

the running time significantly (green vs. blue columns). On the other hand, among the

conservative algorithmssCPCor is consistently faster thanCPCor.

In conclusion, with the confidence obtained from the additional results on multiple

graphs of varying size, I have the same result as stated for the ALARM network. The most

reasonable algorithm to choose for practical use whenever we expect a certain number of

violations of the faithfulness assumption in the causal graph along with the problem of

imperfect conditional independence tests evaluated from finite datasets isPCminSepSet. It

evaluates a fewer number of conditional independence teststhan the conservative algo-
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rithms but still performs as well as the soft-conservative algorithmsCPCor in most cases.

However, if computing time is not a concern and the problem domain is of a sufficiently

tractable size,sCPCor should be used as it is more sensitive in the case of causal connec-

tions of weak strength.
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4.3 Performance of Parent Search

In section 3.5 I described theparentalSearchalgorithm to find the parents of the set of

context variables when subjected to a hard intervention. Inthis section, we show its per-

formance on the ALARM network. First we show the accuracy of the method on a single

context setting. In our experiments testing this algorithm, we assume that none of the

edges have been oriented and thus search for parent sets among all possible subsets of the

neighbors for each node. Note that in the realistic case, theproblem is less challenging:

fewer number of neighbors will have to be taken into consideration on an average, as un-

shielded colliders may already be oriented. The algorithm is assessed as successful only

when it finds the exact parent set and even if the detected parent set is off by one variable,

I denote it as an error.

Figure 4.12: Performance of single variable context ParentSearch.
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Figure 4.12 shows the average accuracy obtained over a single context setting of each

variable in the causal graph. Additionally, for each variable each result is an average

obtained over 10 different sampled datasets of the denoted size. The error bars represent

standard deviation. For single variable contexts, theparentalSearchperforms quite well

when provided with the exact skeleton, climbing very quickly to 95% accuracy even for

small sample sizes and asymptotically reaches perfect performance with growing sample

size. However, when the skeleton has errors (is computed by PC), its accuracy drops. This

is understandable, as theparentalSearchalgorithm searches in the space of the subsets of

its neighboring nodes. If provided with the wrong set of neighbors, it is not searching

the correct search space. The performance drop is thus, due to thePC and not due to

parentalSearch.

Figure 4.13: Performance of Parent Search vs. context size

Next, I test this algorithm in multiple variable contexts. For this experiment, I chose a

set of|C| variables at random, set them each at specific values. In Figure 4.13 I present the

performance ofparentalSearchon contexts of size {1,2,3 & 4}. Each point is an average
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of 50 different randomly chosen contexts. The error bars represent standard deviation as

usual. I already observed that the algorithm performs well for contexts of size 1, however

there is significant drops in performance as context size increases. Accuracy is as low as

60% for contexts of size 4 even for very large sample sizes. This is due to the explosion of

the search space. Each variable has a search space exponential in the size of its neighbors,

which by itself is not too bad when I consider graphs of a manageable maximum degree.

For multiple variable contexts, the search space becomes the Cartesian product of these

spaces, and thus it quickly becomes very large. Thus,parentalSearchmakes significantly

more errors.

Additionally, I tested the performance of the parent searchalgorithm using the true

KL-divergence, making the assumption that the actual distributions are known. This was

performed on a Bayesian network with 15 variables, as true KL-divergence is practically

infeasible beyond this limit. In this case, the parent sets for all sizes of contexts tested,

one through four, were returned perfectly. When the correctparent set was used, the true

KL-divergence metric was eitherzeroor a very small floating point number of the order

10−23, typical of inaccuracies in floating-point operations. Every other parent set returned

with significantly higher values, several orders of magnitude greater. This reinforces the

idea that theoretically, KL-divergence is a suitable metric to use for this application. In

cases where the empirical KL-divergence metric is used for parent search, the probability

of error involved with each hard intervention due to limitedsample size, might translate

to the wrong set of parents for a small percentage of interventions. If this is not taken into

account, this might potentially magnify the error rates of future experiments. To address

this, one might use the idea of redundancy as a method of verification and decrease the

probability of error in orientation. For example, if an experiment onA, detectsB as a

parent ofA, we can verify the linkB → A by an experiment onB. However, this method

will potentially require twice the number of experiments, but could be very valuable in

domains with very weak causal links that are hard to detect from a single direction only.
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Figure 4.14: Running time of vs. context size and sample size

Figure 4.14 shows the corresponding running times across sample sizes. As a result, I

think theparentalSearchcan be used confidently for finding the parents of single variable

hard interventions even when we have relatively low sample sizes. However, for contexts

of larger size, the algorithm loses accuracy very quickly and should not be used. Nev-

ertheless, the method is novel and improvements to its performance may be possible if a

solution is found for the problem of the exploding search space for larger contexts.
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4.4 Performance of approximate KL-Divergence

The parentalSearchalgorithm required a fast algorithm to measure divergence between

two distributions as estimated from their respective sampled datasets. I proposed and de-

veloped theapproximateKLDfor that purpose. However, I noted in section 3.5.1 that

this algorithm can also be used in the general case for other purposes, especially for high

dimensional distributions. Therefore, it is valuable to assess the performance of this ap-

proximate KL-Divergence measure on its own merit. I presentthese results in this section.

In experiments not reported here, I found that the closenessof the approximateKLD

to the true KL-Divergence depends on the parameters of the Dirichlet prior adjustments

used in the algorithm and it is very difficult (and I conjecture, impossible) to find a suit-

able setting for these parameters that is robust across a family of distributions. However,

it was only necessary to find if the algorithm has good relative performance. In other

words, given three distributionsP0, P1 andP2, approximateKLDmaintains the same or-

dering as the true KL-Divergence, i.e. ifKLD(P0, P1) < KLD(P0, P2) thenapproxi-

mateKLD(P0,P1) < approximateKLD(P0,P2) and vice versa. For the purpose of testing

this, we performed the following experiment on different networks of size 5, 10, 15 and

18. 18 was the maximum network size for which we can compute the exact KLD in a rea-

sonably short time. First we randomly generate a causal Bayesian network of given size

and set its parameters. This network representsP0. Then, to generateP1 andP2, we first

chose a random number of nodes ranging between 1 and 4, perform a perturbation on each

of the selected nodes and compute whether the true KLD order matches the approximate

KLD order. Figure 4.15 shows the average results of 1000 suchruns across graph and

sample size. Note that the algorithm performs very well evenfor small sample sizes of

around 450 regardless of the graph size. However, the improvement in performance over

sample size is rather slow.

To conclude this section, I can state that when a research task only requires a test for
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Figure 4.15: Performance of approximate KLD algorithm. Each point represents the mean
of 1000 comparison tests for randomly chosen parametric changes on a causal Bayesian
network.

relative divergence between distributions, the approximate KL-Divergence algorithm from

data is useful in two scenarios.

1. When the true distribution is not available and only samples are available.

2. For distributions of large dimensionality, even when thetrue distribution is available,

the true KLD computation will takeO(2n), wheren is the dimensionality of the

distribution, whereasapproximateKLDruns inO(m logm), wherem is the size of

the dataset.
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4.5 Evaluation of Interactive Causal Discovery

In section 3.6, I hypothesized that a large class of causal models that are of interest to

practitioners may be very different from the worst case causal graphs analyzed in earlier

work. Such causal graphs do not require computationally expensive algorithms for de-

termining experimental priority towards the goal of keeping the number of experiments

low enough for efficient causal recovery. I proposed a simpleand fast heuristic based on

undirected degree, to compute the scores that translate into node priorities and described

an interactive algorithm that uses this heuristic.

In this section, to evaluate the algorithm, I remove the roleof the human experimenter

in the algorithm and instead allow the causal learning agentto proceed as though a single

experiment was performed on the node with highest priority at each step. For each causal

model, we then evaluate the number experiments for every edge in the graph to be oriented.

Most causal models of interest are relatively sparse, when compared to the worst case

analyses of Eberhardt and others [ES06, MM06]. For example,the ALARM network,

commonly used by the AI community as a benchmark, has only 2 cliques of size 3 and an

average degree of 1.24. We are interested in finding out how many experiments are needed

on the class of causal models similar to ALARM. Note that for ALARM, if one ignores

the 2- and 3-cliques, the node scores based on vertices belonging to the maximum number

of the largest cliques (now only cliques of size 2), simply boils down to the suggested

heuristic, highest undirected degree.

I generate a large sample of graphs of varying network size, from 10 through 50, and

for each graph size I set the average degree of the causal graphs to be (̂d = |E|
|V |

= |V |K−1)

for different values ofK. I call K, the density index, and1 ≤ K < 2. Note that for

K = 1, |E| = |V |. Graphs with|K| = 1 are guaranteed not to be connected and likely to

consist of several sparse disconnected subgraphs. On the other hand, whenK is close to

2, the graphs approach fully connectedness, which have a high incidence of large cliques.
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I vary K in steps of 0.1 from 1.0 to 1.7 and for each value ofK and for each graph size,

I generate 10,000 different causal models. Computing the mean number of experiments

Nexptowards full causal discovery, gives the result as shown in figure 4.16.

The average number of experiments is initially high for sparse graphs, ranging from

2 to 8 for graph sizes of 10 to 50. For lowK, the graphs are barely connected and are

probably several disjoint subgraphs or have low values of separating cuts. Therefore, an

orientation discovery in one subgraph does not help determine any new orientations in an

of the other disconnected subgraphs, forcing us to carry outmore interventions. As the

connectivity of these graphs improves withK, 1.4 < K < 1.5, a minimum of around

1.5 is reached in the average number of experiments,Nexp. With K > 1.5 larger cliques

become more likely and the number of experiments required starts to rise again. With

my method for random graph generation, I am unable to generate graphs withK > 1.7

efficiently, and therefore restrict our results within thisrange. However, intuition related

to connectivity and earlier work by Eberhardt suggests thatNexp will keep increasing with

K for all graphs ofK > 1.7. Note that ALARM network would belong to the class of

graphs as indicated by the pointer in figure 4.16.

The graphs generated for the above experiment belong to the class ofrandom graphs.

There are no high level structural constraints on the types of graphs generated other than

the restriction based on average degree determined by the values ofK. Graphs pertaining

to specific domains might be constrained by a vast range of local and global properties. For

example, there is a great deal of difference between “typical” causal models of biology,

like gene regulatory networks, and causal models in industry, such as a factory control sys-

tem. Biological causal models may have properties that are seemingly more random, and

are constrained by the mechanisms of macro-molecular biology. Industrial causal models,

being human designed tend to be more constrained and have a more intuitive causal flow.

In such cases, special treatment and analysis of characteristics of these causal models are

requred. In fact, an investigation into a domain specific characterization of causal models
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Figure 4.16: Number of Experiments required for full causaldiscovery over random
graphs across different sizes and densities

is suggested as an area of future research. The results of theabove experiments should be

interpreted as pertaining to causal models that have characteristics similar to the class of

random graphs generated according to the description in Section 4.1.2.

In conclusion, while I may not be using the optimal order for experiments, these results

suggest and reinforce the intuition that very sparse graphsalso require a larger number of

experiments close to number for the worst case of fully connected graphs. However, for

a large class of graphs with with1.3 ≤ K ≤ 1.7 and with network size up to 80, large

cliques do not dominate, and even a sub-optimal heuristic for finding node priorities can

result in a very low number of experiments (Nexp < 3) towards complete orientation.

Particularly, an interesting result is that the least number of experiments for all the graph

sizes tested seems to have a minimum forK ≈ 1.5.
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Nexp ≈ 1.5 for |E| ≈ |V |
√

|V | (4.2)
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4.5.1 A Demonstration

We conclude this chapter with a demonstration of the steps inthe process of causal discov-

ery on a randomly generated causal model of 50 nodes. For the sake of the demonstration

we assume that all tests involving conditional independence, parent search and finding

orientations by soft intervention, give perfect results.
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(a) The True Graph
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(b) Skeleton detected by PC

Figure 4.17: The first stage of causal discovery

Figure 4.17a shows the original true causal model. Based on observational data alone,

the PC algorithm or its variants, finds the undirected skeleton shown in figure 4.17b.

The next phase in the PC algorithm finds all the unshielded colliders shown in figure

4.18a. This is followed by the application of the Meek rules.This signifies the limit of

what can be learned by observational data alone on this causal model (figure 4.18).

Next, based on the node scores, the algorithm conducts the first experiment by a hard

intervention on variable 32.parentalSearchdetects that the set of parents of 32 is the
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(a) Unshielded colliders detected
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(b) First application of Meek orientation
rules

Figure 4.18: The PDAG in 4.18b with 56 oriented edges and represents the limit of learn-
ing from observational data alone.

empty set, implying the orientation32→ 26. Applying the meek orientation rules, we get

the forced orientations26→ 13, 13→ 41 and41→ 10.

In the second experiment, a soft intervention on 28 is carried out, detecting the edge

28 → 34. No new orientations are found by the Meek rules. Finally, there remains only

one edge to be oriented and it is determined as39→ 4 through a soft intervention on node

39, resulting in the recovery of the full causal model.
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(a) Hard intervention on node 32
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(b) Meek orientation rules

Figure 4.19: Result after first experiment: 4 new orientations.
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(a) Soft intervention on node 28
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(b) Meek orientation rules

Figure 4.20: Result after second experiment: 1 new orientation.
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Figure 4.21: Soft intervention on node 39. Full causal graphrecovered.
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4.6 A Structural Equation Model

So far I have tested the performance of the causal learning algorithms described in Chap-

ter 3 on data sampled from causal Bayesian networks. This section demonstrates that

the algorithms can be applied just as successfully to a different causal modeling domain,

namely a model described by a system of structural equations, as described in section 1.1.

Recall that, Equation 1.2 describes a system of non-linear functional causal models while

Equation 1.3 is a linearization of the same. In Section 1.4, Iused an example pertaining to

an aircraft monitoring system to motivate the discussion ofan automated causal learning

agent. The aircraft network of Figure 1.2 is modeled as a linear SEM with the following

equations:

a = ra + ua(σa)

s = rs + us(σs)

w = rw + uw(σw)

g = αaa + αss + ug(σg)

v = αss + αww + uv(σv)

(4.3)

wherea stands for cruise altitude,s for cruise speed,w for wind speed,g for gear vibration

andv for wing vibration. The independent variablesa, s andw vary along with the corre-

sponding independent linear rampsrx defined in the unit interval(0, 1) with the additive

Gaussian noise termsux. The noise termsux for each equation are independent of each

other and are modeled as zero-mean Gaussians.

Five thousand continuous domain samples were generated from the above model. Each

variables range in the continuous domain was partitioned into three equal ranges with

threshold values at the one-third and two-thirds points to discretize the samples into the

discrete domain0, 1, 2. This table of values was then used as input to thePCminSepSet

algorithm. We calculated the performance ofPCminSepSet on datasets generated in this
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fashion with varying values ofσx. The results of this experiment are presented as sensitiv-

ity and specificity metrics (average over 30 runs) in Figure 4.22.

Figure 4.22: Sensitivity and Specifity of thePCminSepSet algorithm on a linear SEM model
in finding the DAG of the Aircraft causal network.

Despite the simplistic discretization technique used in this example, note that the per-

formance is very good and specificity only begins to drop for avery high level of noise.

These results indicate that causal learning algorithms based on the Bayesian network for-

malism are very robust and can be adapted to other causal modeling domains with very

little modification. Several areas in engineering that use approaches similar to SEM to

model causal relationships can benefit from constraint based causal learning algorithms.
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Conclusion and Future Work

The primary motivation for this dissertation was the idea that “True AI” is possible only

when algorithms are able to replicate what I believe is the most advanced cognitive ability

of humans, namely, causal reasoning. Humans incessantly ask “why?”, and have devel-

oped an ability and pioneered the discipline to carry out principled scientific investigation

to determine the causal relationships of the world around then. AI and robots should be

able to do that too. In essence, I am motivated by a future in which an AI system “under-

stands”, in the same quality that humans do.

Towards this goal, I investigated three different aspects of automated causal learning

in this dissertation. In the next section, I summarize the main ideas of this research effort

and draw some conclusions based on the results obtained. In section 5.2.1, I introduce

how the concept of interaction information has a potential application in causal learning

research. Finally, in section 5.2.2, I discuss the prospects of extending current formalisms

and methods to temporal causal models and present some preliminary ideas.
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5.1 Summary and Conclusion

My first research focus was on a family of algorithms that learn causal models from ob-

servational data alone. In sections 3.4 we presented thesCPCor andPCminSepSet algo-

rithms as alternatives that traded off between the conventional greedy and conservative

approaches in constraint based structure search algorithms. In section 4.2 we showed that

these algorithms consistently achieve better performancethan conventional approaches on

several problem instances. I provided the justification andsupported it with numerical re-

sults on finite-sample problem instances to show that they more robust to faulty conditional

independence tests and violations of faithfulness.

Next, we explore the area of causal learning from experimental data, when experiments

are performed as hard interventions. I introduced theparentalSearchalgorithm in section

3.5 which infers the parental set of a node under a hard intervention. Corresponding re-

sults, presented in section 4.3, shows that this algorithm has very good accuracy for single

variable contexts but suffers for larger contexts. These results suggest that the method is

very successful when exploring the smaller single context variable search spaces, but is

limited when exploring the Cartesian products of these search spaces. However, I claim

that if we can find per-context variable parent sets independently, the algorithm can be

scaled up for larger contexts. Therefore, incorporating better search strategies is a poten-

tial area for future research.

In developing the algorithmparentalSearch, I devised a new and computationally effi-

cient method of approximating the Kullback Leibler divergence between two distributions

from finite datasets. In section 3.5.1, I detail the algorithm approximateKLDand pro-

vide the results in 4.4. I argue the correctness of the algorithm and that it converges to

the true KL divergence in the large sample limit. On relatively small datasets of high di-

mensional distributions, the approximation is not very reliable. However, the algorithm

has a high degree of accuracy as a divergence comparator and Iprovide numerical results
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to support this. Thus, in applications where one is interested only in such comparisons,

and with distributions that are too large to compute the KL-divergence exactly (such as

parentalSearch), this technique is an ideal solution.

Finally, I attack the problem of determining ideal sequences of experiments that reduce

the number of experiments required for complete causal recovery. In section 3.6, I present

theinteractiveCausalDiscoveryalgorithm as a fast alternative to the conventional methods

which are computationally expensive. While the conventional methods are claimed to

work well on the worst cases, I show in section 4.5 that the fast method fares surprisingly

well, for a large class of causal models, particularly for the class of models that are of great

interest to the research community. From the results of the numerical simulation I show

that causal graphs with average degree close to the square root of the number of vertices

require the least number of experiments on average.

To conclude, the research implications of this dissertation are four-fold. I presented

three new advancements to causal learning. Each is a solution to related but independent

sub-problems in the field. The fourth contribution is a novelapproximation algorithm for

KL-divergence. All three advancements to causal learning are based on a a very general

theoretical framework and are tested on domain independentproblem instances, suggest-

ing that they have a wide range of applicability to specific domains. Likewise, the KL-

divergence approximation can not only be applied to the fieldof causal learning but also

to the wider, more general area of probabilistic and stochastic modeling.

5.2 Future Research

During the course of the research that comprises this dissertation, several interesting ques-

tions and ideas arose. While they are beyond the scope of detailed discussion in the context

of this dissertation, they are potential areas for future research and therefore demand some

attention. At this point, I believe that three major research ideas dominate in terms of their
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potential to improving current techniques and in extendingthe scope of causal learning

research. In the next three sections, (5.2.1, 5.2.2 and 5.2.3) I briefly discuss these ideas, as

fuel for further thought.

5.2.1 Using Interaction Information for Causal Learning

Interaction information [McG54, Bel03] is a generalization of mutual information. It ex-

presses the amount of information shared by a set of variables, beyond the information that

is present in any subset of these variables. Interaction information can be either positive or

negative and this property has for a long time not been very well understood and perhaps

has been the reason it has not been adopted widely as a measureof information by the

research community. Recently, Jakulin and Bratko [JB03] developed a classification algo-

rithm based on interaction information that relaxes the assumption that most conventional

classifiers make; that the attributes are independent. Theyalso discuss some visualization

techniques based on interaction information [JB04].

In the three variable case, interaction information can be written as follows:

I(X; Y ; Z) = I(X, Y |Z)− I(X, Y ) (5.1)

Consider the special case whenI(X, Y ) > 0 andI(X, Y |Z) = 0, corresponding to

the case of negative interaction. This special case of negative interaction corresponds to

the independence statement(X ⊥⊥ Y |Z). Recall that the PC family of algorithms uses

this information to mark the unshielded colliderX → Z ← Y . As a gedankenexperi-

ment, consider a perturbation of the distribution on{X, Y, Z} that rendersI(X, Y |Z) = ǫ,

whereǫ is a small positive number,I(X, Y ) retains its value, and the negative interaction

condition is still true. GivenZ, X andY become more dependent than whenZ was not

given.
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• Does this imply a “shielded” collider atZ?

• Can interaction information be used to generalize the connection between condi-

tional independence statements andd-separation?

If the answer to the above questions is “yes”, it has great implications to causal learning

research as well as Bayesian network formalism. There have been some prior attempts to

generalized-separation in the special case of belief propagation in polytrees [CD08], but

a full generalization is yet unknown.

The difficulty arises from a confusing symmetric property ofinteraction information

for the three variable case.

I(X; Y ; Z) = I(X, Y |Z)− I(X, Y )

= I(X, Z|Y )− I(X, Z)

= I(Z, Y |X)− I(Z, Y )

(5.2)

Unfortunately, symmetry challenges our argument for the shielded collider atZ. One

can speculate that the link with the lowest pairwise mutual information should be marked

as the “shield”, in the shielded collider. This means that knowledge of the third variable

raises the information shared by the “shield” pair by a greater relative value than the other

two pairs.

A 3-cliques is always a shielded collider due to acyclicity constraints, so identifying

the position of the collider leaves only the orientation of the shield unresolved. Addition-

ally, recall that the examples for “unfaithfulness” discussed in this dissertation also belong

to the same class. These are wide ranging and important implications with a potential to

resolve a large class of problems in probabilistic methods and I believe they provide suf-

ficient motivation future research on interaction information, especially in the context of

Bayesian networks.
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5.2.2 Temporal Causal Models

It is a widely accepted fact that almost all causal relationships have a temporal delay be-

tween the cause and effect and in fact some of the earliest works on causality primarily rely

on this fact [Gra69]. Research in neuroscience, econometrics and psychology heavily rely

on learning causal relationships from time series data [Gra69, Che97]. Pearl points out

in [Pea00] that temporal asymmetries and biases can be reconciled into Bayesian network

framework using the concept ofstatistical time. He cautions however that temporal prece-

dence alone is insufficient for causal inference due to our inability to measure quantities at

the exact moment of occurrence. For example, we might note that the barometer dropped

and soon after that, it rained. Barometers do not cause rain.In domains with little back-

ground information, it is easy to draw this erroneous conclusion if we used only temporal

precedence for causal inference. Hence, modern research oncausal learning research has

focused primarily on modeling instantaneous based on the ideas of independence, coun-

terfactuals and manipulability.

A popular extension to Bayesian networks to include the representation of tempo-

ral dependencies aredynamic Bayesian networks[Gha98]. Due to the acyclicity con-

straint, a limiting feature of Bayesian networks is in its inability to model cyclic causal

relationships, which are a common occurrence in a large class of phenomenon. Dy-

namic Bayesian networks solve this problem elegantly by duplicating the instantaneous

portion of the Bayesian network in two time slices, and introducing the “temporal” con-

nections from nodes of the preceding time slice to the next. Dynamic Bayesian networks

have been successfully used in several areas of machine learning and AI to model tem-

poral causal relationships, the most popular of them being the hidden Markov model

[Pea88, Gha02, Rab89]. Several techniques have been proposed for learning dynamic

Bayesian networks from data and their success has been shownin a wide range of appli-

cations [Gha98, Mur02, SDW05, Pfe05, Zwe98].
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However, the constraint based structure search community has not significantly at-

tacked the problem of learning explicitly the temporal connections in causal models. It

is an interesting area of future research, to investigate modifications to the PC-family of

algorithms to learn from dynamic data streams. Key ideas about the correspondence be-

tween statistical and physical time detailed by Reichenbach and Pearl provide the basis

and justification for such an effort [Pea00, Rei56].

5.2.3 Incorporating Background Knowledge

Throughout this dissertation we have considered the problem of learning causal structures

from the point of zero causal knowledge. Except for the assumption of causal sufficiency

and that we are aware of the variables in question, we make no assumption on any kind

of prior knowledge about the causal network. In most cases ofpractical interest, the agent

conducting the causal inquiry often has some facets of information about causation al-

ready. Typically, sources of background causal information are: expert knowledge, in-

formation from a previously conducted experiment in another domain, knowledge about

physical constraints, etc. Such background information can be of several types. We enu-

merate some of them here.

1. There is information (presence or absence) about a directcausal link between two

variables.

2. There is information about an adjacency between two variables.

3. There is information about a causal path between two variables, but not about the

constituents of the path.

4. There is information about an abstract property about thecausal graph, for example,

one set of variables are connected to another set of variables only through a (small)

third set (or∅) of variables.
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We can concieve of other kinds of information as well, but these already indicate the

interesting array of possibilities that categorize the structures of background causal in-

formation. Additionally, each piece of background information may be available with a

varying degree of uncertainty, depending on its source or its applicability to the domain

in question. Some of these types of prior knowledge may naturally be incorporated into

the Bayesian structure learning framework as priors, but itremains an interesting question

about how such information can be incorporated into the constraint-based and intervention

based causal learning algorithms. ThePC family of algorithms make use of constraints

in the form of conditional independence statements. A natural way to incorporate back-

ground information is by rewriting these other forms of information into statements about

conditional independence and use them to bootstrap thePC algorithm. This motivates fu-

ture research into choosing suitable representations for the different types of background

information and finding effective methodologies to automatically translate these represen-

tations into conditional independence statements.

One can also expect conflicts between uncertain background information and informa-

tion learned from data. In such cases, one needs to be able to quantify the uncertainty

in both types of information and determine principled methodologies for conflict resolu-

tion. Currently there are no established measures to quantify the degree of uncertainty

related to specific independence statements learned from data. Experience suggests that

measures based on deviation from zero conditional mutual information and sample size

can be devised. The problem of conflict resolution is furher complicated by ‘long range’

implications of a conflict. In some cases, the effects of a conflict might not remains local.

A ‘flip’ in an independence statement might affect the structure of the causal graph several

links away due to implications ofd-separation and acyclicity.

Another approach would be to learn from data from scratch andmanually edit the

causal graph after learning. This approach might be conceptually simpler, but even so,

quantifications of uncertainty about causal structure is necessary for the human editors to
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make an unbiased and informed revision of the causal graph. The area of causal learning

with facilities to incorporate several types of backgroundknowledge is thus, a promising

direction for future research.
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