819 research outputs found

    On-line list colouring of random graphs

    Get PDF
    In this paper, the on-line list colouring of binomial random graphs G(n,p) is studied. We show that the on-line choice number of G(n,p) is asymptotically almost surely asymptotic to the chromatic number of G(n,p), provided that the average degree d=p(n-1) tends to infinity faster than (log log n)^1/3(log n)^2n^(2/3). For sparser graphs, we are slightly less successful; we show that if d>(log n)^(2+epsilon) for some epsilon>0, then the on-line choice number is larger than the chromatic number by at most a multiplicative factor of C, where C in [2,4], depending on the range of d. Also, for d=O(1), the on-line choice number is by at most a multiplicative constant factor larger than the chromatic number

    Distance colouring without one cycle length

    Get PDF
    We consider distance colourings in graphs of maximum degree at most dd and how excluding one fixed cycle length \ell affects the number of colours required as dd\to\infty. For vertex-colouring and t1t\ge 1, if any two distinct vertices connected by a path of at most tt edges are required to be coloured differently, then a reduction by a logarithmic (in dd) factor against the trivial bound O(dt)O(d^t) can be obtained by excluding an odd cycle length 3t\ell \ge 3t if tt is odd or by excluding an even cycle length 2t+2\ell \ge 2t+2. For edge-colouring and t2t\ge 2, if any two distinct edges connected by a path of fewer than tt edges are required to be coloured differently, then excluding an even cycle length 2t\ell \ge 2t is sufficient for a logarithmic factor reduction. For t2t\ge 2, neither of the above statements are possible for other parity combinations of \ell and tt. These results can be considered extensions of results due to Johansson (1996) and Mahdian (2000), and are related to open problems of Alon and Mohar (2002) and Kaiser and Kang (2014).Comment: 14 pages, 1 figur

    Independent transversals in locally sparse graphs

    Get PDF
    Let G be a graph with maximum degree \Delta whose vertex set is partitioned into parts V(G) = V_1 \cup ... \cup V_r. A transversal is a subset of V(G) containing exactly one vertex from each part V_i. If it is also an independent set, then we call it an independent transversal. The local degree of G is the maximum number of neighbors of a vertex v in a part V_i, taken over all choices of V_i and v \not \in V_i. We prove that for every fixed \epsilon > 0, if all part sizes |V_i| >= (1+\epsilon)\Delta and the local degree of G is o(\Delta), then G has an independent transversal for sufficiently large \Delta. This extends several previous results and settles (in a stronger form) a conjecture of Aharoni and Holzman. We then generalize this result to transversals that induce no cliques of size s. (Note that independent transversals correspond to s=2.) In that context, we prove that parts of size |V_i| >= (1+\epsilon)[\Delta/(s-1)] and local degree o(\Delta) guarantee the existence of such a transversal, and we provide a construction that shows this is asymptotically tight.Comment: 16 page

    Bipartite induced density in triangle-free graphs

    Full text link
    We prove that any triangle-free graph on nn vertices with minimum degree at least dd contains a bipartite induced subgraph of minimum degree at least d2/(2n)d^2/(2n). This is sharp up to a logarithmic factor in nn. Relatedly, we show that the fractional chromatic number of any such triangle-free graph is at most the minimum of n/dn/d and (2+o(1))n/logn(2+o(1))\sqrt{n/\log n} as nn\to\infty. This is sharp up to constant factors. Similarly, we show that the list chromatic number of any such triangle-free graph is at most O(min{n,(nlogn)/d})O(\min\{\sqrt{n},(n\log n)/d\}) as nn\to\infty. Relatedly, we also make two conjectures. First, any triangle-free graph on nn vertices has fractional chromatic number at most (2+o(1))n/logn(\sqrt{2}+o(1))\sqrt{n/\log n} as nn\to\infty. Second, any triangle-free graph on nn vertices has list chromatic number at most O(n/logn)O(\sqrt{n/\log n}) as nn\to\infty.Comment: 20 pages; in v2 added note of concurrent work and one reference; in v3 added more notes of ensuing work and a result towards one of the conjectures (for list colouring
    corecore