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Abstract

Let G be a graph with maximum degree Δ whose vertex set is partitioned into parts V (G) =
V1 ∪ · · · ∪ Vr . A transversal is a subset of V (G) containing exactly one vertex from each part Vi . If it
is also an independent set, then we call it an independent transversal. The local degree of G is the maxi-
mum number of neighbors of a vertex v in a part Vi , taken over all choices of Vi and v /∈ Vi . We prove that
for every fixed ε > 0, if all part sizes |Vi | � (1 + ε)Δ and the local degree of G is o(Δ), then G has an inde-
pendent transversal for sufficiently large Δ. This extends several previous results and settles (in a stronger
form) a conjecture of Aharoni and Holzman. We then generalize this result to transversals that induce no
cliques of size s. (Note that independent transversals correspond to s = 2.) In that context, we prove that
parts of size |Vi | � (1 + ε) Δ

s−1 and local degree o(Δ) guarantee the existence of such a transversal, and we
provide a construction that shows this is asymptotically tight.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let G = (V ,E) be a graph with maximum degree Δ, whose vertices have been partitioned
into r disjoint sets V = V1 ∪ · · · ∪Vr . An independent transversal of G with respect to {Vi}ri=1 is
an independent set in G which contains exactly one vertex from each Vi . The problem of finding
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sufficient conditions for the existence of an independent transversal dates back to 1975, when it
was raised by Bollobás, Erdős, and Szemerédi [8]. Since then, much work has been done [1–4,6,
10,11,13–15,18–20], and this basic concept has also appeared in the study of other combinatorial
problems, such as linear arboricity, strong chromatic number and list coloring. In particular, as
part of his result on the linear arboricity of graphs, Alon [3] used the Lovász Local Lemma to
show that an independent transversal exists as long as all |Vi | � 2eΔ. Haxell [10] later improved
his constant from 2e to 2. In the other direction, Jin [14] and Yuster [20] constructed graphs
with parts of size |Vi | = 2Δ − 1 and maximum degree Δ, with no independent transversals, but
required that Δ was a power of 2. Szabó and Tardos [19] recently produced constructions with
the same properties for all Δ, so the constant 2 is tight.

However, in all of the above constructions, the graphs are disjoint unions of 2Δ − 1 complete
bipartite subgraphs KΔ,Δ and the partition into {Vi} is done in such a way that the parts {Vi}
separate the sides of each KΔ,Δ. This creates many pairs of disjoint parts (Vi,Vj ) which have
complete bipartite subgraphs of linear size going between them. Note that the number of edges
between such a pair (Vi,Vj ) is quadratic in Δ. In this paper we show that the constant 2 can
be significantly improved if one prohibits such phenomena. One way to accomplish this is to
introduce a constraint on the local degree, which is the maximum number of neighbors of a
vertex v in a part Vi , where Vi ranges over all parts and v ranges over all vertices v /∈ Vi . This
constraint arises naturally in several contexts, one of which is vertex list coloring.

Given a graph H = (V ,E) and a set of lists {Cv} of available colors, one for each vertex v ∈ V ,
it is a natural question to determine when we can properly color H from these lists. Suppose
that in addition we know that every color c appears in the lists of at most Δ neighbors of each
vertex v; then, what minimum size lists will guarantee a proper coloring? This question, which
was proposed by Reed [17], can be recast as an independent transversal problem as follows.
Consider a |V |-partite graph G such that for each v ∈ V , G has a part with |Cv| vertices labeled
by ordered pairs {(v, c): c ∈ Cv}. Let two vertices (v, c) and (w, c) be adjacent whenever v is
adjacent to w in H and c ∈ Cv ∩ Cw . Then G has maximum degree � Δ and local degree � 1,
and an independent transversal in G corresponds to a proper list coloring of H . (Note that not
every G with local degree 1 has a corresponding list coloring problem, so this association is
not reversible.) Haxell’s result immediately implies that if all |Cv| � 2Δ, a proper list coloring
exists. However, this is not tight, since the local degree condition prohibits the constructions we
mentioned earlier. Indeed, for the list coloring problem Reed and Sudakov [18] showed that in
fact lists of size (1 + o(1))Δ will suffice.

Aharoni and Holzman [1] adapted arguments from [18] to prove the existence of an indepen-
dent transversal in multipartite graphs with maximum degree Δ, parts of size (1 + o(1))Δ, and
the property that any two distinct vertices in the same part are at distance greater than 4 from
each other. Their result has the following nice application. For any collection of n � (1 + o(1))Δ

graphs {Hi}ni=1 with maximum degree Δ, all sharing the same vertex set V , there exists a par-
tition V = ⋃n

i=1 Ii such that for each i, Ii is an independent set in Hi . To see this, create a
multipartite graph G by making n copies of each vertex, and connect the ith copy of vertex v to
the ith copy of vertex w if v is adjacent to w in Hi . Then in G there are no paths at all between
any pair of distinct vertices in a given part. Thus we can find an independent transversal of G,
which gives the required partition.

Aharoni and Holzman [1] conjectured that their condition on distances could be replaced by
the weaker condition that the local degree is 1. In this paper, we prove the following stronger the-
orem, which implies their conjecture. Our proof combines arguments from [4] and [18], together
with some additional ideas.
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Theorem 1.1. For every ε > 0 there exists γ > 0 such that the following holds. If G is a graph
with maximum degree at most Δ whose vertex set is partitioned into parts V (G) = V1 ∪ · · · ∪ Vr

of size |Vi | � (1 + ε)Δ, and the local degree of G is at most γΔ, then G has an independent
transversal.

Note that the constant of 1 is optimal because of the following example: a disjoint union of Δ

cliques of order Δ + 1, where each clique has exactly one vertex per part.
An independent transversal is a set with one vertex from each part Vi that induces no cliques

of size 2. Therefore, a natural generalization of this concept is the Ks -free transversal, which is
a transversal inducing no cliques of size s. Such transversals were recently studied by Szabó and
Tardos [19], who posed the problem of finding p(Δ,Ks), which is defined to be the smallest
integer n that guarantees the existence of a Ks -free transversal in any graph with maximum
degree Δ and part sizes at least n. They provided a construction that bounds p(Δ,Ks) � s

s−1
Δ

s−1 ,
and conjectured that their construction was optimal.

However, this construction also contains complete bipartite subgraphs of linear size, with sides
separated by the partition. In light of our previous result, one may ask what can be said when
we impose a local degree restriction. We find that we can solve that problem asymptotically, and
prove the following generalization of Theorem 1.1.

Theorem 1.2. For every ε > 0 and integer s � 2, there exists γ > 0 such that the following
holds. If G is a graph with maximum degree at most Δ whose vertex set is partitioned into parts
V (G) = V1 ∪ · · · ∪ Vr of size |Vi | � (1 + ε) Δ

s−1 , and the local degree of G is at most γΔ, then
G has a Ks -free transversal.

This is asymptotically tight via a simple construction that we will give later. Furthermore,
a slight adaptation of our method proves that even without the local degree condition, p(Δ,Ks) �
2� Δ

s−1�, which differs from Szabó and Tardos’s conjecture by a factor of at most 2. For s = 3,
this matches their best known upper bound for p(Δ,K3), and even is better by 1 when Δ is odd.

The rest of this paper is organized as follows. The next section reviews some basic probabilis-
tic tools we use in our proof. In Section 3 we show how to reduce Theorem 1.1 to the special
case when local degrees are bounded by a constant. We solve this case in Section 4. In Section 5,
we prove the generalization of our main result to Ks -free transversals. The final section contains
some concluding remarks and open problems. Throughout this paper we will assume wherever
needed that γ is sufficiently small. Since, by definition, every non-trivial r-partite graph has local
degree at least one, this implies that Δ � γ −1 is sufficiently large. We will also systematically
omit floor and ceiling signs for the sake of clarity of presentation.

2. Probabilistic tools

In this section we describe some classical results which we will use in our proof. We begin
with several large-deviation inequalities.

Theorem 2.1. (See Hoeffding [9], Chernoff [5].) Let X = ∑n
i=1 Xi be a sum of bounded inde-

pendent random variables ai � Xi � bi . Then if we let μ = E[X],

P
[|X − μ| � t

]
� 2 exp

{
− 2t2∑n

(b − a )2

}
.

i=1 i i
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In particular, when Xi are indicator variables we have

P
[|X − μ| > t

]
< 2e−2t2/n.

Also, for any ε > 0, there exists cε > 0 such that

P
[|X − μ| > εμ

]
< 2e−cεμ.

To state the next concentration result, we need to introduce two concepts. Let Ω = ∏n
i=1 Ωi

be a probability space, and let X :Ω → R be a random variable.

• Suppose that there is a constant C such that changing ω in any single coordinate affects the
value of X(ω) by at most C. Then we say that X is C-Lipschitz.

• Suppose that for every s and ω such that X(ω) � s, there exists a set I ⊂ {1, . . . , n} of size
|I | � rs such that every ω′ that agrees with ω on the coordinates indexed by I also has
X(ω′) � s. Then we say that X is r-certifiable.

Theorem 2.2. (See Talagrand [16].) Suppose that X is a C-Lipschitz and r-certifiable random
variable on Ω = ∏n

i=1 Ωi as above. Then,

P
[∣∣X − E[X]∣∣ > t + 60C

√
rE[X] ] � 4e

− t2

8C2rE[X] .

Finally we need the symmetric version of the Lovász Local Lemma, which is typically used
to show that with positive probability, no “bad” events happen.

Theorem 2.3 (Lovász Local Lemma [5]). Let A1, . . . ,An be events in a probability space. Sup-
pose that there exist constants p and d such that all P[Ai] � p, and each event Aj is mutually
independent of all of the other events {Ai} except at most d of them. If ep(d + 1) � 1, where e is
the base of the natural logarithm, then P[⋂Ai] > 0.

The following result can be deduced quickly from this lemma. We record it here for later use,
and sketch the proof for the sake of completeness.

Proposition 2.4. (See Alon [3].) Let G be a multipartite graph with maximum degree Δ, whose
parts V1, . . . , Vr all have size |Vi | � 2eΔ. Then G has an independent transversal.

The proof follows by applying the Local Lemma to the probability space where we indepen-
dently and uniformly select one vertex from each Vi . For each edge e of G, let the “bad” event
Ae be when both endpoints of e are selected. The dependency is bounded by 2(2eΔ)Δ − 1,
and the probability of each Ae is at most (2eΔ)−2, so the Local Lemma implies this statement
immediately.

3. Reducing local degrees

In this section, we show that it is enough to prove Theorem 1.1 only in the case when the local
degree is bounded by a constant. This will be an immediate consequence of the following claim.

Theorem 3.1. For any ε > 0, there exists γ0 > 0 such that for all γ < γ0 and all Δ, the following
holds. Let G be a multipartite graph with maximum degree � Δ, parts V1, . . . , Vr of size |Vi | �
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(1 + ε)Δ, and local degree � γΔ. Then there exist subsets Wi ⊂ Vi,1 � i � r , such that the
r-partite subgraph G′ of G induced by the set

⋃
Wi has the following properties. The maximum

degree of G′ is at most some Δ′ > γ −1/3, each Wi has size � (1 + ε/8)Δ′ and the local degree
of G′ is less than 10.

We first prove the following special case of the above theorem, when Δ2/3 � γ −1.

Lemma 3.2. For any 0 < ε < 1, there exists Δ0 such that the following holds for all Δ > Δ0.
Let G be a multipartite graph with maximum degree � Δ, parts V1, . . . , Vr of size |Vi | �
(1 + ε)Δ, and local degree � Δ1/3. Then there exist subsets Wi ⊂ Vi , 1 � i � r , such that the
r-partite subgraph G′ of G induced by the set

⋃
Wi has the following properties. The maximum

degree of G′ is at most Δ′ = (1 + ε/3)Δ1/3, each Wi has size at least (1 + ε/4)Δ′ and the local
degree of G′ is less than 10.

Proof. By discarding vertices, we may assume that all |Vi | = (1+ ε)Δ. For every 1 � i � r , cre-
ate Wi by choosing each vertex of Vi randomly and independently with probability p = Δ−2/3.
Define the following three types of bad events. For each vertex v, let Av be the event that the
number of neighbors of v in W = ⋃

Wj exceeds (1 + ε/3)Δ1/3. For each vertex v and part Vi in
which v has at least one neighbor, let Bv,i be the event that the number of neighbors of v in Wi is
at least 10. Finally, for every 1 � i � r , let Ci be the event that |Wi | < (1 + 2ε/3)Δ1/3. Note that
(1 + 2ε/3)Δ1/3 = 1+2ε/3

1+ε/3 Δ′, which exceeds (1 + ε/4)Δ′ if ε < 1 (which we assumed). We use
the symmetric version of the Local Lemma to show that with positive probability, no bad events
happen.

To bound the dependency, observe that each of the events Av , Bv,i is completely determined
by the choices on all vertices within distance one from v, and Ck is completely determined by
the choices on all vertices in Vk . Since degrees are bounded by O(Δ) and all |Vk| � O(Δ), each
event is mutually independent of all but O(Δ2) events.

Now we compute the probabilities of bad events. Since the number of neighbors of a
vertex v in W is binomially distributed with mean at most Δp = Δ1/3, the standard Cher-
noff estimate (Theorem 2.1) implies that the probability that it exceeds (1 + ε/3)Δ1/3 is at
most e−Ω(Δ1/3) 
 Δ−3. Similarly, the size of the set Wi is binomially distributed with mean
at least (1 + ε)Δ1/3. Hence, using the Chernoff estimate again, we conclude that P[Ci] �
e−Ω(Δ1/3) 
 Δ−3. Finally, since the number of neighbors of v in Vi is bounded by Δ1/3, we
have

P[Bv,i] �
(

Δ1/3

10

)
p10 � Δ−10/3 
 Δ−3.

Thus, by the Local Lemma, with positive probability none of the events Av , Bv,i and Ci happen
and we obtain an induced subgraph G′ of G which has all the desired properties. �

The general case of Theorem 3.1 cannot be proved using the above arguments, since if γ −1

were much smaller than logΔ, the number of dependencies would overwhelm the probabilities in
the application of the Local Lemma. To overcome this difficulty, we follow an approach similar
to the one used in [4] and construct the desired subgraph by a sequence of random halving steps.
This is done via the following lemma.



P.-S. Loh, B. Sudakov / Journal of Combinatorial Theory, Series B 97 (2007) 904–918 909
Lemma 3.3. Let G be a multipartite graph with maximum degree at most Δ, parts V1, . . . , Vr

each of size 2s, and local degree at most d . Suppose that Δ is sufficiently large and d > log4 Δ.
Then there exist subsets Ui ⊂ Vi , each of size s, such that the subgraph of G induced by

⋃
Ui

has maximum degree at most Δ/2 + Δ2/3, and local degree at most d/2 + d2/3.

Proof. Within each Vi , arbitrarily pair up the vertices so that each vertex v has a mate M(v).
Note that this pairing does not need to have any correlation with the original edges of G. For
each pair of vertices {v,M(v)}, randomly and independently designate one of the vertices to be
in Ui . Clearly all Ui will have size s. For each vertex v, let Av be the event that the number of
neighbors of v in U = ⋃

Ui exceeds Δ/2 + Δ2/3. Also for every part Vk and vertex v /∈ Vk , let
Bv,k be the event that the number of neighbors of v in Uk exceeds d/2 + d2/3. We will use the
Local Lemma again to prove that with positive probability none of these events occurs.

Fix a vertex v and consider the event Av . Note that if two neighbors of v are paired with each
other by M , then exactly one of them will be in U . Let T be the set of all neighbors of v which
are paired by M to vertices which are not neighbors of v. Then the number of neighbors of v

in U is at most (Δ − |T |)/2 plus the number of members of T that belong to U . The second
number is binomially distributed with parameters |T | � Δ and 1/2. Therefore by the Chernoff
bound (Theorem 2.1), we have that the probability that it deviates from its mean by at least Δ2/3

is bounded by 2e−2(Δ2/3)2/|T | 
 Δ−3. Using similar arguments, together with the assumption
that d > log4 Δ, we can bound P[Bv,k] � 2e−2(d2/3)2/d 
 Δ−3.

To bound the dependency, observe that we can argue exactly as in the proof of the previous
lemma to show that every bad event depends on at most O(Δ2) other such events. Thus, by the
Local Lemma we have that with positive probability none of the events Av , Bv,k happen. �
Proof of Theorem 3.1. Let G be a multipartite graph with maximum degree � Δ, local degree
� d = γΔ, and parts V1, . . . , Vr of size (1 + ε)Δ. First consider the case when γ −4/3 � Δ. Then
d � Δ1/4, and the result of the theorem follows from Lemma 3.2 because Δ′ > Δ1/3 � γ −1/3,
since Δ � γ −1 as was noted at the end of the introduction.

It remains to consider the case γ −4/3 < Δ. (We choose −4/3 because then our argument will
give Δ′ > γ −1/3.) Let j � 1 be the integer for which 2j−1 < γ 4/3Δ � 2j . By deleting at most 2j

vertices from each Vi , we may assume that the size n > (1 + ε)Δ − 2j of every part is divisible
by 2j . Define the sequences {Δt } and {dt } by setting Δ0 = Δ, d0 = d = γΔ, and

Δt+1 = Δt

2
+ Δ

2/3
t , dt+1 = dt

2
+ d

2/3
t .

We claim that:

(i) γ −4/3/2 < Δj � (1 + ε/4)
Δ

2j
, (ii) dj � 8Δ

1/4
j ,

(iii) dt > log4 Δt ∀0 � t < j.

Suppose this is true. By (iii), we can apply Lemma 3.3 to split each part Vi in half and obtain a
new r-partite graph G1 with maximum degree at most Δ1 and local degree at most d1. Continuing
in this manner for j iterations, applying Lemma 3.3 to split the graph in half each time, we obtain
a sequence of r-partite graphs G ⊃ G1 ⊃ · · · ⊃ Gj . Note that Δt and dt are upper bounds on
the maximum and local degrees of each Gt , respectively. Moreover, all parts in each Gt have
size nt = n/2t .
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By the lower bound of (i), we can make Δj as large as necessary by decreasing γ , so the
upper bound of (i) yields

nj >
(1 + ε)Δ − 2j

2j
� 1 + ε

1 + ε
4

Δj − 1 >

(
1 + ε

2

)
Δj

(assume ε < 1). By (ii), dj 
 Δ
1/3
j . Applying Lemma 3.2 to Gj with ε/2 instead of ε, we obtain

a new subgraph G′ with maximum degree at most

Δ′ =
(

1 + ε

6

)
Δ

1/3
j >

(
γ −4/3

2

)1/3

 γ −1/3,

part sizes at least (1 + ε/8)Δ′, and local degree less than 10. This completes the proof of the
theorem.

To finish we need to prove our claim. The lower bound of (i) follows immediately from the
definition of j , because Δj � Δ/2j > γ −4/3/2. For the upper bound,

Δt+1 = Δt/2 + Δ
2/3
t � 1

2

(
Δ

1/3
t + 1

)3
,

so taking cubic roots and subtracting 1/(21/3 − 1) from both sides, we obtain

Δ
1/3
t+1 − 1

21/3 − 1
� 1

21/3

(
Δ

1/3
t + 1

) − 1

21/3 − 1
= 1

21/3

(
Δ

1/3
t − 1

21/3 − 1

)
.

Therefore,

Δ
1/3
j − 1

21/3 − 1
� 1

2j/3

(
Δ

1/3
0 − 1

21/3 − 1

)
,

and since Δ0 = Δ and 21/3 − 1 > 1/4,

Δ
1/3
j � Δ1/3

2j/3
+ 4 � (1 + ε/4)1/3 Δ1/3

2j/3
.

The last inequality follows from our assumption that γ is small and hence Δ/2j > γ −4/3/2 is
large enough. Therefore Δj � (1 + ε/4)Δ/2j . Note that since Δj � Δt/2j−t , we have Δt �
(1 + ε/4)Δ/2t for all t < j (we will use this in the proof of (iii)).

For (ii), the same argument as above (just substitute dt for Δt ) shows that

d
1/3
j � d1/3

2j/3
+ 4 � 2

d1/3

2j/3
,

where the last inequality used that d/2j = γΔ/2j > γ −1/3/2 is large. Hence dj � 8d/2j =
8γΔ/2j . By definition of j and {Δt }, γ 4/3Δ � 2j , so dj � 8(Δ/2j )1/4 � 8Δ

1/4
j .

Finally, to prove (iii), note that by definition of j , γ > (Δ/2t )−3/4 for all t < j . Thus

dt � d/2t = γΔ/2t �
(
Δ/2t

)−3/4(
Δ/2t

) = (
Δ/2t

)1/4 �
(

Δt

1 + ε/4

)1/4

 log4 Δt,

and we are done. �
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4. Transversals in graphs with constant local degree

In this section we obtain the following result, which completes the proof of our main theorem.

Theorem 4.1. For any ε > 0 and constant C, the following holds for all sufficiently large Δ. Let
G be a multipartite graph with maximum degree � Δ, parts V1, . . . , Vr of size |Vi | � (1 + ε)Δ,
and local degree � C. Then G has an independent transversal.

The proof of this result is based on the approach from [18] together with some additional
ideas. We use the semi-random method, which constructs an independent transversal in several
iterations. Each iteration is a random procedure, for which we prove that there is a choice of
random bits which give desirable output. We then fix that choice and assume it as the state of
affairs for the next iteration. Consider the following random process, which will provide us with
one iteration of our algorithm.

1. Activate (for this iteration) each remaining part independently with probability 1/ logΔ.
2. Uniformly at random select a vertex from each activated part and denote by T the set of all

selected vertices.
3. For each i and v ∈ Vi ∩ T , if v is not adjacent to any w ∈ Vj ∩ T with j < i, then add v to

the independent transversal.
4. For each vertex v added to the independent transversal in step 3, delete the entire part con-

taining it from G. Also delete all neighbors of all vertices in T from G.

Observe that the deletions ensure that after each iteration, the partial independent transversal
constructed so far has no adjacencies among the remaining vertices. Our objective will be to show
that after performing several iterations, the remaining graph will have maximum degree � Δ′ and
parts of size � 2eΔ′, for some Δ′. Then, we will abort the algorithm, and apply Proposition 2.4
to complete the construction of our independent transversal in a single step.

4.1. Setting the stage

In our study of the evolution of degrees and part sizes, the following definitions are useful.
For each part Vi , let st (i) be its size at the start of iteration t . For each vertex v, let Nt(v) be the
set of v’s neighbors at the start of iteration t , and let dt (v) = |Nt(v)|.

Next, define the sequences {St } and {Dt } by setting S1 = (1 + ε)Δ, D1 = Δ, and

St+1 =
(

1 − 1

(1 + 3ε/4) logΔ

)
St , Dt+1 =

(
1 − 1

(1 + ε/4) logΔ

)
Dt .

Let P(t) be the property that at the start of iteration t , all remaining parts have size at least St ,
and all remaining vertices v have dt (v) � Dt . (Completely ignore deleted parts and vertices.) We
will prove by induction that there is always a choice of random bits such that we can perform
iterations with property P(t) holding for every t � 2 + 10

ε
logΔ. Then at the end of iteration

t ′ = � 10 logΔ�, all remaining parts have size at least St ′+1 and all remaining vertices have degree

ε
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at most Dt ′+1. A routine calculation reveals that

Dt ′+1

St ′+1
=

(
1 − 1

(1+ε/4) logΔ

)t ′
D1(

1 − 1
(1+3ε/4) logΔ

)t ′
S1

�
( 1 − 1

(1+ε/4) logΔ

1 − 1
(1+3ε/4) logΔ

)t ′

�
(

1 − ε

5 logΔ

) 10 logΔ
ε

� e−2 <
1

2e
.

Therefore, by Proposition 2.4 there is an independent transversal through the remaining parts, as
promised above. This will have no adjacencies with the partial independent transversal con-
structed by the first t ′ iterations, so the union of the two partial transversals will be a full
independent transversal. Note that if t � 1 + 10

ε
logΔ, then St = Θ(Δ) and Dt = Θ(Δ). We

will use this fact throughout the rest of the proof.
It remains to show that if at the beginning of iteration t we have a graph with property P(t),

then with positive probability the graph obtained at the end of this round satisfies P(t +1). Define
the following family of bad events. Let Ai be the event that st+1(i) < St+1 and let Bv be the
event that dt+1(v) > Dt+1. The dependencies among these events are polynomial in Δ. To see
this, consider the auxiliary graph H obtained by adding edges such that every part Vi becomes
a clique. If we know the algorithm’s choices on the “patch” consisting of all vertices within
distance (with respect to edges in H ) 4 from v, then Bv is completely determined. This is because
a neighbor w of v can only be deleted in two ways: either a neighbor of w is selected in step 2,
or the entire part containing w is deleted because a vertex x in that part is selected, but none
of x’s neighbors in lower-indexed parts are selected. So, each event Bv is mutually independent
from all other events Bw whose patches are disjoint from its own. Since the part sizes are O(Δ),
the degrees in H are also O(Δ), so the dependency is bounded by O(Δ8). Events of type Ai

are determined by even smaller patches, so the total dependency is also O(Δ8). Therefore if we
prove that for every part Vi and vertex v

(i) P
[
st+1(i) < St+1

] 
 e− logΔ log logΔ and

(ii) P
[
di+1(v) > Di+1

] 
 e− logΔ log logΔ,

then we can apply the Local Lemma to show that with positive probability none of the events Ai ,
Bv occur. This corresponds precisely to property P(t + 1), completing the induction step. Thus
it remains to establish the two probability bounds above.

4.2. Parts remain large enough

Suppose that our graph has property P(t), and let Vi be some part of this graph. In this section
we bound the probability that the size of Vi at the end of iteration t is less than St+1.

For every vertex v and part Vk , define dt (v, k) to be the number of neighbors of v in part Vk

at the start of iteration t . Since Dt/St < D1/S1 = 1/(1 + ε), by linearity of expectation we have

E
[
st+1(i)

] =
∑
v∈Vi

r∏
k=1

(
1 − 1

logΔ

dt(v, k)

st (k)

)
�

∑
v∈Vi

(
1 − 1

logΔ

∑
k dt (v, k)

St

)

=
∑
v∈Vi

(
1 − 1

logΔ

dt(v)

St

)
� st (i)

(
1 − 1

logΔ

Dt

St

)

> st (i)

(
1 − 1 1

)
.

logΔ 1 + ε
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Instead of proving concentration of st+1(i) directly, we consider the number of vertices we
deleted from the part Vi in the t th iteration and prove that this random variable R = st (i)−st+1(i)

is concentrated. Since the local degree is bounded by C, changing the assignment of any vertex
can change R by at most C. Also, if R � s, there are at most s vertices in T , each with neighbor(s)
in Vi , such that their selection certifies that R � s. Therefore R is C-Lipschitz and 1-certifiable.
Note that R � st (i) = Θ(Δ) and

√
E[R] 
 st (i)/ log2 Δ. Thus, using Talagrand’s inequality

(Theorem 2.2), we obtain

P

[∣∣R − E[R]∣∣ >
st (i)

log2 Δ

]
< exp

{
−Θ

(
st (i)

log4 Δ

)}

 e− logΔ log logΔ.

Now for sufficiently large Δ,

St+1 �
(

1 − 1

(1 + 3ε/4) logΔ

)
st (i) �

(
1 − 1

(1 + ε) logΔ
− 1

log2 Δ

)
st (i)

� E
[
st+1(i)

] − st (i)

log2 Δ
.

Note that since we fixed the output of the (t − 1)st iteration, the value of st (i) in the definition
of R is fixed as well. Thus by linearity of expectation, st+1(i) − E[st+1(i)] = E[R] − R, so

P
[
st+1(i) < St+1

]
� P

[
st+1(i) < E

[
st+1(i)

] − st (i)

log2 Δ

]

� P

[∣∣st+1(i) − E
[
st+1(i)

]∣∣ >
st (i)

log2 Δ

]

= P

[∣∣R − E[R]∣∣ >
st (i)

log2 Δ

]

 e− logΔ log logΔ,

which implies (i).

4.3. Degrees shrink quickly enough

In this section we prove that if our graph has property P(t) then for every vertex v the prob-
ability that its degree at the end of iteration t is greater than Dt+1 is 
 e− logΔ log logΔ. Fix a
vertex v. If we have dt (v) � Dt+1, then we are already done, so suppose that is not the case.
Then Δ � dt (v) > Dt+1 = Θ(Δ). For each vertex v, let zt (v) be the number of neighbors of v

whose entire part was deleted in step 4 of iteration t . Clearly dt+1(v) � dt (v) − zt (v), so if
zt (v) � dt (v)

logΔ
− Θ(

dt (v)

log2 Δ
), then for sufficiently large Δ we have

dt+1(v) � dt (v) − zt (v) �
[

1 − 1

logΔ
− Θ

(
1

log2 Δ

)]
dt (v)

�
[

1 − 1

(1 + ε/4) logΔ

]
Dt = Dt+1.

Thus to prove (ii) it is enough to show

P

[
zt (v) <

dt (v)

logΔ
− Θ

(
dt (v)

log2 Δ

)]

 e− logΔ log logΔ. (1)

Recall our notation that for a vertex v and a part Vk , dt (v, k) is the number of neighbors of v

in Vk . Call a part Vk relevant for v if dt (v, k) � 1, i.e., v has at least one neighbor in Vk . To
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analyze the behavior of zt (v), we divide the t th iteration of the algorithm into 2 independent
phases.

Phase I. Activate each part relevant for v independently with probability 1/ logΔ, and define the
random variable

X1 =
r∑

k=1

dt (v, k)I1(k),

where the indicator I1(k) = 1 if part Vk was activated and zero otherwise. Randomly select a
vertex from each of these activated parts, and collect the selected vertices in a set T1. Define
the subset S ⊆ T1 as follows. For every i and x ∈ Vi ∩ T1, we put it in S iff x is not adjacent
to any y ∈ Vj ∩ T1 with j < i. Let I2(k) be an indicator random variable which equals one iff
Vk ∩ S �= ∅, and define

X2 =
r∑

k=1

dt (v, k)I2(k).

Phase II. Activate the rest of the parts (i.e., parts that are not relevant for v) independently, each
with probability 1/ logΔ, and randomly select a vertex from each of them. Let T2 be the set of
vertices selected in this phase. For each i and u ∈ Vi ∩ S, if u is adjacent to some w ∈ Vj ∩ T2
with j < i, then remove u from S. Define the random variable

X3 =
r∑

k=1

dt (v, k)I3(k),

where the indicator I3(k) = 1 iff part Vk still has at least one vertex in S.

Observe that, by definition, the parts relevant for v which we delete entirely during iteration t

are exactly the ones with I3(k) = 1. Therefore zt (v) = X3 � X2 � X1. Our strategy will be to
bound zt (v) by starting from X1 and working towards X3. By linearity of expectation,

E[X1] =
∑

k

dt (v, k)

logΔ
= dt (v)

logΔ
.

Also, since dt (v) = Θ(Δ) (see the beginning of this section), local degrees are � C, and the
number of nonzero dt (v, k) is at most Δ, we can apply Hoeffding’s inequality (Theorem 2.1) to
the sum of the terms in X1 with dt (v, k) �= 0 and conclude that

P

[∣∣X1 − E[X1]
∣∣ >

dt(v)

log2 Δ

]
� 2 exp

{
− 2

ΔC2

(
dt (v)

log2 Δ

)2}

 e− logΔ log logΔ. (2)

Next, let us estimate X2 by studying the difference X1 − X2. Reveal the random selections in
the parts activated in Phase I in order of part number (i.e., if i < j and Vi and Vj were activated,
reveal the vertex selection in Vi first). For each activated part Vi , the difference X1 − X2 will
gain dt (v, i) precisely when the selected vertex x ∈ Vi ∩ T1 is adjacent to some selected vertex
y ∈ Vj ∩T1 with j < i. Call such an event a conflict. Its probability is at most CX1

St
, because there

are at most X1 activated parts with j < i, each of their selected vertices has degree at most C

into Vi , and |Vi | � St by property P(t). Now condition on
∣∣X1 − E[X1]

∣∣ � dt (v)

2
.

log Δ
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If N � X1 is the number of parts activated in Phase I, the probability that there are � 4C
dt (v)

log2 Δ
conflicts is bounded by

(
N

4C
dt (v)

log2 Δ

)(
CX1

St

)4C
dt (v)

log2 Δ �
(

eX1

4C
dt (v)

log2 Δ

CX1

St

)4C
dt (v)

log2 Δ �
(

e

4

(
dt (v)
logΔ

+ dt (v)

log2 Δ

)2

dt (v)

log2 Δ
St

)4C
dt (v)

log2 Δ

�
(

e + 0.1

4

)4C
dt (v)

log2 Δ 
 e− logΔ log logΔ.

Here we used that St � dt (v) and Δ is sufficiently large. Since all dt (v, i) � C, each conflict
can account for a value gain of at most C in X1 − X2. Therefore, we proved that conditioned on
|X1 − E[X1]| � dt (v)

log2 Δ
,

P

[
X1 − X2 � 4C2 dt (v)

log2 Δ

]

 e− logΔ log logΔ. (3)

To estimate X3, we will use Talagrand’s Inequality (Theorem 2.2) to show that the difference
X2 − X3 is strongly concentrated. This requires a Lipschitz condition, so let us first ensure that
we have a good Lipschitz constant. Let W be the set of vertices which have at least one neighbor
in some part relevant for v. Since there are at most Dt parts relevant for v, it is easy to see that
|W | � D2

t St � (1 + ε)Δ3. For w ∈ W , let Bw be the event that at least logΔ neighbors of w

are selected for T1 in Phase I. The number of neighbors of w in a given part is at most C, so
the probability that one of them appears in T1 is � C

St logΔ
, and this happens independently for

distinct parts. Since w has neighbors in at most Δ parts and St = Θ(Δ), we obtain

P[Bw] �
(

Δ

logΔ

)(
C

St logΔ

)logΔ

�
(

eΔ

logΔ

C

St logΔ

)logΔ


 e−1.5 logΔ log logΔ.

This implies that

P

[⋃
Bw

]
� (1 + ε)Δ3e−1.5 logΔ log logΔ 
 e− logΔ log logΔ. (4)

Combining inequalities (2), (3), and (4), we see that

P

[{
dt (v)

logΔ
− 5C2 dt (v)

log2 Δ
� X2 � dt (v)

logΔ
+ dt (v)

log2 Δ

}
∩

⋂
Bw

]

= 1 − o
(
e− logΔ log logΔ

)
. (5)

Crucially, the high probability event in (5) is entirely determined by Phase I, so all of the
choices in Phase II are still independent of it. Now condition on Phase I (i.e., X2 and I2(k) are
fixed), and also on the event in (5). Perform Phase II. We will show that with high probability
the random variable R = X2 − X3 is small. Observe that since I2 � I3, and we conditioned on
Phase I,

E[R] =
r∑

k=1

dt (v, k)E
[
I2(k) − I3(k)

] =
∑

1�k�r, I2(k)=1

dt (v, k)P
[
I2(k) − I3(k) = 1

]
.

Now given that I2(k) = 1, the difference I2(k) − I3(k) will be 1 precisely when the vertex u ∈
Vk ∩ S has one of its (at most Dt ) neighbors w selected in Phase II. For each such neighbor w,
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the probability of its selection in Phase II is � 1/(St logΔ), so a simple union bound gives
P[I2(k) − I3(k) = 1] � Dt

St logΔ
. Therefore

E[R] �
∑

1�k�r, I2(k)=1

dt (v, k)
Dt

St logΔ
= X2

Dt

St logΔ
� X2

logΔ
� Θ

(
dt (v)

log2 Δ

)
,

since we conditioned on a range for X2. Next we show that R is concentrated. We conditioned
on

⋂
Bw , so changing any choice in Phase II can affect R by at most C logΔ. Therefore, R is

Lipschitz with constant C logΔ. It is also clear that R is 1-certifiable. Since dt (v) = Θ(Δ) and
R � X2 � Δ, by Talagrand’s Inequality (Theorem 2.2) we have

P

[∣∣R − E[R]∣∣ >
dt(v)

log2 Δ

]
� 4 exp

{
−Θ

((
dt (v)

log2 Δ

)2 1

8(C logΔ)2E[R]
)}

� exp

{
−Θ

(
Δ

log6 Δ

)}


 e− logΔ log logΔ.

In particular,

P

[
X2 − X3 > Θ

(
dt (v)

log2 Δ

)]

 e− logΔ log logΔ.

Therefore, with probability 1 − o(e− logΔ log logΔ),

zt (v) = X3 � X2 − Θ

(
dt (v)

log2 Δ

)
� dt (v)

logΔ
− Θ

(
dt (v)

log2 Δ

)
.

This establishes (1) and completes the proof.

5. Clique-free transversals

In this section, we study sufficient conditions for the existence of a Ks -free transversal in
graphs G with maximum degree Δ. Consider s to be a fixed parameter, and let Δ grow. We will
prove that if the local degree is o(Δ), then parts of size (1 + o(1)) Δ

s−1 are sufficient.
First, let us show that this bound is asymptotically tight via the following construction. Fix any

positive integer n < Δ+1
s−1 , and let G be a graph with vertex set V = {1, . . . ,Δ + 1} × {1, . . . , n}.

Let the parts be defined as Vi = {(i, j): 1 � j � n}, and let (i, j) and (i′, j) be adjacent for all
1 � i, i′ � Δ + 1. It is clear that G has maximum degree Δ and local degree 1. We show by
contradiction that this graph has no Ks -free transversal. Indeed, if there is such a transversal T ,
then for each j , the set of vertices (i, j) ∈ T forms a clique and hence has cardinality at most
s − 1. Yet there are only n possibilities for j , so |T | � n(s − 1) < Δ + 1. This is a contradiction,
since T must have one vertex in each of the Δ + 1 parts. Therefore, parts of size Δ

s−1 do not
guarantee a Ks -free transversal.

Proof of Theorem 1.2. Fix ε > 0 and s � 3. Let G = (V ,E) be a graph with maximum degree at
most Δ whose vertex set is partitioned into r parts V = V1 ∪ · · · ∪ Vr of size |Vi | � (1 + ε) Δ

s−1 .
Color the vertices of G with s − 1 colors such that the number of monochromatic edges is
minimal. Note that for every vertex v, there must be a color c such that the number of neighbors
of v which are colored c is at most � Δ �. Hence the minimality of the coloring implies that v
s−1
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has at most that many neighbors in its own color, or else one could obtain a better coloring by
changing the color of v to c. Now delete all edges whose endpoints have different colors, and
call the resulting graph G′. By the above argument, the maximum degree in G′ is at most � Δ

s−1�,
so G′ has an independent transversal T by Theorem 1.1. However, T is an (s − 1)-colorable
transversal in G, and so must be Ks -free. �

Observe that we did not need the local degree condition until we invoked Theorem 1.1. If we
do not have a local degree condition, we can apply Haxell’s result [10] instead, which says that
parts of size 2Δ guarantee an independent transversal in graphs with maximum degree Δ. This
immediately implies:

Proposition 5.1. Let G be a graph with maximum degree at most Δ whose vertex set is parti-
tioned into r parts V (G) = V1 ∪· · ·∪Vr of size |Vi | � 2� Δ

s−1�. Then G has a Ks -free transversal.

Phrased in terms of the function p(Δ,Ks) defined in the introduction, we have

p(Δ,Ks) � 2

⌊
Δ

s − 1

⌋
,

which is at most twice Szabó and Tardos’s lower bound (which they conjectured to be tight)

p(Δ,Ks) � s

s − 1

Δ

s − 1
.

Note that for s = 3, it matches their best upper bound, p(Δ,K3) � Δ, which they obtain as a
consequence of a result on acyclic transversals, i.e., transversals which have no cycles. So, this
simple approach provides an alternate proof of that upper bound. For s > 3, as far as we know,
this proposition gives the current best upper bound.

6. Concluding remarks

• We proved that if G is a multipartite graph with maximum degree Δ and local degree o(Δ),
then parts of size (1 + o(1))Δ will guarantee an independent transversal. It is interesting to
decide if it is possible to achieve the same result under the weaker condition that the number
of edges between any pair of distinct parts is o(Δ2).

• Let M = M(Δ) be the smallest integer such that if G is a multipartite graph with maximum
degree Δ, local degree 1, and parts of size Δ + M , then it has an independent transversal.
We showed that M = o(Δ) (in fact, this can be sharpened to Δ1−ε using our method) and
it remains an interesting problem to better estimate the function M(Δ). In particular, an
intriguing open question is to determine if M(Δ) is bounded by an absolute constant. Note
that a list coloring construction of Bohman and Holzman from [7] implies that M would
have to be at least 2, because as mentioned in the introduction, an instance of the list coloring
problem corresponds to an independent transversal problem with local degree 1.

• Let G be a graph with maximum degree Δ whose vertex set is partitioned into r equal parts
V (G) = V1 ∪ · · · ∪ Vr of size n. How large should n be to ensure that we can partition the
entire graph into a disjoint union of n independent transversals? This question is related to
the notion of strong chromatic number, see, e.g., [2,4,11]. Alon [4] proved that for a (large)
constant c, parts of size n = cΔ are enough. Haxell [11] reduced the constant to 3, and
recently even to 3 − ε, where ε can be as large as 1/4 [12]. It would be very interesting to
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determine the correct value of c, which should be at least 2 because of the construction of
Szabó and Tardos mentioned in the introduction.
However, if we impose a local degree restriction on G, our result suggests that one does not
need parts of size 2Δ. We believe that if G has maximum degree Δ and local degree o(Δ)

then parts as small as n = (1 +o(1))Δ will guarantee the existence of n disjoint independent
transversals. So far we can only prove the much weaker statement that parts of size at least
(2 + o(1))Δ are sufficient. This claim follows immediately from our main result together
with an argument of Aharoni, Berger, and Ziv. In [2] (see Theorem 5.3) they implicitly
proved that if parts of size at least f (Δ) imply that every vertex v of G is contained in
some independent transversal, then parts of size at least Δ + f (Δ) guarantee the existence
of a partition of G into independent transversals. Our result certainly implies the former
statement with f (Δ) = (1 + ε)Δ. Indeed, for any given vertex v, the local degree is o(Δ),
so we can delete o(Δ) neighbors of v from every part. Then v becomes isolated from rest of
the graph. However, the part sizes are still at least (1 + ε − o(1))Δ so by Theorem 1.1 we
can find an independent transversal among the parts not containing v, and then add v.
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