6 research outputs found

    SKYLINE QUERY PROCESSING FOR RATING DATA

    Get PDF
    As an efficient online academic information repository and information channel with crowds’ contribution, online research social platforms have become an efficient tool for various kinds of research & management applications. Social network platforms have also become a major source to seek for field experts. They have advantages of crowd contributions, easy to access without geographic restrictions and avoiding conflict of interests over traditional database and search engine based approaches. However, current research attempts to find experts based on features such as published research work, social relationships, and online behaviours (e.g. reads and downloads of publications) on social platforms, they ignore to verify the reliability of identified experts. To bridge this gap, this research proposes an innovative Topic Sensitive SimRank (TSSR) model to identify “real” experts on social network platforms. TSSR model includes three components: LDA for Expertise Extension, Topic Sensitive Network for Reputation Measurement, and Topic Sensitive SimRank for unsuitable experts detection. We also design a parallel computing strategy to improve the efficiency of the proposed methods. Last, to verify the effectiveness of the proposed model, we design an experiment on one of the research social platforms-ScholarMate to seek for experts for companies that need academic-industry collaboration

    Finding Probabilistic k-Skyline Sets on Uncertain Data

    Get PDF
    ABSTRACT Skyline is a set of points that are not dominated by any other point. Given uncertain objects, probabilistic skyline has been studied which computes objects with high probability of being skyline. While useful for selecting individual objects, it is not sufficient for scenarios where we wish to compute a subset of skyline objects, i.e., a skyline set. In this paper, we generalize the notion of probabilistic skyline to probabilistic k-skyline sets (Pk-SkylineSets) which computes k-object sets with high probability of being skyline set. We present an efficient algorithm for computing probabilistic k-skyline sets. It uses two heuristic pruning strategies and a novel data structure based on the classic layered range tree to compute the skyline set probability for each instance set with a worst-case time bound. The experimental results on the real NBA dataset and the synthetic datasets show that Pk-SkylineSets is interesting and useful, and our algorithms are efficient and scalable
    corecore