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ABSTRACT
Skyline is a set of points that are not dominated by any
other point. Given uncertain objects, probabilistic skyline
has been studied which computes objects with high proba-
bility of being skyline. While useful for selecting individual
objects, it is not sufficient for scenarios where we wish to
compute a subset of skyline objects, i.e., a skyline set. In
this paper, we generalize the notion of probabilistic skyline
to probabilistic k-skyline sets (Pk-SkylineSets) which com-
putes k-object sets with high probability of being skyline set.
We present an efficient algorithm for computing probabilistic
k-skyline sets. It uses two heuristic pruning strategies and a
novel data structure based on the classic layered range tree
to compute the skyline set probability for each instance set
with a worst-case time bound. The experimental results on
the real NBA dataset and the synthetic datasets show that
Pk-SkylineSets is interesting and useful, and our algorithms
are efficient and scalable.

1. INTRODUCTION
The skyline of a set of multi-dimensional points consists

of the points for which no other point exists that is better
in at least one dimension and at least as good along every
dimension. It is important for many applications involving
multi-criteria decision making.
Assume that we have a dataset of n points, referred to

as P . Each point p of d real-valued attributes can be rep-
resented as a d-dimensional point (p[1], p[2], ..., p[d]) ∈ Rd

where p[i] is the ith attribute of p. Figure 1(a) illustrates a
dataset of eight points P = {p1, p2, ..., p8}, each representing
an NBA player with two attributes: rank of points and rank
of assists. Without loss of generality, we assume that small
values are more preferable in this paper. Figure 1(b) shows
the corresponding points in the two dimensional space where
x and y coordinates correspond to the value of attributes for
rank of points and rank of assists, respectively. Given two
points p = (p[1], p[2], ..., p[d]) and p′ = (p′[1], p′[2], ..., p′[d])
in Rd, p dominates p′ if for every i, p[i] ≤ p′[i] and for at least
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one i, p[i] < p′[i] (1 ≤ i ≤ d). We can see that point p3(4, 2)
dominates point p6(7, 3) as an example of dominance. Given
a set of points P , the skyline of P is the set of points in P
that are not dominated by any other point in P . For an NBA
coach who is interested in choosing an NBA player consid-
ering both rank of points and rank of assists, the skyline of
Figure 1(b) includes p1, p3, and p7, which offer Pareto opti-
mal solutions with various tradeoffs between rank of points
and rank of assists: p1 is the player with best rank of points,
p7 is the player with best rank of assists, and p3 may be a
good compromise of the two factors.
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Figure 1: A skyline example of NBA players.

Motivation. Skyline is also meaningful on uncertain data.
For example, NBA players may have different performances
in different games. Assume that we have four NBA players
(Oi, 1 ≤ i ≤ 4), each player Oi has two game records or in-
stances (Ii,j , j = 1, 2) with different probabilities as shown
in Figure 2 (the eight points have the same coordinates as
the points in Figure 1). There are 24 possible worlds that
correspond to the possible states of the four uncertain ob-
jects which are shown in Table 1, each with their associated
probability. For each possible world, we can compute a set
of skyline instances, also shown in Table 1.

The first study on skyline queries on uncertain data by
Pei et al. [23] defines the probability of an uncertain ob-
ject being a skyline as the aggregated (sum) probability
of the possible worlds in which any of its instances is a
skyline point. It studied p-skyline problem which returns
the objects with skyline probability greater than a thresh-
old p. Zhang et al. [29] studied a similar problem, topk-
skyline, which returns k uncertain objects with the highest
skyline probabilities. For example, as shown in Figure 2,
the probability of NBA player O1 being a skyline, denoted
as Psky{O1}, equals to the aggregated probability of pos-
sible worlds that I1,1 or I1,2 is skyline. I1,1 is skyline in
PW1, ..., PW8 and I1,2 is skyline in PW15, PW16. Hence,
Psky{O1} =

∑8
i=1 p(PWi) +

∑16
i=15 p(PWi) = 0.775, where



p(PWi) is the probability of possible world PWi. Similarly,
Psky{O2} = 0.65, Psky{O3} = 0.625, Psky{O4} = 0.325. If
we set the threshold p = 0.6, p-skyline returns O1, O2, O3.
If we set k = 2, topk-skyline returns O1, O2.
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Figure 2: An example with uncertain objects.

While the above definitions compute individual skyline ob-
jects on uncertain data, there are scenarios where we wish
to compute a subset of skyline objects, i.e., a skyline set. For
example, an NBA coach may wish to choose a set of k best
players to compose a team. Without considering uncertain
case, a k-skyline set can be simply defined as any subset of
k skyline points (assuming k is smaller than the number of
skyline points). For uncertain data, existing works do not
consider this set notion explicitly. Intuitively, we can use p-
skyline or topk-skyline notion to choose those k objects with
highest skyline probability. However, this is not suitable as
each individual object is considered independently while we
are more interested in the set of objects with their instances
being skyline points simultaneously.

Table 1: Possible worlds semantic.
Poss.W. O1 O2 O3 O4 Prob. Skyline

PW1 I1,1 I2,1 I3,1 I4,1 0.0875 I1,1, I3,1
PW2 I1,1 I2,1 I3,1 I4,2 0.0875 I1,1, I3,1
PW3 I1,1 I2,1 I3,2 I4,1 0.0875 I1,1, I4,1
PW4 I1,1 I2,1 I3,2 I4,2 0.0875 I1,1, I3,2
PW5 I1,1 I2,2 I3,1 I4,1 0.0875 I1,1, I2,2, I3,1
PW6 I1,1 I2,2 I3,1 I4,2 0.0875 I1,1, I2,2, I3,1
PW7 I1,1 I2,2 I3,2 I4,1 0.0875 I1,1, I2,2, I4,1
PW8 I1,1 I2,2 I3,2 I4,2 0.0875 I1,1, I2,2
PW9 I1,2 I2,1 I3,1 I4,1 0.0375 I2,1, I3,1
PW10 I1,2 I2,1 I3,1 I4,2 0.0375 I2,1, I3,1
PW11 I1,2 I2,1 I3,2 I4,1 0.0375 I2,1, I4,1
PW12 I1,2 I2,1 I3,2 I4,2 0.0375 I2,1, I3,2, I4,2
PW13 I1,2 I2,2 I3,1 I4,1 0.0375 I2,2, I3,1
PW14 I1,2 I2,2 I3,1 I4,2 0.0375 I2,2, I3,1
PW15 I1,2 I2,2 I3,2 I4,1 0.0375 I1,2, I2,2, I4,1
PW16 I1,2 I2,2 I3,2 I4,2 0.0375 I1,2, I2,2, I4,2

In this paper, we extend and generalize the notion of p-
skyline which computes individual skyline objects to proba-
bilistic k-skyline sets (Pk-SkylineSets) which computes sets
of skyline objects on uncertain data. Similar to p-skyline, we
can define the probability of a set of objects being a skyline
set as the aggregated probability of the possible worlds in
which the instances of the set of objects are skyline points.
We can then compute k-skyline sets with skyline set prob-
abilities greater than a certain threshold p. Intuitively, this
gives us a set of uncertain objects that have high probabil-
ities of being skyline points simultaneously in the possible
worlds. This is semantically different from choosing topk-
skyline which consider the objects independently. For exam-
ple, If we set k = 2, topk-skyline returns O1, O2. However,
while O1, O2 have the highest probability of being a skyline
object independently, Psky{O1} > Psky{O2} > Psky{O3} >
Psky{O4}, the set of O1, O2 may not have a high probability
of being a skyline set, i.e., being skyline points simultane-
ously in the possible worlds. In fact, if we compute the sky-
line set probability, Psky{O1, O3} > Psky{O1, O2} (0.4375 >
0.425).

Another related notion on uncertain skyline by Liu et al.
[22] is named U-Skyline query. U-Skyline searches for a
set of objects that has the highest probability (aggregat-
ed from all possible worlds) as the answer. Back to Ta-
ble 1, Set {I1,1, I3,1} is the answer in PW1 and PW2, Set
{I1,1, I2,2, I3,1} is the answer in PW5 and PW6. Those t-
wo subsets are returned as U-Skyline because they have
the highest probability (0.175) aggregated from all possible
worlds. Obviously, U-Skyline is not suitable for choosing a
skyline set with fixed size because the results of U-Skyline
can have various sizes.

In summary, if we treat the skyline in each possible world
as a transaction and each skyline instance as an item, p-
skyline and topk-skyline essentially compute the most fre-
quent items, while U-skyline computes the most frequent
transactions. In this paper, we generalize the notion of p-
skyline to Pk-SkylineSets which can be considered as com-
puting frequent itemsets of size k. Obviously, p-skyline and
topk-skyline are special cases of our problem for k = 1.

Given the generalized Pk-SkylineSets problem, how can
we compute the skyline sets efficiently? Assume that we
have n objects, each object has m instances, we have N =
nm total number of instances. With the possible world se-
mantic, a direct approach is to compute the skyline for each
possible world and aggregate the results to obtain the an-
swers. Unfortunately, we have O(mn) possible worlds, each
possible world requires O(nlogn) time to compute its sky-
line points. Then the problem is converted to finding most
frequent itemsets with fixed size k from O(mn) transactions
which requires O(mnCk

n). Therefore, the total time com-
plexity is O(mnnlogn+mnCk

n) which is prohibitively costly
as n is an exponential term.

This motivates us to search for more efficient algorithms.
Alternatively, we can enumerate all k-object set from the n
objects, and compute their probability to be a skyline set.
Since each object has m instances, each object set has mk

possible worlds (instance sets). In total, we need to enumer-
ate Ck

nm
k instance sets. For each instance set, we can scan

all possible N instances to compute its probability to be a
skyline set. Thus, a baseline implementation of this method
leads to O(Ck

nm
kkN) time complexity. Because k ≪ n in

practical applications, this is much faster than the previ-
ous approach. In this paper, we investigate two efficient
pruning strategies: object pruning and instance pruning, to
further improve this method by reducing the search space.
In addition, we propose a novel algorithm to compute the
skyline set probability for each candidate instance set based
on the layered range tree which achieves a worst-case time
bound O(Ck

nm
kknlogd−1N) for the entire algorithm. This

improvement is significant because N is required in baseline
algorithm while nlogd−1N is only required in the worst-case.

Contributions. We briefly summarize our contributions as
follows.

• We propose a new probabilistic k-Skyline Sets notion
on uncertain data, called pk-SkylineSets. It generalizes
existing work for choosing individual skyline points to
choosing sets of skyline points on uncertain data and is
useful in finding Pareto solutions of subsets in practical
applications. This is the first work to study how to
choose skyline sets with fixed size on uncertain data.

• We present an efficient algorithm for computing prob-
abilistic k-skyline sets. It includes two heuristic prun-
ing strategies, object pruning and instance pruning,



which efficiently reduce the search space by reduc-
ing the number of candidate object sets and their in-
stances.

• Our algorithm computes the skyline set probability for
each instance set using a novel data structure based on
the classic layered range tree which achieves a worst-
case time bound O(Ck

nm
kknlogd−1N) for the entire

algorithm.
• We conduct comprehensive experiments on real and

synthetic datasets. Our experimental results demon-
strate that the proposed algorithms are much faster
than the baseline methods.

The rest of the paper is organized as follows. Section 2
presents the related work to probabilistic skyline. Section
3 formalizes the problem. Section 4 provides an overview
of our proposed algorithm and the two pruning strategies.
Section 5 presents the algorithm for computing skyline set
probability of candidate sets. We report the experimental
results and findings for performance evaluation in Section 6.
Section 7 concludes the paper.

2. RELATED WORK
The problem of computing skyline (Maxima) is a funda-

mental problem in computational geometry field [7, 8, 17,
16, 21] because the skyline is an interesting characterization
of the boundary of a set of points.
Since the introduction of the skyline operator by Börzsöny-

i et al. [9], skyline has been extensively studied in the
database field [24, 20]. With regard to the concept of “un-
certain”, there are two series of works: uncertain prefer-
ences [26, 25, 5, 6] and uncertain objects [23, 18, 3, 28,
19, 1, 27, 4, 22, 15]. Our work belongs to the latter. A-
mong these works, Pei et al. [23] introduced the first proba-
bilistic skyline problem, p-skyline. They presented bottom-
up and top-down algorithms to return those objects with
skyline probability larger than the given threshold p. Lian
and Chen [18] studied the monochromatic and bichromat-
ic reverse skyline search problem over uncertain databases.
Atallah and Qi [3] focused on the worst-case time complex-
ity to compute all skyline probabilities for uncertain data,
they presented an algorithm with the worst time bound of

O(N2− 1
d+1 log

d(d−1)
d+1 N) where N is the number of instances.

In their journal version [4], they improved the worst-case

time bound to O(N2− 1
d logd−1N). Independently, Afshani

et al. [1] presented the algorithm with worst-case time com-

plexity O(N2− 1
d ). Zhang et al. [28] studied the probabilis-

tic skyline operator over sliding windows. [19, 27] studied
the problem of finding an uncertain object with the maxi-
mum expected utility. Liu et al. [22] studied the problem
of searching a set of tuples that has the highest probability
(aggregated from all possible worlds) as the skyline answer.
Khalefa et al. [15] focused on the continuous datasets.
Our work focuses on uncertain data and is the first to

study how to choose skyline sets with fixed size on uncertain
data.

3. PROBLEM DEFINITIONS
In this section, we introduce some preliminary knowl-

edge and formally define the probabilistic k-skyline sets (Pk-
SkylineSets) problem.

Skyline and Skyline Sets. We start with the original
skyline definition as follows.

Definition 1. (Skyline). Given a dataset P of n points
in d-dimensional space. Let p and p′ be two different points
in P , we say p dominates p′, denoted by p ≺ p′, if for all
i, p[i] ≤ p′[i], and for at least one i, p[i] < p′[i], where p[i]
is the ith dimension of p and 1 ≤ i ≤ d. The skyline points
are those points in P that are not dominated by any other
point in P .

We extend the original skyline definition to k-skyline sets as
follows.

Definition 2. (k-SkylineSets) A k-point set is a k-Skyline
Sets (k-SkylineSets) if those k points are all skyline points.

Example 1. In Figure 1, {p1}, {p3}, and {p7} are 1-
SkylineSets, {p1, p3}, {p1, p7}, and {p3, p7} are 2-SkylineSets,
and {p1, p3, p7} is a 3-SkylineSets.

Probabilistic Data Model. Given a dataset P of n un-
certain objects in d-dimensional space. Without loss of gen-
erality, we assume each object has m possible instances. If
one object has m′ possible instances where m′ < m, we can
assume that there are m−m′ instances with probability 0.
We denote the ith object as Oi, and the jth instance of the
ith object as Ii,j , where 1 ≤ i ≤ n and 1 ≤ j ≤ m. We use
p(Ii,j) to denote the probability of instance Ii,j . We assume∑m

j=1 p(Ii,j) = 1.

Example 2. Figure 2 shows a set of uncertain objects
where n = 4,m = 2, d = 2. For example, O1 has two possi-
ble instances I1,1 and I1,2 with probabilities of 0.7 and 0.3,
respectively.

Probabilistic Skyline. For uncertain data, we need to
reason about the probability of an uncertain object to be
a skyline object. This can be computed as the aggregated
probability of each of its instances being a skyline point,
since the instances are exclusive of each other. The proba-
bility of an object Oa being a skyline is,

Psky{Oa} =

m∑
b=1

Psky{Ia,b}.

where Psky{Ia,b} is the probability of Ia,b being a skyline.
To compute the probability of Ia,b being a skyline, Psky{Ia,b},

we first define the dominating set which contains all in-
stances that can dominate Ia,b, denoted as DS{Ia,b},

DS{Ia,b} = {Ii,j(i ̸=a) | Ii,j ≺ Ia,b; i = 1, ..., n; j = 1, ...,m}.

The instances of Ol (l ̸= a) in the dominating set of Ia,b
is denoted as DSl{Ia,b},

DSl{Ia,b} = {Il,j | Il,j ∈ DS{Ia,b}; j = 1, ...,m}.

Thus, we have DS{Ia,b} =
∪n

l=1,l̸=a DSl{Ia,b}. We use

Ps(S) to denote the aggregated probability of the instances
of the same object in a set S. Therefore, the probability of
Ia,b to be skyline can be represented as follows.

Psky{Ia,b} = p(Ia,b)×
n∏

l=1,l̸=a

(1− Ps(DSl{Ia,b})).

where p(Ia,b) is the probability that Ia,b appears,
∏n

l=1,l̸=a(1−
Ps(DSl{Ia,b})) is the probability that all those instances
dominate Ia,b do not appear.

Definition 3. (p-skyline [23]) p-skyline are those objects
Oa, 1 ≤ a ≤ n with Psky{Oa} ≥ p.



Example 3. As shown in Figure 2, O1 has two instances
I1,2 and I1,1. The dominating set of I1,2 is DS{I1,2} =
{I2,1, I3,1}, which consists of the instance(s) of O2, DS2{I1,2} =
{I2,1}, and instance(s) of O3, DS3{I1,2} = {I3,1}. There-
fore, I1,2 is a skyline only when I1,2 appears and the points
in DS{I1,2} do not appear, with probability Psky{I1,2} =
p(I1,2)×(1−p(I2,1))×(1−p(I3,1)) = 0.3×0.5×0.5 = 0.075.
Similarly, Psky{I1,1} = 0.7. Therefore, the probability of O1

being a skyline is Psky{O1} = Psky{I1,1} + Psky{I1,2} =
0.775.

Probabilistic k-Skyline Sets. Now we generalize the no-
tion of probabilistic skyline to probabilistic skyline sets. Let
{Oa1 , ..., Oak} be a set of k uncertain objects, the probability
of the set being a k-SkylineSets is the aggregated probability
of each of its possible instance set being a k-SkylineSets.

Psky{Oa1 , ..., Oak} =

m∑
b1=1

...

m∑
bk=1

Psky{Ia1,b1 , ..., Iak,bk}.

(1)
Given an instance set {Ia1,b1 , ..., Iak,bk}, we can find its

dominating set as follows, which is the union of the points
dominating each instance in the set.

DS{Ia1,b1 , ..., Iak,bk} = {Ii,j(i̸=a1,...,i̸=ak) | Ii,j ∈ DS{Ia1,b1}

∪... ∪ DS{Iak,bk}; i = 1, ..., n; j = 1, ...,m}.

The instance set {Ia1,b1 , ..., Iak,bk} is a skyline set, i.e.,
all the instances are skyline points, only when each of the
instances appears and all of the points in its dominating
set do not appear. The probability can be represented as
follows.

Psky{Ia1,b1 , ..., Iak,bk} = p(Ia1,b1)× ...× p(Iak,bk)×

n∏
l=1,l̸=a1,...,l ̸=ak

(1− Ps(DSl{Ia1,b1 , ..., Iak,bk})). (2)

We note that if one instance dominates another instance
within the same instance set {Ia1,b1 , ..., Iak,bk}, e.g., Ia1,b1 ≺
Iak,bk , then Psky{Ia1,b1 , ..., Iak,bk} = 0 because Ia1,b1 , Iak,bk

cannot be skyline points simultaneously.

Example 4. Recall Figure 2, assume k = 2, we show how
to compute Psky{O1, O2}. We have Psky{I1,1, I2,1} = 0 be-
cause I1,1 ≺ I2,1 and Psky{I2,1, I1,2} = 0 because I2,1 ≺ I1,2.
For the instance set {I1,2, I2,2}, we have its dominating set,
DS{I1,2, I2,2} = {I3,1} which consists of DS3{I1,2, I2,2} =
{I3,1}. Therefore, Psky{I1,2, I2,2} = p(I1,2)× p(I2,2)× (1−
Ps(DS3{I1,1, I2,2})) = 0.3 × 0.5 × 0.5 = 0.075. Similarly,
Psky{I1,1, I2,2} = 0.35. Hence, Psky{O1, O2} = Psky{I1,1, I2,1}+
Psky{I1,1, I2,2} + Psky{I1,2, I2,1} + Psky{I1,2, I2,2} = 0 +
0.35 + 0 + 0.075 = 0.425.

Problem Statement. We now define our problem that
aims to find Pk-SkylineSets which is the k-skyline set with
the highest probability of being a skyline set.

Definition 4. (Pk-SkylineSets) Pk-SkylineSets is the k-
skyline set {Oa1 , ..., Oak} with the highest probability of
Psky{Oa1 , ..., Oak}.

4. ALGORITHM OVERVIEW
To solve the probabilistic k-Skyline Sets problem, intu-

itively, we can enumerate Ck
n candidate k-object sets, and

compute their skyline probability as defined in Equation 1.
In order to compute the skyline probability for each k-object
set, we need to enumerate mk instance sets since each object
has k possible instances. For each instance set, we can scan
all possible N instances to compute its probability to be a
skyline set as in Equation 2. Thus, a baseline implementa-
tion of this method leads to O(Ck

nm
kkN) time complexity.

Algorithm 1 Computation Pk-SkylineSets

1: object pruning (see Section 4.1).
2: instance pruning (see Section 4.2).
3: for each k-object set {Oa1 , ..., Oak

} chosen from remaining ob-
jects do

4: for each possible instance set {Ia1,b1
, ..., Iak,bk

} of the k-
object set do

5: compute Psky{Ia1,b1
, ..., Iak,bk

} (see Section 5).

6: end for
7: compute Psky{Oa1 , ..., Oak

} as in Equation 1.

8: end for
9: return the k-object set with highest probability Psky .

We propose an efficient algorithm for computing prob-
abilistic k-skyline sets. It includes two heuristic pruning
strategies, object pruning and instance pruning, which effi-
ciently reduce the search space for candidate object sets (Ck

n)
and possible instance sets of each object set (mk). The al-
gorithm then iterate through all candidate object sets from
the remaining objects, and compute its skyline probability
by enumerating the possible instance sets from remaining
instances and computing its skyline probability. It uses a
novel algorithm for computing the skyline set probability
for each instance set based on the layered range tree with
worst-case time bound O(knlogd−1N). The sketch of the
algorithm is shown in Algorithm 1. Overall, our algorithm
achieves a worst-case time bound O(Ck

nm
kknlogd−1N) while

practically it can be much more efficient.
Next we present the pruning strategies in detail. In the

remainder of this section, we assume that no two points in
P have the same coordinates. This restriction is not very
realistic, but it can be overcome with a nice trick [12].

4.1 Object Pruning
We first observe an important property of the skyline

probability. Similar to the apriori property in frequent item-
set mining [2], the skyline probability of an object set never
exceeds the skyline probability of its subsets. We present it
as a theorem below.

Theorem 1. (Monotone Property) Given any two ob-
ject (instance) subsets S1 and S2 of P , and S1 ⊆ S2, we
have Psky{S1} ≥ Psky{S2}.

Proof. We prove this theorem from possible worlds se-
mantic. For each possible world i, Psky{S1}i ≥ Psky{S2}i,
where Psky{S}i is the probability of S being a SkylineSets
in possible world i. Therefore, we can obtain Psky{S1} ≥
Psky{S2} by aggregating all possible worlds.

Based on this property, the basic idea of our pruning strat-
egy is to find an object set {Oi1, Oi2, ..., Oik} and use it to
prune object Oi if Psky{Oi} < Psky{Oi1, Oi2, ..., Oik}. The
reason is that any superset of Oi will have skyline probabil-
ity ≤ Psky{Oi}, hence cannot exceed Psky{Oi1, Oi2, ..., Oik}.
The next question is how to choose the set {Oi1, Oi2, ..., Oik}.



The higher Psky{Oi1, Oi2, ..., Oik}, the more objects can be
pruned. To this end, our idea is to compute the skyline
probability for each single object Oi and select the k ob-
jects with highest Psky{Oi}. The intuition is that this set
will likely have a high skyline set probability, although by
no means it is guaranteed to have the highest probability.
We summarize the pruning process in Algorithm 2. This
pruning strategy proves to be very beneficial in practice as
we show later in our experiments. As we recall the overall
time complexity O(Ck

nm
knlogN), it is easy to see the factor

Ck
n has a large impact because O(Ck

n) ≈ O(nk). By reduc-
ing the number of objects (n), although without worst-case
guarantee, it can improve the time efficiency significantly in
practice.

Algorithm 2 Object pruning

1: for i=1 to n do
2: compute Psky{Oi}.
3: end for
4: choose k objects, {Oi1, ..., Oik}, with highest Psky{Oi}, compute

Psky{Oi1, ..., Oik}.
5: for i=1 to n do
6: if Psky{Oi} < Psky{Oi1, ..., Oik} then
7: delete Oi directly.
8: end if
9: end for

Example 5. Recall the example in Figure 2, we can com-
pute Psky{O4} = 0.325 and Psky{O1, O2} = 0.425. Hence,
O4 can be pruned directly.

4.2 Instance Pruning
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Figure 3: Instance pruning example.

The intuition of the instance pruning strategy is that if an
instance is dominated by all possible instances of another
object, then we can prune it directly. The reason is that
the probability of it being a skyline point is 0, and hence
the probability of any of its superset being a skyline set is
also 0 based on the monotone property. The challenge is
that it is time consuming to check whether an instance is
dominated by all possible instances of each object. Hence,
our idea is to compute a minimum bounding rectangle for
all possible instances of each object. Then if an instance
is dominated by its maximum corner, it is dominated by all
the instances in the box. Formally, given an uncertain object
Ol and let Ilmax = (maxm

j=1{Il,j [1]}, ...,maxm
j=1{Il,j [d]}) be

the maximum corner of the minimum bounding rectangle of
Ol. Note that Ilmax is not necessarily an actual instance of
Ol. In this case, we treat it as a virtual instance.

Theorem 2. For any instance Ii,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m,
if it can be dominated by any of Ilmax , l ̸= i, 1 ≤ l ≤ n, then
Psky{Ii,j} = 0.

Proof. Psky{Ii,j} = p(Ii,j)×
∏n

l̸=i,l=1(1−Ps(DSl{Ii,j})).
Because Ilmax ≺ Ii,j , i.e., Il,1 ≺ Ii,j , Il,2 ≺ Ii,j , ..., Il,m ≺
Ii,j . Thus, Ps(DSl{Ii,j}) = 1. Therefore, Psky{Ii,j} =
0.
Together with Theorem 1, the probability of any instance
set containing Ii,j being a skyline set is also 0. Hence, we
can prune Ii,j directly. For example, in Figure 3, we com-
pute the maximum corners of the minimum bounding box of
O1, O2, O3, O4, which are shown as crosses. Those instances
on the upper right of the four crosses can be deleted directly.

5. COMPUTING SKYLINE SET PROBABIL-
ITY FOR INSTANCE SET

The key step of Algorithm 1 is to compute the skyline
set probability Psky{Ia1,b1 , ..., Iak,bk} given an instance set
{Ia1,b1 , ..., Iak,bk}. A naive way is to scan all remaining
O(N) instances after pruning to find the dominating set of
the instance set which takes O(kN) time. In this section,
we present a novel algorithm based on the layered range tree
which achieves O(knlogd−1N) worst-case time bound.

It is easy to see that the key to the probability computa-
tion is Equation 2, i.e., to find those instances in the range
that can dominate any of the instances in {Ia1,b1 , ..., Iak,bk}.
Going back to Figure 2, and take {I1,2, I2,2} as an example.
There are three instances I1,1, I2,1, I3,1 that can dominate
{I1,2, I2,2}. Since I1,2 and I2,2 exclude I1,1 and I2,1 respec-
tively, we have the dominating set DS{I1,2, I2,2} = I3,1. To
summarize, the key operation here is to retrieve all instances
from the range shown with bold line. In order to find the
dominating instances efficiently, we use a range query data
structure, layered range tree, as an index to enhance the
search process. In addition, we augment the layered range
tree with cumulative information in order to compute the
skyline set probability efficiently.

We first provide a brief description of the layered range
tree in Section 5.1. We show how to build an augmented
cumulative layered range tree in two dimensional space with
time complexity O(NlogN) in Section 5.2. We then show
how to compute the skyline set probability for each instance
set in O(knlogN) in Section 5.3. Finally, we show how to
extend it to higher dimensional space in Section 5.4. The
reasons why we employ layered range tree rather than R-tree
[14] are: i) R-tree cannot provide good worst-case guarantee,
ii) it is not easy to adapt R-tree to report the cumulative in-
formation which is required for the probability computation
due to the irregularity of MBRs.

5.1 Layered Range Tree
Layered Range Tree [12]. Let P be a set of N points

in d-dimensional space. A layered range tree for P can be
constructed in O(Nlogd−1N) time. With this layered range
tree one can report the points in P that lie in a rectangular
query range in O(logd−1N + v) time, where v is the number
of reported points.

The layered range tree of Figure 1 is shown in Figure 4.
The main tree is essentially a binary search tree based on
the x-coordinate of the points. Each node ni has an associ-
ated structure ai. The detailed associated structure of Fig-
ure 4 implemented by the fractional cascading technique



[11, 10] is shown in Figure 5. Each subset of P associat-
ed with a node is stored in an array which is sorted on the
y-coordinate of the points. Each element in the associated
structure a(v) of node v stores a point and two pointers: a
pointer to the associated structure of the left child of node
v, denoted by a(lc(v)), and a pointer to the associated struc-
ture of the right child of node v, a(rc(v)). In more detail,
assume that the (i + 1)th element of a(v), a(v)[i], stores a
point p(px, py). Then we store a pointer from a(v)[i] to the
element of a(lc(v)) storing p′(p′x, p

′
y) such that p′y is the s-

mallest one that is larger than or equal to py. The pointer to
a(rc(v)) is defined in the same way: it points to the element
of a(rc(v)) storing p′′(p′′x, p

′′
y ) such that p′′y is the smallest

one that is larger than or equal to py.
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Figure 4: A layered range tree example.
Example 6. The fractional cascading technique is shown

in Figure 5. The 5th element of the associated structure
a1 of node n1, denoted by a1[4], has two pointers. Its left
pointer points to element a2[1] in the associated structure
a2 of node n2 (the left child of n1) because the y-coordinate
of the point p stored in a2[0], denoted by a2[0].py, we have
a2[0].py < a1[4].py (2 < 5) and a2[1].py = a1[4].py (5 =
5). Its right pointer points to element a3[3] in the associ-
ated structure a3 of node n3 (the right child of n1) because
a3[2].py < a1[4].py (4 < 5) and a3[3].py > a1[4].py (7 > 5).

Given a range query on layered range tree, we go through
the main tree to find all the nodes that are associated with
the range on the x-coordinate. And then, for the corre-
sponding associated structures of those nodes, we find those
points in the range by the pointers of fractional cascading
technique based on the y-coordinate.

5.2 Building Cumulative Layered Range Tree
Given an instance Ii,j , we know that with layered range

tree, we can retrieve the points (instances) in P that lies in
a rectangular query range, i.e., the dominating instances of
Ii,j , in O(logN+v) time, where N is the number of instances
and v is the number of reported instances. Unfortunately, v
can be as large as N which leads to O(N) time complexity,
i.e., no improvement for the worst-case time complexity be-
cause we can achieve O(N) by scanning all the N instances.
Analyzing the expression of O(logN + v), part logN is re-
quired because we need to scan O(logN) nodes on the tree,
part v is required if we need to report all the points in the
rectangular range individually. Fortunately, we do not need
to retrieve those v points individually, we just need to know
the cumulative probability information of those v points, in
order to compute the skyline set probability. This is simi-
lar to range count, in which case, we do not need to report

all v points individually, we only need to know the cumu-
lative count, i.e., how many points there are. If we could
build an index structure that can report those cumulative
information in O(logN) time, then the range query can be
finished in O(logN) time. And our goal is to build such an
index structure in O(NlogN) time. In the follows, we show
how the accumulative information is defined and then show
how to build the accumulative layered range tree with such
accumulative information.

Recall the query processing of layered range tree. For
any query range [x, x′], [y, y′], we need to search those nodes
in [x, x′] based on the main tree in O(logN) time. Then we
need to search [y, y′] in those O(logN) associated structures.
Hence, if those associated structures record some cumulative
information and it can be obtained in constant time, then
we can finish the entire search in O(logN) time. Unfortu-
nately, for each associated structure with N ′ elements and
a random range [y, y′], there are O(N ′2) different combina-
tions of elements corresponding to different combinations of
y and y′ for which we need to store the cumulative informa-
tion. It is both time and space consuming to compute and
store such information. Fortunately, in our problem as we
will show later, we can always decompose the query range
into several [x, x′], [0, y′] ranges. Given a [0, y′] range, there
are only O(N ′) different combinations of the elements cor-
responding to different y′ for which we need to store the
cumulative information. We formally define the cumulative
information of each element as follows.

Definition 5. (Cumulative Information). For the (j+
1)th element of ith associated structure ai, denoted by ai[j],
its corresponding cumulative information C(ai[j]) is an ar-
ray of n elements (recall n is the number of uncertain ob-
jects) recording the aggregated probability of the points (in-
stances) stored at ai[0], ai[1], ..., ai[j]. The lth element of
the accumulative information array records the aggregated
probability of those instances corresponding to object Ol.

Example 7. The associated structure of the cumulative
layered range tree of Figure 2 is shown in Figure 5. Each
element in the associated structure stores an accumulative
information array. In the root associated structure a1, for
the element of I2,2, i.e., a1[0], we store [0, 0.5, 0, 0] because
probability of I2,2, p(I2,2) = 0.5. For the element of I3,1, i.e.,
a1[1], we store [0, 0.5, 0.5, 0] because it records the aggregated
probability of two instances I2,2 and I3,1.

In our accumulated layered range tree, in addition to s-
toring the point and the pointers in each element of the
associated structure, we store the accumulative information
array in this element.

We now show how to build the accumulative layered range
tree. The detailed algorithm is shown in Algorithm 3. Line
1-10 is similar to constructing layered range tree which can
be finished in O(NlogN) time. Line 1 constructs the asso-
ciated structure, such as a1 in Figure 5. Line 2 determines
the terminal condition. P is split into two subsets Pleft and
Pright by xmid in Line 5. Line 6 and 7 recursively compute
the cumulative layered range tree of Pleft and Pright. Line
8 creates the main tree by xmin, such as n1 in Figure 4.
Fractional cascading technique is used in Line 9. The cu-
mulative information of each element is computed in Line
11-15. For the cumulative information of each element ai[j],
we need to add the probability of the instance Il,k stored in



Algorithm 3 Build 2D Cumulative Layered Range Tree(P )

1: construct the associated structure: build an array a(v) which is
sorted on the y-coordinates of the points in P .

2: if P contains only one point then
3: create a leaf v storing this point, and make a(v) the associated

structure of v;
4: else
5: split P into two subsets; one subset Pleft contains the points

with x-coordinate less than or equal to xmid, the median x-
coordinate, and the other subset Pright contains the points
with x-coordinate larger than xmid;

6: vleft ← Build2DCumulativeLayeredRangeTree(Pleft);
7: vright ← Build2DCumulativeLayeredRangeTree(Pright);
8: create a node v storing xmid, make vleft the left child of v,

make vright the right child of v, and make a(v) the associated
structure of v;

9: add pointers from a(v) to a(vleft(right)) by fractional cascad-
ing technique as we described in Section 5.1;

10: end if
11: for each associated structure do
12: for each element of associated structure do
13: compute cumulative information;
14: end for
15: end for

element ai[j] to the lth element (corresponding to object Ol)
of the cumulative information of ai[j−1]. There are in total
O(NlogN) elements in the associated structures. Therefore,
we can compute the cumulative information in O(NlogN)
time. Because Line 1-10 can be finished in O(NlogN), we
obtain a theorem as follows.

Theorem 3. Algorithm 3 can be finished in O(NlogN)
time.
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Figure 5: A cumulative layered range tree example.

5.3 Cumulative Layered Range Tree Queries
Given the cumulative layered range tree built in Section

5.2, we illustrate how to compute the skyline set proba-
bility Psky{Ia1,b1 , ..., Iak,bk} in O(knlogN) time. We first
show how to query the cumulative information of a range
[x, x′], [0, y′] in O(logN) time in Algorithm 4. It works by
finding the nodes in the main tree corresponding to the range
[x, x′], and then reporting the accumulative information in
the associated structures corresponding to the range [0, y′].
We search the first node vsplit such that x ≤ vsplit < x′ in
Line 1. If vsplit is a leaf node, we report its cumulative in-
formation. Otherwise, we follow the path from lc(vsplit) to
x and report the cumulative information associated with its
right subtrees (≥ x). For each node v on the path, if x ≤ xv,

we report the cumulative information of right child of v and
make left child of v be the new v. Otherwise, we make right
child of v be the new v. If v is a leaf, we just report the
cumulative information. Then similarly, we follow the path
from rc(vsplit) to x′ and report the cumulative information
associated with its left subtrees (< x′).

Algorithm 4 2D Cumulative Layered Range Query

1: from root, find the first node vsplit that x ≤ vsplit < x′.
2: if vspilt is a leaf then
3: report the cumulative information;
4: else
5: //follow the path to x and report the cumulative information

in right subtrees;
6: v ← lc(vsplit);
7: while v is not a leaf do
8: if x ≤ xv then
9: report the cumulative information of rc(v);
10: v ← lc(v);
11: else
12: v ← rc(v);
13: end if
14: end while
15: check if the cumulative information stored at v must be re-

ported;
16: similarly, follow the path from rc(vsplit) to x′, report the cu-

mulative information in left subtrees, and check if the cumu-
lative information stored at the leaf where the path ends must
be reported.

17: end if

From the root to leaves, we need to scan O(logN) nodes:
O(logN) to x and O(logN) to x′. To report the cumula-
tive information corresponding to [0, y′], we need to be a
bit careful. If we report cumulative information of each n-
ode by binary search to determine y′ individually, it requires
O(logN) for each node. However, by the technique of frac-
tional cascading, we can use binary search to find the cumu-
lative information in root node, and use the pointers to find
the cumulative information in its children and grandchildren
in constant time. Therefore, we obtain a theorem as follows.

Theorem 4. Algorithm 4 can be finished in O(logN) time.

Given an instance Ia,b, we can query the cumulative infor-
mation of those instances in a rectangular range that domi-
nates Ia,b using the cumulative layered range tree as above.
After obtaining those O(logN) cumulative information ar-
rays each with n elements, we sum those O(logN) arrays,
the lth element is the sum of all lth elements of the O(logN)
arrays, which is equal to Ps(DSl{Ia,b}) used in Equation 2,
the aggregated probability of all instances corresponding to
object Ol that dominate Ia,b. We can then use Equation 2 to
compute the skyline set probability Psky{Ia,b}. Therefore,
we can obtain the theorem as follows.

Theorem 5. Given any instance Ia,b, Psky{Ia,b} can be
computed in O(nlogN) time.

Example 8. We show how to compute Psky{I1,2}. Be-
cause the coordinate of I1,2 is (5, 9), we set the query range
as [0, 5), [0, 9). First, we need to query [0, 5) in the main
tree of Figure 4. We determine vsplit by a binary search
algorithm, which is node n2. Because 0 is smaller than
the x-coordinate of node lc(n2), i.e., 1. We report the cu-
mulative information of the associated structure of rc(n2)
which is a9. Follow the algorithm, we need to report the
cumulative information of associated structure a9, a8, a10.



Follow the pointers from element of a1 to associated struc-
ture a9, a8, a10, we determine the cumulative information,
[0, 0.5, 0, 0], [0.7, 0, 0, 0], and [0, 0, 0.5, 0], respectively. The
sum is [0.7, 0.5, 0.5, 0]. Therefore, Psky{I1,2} = p(I1,2) ×
(1− 0.5)× (1− 0.5)× (1− 0) = 0.075.

Given an instance set, we need to decompose the domi-
nating range into multiple rectangular ranges with the re-
quirement that the range of y coordinates in each rectangle
begins with 0. For k instances Ia1,b1 , ..., Iak,bk , without lose
of generality, assume a1 < ... < ak, then it is easy to see
b1 > ... > bk, otherwise, some point of those k points will
dominate another one. We decompose the dominating range
into k query ranges as [0, a1), [0, b1) then (a1, a2), [0, b2) and
so on. Therefore, we can query the cumulative information
associated with each range to compute the skyline set prob-
ability. We can obtain a theorem as follows.

Theorem 6. Given any instance set {Ia1,b1 , ..., Iak,bk},
Psky{Ia1,b1 , ..., Iak,bk} can be computed in O(knlogN) time.

Example 9. We show how to compute Psky{I2,1, I4,1}.
Because the coordinates of I2,1, I4,1 are (3,8), (7,3), respec-
tively. We decompose the query range as [0,3), [0,8) and
(3,7), [0,3). For [0,3), [0,8) and (3,7), [0,3), we obtain the
cumulative information [0.7,0,0,0], [0,0,0.5,0], respectively.
Therefore, Psky{I2,1, I4,1} = (1− 0.7)× p(I2,1)× (1− 0.5)×
p(I4,1) = 0.0375.

5.4 Higher Dimensional Space
It is fairly straightforward to generalize two dimensional

cumulative layered range tree to higher dimensional space.
Let P be a set of N points in d-dimensional space. The
first d−2 dimensions can be processed by traditional layered
range tree and the last two dimensions can be handled by the
algorithms shown in Section 5.2 and 5.3. Detailed discussion
is omitted due to the limited space.

6. EXPERIMENTS
In this section, we first study the effectiveness of Pk-

SkylineSets on real NBA dataset and then perform an exten-
sive empirical study to examine the heuristic pruning strate-
gies and the skyline set probability computation algorithm
based on layered range tree on synthetic and real datasets.
Since this is the first work for k-skyline sets on uncertain da-
ta, our performance evaluation was conducted against base-
line only. We implemented the following algorithms.

• BL: BaseLine algorithm with worst-case time com-
plexity O(Ck

nm
kkN).

• RT: The algorithm based on cumulative layeredRange
Tree index structure with worst-case time complexity
O(Ck

nm
kknlogd−1N) without pruning.

• HBL: We first use the twoHeuristic pruning strategies
and then use BaseLine algorithm.

• HRT: This is our complete algorithm. We first use
the two Heuristic pruning strategies and then use our
algorithm based on cumulative layered Range Tree in-
dex structure.

6.1 Experiment Setup
We implemented all algorithms in C++ and ran experi-

ments on a machine with Intel Core i7 running Ubuntu with
8GB memory. For the layered range tree index structure,
we adapted the implementation of [13]. We used both real
NBA dateset and synthetic datasets in our experiments.

6.2 Effectiveness of Pk-SkylineSets
We first demonstrate the effectiveness of Pk-SkylineSets

through a small real NBA dataset. We chose 42 players
with the highest skyline probability in Table 2 of Pei et al.
[23]. We downloaded their recent ten years’ statistics from
http://www.basketball-reference.com. Please note that the
career years of some players are less than ten years and some
players stopped their career several years ago. We treat each
player as an uncertain object and the annual records of each
player as the instances of the object. Three attributes are
selected in our experiment: points (PTS), assists (AST),
and rebounds (REB). The larger those attribute values, the
better. We show how to choose five players to compose a
“gold team”. Therefore, in this NBA dataset, n = 42,m =
10, d = 3, k = 5.

Table 3: Skyline probability of sets.
ID Set Prob. ID Set Prob.
0 {0,1,3,9,21} 0.597696 4 {0,3,9,10,21} 0.431482
1 {0,1,3,10,21} 0.488009 5 {0,3,7,9,21} 0.431089
2 {0,1,3,7,21} 0.479059 6 {0,1,7,9,21} 0.426672
3 {0,1,9,10,21} 0.437064 7 {1,3,7,9,21} 0.42394

The skyline probabilities of the individuals and the sets
are shown in Table 2 and 3, respectively. Table 2 shows the
skyline probabilities of those 42 players. Because we only
consider 42 players while [23] considered 1313 players, the
skyline probabilities as well as the resulting p-skyline play-
ers in our experiment are much higher than and different
from those in Table 2 of [23]. For example, Magic John-
son has the highest probability in our example because he
did very well in his last ten years career while not so good
between 1991 and 2005 (stopped in 1996). The probabil-
ities of the sets being a skyline set are shown in Table 3.
Since there are C5

42 = 850668 candidate sets from the 42
players, we only show the first 8 sets with highest proba-
bilities. We can see that the first five players ({0,1,3,9,21})
with highest skyline probability in Table 2 compose the Pk-
SkylineSets with highest skyline set probability. However,
Psky{0, 1, 3, 10, 21} is higher than Psky{0, 1, 3, 7, 21} while
the only differing player Michael Jordan (ID=7) has higher
skyline probability than Chris Webber (ID=10). The results
verify that the set of objects with higher individual skyline
probabilities does not necessarily lead to higher skyline set
probability.

6.3 Efficiency and Scalability
We use both real NBA dataset and synthetic dataset-

s to study the efficiency and scalability of our methods.
We downloaded recent ten years’ statistics of 1000 players
from http://www.basketball-reference.com/ with two more
attributes (steals (STL) and blocks (BLK)) than Section 6.2,
which composes the NBA dataset. We also generated in-
dependent (INDE), correlated (CORR), and anti-correlated
(ANTI) datasets following the seminal work of [9]. For the
uncertain case, we generalized uncertain instances following
the method of [23].

We first study the efficiency of the four algorithms on
INDE dataset (m=10,k=5,d=5). In Figure 6, we show the
time cost for BL, RT, HBL, and HRT on different number
of objects n. Although both RT and BL are fairly slow, RT
is significantly faster than BL, which validates the efficiency
of our probability computation algorithm based on layered
range tree. HBL and HRT are much faster than BL and RT,
which validates the benefit of our pruning strategies. In the



Table 2: Skyline probability of individuals.
ID Name Probability ID Name Probability ID Name Probability
0 LeBron James 0.905062 14 Dwyane Wade 0.358879 28 Steve Francis 0.10701
1 Dennis Rodman 0.839869 15 Tracy Mcgrady 0.265222 29 Dirk Nowitzki 0.063802
2 Shaquille O’Neal 0.453626 16 Grant Hill 0.027655 30 Paul Pierce 0.012171
3 Charles Barkley 0.693831 17 John Stockton 0.108985 31 Gary Payton 0.390831
4 Kevin Garnett 0.400346 18 David Robinson 0.307053 32 Baron Davis 0.150622
5 Jason Kidd 0.393144 19 Stephon Marbury 0.202866 33 Vince Carter 0.002854
6 Allen Iverson 0.440725 20 Tim Hardaway 0.291563 34 Antoine Walker 0.187002
7 Michael Jordan 0.609803 21 Magic Johnson 0.928804 35 Steve Nash 0.118144
8 Tim Duncan 0.049988 22 Chris Paul 0.327774 36 Andre Miller 0.003283
9 Karl Malone 0.664875 23 Gilbert Arenas 0.120904 37 Isiah Thomas 0.219151
10 Chris Webber 0.567586 24 Clyde Drexler 0.188748 38 Elton Brand 0.011283
11 Kevin Johnson 0.328127 25 Patrick Ewing 0.136455 39 Scottie Pippen 0.081097
12 Hakeem Olajuwon 0.357442 26 Rod Strickland 0.073434 40 Dominique Wilkins 0.209298
13 Kobe Bryant 0.345385 27 Brad Daugherty 0.098185 41 Lamar Odom 0.157486
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Figure 6: The impacts of RT and BL on different n.

following experiments, because the time cost of RT and BT
are prohibitively high, we only compare HRT and HBL.
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Figure 7: The impacts of different k, d on NBA
dataset.

Study on NBA dataset. Figure 7 shows the results on
different k and d. The time cost grows exponentially with k
and HRT significantly outperforms HBL. We did not report
the result of HBL algorithm for some figures due to the high
cost when k is big. The time cost also grows exponentially
with d, HRT significantly outperforms HBL when d is small.
However, when d is big, the difference is small due to the
effect of “curse of dimensionality”.

Study on Synthetic datasets. The results for the syn-
thetic datasets are shown in Figure 8, 9, and 10. Generally
speaking, the time cost for ANTI dataset is higher than
INDE, and the time cost for INDE is higher than COR-
R. This is easy to understand because more instances are
pruned in CORR dataset by our heuristic pruning strate-
gies. On the other hand, it is harder to prune instances in
ANTI dataset. From the global perspective, our algorithms

are shown to be efficient and scalable, most of our experi-
ments can be finished in 106 ms.

The impacts of different n are shown in (a) of Figure 8, 9,
and 10 (m=10, k=5, d=5). Although the time complexity
Ck

nm
kknm < Ck

nm
kknlognm when m is small, HRT is much

faster than HBL. There are two reasons: 1) the number of
objects is much smaller than n after using heuristic pruning
strategies, 2) the factor nlognm of HRT is the worst-case
while the factor nm is required. Comparing HRT to RT in
Figure 6, HRT is almost 104 times faster than RT. Similar
improvement can be observed for HBL and BL.

The impacts of different m are shown in (b) of Figure 8,
9, and 10 (n=1k, k=5, d=5). When m = 10 and m = 100,
the time cost is fairly small because we can prune most
of the instances in the heuristic pruning phase. However,
when m = 1k, HRT can finish in 106 ms but HBL re-
quires too much time which was not reported. The reason is
that when m is big, although we can prune some instances,
those objects with highest probability to be a skyline can-
not be pruned and each object has m instances. For ex-
ample, even when n = 10,m = 1k, Ck

nm
kN = 4.5 × 1011

while Ck
nm

knlogN = 6 × 109 and as we discussed before,
Ck

nm
knlogN is the worst-case.

The impacts of different k are shown in (c) of Figure 8, 9,
and 10 (n=1k, m=10, d=5). The set size k has significant
effect on both HBL and HRT because k is the exponential
term. Again, HRT outperforms HBL significantly.

The impacts of different d are shown in (d) of Figure 8,
9, and 10 (n=1k, m=10, k=5). They show that HRT is
much faster than HBL when d is small. But the time cost of
HRT grows exponentially because d is the exponential term.
The time cost of HBL should increase linearly. However, in
the experiment, Figure 10(d) shows that the time cost of
HBL grows exponentially, the reason is when d increases, it
is hard to prune instances by heuristic pruning strategies on
ANTI datasets. Because most of the instances are pruned
on CORR datasets, Figure 9(d) shows the time cost of HBL
almost does not change for different d.

7. CONCLUSIONS
In this paper, for the first time, we studied probabilistic

k-skyline sets problem on uncertain data. We show two sig-
nificant heuristic pruning strategies which are efficient and
simple. We adapted the classic layered range tree index
structure to enhance the baseline algorithm from worst-case
time bound aspect. The idea should be of independent in-
terest for other problems. The experimental results on the
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Figure 8: The impacts of different n,m, k, d on INDE dataset.

1k 10k 100k 1m
10

0

10
2

10
4

10
6

number of objects n

tim
e(

m
s)

 

 

HRT
HBL

(a) different n

10 100 1k
10

0

10
2

10
4

10
6

instances in each object m

tim
e(

m
s)

 

 

HRT
HBL

(b) different m

2 3 4 5
10

0

10
2

10
4

10
6

set size k

tim
e(

m
s)

 

 

HRT
HBL

(c) different k

2 3 4 5
10

0

10
2

10
4

10
6

number of dimensions d

tim
e(

m
s)

 

 

HRT
HBL

(d) different d

Figure 9: The impacts of different n,m, k, d on CORR dataset.
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Figure 10: The impacts of different n,m, k, d on ANTI dataset.

real NBA dataset and the synthetic datasets show that Pk-
SkylineSets is interesting and useful, and our algorithms are
efficient and scalable.

Acknowledgement
This research is partially supported by the Air Force Of-
fice of Scientific Research (AFOSR) DDDAS Program under
award number FA9550-12-1-0240, the National Natural Sci-
ence Foundation of China (Grant No. 11271351) and Guang-
dong Science and Technology Program Fund 2013B091300019.

8. REFERENCES
[1] P. Afshani, P. K. Agarwal, L. Arge, K. G. Larsen, and J. M. Phillips.

(approximate) uncertain skylines. In ICDT, pages 186–196, 2011.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In VLDB, 1994.

[3] M. J. Atallah and Y. Qi. Computing all skyline probabilities for uncertain
data. In PODS, pages 279–287, 2009.

[4] M. J. Atallah, Y. Qi, and H. Yuan. Asymptotically efficient algorithms for
skyline probabilities of uncertain data. ACM Trans. Database Syst., 36(2):12,
2011.

[5] I. Bartolini, P. Ciaccia, and M. Patella. The skyline of a probabilistic
relation. IEEE Trans. Knowl. Data Eng., 25(7):1656–1669, 2013.

[6] I. Bartolini, P. Ciaccia, and M. Patella. Domination in the probabilistic
world: Computing skylines for arbitrary correlations and ranking
semantics. ACM Trans. Database Syst., 39(2):14, 2014.

[7] J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM,
23(4):214–229, 1980.

[8] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the
average number of maxima in a set of vectors and applications. J. ACM,
25(4):536–543, 1978.
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