
Association for Information Systems
AIS Electronic Library (AISeL)

PACIS 2016 Proceedings Pacific Asia Conference on Information Systems
(PACIS)

Summer 6-27-2016

SKYLINE QUERY PROCESSING FOR
RATING DATA
Shu-I Chiu
National Chengchi University, d9706@cs.nccu.edu.tw

Kuo-Wei Hsu
National Chengchi University, hsu@cs.nccu.edu.tw

Follow this and additional works at: http://aisel.aisnet.org/pacis2016

This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been
accepted for inclusion in PACIS 2016 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please
contact elibrary@aisnet.org.

Recommended Citation
Chiu, Shu-I and Hsu, Kuo-Wei, "SKYLINE QUERY PROCESSING FOR RATING DATA" (2016). PACIS 2016 Proceedings. 305.
http://aisel.aisnet.org/pacis2016/305

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301369538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fpacis2016%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2016?utm_source=aisel.aisnet.org%2Fpacis2016%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2016%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis?utm_source=aisel.aisnet.org%2Fpacis2016%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2016?utm_source=aisel.aisnet.org%2Fpacis2016%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/pacis2016/305?utm_source=aisel.aisnet.org%2Fpacis2016%2F305&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

SKYLINE QUERY PROCESSING FOR RATING DATA

Shu-I Chiu, Department of Computer Science, National Chengchi University, Taipei, Taiwan,
d9706@cs.nccu.edu.tw

Kuo-Wei Hsu, Department of Computer Science, National Chengchi University, Taipei,
Taiwan, hsu@cs.nccu.edu.tw

Abstract
Although electronic commerce has been developed and deployed for more than two decades, an
essential problem remains: How to help customers efficiently find the products that they want? Skyline
queries were proposed to address the problem, and we study the skyline queries defined on rating data.
A product is represented by attributes each of which is an aspect that customers perceive it and can be
individually rated, and ratings given by some consumers to it can be aggregated to assist in processing
queries for product search. Therefore, our approach uses the rating data to get more suitable search
results for customers. We first define the skyline query upon ratings and then propose an algorithm for
its processing. We further propose a presorting method to speed up the whole computation. Results
from experiments indicate that by using the proposed method the execution time can be notably
shortened.

Keywords: Electronic Commerce, Product Search, Rating, Skyline Query Processing

1. INTRODUCTION

Soon after the rise of the Internet, electronic commerce started to evolve, expand, and effect many
important changes in the world of business. It has been developed and deployed for more than two
decades, but an essential problem remains: How to help customers efficiently find the products that
they want? Aiding customers is to advance business, the first B in B2B (Business-to-Business). The
customer can be the C in B2C (Business-to-Consumer) or the second B in B2B. From the database
perspective, skyline query was proposed to address the problem of searching the database for products
that best satisfy customers’ requirements.

In recent years, skyline query has become a popular topic because it can be used to efficiently filter
data records or tuples of several attributes. An attribute is a perspective on a tuple. A skyline is defined
as a set of tuples that are not dominated by any other tuples. A tuple dominates another tuple if it is
equally good or better in all attributes and better in at least one attribute. Let us consider the classic
example: If we look for inexpensive hotels near a beach, a skyline query can choose hotels that are
either less expensive or closer to the beach. If there is a more expensive hotel far from the beach, it
will not be selected in a skyline. In this case, the skyline will only contain those hotels that are not
worse than any other hotel in the price and the distance to the beach. The skyline tuples are considered
to be important because they exhibit the three properties (Liu 2013):

 Skyline tuples are not dominated by any tuple outside the skyline set.

 Skyline tuples do not dominate each other, i.e., they hold on to their own importance in skyline
against each other.

 All skyline tuples dominate all the non-skyline tuples, i.e., each non-skyline tuple is dominated
by at least one skyline tuple.

If a tuple is a product and each of its attributes represent an aspect that customers perceive it, the
skyline query performs filtering so that it keeps only those products that are not worse than any other
product when all aspects are taken into consideration. It is widely used in multi-criteria decision
making, and it helps people make intelligent decisions over complex data, where multiple criteria are
considered (Soliman 2007, Wu 2006). Skyline tuples are “the best” under some monotonic preference
function. As shown later in this paper, we propose monotonic aggregation functions for the particular
type of data that we consider.

Today, there are many websites that allow or even encourage customers to express their experiences in
products by rating them or assigning ratings to them. This is the customers’ evaluation. When a
customer wants to buy a product, he or she can consult these ratings to make a decision. Given a
database of rating data, where a tuple is a rating given by a customer to a product in a certain category,
we would like to search all the products in the category for the one having the best overall rating; or, if

a tuple in the given database is a rating given by a customer to a vendor of a product, we would like to
find the vendor having the best overall rating.

Let us consider the classic example again: A skyline query is to search for hotels that have high quality
ratings and low prices. Generally, the hotels with high quality ratings tend to be expensive, and hotels
with low prices are of low quality. There is one price but are many ratings attached to the hotel (or
more precisely, some rooms in some season). Moreover, the ratings are given on several attributes, and
hence the data is multi-dimensional data. What we want to find are not ratings on the skyline but the
target or object (e.g. the hotel) to which the ratings are given; this is the reason why the traditional
skyline query cannot be applied to rating data. Therefore, the problem that we address in this paper can
be described as follows: How to efficiently find targets or objects that are not dominated by any other
target or object in all aspects by using ratings or scores given to them?

The remainder of this paper is organized as follows: We briefly review the related work in Section 2,
describe the proposed method in Section 3, report results from experiments in Section 4, and conclude
this paper in Section 5.

2. RELATED WORK

The concept of the skyline query was proposed in 2001 (Borzsonyi 2001). The naïve way to compute a
skyline is to apply a nested-loop algorithm and compare every tuple with every other tuple. In studies
conducted by Chomicki et al. (2003, 2005), Sort-Filter-Skyline (SFS) algorithm was mainly advocated
as a way to bring in the first positions those points that are likely to dominate many other points, thus
leading to a reduction in the number of dominance tests. This algorithm first sorts the input data using
a monotonic function. Our method also designs monotonic aggregation functions to reduce the number
of comparisons of dominant relation between objects.

Our rating data is given by customers or websites’ reviewers. Generally speaking, the arithmetic mean
of rating data presents the consumers’ evaluation. The mean is vulnerable to the effects of extreme
value. It could be affected by the extreme values where biases would occur. For this reason, we use
proportion method to transfer the probabilistic values to one record of several dimensions. Such a
record contains a series of probabilistic values. Each probabilistic value corresponds to one rating data.
We study how to process the skyline query for the probabilistic data.

Probabilistic (or uncertain) data are unavoidable in some important applications. Pei et al. (2006)
proposed a probabilistic skyline model in which an uncertain object may take on a probability of being
on the skyline (Pei 2007) called p-skyline. Given a probability threshold p (0 ≤ p ≤ 1), the p-skyline
(Pei 2007, Jiang 2012) is the set of uncertain objects each of which takes a probability of at least p to
be on the skyline. Atallah et al. (2009) proposed a general probabilistic skyline analysis that takes into
account different user utilities without any restriction, but they do not use any probability threshold

(Mikhail 2009, 2011). Liu proposed a new uncertain skyline model called u-skyline, and it aims to
return an uncertain skyline answer set from a different but complementary perspective to p-skyline
(Liu 2013). Whereas p-skyline considers the global dominance among all data, u-skyline considers the
global relationship among tuples. The dominant relation between two objects in our study (i.e. the
relation in which one object dominates the other) is the sum of the probabilities that the higher ratings
can dominate the lower ratings. In p-skyline, the authors define a probability for each tuple by
aggregating over all the possible worlds within which the tuple is dominated. In our study, we
calculate the dominant relation between two objects and then determine the proper one; if the
determined object is not dominated by the other one, it is a skyline object and will be returned as
answer to the query or search. This is consistent with the certain data of skyline query; however, what
p-skyline defines is to check the probability of each object in skyline and a probability will be set up
as the threshold. In this paper, we define the probability dominance between two objects for rating data,
and then we deal with the skyline query on these objects in a multi-dimensional space.

3. METHOD
3.1 Skylines on certain data

There are two points, u and v, in a d-dimensional space D = (D1,…,Dd). The dominant relation is
presented on the preference attributes D1,…,Dd. We assume that bigger values are better. For every
dimension Di (1 ≤ i ≤ d), if u.Di ≤ v.Di, and there exists a dimension Dj (1 ≤ j ≤ d) such that u.Dj < v.Dj,
then v can dominate u.

3.2 Skylines for rating data

Let us consider that a rating is given by a consumer and it ranges from 1 to 5, and a product includes
many ratings. Many ratings are corresponding to an object. For example, Table 1 presents a
3-dimensional rating data set containing ratings given by 10 consumers.

r_id Restaurant Name Reviews Food Rating Service Rating Décor Rating

R1 Craftsteak Steak u1 3 4 3

R1 Craftsteak Steak u2 5 5 4

R1 Craftsteak Steak u3 4 4 5

R1 Craftsteak Steak u4 5 4 3

R1 Craftsteak Steak u5 5 5 4

R1 Craftsteak Steak u6 5 5 3

R1 Craftsteak Steak u7 4 4 2

R1 Craftsteak Steak u8 5 5 3

R1 Craftsteak Steak u9 4 5 2

R1 Craftsteak Steak u10 4 4 3

Table 1. The rating data with 3 dimensions

We transform the ratings in Table 1 to a tuple as in Table 2. If a random variable X is discrete, i.e., it
may take a value from a specific set of n values xi, i = 1 to n, then P(X = xi) = p(xi), p(x) is the
probability mass function, where p(xi) denotes the probability of rating being xi. An object is described
by a probability mass function in the data space. We transform these ratings in Table 1 to a tuple for an
object. So, this object is denoted by <(1,0), (2,0), (3,0.1), (4,0.4), (5,0.5), (1,0), (2,0), (3,0), (4,0.5),
(5,0.5), (1,0), (2,0.2), (3,0.5), (4,0.2), (5,0.1)> in Table 2.

r_id f_5 f_4 f_3 f_2 f_1 s_5 s_4 s_3 s_2 s_1 d_5 d_4 s_3 s_2 s_1

R1 (5,0.5) (4,0.4) (3,0.1) (2,0) (1,0) (5,0.5) (4,0.5) (3,0) (2,0) (1,0) (5,0.1) (4,0.2) (3,0.5) (2,0.2) (1,0)

Table 2: A 3-dimensional object

Definition 1. Let u and v be two 1-dimensional objects: u = <(1, pu(1)), (2, pu(2)), …, (n,pu(n))> and
v = <(1, pv(1)), (2, pv(2)), …, (n, pv(n))>; 1, 2, …, n are ratings. P(xi) denotes the probability of rating
being xi and the total of all P(xi) is 1. Pr[u > v] denotes the probability that the object u dominates the
object v, and Pr[u > v]=pu(n)×[pv(1)+…+pv(n-1)]+pu(n-1)×[pv(1)+…+pv(n-2)]+…+pu(2)×pv(1).

In the skyline query, a point Pi dominates another point Pj, if and only if in any dimension the value of
Pi is not larger than that of Pj. We apply the same concept to the rating data containing probabilistic
values, and accordingly we define how the probabilistic values of the higher rating can dominate the
probabilistic values of the lower rating. Let u and v be two 1-dimensional objects with possible ratings
from 1 to 5: u = <(1,u1),(2,u2),(3,u3),(4,u4),(5,u5)> and v = <(1,v1),(2,v2),(3,v3),(4,v4),(5,v5)>. The
probability value of rating 5 of a point (i.e. P(5) for u5 and v5) can dominate the probability values of
rating 4, 3, 2 and 1 of another point. So, the probability value of u dominating v, denoted by Pr[u > v],
is equal to u5×(v4+v3+v2+v1)+u4×(v3+v2+v1)+u3×(v2+v1)+u2×v1. Definition 1 is based on this concept.

Example 1. For n = 5 (the highest rating), u = 〈(1,0.1), (2,0.1), (3,0.3), (4,0.3), (5,0.2)〉 and v = 〈(1,0),
(2,0.2), (3,0.4), (4,0.2), (5,0.2)〉 are two 1-dimensional objects. The probability that u dominates v is
Pr[u > v] = 0.2 × (0.2 + 0.4 + 0.2) + 0.3 × (0.4 + 0.2) + 0.3 × 0.2 + 0.1 × 0 = 0.4. The probability that v
dominates u is Pr[v > u] = 0.2 × 0.8 + 0.2 × 0.5 + 0.4 × 0.2 + 0.2 × 0.1 = 0.36, This shows that u is
better than v, so we will answer the query or search by returning the object u, i.e. product u. We define
the better relation between u and v as follows: If u and v are two d-dimensional objects, for every
dimension Di (1 ≤ i ≤ d), if Pr[u.Di > v.Di] ≥ Pr[v.Di > u.Di], there exists a dimension Dj (1 ≤ j ≤ d)
such that Pr[u.Dj > v.Dj] > Pr[v.Dj > u.Dj]. u is better than v in the d-dimensional space. We denote u.Di
> v.Di for all i. If u is better than v and v is better than w, than u is better than w. So the better relation
between two objects satisfies the conditions of being transitive. If an object is better than any other

object, then this object is a skyline object. Our data flow is denoted in Figure 1.

Figure 1. The data flow

Our approach makes 2 comparisons between two d-dimensional objects. If we have n d-dimensional
objects, there will be n × (n − 1) × d comparisons for the dominant relation. For efficiency, we have to
reduce the calculation cost. We first sort the objects according to the defined aggregation values, and
then we filter the presorted objects through the proposed algorithm. If an object satisfies the conditions
described below, further calculation on it can be skipped. The results from our experiments show the
efficiency of our approach. Before processing the comparison, two aggregation values will be
generated for each object, and two other tables will be produced for further reference based on each of
the two aggregation values.

 The first aggregation value is based on the probability of the highest rating. Intuitively, if an
object has a larger probability value for having the highest rating, it possibly dominates another
one. For example, if a restaurant is given the highest rating by most of the people, and it is the
most recommended one by the system.

 The second aggregation value is sorted by the expected value (i.e. the expected rating) for every
object. The expected value is a weighted average of all appearing values or ratings. Generally
speaking, the expected value of an object is bigger, the chance that this object dominates another
object is better. There may appear counter-examples of some unusual situations. Consider the
following example. An object A is <(5, 0), (4, 0), (3, 0), (2, 1), (1, 0)>, and its expected value is 2.
An object B is <(5, 0.4), (4,0), (3,0), (2,0), (1, 0.6)>, and its expected value is 2.6. Comparing the
expected values, we can see that B is better than A. However, Pr[A > B]=0.6 and Pr[B > A]=0.4.
Since Pr[A > B] > Pr[B > A], A is better than B. In this special case, the object which has the
larger expected value may not be able to dominate another object which has a smaller expected
value.

We propose the second aggregation value, which comes from the probability theory. The expected
value is calculated by first multiplying each of the possible outcomes by the likelihood that each
outcome will occur and then summing all the values. In our study, the expected value is calculated by
multiplying each of the probability values by the corresponding ratings and summing all the values.
We use the following lemmas to reduce the amount of calculation of the dominant relation.

LEMMA 1: For n>2, let A = <(1, a1),…, (n, an)> and B = <(1, b1),…,(n, bn)> are two objects. If an >
bn and an > (1/(2-bn)), then A is better than B.

Rating
Data

Monotonic
aggregation

functions

Presorting
Processing

Algorithm 1
Processing

Object
Data

Proof: Let A = <(1, a1), (2, a2),…, (n, an)> and B = <(1, b1), (2, b2),…, (n, bn)> be two objects. Both are
two 1-dimensional objects with possible ratings from 1 to n, so ∑ 𝑎𝑎𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 and ∑ 𝑏𝑏𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 . A is

better than B, if and only if Pr[A > B] > Pr[B > A] is satisfied. In the worst case, A=<(1,(1-x)),
(2,0),…,(n-1,0), (n, x) > and B=<(1, 0), (2, 0),…, ((n-2), 0), ((n-1), (1-y)), (n, y)>, where x=an and
y=bn are probability values. That is, the probability value of the highest rating n of A is large enough to
dominate B. If A is better than B, Pr[A > B]-Pr[B > A] > 0, [x×(1-y)]-[y×(1-x)+(1-y)×(1-x)] > 0,
x-xy-(1-x) >0, 2x-xy-1 > 0, x(2-y) > 1, and x >[1/(2-y)]. So, if an > (1/(2-bn)), then A is better than B.

LEMMA 2. For n = 2, let A = <(1, a1), (2, a2)>, B = <(1, b1), (2, b2)> are two objects. If a2 > b2, then A
is better than B.
Proof: For each dimension of an object, the sum of these probability values is 1. For two 1-dimension
objects A=<(1, a1), (2, a2)> and B=<(1, b1), (2, b2)>, we know that 1 and 2 are rating dimensions and
that a1 + a2 =1 and b1+ b2 =1. If A is better than B, then Pr[A > B]-Pr[B > A] > 0. a2 =1-a1 and b2=1-b1.
From Definition 1, Pr[A > B]=a2×b1=a2×(1−b2)= a2-a2×b2 and Pr[B > A] = b2×a1=b2×(1-a2)= b2-b2×a2.
So, (a2-a2×b2)-(b2-b2×a2) > 0, a2-a2b2-b2 +b2a2 > 0, and a2-b2 > 0. If a2 > b2, then A is better than B.

Figure 2 presents two algorithms. The first algorithm is to do skyline query processing, and the second
algorithm is to do dominant relation comparison.

4. EXPERIMENTS

The goal of experiments is to show that using the aggregation values to presort objects can improve
the efficiency of the skyline query processing discussed in this paper and that using the above lemmas
can reduce the amount of calculation for dominant relation comparison. We use the C programming
language to implement our algorithms and conduct experiments on a general PC.

We generate 10 groups of objects by using the random distribution. Each group has 100,000 objects
with 1, 3, 5, and 10 dimensions. Dimensions are not totally independent. So, we additionally generate
10 other groups by using the Gaussian distribution. We use the means 1.5, 2.5, 3.5 and 4.5 with the
standard deviation 0.5. The generated values are rounded to an integer between 1 and 5, and they are
the ratings given to an object or a product by customers. Customers give ratings to a product in each of
the dimensions. The dimension being 10 (D=10) means that customers give ratings to a product in
each of the 10 dimensions. So, a product has 50 probability values that are transformed from rating
data. The dominant values of two objects are then calculated by converting the corresponding
populations of the ratings for each dimension into probabilities. With the naïve method, calculating 3
objects requires 6 runs of dominant relation computation. When the number of dimensions increases,
the chance of one point dominating another point can possibly be very low, and the skyline query may
return a large number of points. The complexity of the processing increases when the number of
dimensions increases. Nevertheless, as the number of dimensions increase, the above lemmas can
decrease the number of comparisons of dominant relation for some dimensions.

Figure 2. Algorithms for skyline query processing and dominant relation comparison

First, we use these two aggregation values to assign a better ranking order to each object. Lemma 1 is
used to reduce the amount of calculation for dominant relation comparison. In experiments, we
compare the execution time of using the naïve method and that of using the presorting method with
each of the two aggregation values. For rating generated by using the random distribution, Figures 3
and 4 show the result in the execution time and that in the number of comparisons, respectively. For
D=1 and D=3, using the presorting method with one of the two aggregation values is faster than using
the naïve method, and on average there is a reduction of 15% in execution time. For D=5, using the
presorting method with one of the two aggregation values can save us an average of 25% in execution
time when compared to using the naïve method, and this indicates that our algorithms can enhance
efficiency under more dimensions.

Figure 3. Running time on different dimensions and aggregation values

Figure 4. The number of comparisons on different dimensions and aggregation values

0
10
20
30
40
50
60
70
80
90

100
110

1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

ec
on

ds
)

Group

Execution time - random distribution

1d_naïve 1d_first 1d_second 3d_naïve

3d_first 3d_second 5d_naïve 5d_first

5d_second 10d_naïve 10d_first 10d_second

0
1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10

N
um

be
r (

m
ill

io
n)

Group

The number of executions - random distribution

1d_naïve 1d_first 1d_second
3d_naïve 3d_first 3d_second
5d_naïve 5d_first 5d_second
10d_naïve 10d_first 10d_second

Next, we consider the data generated by using the Gaussian distribution. After using one of the two
aggregation values for presorting, we use Lemma 1 for preliminary filtering. Figure 5 and 6 show the
execution time and the numbers of comparisons performed by using the naïve method and the
presorting method with two aggregation values for different numbers of dimensions. When D=1, our
method can significantly reduce the number of comparisons. For D=3 and D=5, using the presorting
method with the second aggregation value requires a smaller average number of comparisons, and this
indicates that the presorting method based on using the expected values needs a small number of
comparisons when there are more dimensions. For D=3, 5, and 10, the average number of comparisons
required by using the presorting method with the first aggregation value is somewhat similar to that
required by using the presorting method with the second aggregation value. The results from our
experiments show that the execution time for the situations where the attribute values are drawn from
the Gaussian distribution is reduced by 20-40%, when it is compared with that for the situations where
the attributes are drawn from the random distribution. In terms of the number of comparisons, when
the attribute values are drawn from the Gaussian distribution, it is reduced by 10-30%, compared with
that when the attribute values are drawn from the random distribution. Because the Gaussian
distribution is closer to what generates the data in many real-world situations, the results suggest that
our algorithms have a great potential to be applied to many real-world applications.

Figure 5. Running time on different dimensions and aggregation values

Both the execution time and the number of comparisons can be reduced when our method is used for
situations where the random distribution or the Gaussian distribution is used to generate attribute
values. The reason is that the distributions of attribute values are dependent. For example, if an object
has been given poor ratings in any of the dimensions, it would be eliminated according to the Lemmas.
This means that no more calculation is required for dominant relation comparison and then the

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

ec
on

ds
)

Group

Execution time - Graussian distribution

1d_naïve 1d_first 1d_second
3d_naïve 3d_first 3d_second
5d_naïve 5d_first 5d_second
10d_naïve 10d_first 10d_second

execution time is less. For the situations where the Gaussian distribution is used to generate the
attribute values, the execution time decreases about 40% for D=10, and the number of comparisons
decreases 20-30%.

Figure 6. The number of comparisons on different dimensions and aggregation values

5. CONCLUSIONS

With the rapid development of the Internet, electronic commerce started to evolve, expand, and effect
many important changes in the world of business. How to help customers efficiently find the products
that they want? The problem remains, however. Many websites are offering customers
experience-sharing services. When customers share their experiences regarding the quality of certain
products and rate them based on the different attributes, the generated data set can be viewed as a set
of objects. An object is a product (e.g. a restaurant), and there are many ratings given by customers to
it. Our approach uses these ratings to provide more suitable products to customers who made the
search. We propose a method to process skyline query on these ratings. We use a presorting method
with two aggregation values to speed up the query processing. The results from experiments indicate
that using the presorting method with any of the proposed aggregation values can reduce the execution
time. The presorting method based on the expected value (the second proposed aggregation value) can
generate more favorable outcomes for objects with more dimensions, and this results in a fewer
number of calculation required for dominant relation comparisons. For future studies, we plan to
propose new aggregation values for presorted objects. We hope that the first tuple of presorted objects
by new aggregation values is one of skyline tuples. On the other hand, the rating data belongs to
dynamic data, and thus these objects including probability values are variable. We plan to provide a
novel approach to solve this condition in the future. Moreover, using real world data to evaluate our
algorithms will be part of our future work.

0
1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10

N
um

be
r (

m
ill

io
n)

Group

The number of executions - Graussian distribution

1d_naïve 1d_first 1d_second
3d_naïve 3d_first 3d_second
5d_naïve 5d_first 5d_second
10d_naïve 10d_first 10d_second

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Science and Technology, R.O.C. for the support under
grant number 102-2420-H-004-045-MY3. The authors would also like to thank anonymous reviewers
for their valuable time and comments.

References
Borzsonyi, S, Kossmann, D. and Stocker, K. (2001). The Skyline Operator. International Conference

on Data Engineering, 421-430.
Byers, J. W., Mitzenmacher, M. and Zervas, G. (2012). The Groupon Effect on Yelp Ratings: A Root

Cause Analysis. Proceedings 13th ACM Conference Electronic Commerce, 248-265.
Chomicki, J., Godfrey, P., Gryz, J. and Liang, D. (2003). Skyline with Presorting. International

Conference on Data Engineering, 717-719.
Chomicki, J., Godfrey, P., Gryz, J. and Liang, D. (2005). Skyline with Presorting: Theory and

Optimizations. Intelligent Information Systems, 595-604.
Jiang, B., Pei, J., Lin, X, and Yuan, Y. (2012). Probabilistic skylines on uncertain data: model and

bounding-pruning-refining methods. Journal of Intelligent Information Systems, 38(1), 1-39.
Liu, X., Yang, D. N., Ye, M. and Lee, W. (2013). U-Skyline: A New Skyline Query for Uncertain

Databases. IEEE Transactions on Knowledge and Data Engineering, 25(4), 945-960.
Mikhail J. A., and Yinian Q. (2009). Computing All Skyline Probabilities for Uncertain Data.

Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, 279-287.

Mikhail J. A., Yinian Q. and Hao, Y. (2011). Asymptotically Efficient Algorithms for Skyline
Probabilities of Uncertain Data. ACM Transactions on Database Systems, 36(2), 12:1-28.

Pei, J., Jiang, B., Lin, X. and Yuan, Y. (2007). Probabilistic Skylines on Uncertain Data. Proceedings
of the 33rd International Conference on Very Large Data Bases, 15-26.

Soliman, M.A., Ilyas, I.F. and Chang, K. C.-C. (2007). Top-k query processing in uncertain databases.
In International Conference on Data Engineering, 896-905.

Wu, P., Zhang, C., Feng, Y., Zhao, B. Y., Agrawal, D. and Abbadi, A.E. (2006). Parallelizing Skyline
Queries for Scalable Distribution. Proceedings of the 10th international conference on Advances in
Database Technology, 112-130.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	Summer 6-27-2016

	SKYLINE QUERY PROCESSING FOR RATING DATA
	Shu-I Chiu
	Kuo-Wei Hsu
	Recommended Citation

	SKYLINE QUERY PROCESSING FOR RATING DATA
	Abstract

	1. INTRODUCTION
	2. RELATED WORK
	3. METHOD
	4. EXPERIMENTS
	5. CONCLUSIONS
	ACKNOWLEDGMENT
	References

