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SKYLINE QUERY PROCESSING FOR RATING DATA 

Shu-I Chiu, Department of Computer Science, National Chengchi University, Taipei, Taiwan, 
d9706@cs.nccu.edu.tw 

Kuo-Wei Hsu, Department of Computer Science, National Chengchi University, Taipei, 
Taiwan, hsu@cs.nccu.edu.tw 

Abstract 
Although electronic commerce has been developed and deployed for more than two decades, an 
essential problem remains: How to help customers efficiently find the products that they want? Skyline 
queries were proposed to address the problem, and we study the skyline queries defined on rating data. 
A product is represented by attributes each of which is an aspect that customers perceive it and can be 
individually rated, and ratings given by some consumers to it can be aggregated to assist in processing 
queries for product search. Therefore, our approach uses the rating data to get more suitable search 
results for customers. We first define the skyline query upon ratings and then propose an algorithm for 
its processing. We further propose a presorting method to speed up the whole computation. Results 
from experiments indicate that by using the proposed method the execution time can be notably 
shortened. 

Keywords: Electronic Commerce, Product Search, Rating, Skyline Query Processing 
  



1. INTRODUCTION 

Soon after the rise of the Internet, electronic commerce started to evolve, expand, and effect many 
important changes in the world of business. It has been developed and deployed for more than two 
decades, but an essential problem remains: How to help customers efficiently find the products that 
they want? Aiding customers is to advance business, the first B in B2B (Business-to-Business). The 
customer can be the C in B2C (Business-to-Consumer) or the second B in B2B. From the database 
perspective, skyline query was proposed to address the problem of searching the database for products 
that best satisfy customers’ requirements. 

In recent years, skyline query has become a popular topic because it can be used to efficiently filter 
data records or tuples of several attributes. An attribute is a perspective on a tuple. A skyline is defined 
as a set of tuples that are not dominated by any other tuples. A tuple dominates another tuple if it is 
equally good or better in all attributes and better in at least one attribute. Let us consider the classic 
example: If we look for inexpensive hotels near a beach, a skyline query can choose hotels that are 
either less expensive or closer to the beach. If there is a more expensive hotel far from the beach, it 
will not be selected in a skyline. In this case, the skyline will only contain those hotels that are not 
worse than any other hotel in the price and the distance to the beach. The skyline tuples are considered 
to be important because they exhibit the three properties (Liu 2013): 

 Skyline tuples are not dominated by any tuple outside the skyline set. 

 Skyline tuples do not dominate each other, i.e., they hold on to their own importance in skyline 
against each other. 

 All skyline tuples dominate all the non-skyline tuples, i.e., each non-skyline tuple is dominated 
by at least one skyline tuple. 

If a tuple is a product and each of its attributes represent an aspect that customers perceive it, the 
skyline query performs filtering so that it keeps only those products that are not worse than any other 
product when all aspects are taken into consideration. It is widely used in multi-criteria decision 
making, and it helps people make intelligent decisions over complex data, where multiple criteria are 
considered (Soliman 2007, Wu 2006). Skyline tuples are “the best” under some monotonic preference 
function. As shown later in this paper, we propose monotonic aggregation functions for the particular 
type of data that we consider. 

Today, there are many websites that allow or even encourage customers to express their experiences in 
products by rating them or assigning ratings to them. This is the customers’ evaluation. When a 
customer wants to buy a product, he or she can consult these ratings to make a decision. Given a 
database of rating data, where a tuple is a rating given by a customer to a product in a certain category, 
we would like to search all the products in the category for the one having the best overall rating; or, if 



a tuple in the given database is a rating given by a customer to a vendor of a product, we would like to 
find the vendor having the best overall rating. 

Let us consider the classic example again: A skyline query is to search for hotels that have high quality 
ratings and low prices. Generally, the hotels with high quality ratings tend to be expensive, and hotels 
with low prices are of low quality. There is one price but are many ratings attached to the hotel (or 
more precisely, some rooms in some season). Moreover, the ratings are given on several attributes, and 
hence the data is multi-dimensional data. What we want to find are not ratings on the skyline but the 
target or object (e.g. the hotel) to which the ratings are given; this is the reason why the traditional 
skyline query cannot be applied to rating data. Therefore, the problem that we address in this paper can 
be described as follows: How to efficiently find targets or objects that are not dominated by any other 
target or object in all aspects by using ratings or scores given to them? 

The remainder of this paper is organized as follows: We briefly review the related work in Section 2, 
describe the proposed method in Section 3, report results from experiments in Section 4, and conclude 
this paper in Section 5. 

2. RELATED WORK 

The concept of the skyline query was proposed in 2001 (Borzsonyi 2001). The naïve way to compute a 
skyline is to apply a nested-loop algorithm and compare every tuple with every other tuple. In studies 
conducted by Chomicki et al. (2003, 2005), Sort-Filter-Skyline (SFS) algorithm was mainly advocated 
as a way to bring in the first positions those points that are likely to dominate many other points, thus 
leading to a reduction in the number of dominance tests. This algorithm first sorts the input data using 
a monotonic function. Our method also designs monotonic aggregation functions to reduce the number 
of comparisons of dominant relation between objects.  

Our rating data is given by customers or websites’ reviewers. Generally speaking, the arithmetic mean 
of rating data presents the consumers’ evaluation. The mean is vulnerable to the effects of extreme 
value. It could be affected by the extreme values where biases would occur. For this reason, we use 
proportion method to transfer the probabilistic values to one record of several dimensions. Such a 
record contains a series of probabilistic values. Each probabilistic value corresponds to one rating data. 
We study how to process the skyline query for the probabilistic data. 

Probabilistic (or uncertain) data are unavoidable in some important applications. Pei et al. (2006) 
proposed a probabilistic skyline model in which an uncertain object may take on a probability of being 
on the skyline (Pei 2007) called p-skyline. Given a probability threshold p (0 ≤ p ≤ 1), the p-skyline 
(Pei 2007, Jiang 2012) is the set of uncertain objects each of which takes a probability of at least p to 
be on the skyline. Atallah et al. (2009) proposed a general probabilistic skyline analysis that takes into 
account different user utilities without any restriction, but they do not use any probability threshold 



(Mikhail 2009, 2011). Liu proposed a new uncertain skyline model called u-skyline, and it aims to 
return an uncertain skyline answer set from a different but complementary perspective to p-skyline 
(Liu 2013). Whereas p-skyline considers the global dominance among all data, u-skyline considers the 
global relationship among tuples. The dominant relation between two objects in our study (i.e. the 
relation in which one object dominates the other) is the sum of the probabilities that the higher ratings 
can dominate the lower ratings. In p-skyline, the authors define a probability for each tuple by 
aggregating over all the possible worlds within which the tuple is dominated. In our study, we 
calculate the dominant relation between two objects and then determine the proper one; if the 
determined object is not dominated by the other one, it is a skyline object and will be returned as 
answer to the query or search. This is consistent with the certain data of skyline query; however, what 
p-skyline defines is to check the probability of each object in skyline and a probability will be set up 
as the threshold. In this paper, we define the probability dominance between two objects for rating data, 
and then we deal with the skyline query on these objects in a multi-dimensional space. 

3. METHOD 
3.1 Skylines on certain data 

There are two points, u and v, in a d-dimensional space D = (D1,…,Dd). The dominant relation is 
presented on the preference attributes D1,…,Dd. We assume that bigger values are better. For every 
dimension Di (1 ≤ i ≤ d), if u.Di ≤ v.Di, and there exists a dimension Dj (1 ≤ j ≤ d) such that u.Dj < v.Dj, 
then v can dominate u. 

3.2 Skylines for rating data 

Let us consider that a rating is given by a consumer and it ranges from 1 to 5, and a product includes 
many ratings. Many ratings are corresponding to an object. For example, Table 1 presents a 
3-dimensional rating data set containing ratings given by 10 consumers.  

 

r_id Restaurant Name Reviews Food Rating Service Rating Décor Rating 

R1 Craftsteak Steak u1 3 4 3 

R1 Craftsteak Steak u2 5 5 4 

R1 Craftsteak Steak u3 4 4 5 

R1 Craftsteak Steak u4 5 4 3 

R1 Craftsteak Steak u5 5 5 4 

R1 Craftsteak Steak u6 5 5 3 

R1 Craftsteak Steak u7 4 4 2 

R1 Craftsteak Steak u8 5 5 3 

R1 Craftsteak Steak u9 4 5 2 



R1 Craftsteak Steak u10 4 4 3 

Table 1. The rating data with 3 dimensions 

We transform the ratings in Table 1 to a tuple as in Table 2. If a random variable X is discrete, i.e., it 
may take a value from a specific set of n values xi, i = 1 to n, then P(X = xi) = p(xi), p(x) is the 
probability mass function, where p(xi) denotes the probability of rating being xi. An object is described 
by a probability mass function in the data space. We transform these ratings in Table 1 to a tuple for an 
object. So, this object is denoted by <(1,0), (2,0), (3,0.1), (4,0.4), (5,0.5), (1,0), (2,0), (3,0), (4,0.5), 
(5,0.5), (1,0), (2,0.2), (3,0.5), (4,0.2), (5,0.1)> in Table 2. 

 

r_id f_5 f_4 f_3 f_2 f_1 s_5 s_4 s_3 s_2 s_1 d_5 d_4 s_3 s_2 s_1 

R1 (5,0.5) (4,0.4) (3,0.1) (2,0) (1,0) (5,0.5) (4,0.5) (3,0) (2,0) (1,0) (5,0.1) (4,0.2) (3,0.5) (2,0.2) (1,0) 

Table 2: A 3-dimensional object 

Definition 1. Let u and v be two 1-dimensional objects: u = <(1, pu(1)), (2, pu(2)), …, (n,pu(n))>  and 
v = <(1, pv(1)), (2, pv(2)), …, (n, pv(n))>; 1, 2, …, n are ratings. P(xi) denotes the probability of rating 
being xi and the total of all P(xi) is 1. Pr[u > v] denotes the probability that the object u dominates the 
object v, and Pr[u > v]=pu(n)×[pv(1)+…+pv(n-1)]+pu(n-1)×[pv(1)+…+pv(n-2)]+…+pu(2)×pv(1). 

In the skyline query, a point Pi dominates another point Pj, if and only if in any dimension the value of 
Pi is not larger than that of Pj. We apply the same concept to the rating data containing probabilistic 
values, and accordingly we define how the probabilistic values of the higher rating can dominate the 
probabilistic values of the lower rating. Let u and v be two 1-dimensional objects with possible ratings 
from 1 to 5: u = <(1,u1),(2,u2),(3,u3),(4,u4),(5,u5)> and v = <(1,v1),(2,v2),(3,v3),(4,v4),(5,v5)>. The 
probability value of rating 5 of a point (i.e. P(5) for u5 and v5 ) can dominate the probability values of 
rating 4, 3, 2 and 1 of another point. So, the probability value of u dominating v, denoted by Pr[u > v], 
is equal to u5×(v4+v3+v2+v1)+u4×(v3+v2+v1)+u3×(v2+v1)+u2×v1. Definition 1 is based on this concept. 

Example 1. For n = 5 (the highest rating), u = 〈(1,0.1), (2,0.1), (3,0.3), (4,0.3), (5,0.2)〉 and v = 〈(1,0), 
(2,0.2), (3,0.4), (4,0.2), (5,0.2)〉 are two 1-dimensional objects. The probability that u dominates v is 
Pr[u > v] = 0.2 × (0.2 + 0.4 + 0.2) + 0.3 × (0.4 + 0.2) + 0.3 × 0.2 + 0.1 × 0 = 0.4. The probability that v 
dominates u is Pr[v > u] = 0.2 × 0.8 + 0.2 × 0.5 + 0.4 × 0.2 + 0.2 × 0.1 = 0.36, This shows that u is 
better than v, so we will answer the query or search by returning the object u, i.e. product u. We define 
the better relation between u and v as follows: If u and v are two d-dimensional objects, for every 
dimension Di (1 ≤ i ≤ d), if Pr[u.Di > v.Di] ≥ Pr[v.Di > u.Di], there exists a dimension Dj (1 ≤ j ≤ d) 
such that Pr[u.Dj > v.Dj] > Pr[v.Dj > u.Dj]. u is better than v in the d-dimensional space. We denote u.Di 
> v.Di for all i. If u is better than v and v is better than w, than u is better than w. So the better relation 
between two objects satisfies the conditions of being transitive. If an object is better than any other 



object, then this object is a skyline object. Our data flow is denoted in Figure 1. 

 

Figure 1.  The data flow 

Our approach makes 2 comparisons between two d-dimensional objects. If we have n d-dimensional 
objects, there will be n × (n − 1) × d comparisons for the dominant relation. For efficiency, we have to 
reduce the calculation cost. We first sort the objects according to the defined aggregation values, and 
then we filter the presorted objects through the proposed algorithm. If an object satisfies the conditions 
described below, further calculation on it can be skipped. The results from our experiments show the 
efficiency of our approach. Before processing the comparison, two aggregation values will be 
generated for each object, and two other tables will be produced for further reference based on each of 
the two aggregation values. 

 The first aggregation value is based on the probability of the highest rating. Intuitively, if an 
object has a larger probability value for having the highest rating, it possibly dominates another 
one. For example, if a restaurant is given the highest rating by most of the people, and it is the 
most recommended one by the system. 

 The second aggregation value is sorted by the expected value (i.e. the expected rating) for every 
object. The expected value is a weighted average of all appearing values or ratings. Generally 
speaking, the expected value of an object is bigger, the chance that this object dominates another 
object is better. There may appear counter-examples of some unusual situations. Consider the 
following example. An object A is <(5, 0), (4, 0), (3, 0), (2, 1), (1, 0)>, and its expected value is 2. 
An object B is <(5, 0.4), (4,0), (3,0), (2,0), (1, 0.6)>, and its expected value is 2.6. Comparing the 
expected values, we can see that B is better than A. However, Pr[A > B]=0.6 and Pr[B > A]=0.4. 
Since Pr[A > B] > Pr[B > A], A is better than B. In this special case, the object which has the 
larger expected value may not be able to dominate another object which has a smaller expected 
value. 

We propose the second aggregation value, which comes from the probability theory. The expected 
value is calculated by first multiplying each of the possible outcomes by the likelihood that each 
outcome will occur and then summing all the values. In our study, the expected value is calculated by 
multiplying each of the probability values by the corresponding ratings and summing all the values. 
We use the following lemmas to reduce the amount of calculation of the dominant relation. 

LEMMA 1: For n>2, let A = <(1, a1),…, (n, an)> and B = <(1, b1),…,(n, bn)> are two objects. If an > 
bn and an > (1/(2-bn)), then A is better than B. 

Rating
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Monotonic 
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Presorting 
Processing 

Algorithm 1
Processing
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Proof: Let A = <(1, a1), (2, a2),…, (n, an)> and B = <(1, b1), (2, b2),…, (n, bn)> be two objects. Both are 
two 1-dimensional objects with possible ratings from 1 to n, so ∑ 𝑎𝑎𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1  and  ∑ 𝑏𝑏𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 . A is 

better than B, if and only if Pr[A > B] > Pr[B > A] is satisfied. In the worst case, A=<(1,(1-x)), 
(2,0),…,(n-1,0), (n, x) > and B=<(1, 0), (2, 0),…, ((n-2), 0), ((n-1), (1-y)), (n, y)>, where x=an and 
y=bn are probability values. That is, the probability value of the highest rating n of A is large enough to 
dominate B. If A is better than B, Pr[A > B]-Pr[B > A] > 0, [x×(1-y)]-[ y×(1-x)+(1-y)×(1-x)] > 0, 
x-xy-(1-x) >0, 2x-xy-1 > 0, x(2-y) > 1, and x >[1/(2-y)]. So, if an > (1/(2-bn)), then A is better than B. 

LEMMA 2. For n = 2, let A = <(1, a1), (2, a2)>, B = <(1, b1), (2, b2)> are two objects. If a2 > b2, then A 
is better than B. 
Proof: For each dimension of an object, the sum of these probability values is 1. For two 1-dimension 
objects A=<(1, a1), (2, a2)> and B=<(1, b1), (2, b2)>, we know that 1 and 2 are rating dimensions and 
that a1 + a2 =1 and b1+ b2 =1. If A is better than B, then Pr[A > B]-Pr[B > A] > 0. a2 =1-a1 and b2=1-b1. 
From Definition 1, Pr[A > B]=a2×b1=a2×(1−b2)= a2-a2×b2 and Pr[B > A] = b2×a1=b2×(1-a2)= b2-b2×a2. 
So, (a2-a2×b2)-(b2-b2×a2) > 0, a2-a2b2-b2 +b2a2 > 0, and a2-b2 > 0. If a2 > b2, then A is better than B. 

Figure 2 presents two algorithms. The first algorithm is to do skyline query processing, and the second 
algorithm is to do dominant relation comparison. 

4. EXPERIMENTS 

The goal of experiments is to show that using the aggregation values to presort objects can improve 
the efficiency of the skyline query processing discussed in this paper and that using the above lemmas 
can reduce the amount of calculation for dominant relation comparison. We use the C programming 
language to implement our algorithms and conduct experiments on a general PC. 

We generate 10 groups of objects by using the random distribution. Each group has 100,000 objects 
with 1, 3, 5, and 10 dimensions. Dimensions are not totally independent. So, we additionally generate 
10 other groups by using the Gaussian distribution. We use the means 1.5, 2.5, 3.5 and 4.5 with the 
standard deviation 0.5. The generated values are rounded to an integer between 1 and 5, and they are 
the ratings given to an object or a product by customers. Customers give ratings to a product in each of 
the dimensions. The dimension being 10 (D=10) means that customers give ratings to a product in 
each of the 10 dimensions. So, a product has 50 probability values that are transformed from rating 
data. The dominant values of two objects are then calculated by converting the corresponding 
populations of the ratings for each dimension into probabilities. With the naïve method, calculating 3 
objects requires 6 runs of dominant relation computation. When the number of dimensions increases, 
the chance of one point dominating another point can possibly be very low, and the skyline query may 
return a large number of points. The complexity of the processing increases when the number of 
dimensions increases. Nevertheless, as the number of dimensions increase, the above lemmas can 
decrease the number of comparisons of dominant relation for some dimensions.  



 
Figure 2.  Algorithms for skyline query processing and dominant relation comparison  



First, we use these two aggregation values to assign a better ranking order to each object. Lemma 1 is 
used to reduce the amount of calculation for dominant relation comparison. In experiments, we 
compare the execution time of using the naïve method and that of using the presorting method with 
each of the two aggregation values. For rating generated by using the random distribution, Figures 3 
and 4 show the result in the execution time and that in the number of comparisons, respectively. For 
D=1 and D=3, using the presorting method with one of the two aggregation values is faster than using 
the naïve method, and on average there is a reduction of 15% in execution time. For D=5, using the 
presorting method with one of the two aggregation values can save us an average of 25% in execution 
time when compared to using the naïve method, and this indicates that our algorithms can enhance 
efficiency under more dimensions. 

 

Figure 3.  Running time on different dimensions and aggregation values 

 

Figure 4.  The number of comparisons on different dimensions and aggregation values 
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Next, we consider the data generated by using the Gaussian distribution. After using one of the two 
aggregation values for presorting, we use Lemma 1 for preliminary filtering. Figure 5 and 6 show the 
execution time and the numbers of comparisons performed by using the naïve method and the 
presorting method with two aggregation values for different numbers of dimensions. When D=1, our 
method can significantly reduce the number of comparisons. For D=3 and D=5, using the presorting 
method with the second aggregation value requires a smaller average number of comparisons, and this 
indicates that the presorting method based on using the expected values needs a small number of 
comparisons when there are more dimensions. For D=3, 5, and 10, the average number of comparisons 
required by using the presorting method with the first aggregation value is somewhat similar to that 
required by using the presorting method with the second aggregation value. The results from our 
experiments show that the execution time for the situations where the attribute values are drawn from 
the Gaussian distribution is reduced by 20-40%, when it is compared with that for the situations where 
the attributes are drawn from the random distribution. In terms of the number of comparisons, when 
the attribute values are drawn from the Gaussian distribution, it is reduced by 10-30%, compared with 
that when the attribute values are drawn from the random distribution. Because the Gaussian 
distribution is closer to what generates the data in many real-world situations, the results suggest that 
our algorithms have a great potential to be applied to many real-world applications. 

 

Figure 5.  Running time on different dimensions and aggregation values 
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execution time is less. For the situations where the Gaussian distribution is used to generate the 
attribute values, the execution time decreases about 40% for D=10, and the number of comparisons 
decreases 20-30%. 

 

Figure 6.  The number of comparisons on different dimensions and aggregation values 

5. CONCLUSIONS 

With the rapid development of the Internet, electronic commerce started to evolve, expand, and effect 
many important changes in the world of business. How to help customers efficiently find the products 
that they want? The problem remains, however. Many websites are offering customers 
experience-sharing services. When customers share their experiences regarding the quality of certain 
products and rate them based on the different attributes, the generated data set can be viewed as a set 
of objects. An object is a product (e.g. a restaurant), and there are many ratings given by customers to 
it. Our approach uses these ratings to provide more suitable products to customers who made the 
search. We propose a method to process skyline query on these ratings. We use a presorting method 
with two aggregation values to speed up the query processing. The results from experiments indicate 
that using the presorting method with any of the proposed aggregation values can reduce the execution 
time. The presorting method based on the expected value (the second proposed aggregation value) can 
generate more favorable outcomes for objects with more dimensions, and this results in a fewer 
number of calculation required for dominant relation comparisons. For future studies, we plan to 
propose new aggregation values for presorted objects. We hope that the first tuple of presorted objects 
by new aggregation values is one of skyline tuples. On the other hand, the rating data belongs to 
dynamic data, and thus these objects including probability values are variable. We plan to provide a 
novel approach to solve this condition in the future. Moreover, using real world data to evaluate our 
algorithms will be part of our future work. 
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