836 research outputs found

    Polynomial Identity Testing for Low Degree Polynomials with Optimal Randomness

    Get PDF
    We give a randomized polynomial time algorithm for polynomial identity testing for the class of n-variate poynomials of degree bounded by d over a field ?, in the blackbox setting. Our algorithm works for every field ? with | ? | ? d+1, and uses only d log n + log (1/ ?) + O(d log log n) random bits to achieve a success probability 1 - ? for some ? > 0. In the low degree regime that is d ? n, it hits the information theoretic lower bound and differs from it only in the lower order terms. Previous best known algorithms achieve the number of random bits (Guruswami-Xing, CCC\u2714 and Bshouty, ITCS\u2714) that are constant factor away from our bound. Like Bshouty, we use Sidon sets for our algorithm. However, we use a new construction of Sidon sets to achieve the improved bound. We also collect two simple constructions of hitting sets with information theoretically optimal size against the class of n-variate, degree d polynomials. Our contribution is that we give new, very simple proofs for both the constructions

    Sharp Concentration of Hitting Size for Random Set Systems

    Full text link
    Consider the random set system of {1,2,...,n}, where each subset in the power set is chosen independently with probability p. A set H is said to be a hitting set if it intersects each chosen set. The second moment method is used to exhibit the sharp concentration of the minimal size of H for a variety of values of p.Comment: 11 page

    08381 Abstracts Collection -- Computational Complexity of Discrete Problems

    Get PDF
    From the 14th of September to the 19th of September, the Dagstuhl Seminar 08381 ``Computational Complexity of Discrete Problems\u27\u27 was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work as well as open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this report. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    The asymptotic value in finite stochastic games

    Full text link
    We provide a direct, elementary proof for the existence of limλ0vλ\lim_{\lambda\to 0} v_{\lambda}, where vλv_{\lambda} is the value of a λ\lambda-discounted finite two-person zero-sum stochastic game

    Lower Bounds for Matrix Factorization

    Get PDF
    We study the problem of constructing explicit families of matrices which cannot be expressed as a product of a few sparse matrices. In addition to being a natural mathematical question on its own, this problem appears in various incarnations in computer science; the most significant being in the context of lower bounds for algebraic circuits which compute linear transformations, matrix rigidity and data structure lower bounds. We first show, for every constant dd, a deterministic construction in subexponential time of a family {Mn}\{M_n\} of n×nn \times n matrices which cannot be expressed as a product Mn=A1AdM_n = A_1 \cdots A_d where the total sparsity of A1,,AdA_1,\ldots,A_d is less than n1+1/(2d)n^{1+1/(2d)}. In other words, any depth-dd linear circuit computing the linear transformation MnxM_n\cdot x has size at least n1+Ω(1/d)n^{1+\Omega(1/d)}. This improves upon the prior best lower bounds for this problem, which are barely super-linear, and were obtained by a long line of research based on the study of super-concentrators (albeit at the cost of a blow up in the time required to construct these matrices). We then outline an approach for proving improved lower bounds through a certain derandomization problem, and use this approach to prove asymptotically optimal quadratic lower bounds for natural special cases, which generalize many of the common matrix decompositions

    The Tensor Track, III

    Full text link
    We provide an informal up-to-date review of the tensor track approach to quantum gravity. In a long introduction we describe in simple terms the motivations for this approach. Then the many recent advances are summarized, with emphasis on some points (Gromov-Hausdorff limit, Loop vertex expansion, Osterwalder-Schrader positivity...) which, while important for the tensor track program, are not detailed in the usual quantum gravity literature. We list open questions in the conclusion and provide a rather extended bibliography.Comment: 53 pages, 6 figure

    IST Austria Technical Report

    Get PDF
    We consider two-player stochastic games played on a finite state space for an infinite num- ber of rounds. The games are concurrent: in each round, the two players (player 1 and player 2) choose their moves independently and simultaneously; the current state and the two moves determine a probability distribution over the successor states. We also consider the important special case of turn-based stochastic games where players make moves in turns, rather than concurrently. We study concurrent games with ω-regular winning conditions specified as parity objectives. The value for player 1 for a parity objective is the maximal probability with which the player can guarantee the satisfaction of the objective against all strategies of the opponent. We study the problem of continuity and robustness of the value function in concurrent and turn-based stochastic parity games with respect to imprecision in the transition probabilities. We present quantitative bounds on the difference of the value function (in terms of the imprecision of the transition probabilities) and show the value continuity for structurally equivalent concurrent games (two games are structurally equivalent if the support of the transition func- tion is same and the probabilities differ). We also show robustness of optimal strategies for structurally equivalent turn-based stochastic parity games. Finally we show that the value continuity property breaks without the structurally equivalent assumption (even for Markov chains) and show that our quantitative bound is asymptotically optimal. Hence our results are tight (the assumption is both necessary and sufficient) and optimal (our quantitative bound is asymptotically optimal)
    corecore