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Robustness of Structurally Equivalent Concurrent Parity Games

Krishnendu Chatterjee

IST Austria (Institute of Science and Technology Austria)

Abstract. We consider two-player stochastic games played on a finite state space for an infinite num-
ber of rounds. The games areconcurrent: in each round, the two players (player 1 and player 2) choose
their moves independently and simultaneously; the currentstate and the two moves determine a prob-
ability distribution over the successor states. We also consider the important special case of turn-based
stochastic games where players make moves in turns, rather than concurrently. We study concurrent
games withω-regular winning conditions specified asparity objectives. The value for player 1 for a
parity objective is the maximal probability with which the player can guarantee the satisfaction of the
objective against all strategies of the opponent. We study the problem of continuity and robustness of
the value function in concurrent and turn-based stochasticparity games with respect to imprecision in
the transition probabilities. We present quantitative bounds on the difference of the value function (in
terms of the imprecision of the transition probabilities) and show the value continuity for structurally
equivalent concurrent games (two games are structurally equivalent if the support of the transition func-
tion is same and the probabilities differ). We also show robustness of optimal strategies for structurally
equivalent turn-based stochastic parity games. Finally weshow that the value continuity property breaks
without the structurally equivalent assumption (even for Markov chains) and show that our quantitative
bound is asymptotically optimal. Hence our results are tight (the assumption is both necessary and
sufficient) and optimal (our quantitative bound is asymptotically optimal).

1 Introduction

Concurrent stochastic games are played by two players on a finite state space for an infinite number of
rounds. In every round, the two players simultaneously and independently choose moves (or actions), and
the current state and the two chosen moves determine a probability distribution over the successor states.
The outcome of the game (or aplay) is an infinite sequence of states. These games were introduced by
Shapley [24], and has been one of the most fundamental and well studied game models in stochastic graph
games. We considerω-regular objectives specified as parity objectives; that is, given anω-regular setΦ of
infinite state sequences, player 1 wins if the outcome of the game lies inΦ. Otherwise, player 2 wins, i.e.,
the game is zero-sum. The class of concurrent stochastic games subsumes many other important classes
of games as sub-classes: (1)turn-based stochasticgames where at every round only one-player chooses
moves (i.e., the players make moves in turns); and (2)Markov decision processes(one-player stochastic
games). Concurrent games and its sub-classes provide a richframework to model various classes of dynamic
reactive systems, andω-regular objectives provide a robust specification language to express all commonly
used properties in verification. Thus concurrent games withparity objectives provide the mathematical
framework to study many important problems in the synthesisand verification of reactive systems [6, 23,
21] (see also [1, 13, 2]).

The player-1valuev1(s) of the game at a states is the limit probability with which player 1 can ensure
that the outcome of the game lies inΦ; that is, the valuev1(s) is the maximal probability with which
player 1 can guaranteeΦ against all strategies of player 2. Symmetrically, the player-2valuev2(s) is the
limit probability with which player 2 can ensure that the outcome of the game lies outsideΦ. The problem of
studying the computational complexity of MDPs, turn-basedstochastic games, and concurrent games with
parity objectives has received a lot of attention in literature. The problem of Markov decision processes
with ω-regular objectives has been studied in [8, 9, 4] and the results show existence of pure (deterministic)
memoryless (stationary) optimal strategies for parity objectives and the problem of value computation is
achievable in polynomial time. Turn-based stochastic games with the special case of reachability objectives
has been studied in [7] and existence of pure memoryless optimal strategies has been established and the



decision problem of whether the value at a state is at least a given rational value lie in NP∩ coNP. The
existence of pure memoryless optimal strategies for turn-based stochastic games with parity objectives was
established in [5, 28], and again the decision problem lie inNP∩ coNP. Concurrent parity games has been
studied in [10, 12, 3, 14] and for concurrent parity games optimal strategies need not exist, andε-optimal
strategies (forε > 0) require both infinite memory and randomization, and the decision problem can be
solved in PSPACE.

Almost all results in the literature consider the problem ofcomputing values and optimal strategies
when the game model is given precisely along with the objective. However it is often unrealistic to know
the precise probabilities of transition which are only estimated through observation. Since the transition
probabilities are not known precisely, an extremely important question is how robust is the analysis of
concurrent games and its sub-classes with parity objectives with respect to small changes in the transition
probabilities. This question has been largely ignored in the study of concurrent and turn-based stochastic
parity games. In this paper we study the following problems related to continuity and robustness of values:
(1) (continuity of values).under what conditions can continuity of the value function be proved for con-
current parity games; (2)(robustness of values).can quantitative bounds be obtained on the difference of
the value function in terms of the difference of the transition probabilities; and (3)(robustness of optimal
strategies).does optimal strategies of a game remainε-optimal, forε > 0, if the transition probabilities are
slightly changed.

Our contributions.Our contributions are as follows:

1. We considerstructurally equivalentgame structures, where the support of the transition probabilities
are the same, but the precise transition probabilities may differ. We show the following results for
structurally equivalent concurrent parity games:
(a) Quantitative bound.We present a quantitative bound on the difference of the value function of

two structurally equivalent game structures in terms of thedifference of the transition probabilities.
We show when the difference in the transition probabilitiesare small, our bound is asymptotically
optimal. Our example to show the matching lower bound is on a Markov chain, and thus our result
shows that the bound for a Markov chain can be generalized to concurrent games.

(b) Value continuity.We showvalue continuityfor structurally equivalent concurrent parity games, i.e.,
as the difference in transition probabilities goes to 0, thedifference in value functions also goes
to 0. We then show that the structurally equivalent assumption is necessary: we show a family of
Markov chains (that are not structurally equivalent) wherethe difference of the transition probabil-
ities goes to 0, but the difference in the value function is 1.It follows that the structural equivalence
assumption is both necessary (even for Markov chains) and sufficient (even for concurrent games).

It follows from above that our results are both optimal (quantitative bounds) as well as tight (assumption
both necessary and sufficient). Our result for concurrent parity games is also a significant quantitative
generalization of a result for concurrent parity games of [10] which shows that the set of states with
value 1 remains same if the games are structurally equivalent. We also argue that the structurally equiv-
alent assumption is not unrealistic in many cases: a reactive system consists of many state variables,
and given a state (valuation of variables) it is typically known which variables are possibly updated,
and what is unknown is the precise transition probabilities(which are estimated by observation). Thus
the system that is obtained for analysis is structurally equivalent to the underlying original system and
it only differs in precise transition probabilities.

2. For turn-based stochastic parity games the value continuity and the quantitative bounds are same as
for concurrent games. We also prove a stronger result for structurally equivalent turn-based stochastic
games that shows that along with continuity of value function, there is also robustness property for pure
memoryless optimal strategies. More precisely, for allε > 0, we present a boundβ > 0, such that
any pure memoryless optimal strategy in a turn-based stochastic parity game is anε-optimal strategy
in a structurally equivalent turn-based stochastic game such that the transition probabilities differ by at
mostβ. Our result has deep significance as it allows the rich literature of work on turn-based stochastic
games to carry over robustly for structurally equivalent turn-based stochastic games. As argued before
the model of turn-based stochastic game obtained to analyzemay differ slightly in precise transition



probabilities, and our results shows that the analysis on the slightly imprecise model using the classical
results carry over to the underlying original system with small error bounds.

Our results are obtained as follows. The result of [11] showsthat the value function for concurrent parity
games can be characterized as the limit of the value functionof concurrent multi-discounted games. There
exists bound on difference on value function of discounted games [15], however, the bound depends on the
discount factor, and in the limit gives trivial bounds (and in general this approach does not work as value
continuity cannot be proven in general and the structural equivalence assumption is necessary). We use a
classical result on Markov chains by Friedlin and Wentzell [16] and generalize a result of Solan [25] from
Markov chains with single discount to Markov chains with multi-discounted objective to obtain a bound
that is independent of the discount factor for structurallyequivalent games. Then the bound also applies
when we take the limit of the discount factors, and gives us the desired bound.

Our paper is organized as follows: in Section 2 we present thebasic definitions, in Section 3 we consider
Markov chains with multi-discounted and parity objectives; in Section 4 (Subsection 4.1) we prove the
results related to turn-based stochastic games (item (2) ofour contributions) and finally in Subsection 4.2
we present the quantitative bound and value continuity for concurrent games along with the two examples
to illustrate the asymptotic optimality of the bound and thestructural equivalence assumption is necessary.

2 Definitions

In this section we define game structures, strategies, objectives, values and present other preliminary defi-
nitions.

2.1 Game structures

Probability distributions. For a finite setA, a probability distributionon A is a functionδ : A 7→ [0, 1]
such that

∑

a∈A δ(a) = 1. We denote the set of probability distributions onA byD(A). Given a distribution
δ ∈ D(A), we denote bySupp(δ) = {x ∈ A | δ(x) > 0} thesupportof the distributionδ.

Concurrent game structures.A (two-player)concurrent stochastic game structureG = 〈S, A, Γ1, Γ2, δ〉
consists of the following components.

– A finite state spaceS.
– A finite setA of moves (or actions).
– Two move assignmentsΓ1, Γ2 : S 7→ 2A \ ∅. For i ∈ {1, 2}, assignmentΓi associates with each state

s ∈ S the nonempty setΓi(s) ⊆ A of moves available to playeri at states.
– A probabilistic transition functionδ : S × A × A 7→ D(S), which associates with every states ∈ S

and movesa1 ∈ Γ1(s) anda2 ∈ Γ2(s) a probability distributionδ(s, a1, a2) ∈ D(S) for the successor
state.

Plays.At every states ∈ S, player 1 chooses a movea1 ∈ Γ1(s), and simultaneously and independently
player 2 chooses a movea2 ∈ Γ2(s). The game then proceeds to the successor statet with probability
δ(s, a1, a2)(t), for all t ∈ S. For all statess ∈ S and movesa1 ∈ Γ1(s) anda2 ∈ Γ2(s), we indicate by
Dest(s, a1, a2) = Supp(δ(s, a1, a2)) the set of possible successors ofs when movesa1, a2 are selected.
A pathor a play of G is an infinite sequenceω = 〈s0, s1, s2, . . .〉 of states inS such that for allk ≥ 0,
there are movesak

1 ∈ Γ1(sk) andak
2 ∈ Γ2(sk) such thatsk+1 ∈ Dest(sk, ak

1 , ak
2). We denote byΩ

the set of all paths. We denote byθi the random variable that denotes thei-th state of a path. For a play
ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we defineInf(ω) = {s ∈ S | sk = s for infinitely manyk ≥ 0} to be the set of
states that occur infinitely often inω.

Special classes of concurrent games.We will consider the following special classes of concurrent games.

1. Turn-based stochastic games.A game structureG is turn-based stochasticif at every state at most
one player can choose among multiple moves; that is, for every states ∈ S there exists at most one
i ∈ {1, 2} with |Γi(s)| > 1.



2. Markov decision processes.A game structure is aplayer-1 Markov decision process (MDP)if for all
s ∈ S we have|Γ2(s)| = 1, i.e., only player-1 has choice of actions in the game. Similarly, a game
structure is aplayer-2 MDPif for all s ∈ S we have|Γ1(s) = 1.

3. Markov chains.A game structure is a Markov chain if for alls ∈ S we have|Γ1(s)| = 1 and|Γ2(s)| =
1. Hence in a Markov chain the players do not matter, and for therest of the paper a Markov chain
consists of a tuple(S, δ) whereδ : S → D(S) is the probabilistic transition function.

2.2 Strategies

A strategyfor a player is a recipe that describes how to extend a play. Formally, a strategy for player
i ∈ {1, 2} is a mappingπi : S+ 7→ D(A) that associates with every nonempty finite sequencex ∈ S+

of states, representing the past history of the game, a probability distribution πi(x) used to select the next
move. The strategyπi can prescribe only moves that are available to playeri; that is, for all sequences
x ∈ S∗ and statess ∈ S, we require thatSupp(πi(x · s)) ⊆ Γi(s). We denote byΠi the set of all strategies
for playeri ∈ {1, 2}.

Given a states ∈ S and two strategiesπ1 ∈ Π1 andπ2 ∈ Π2, we defineOutcome(s, π1, π2) ⊆ Ω to
be the set of paths that can be followed by the game, when the game starts froms and the players use the
strategiesπ1 andπ2. Formally,〈s0, s1, s2, . . .〉 ∈ Outcome(s, π1, π2) if s0 = s and if for all k ≥ 0 there
exist movesak

1 ∈ Γ1(sk) andak
2 ∈ Γ2(sk) such that

π1(s0, . . . , sk)(ak
1) > 0, π2(s0, . . . , sk)(ak

2) > 0, sk+1 ∈ Dest(sk, ak
1 , a

k
2).

Once the starting states and the strategiesπ1 andπ2 for the two players have been chosen, the probabilities
of events are uniquely defined [27], where aneventA ⊆ Ω is a measurable set of paths1. For an event
A ⊆ Ω, we denote byPrπ1,π2

s (A) the probability that a path belongs toA when the game starts froms and
the players use the strategiesπ1 andπ2.

Classification of strategies.We consider the following special classes of strategies.

1. (Pure).A strategyπ is pure (deterministic)if for all x ∈ S+ there existsa ∈ A such thatπ(x)(a) = 1.
Thus, deterministic strategies are equivalent to functionsS+ 7→ A.

2. (Finite-memory).Strategies in general arehistory-dependentand can be represented as follows: letM be
a set calledmemoryto remember the history of plays (the setM can be infinite in general). A strategy
with memory can be described as a pair of functions: (a) amemory updatefunctionπu : S×M 7→ M, that
given the memoryM with the information about the history and the current stateupdates the memory;
and (b) anext movefunctionπn : S × M 7→ D(A) that given the memory and the current state specifies
the next move of the player. A strategy isfinite-memoryif the memoryM is finite.

3. (Memoryless).A memorylessstrategy is independent of the history of play and only depends on the
current state. Formally, for a memoryless strategyπ we haveπ(x · s) = π(s) for all s ∈ S and all
x ∈ S∗. Thus memoryless strategies are equivalent to functionsS 7→ D(A).

4. (Pure memoryless).A strategy ispure memorylessif it is both pure and memoryless. The pure memo-
ryless strategy neither use memory, nor use randomization and are equivalent to functionsS 7→ A.

2.3 Objectives

Qualitative objectives.We specifyqualitativeobjectives for the players by providing the set ofwinning
playsΦ ⊆ Ω for each player. In this paper we study only zero-sum games [22, 15], where the objectives
of the two players are complementary. A general class of objectives are the Borel objectives [18]. ABorel
objectiveΦ ⊆ Sω is a Borel set in the Cantor topology onSω. In this paper we considerω-regular objectives
specified as parity objectives, which lie in the first21/2 levels of the Borel hierarchy (i.e., in the intersection
of Σ3 andΠ3) [26].

1 To be precise, we should define events as measurable sets of paths sharing the same initial state,and we should
replace our events with families of events, indexed by theirinitial state. However, our (slightly) improper definition
leads to more concise notation.



– Parity objectives.For c, d ∈ N, we let [c..d] = {c, c + 1, . . . , d}. Let p : S 7→ [0..d] be a function
that assigns apriority p(s) to every states ∈ S, whered ∈ N. TheEven parity objectiverequires that
the minimum priority visited infinitely often is even. Formally, the set of winning plays is defined as
Parity(p) = {ω ∈ Ω | min

(

p(Inf(ω))
)

is even}.

Quantitative objectives. Quantitativeobjectives are measurable functionsf : Ω → R. We will consider
multi-discountedobjective function, as there is a close connection established between concurrent games
with multi-discounted objectives and concurrent games with parity objectives. Given a concurrent game
structure with state spaceS, let λ be adiscount vectorthat assigns for alls ∈ S a discount factor0 <
λ(s) < 1 (unless otherwise mentioned we will always consider discount vectorsλ such that for alls ∈ S
we have0 < λ(s) < 1). Let r : S → R be a reward function that assigns a real-valued rewardr(s) to
every states ∈ S. The multi-discounted objective functionMDT(λ, r) : Ω → R maps every path to the
mean-discounted reward of the path. Formally, the functionis defined as follows: for a pathω = s0s1s2 . . .
we have

MDT(ω, λ, r) =

∑∞
j=0(

∏j
i=0 λ(si)) · r(sj)

∑∞
j=0(

∏j
i=0 λ(si))

.

Values, optimality, ε-optimality. Given an objectiveΦ which is a measurable functionΦ : Ω → R, we
define thevaluefor player 1 of gameG with objectiveΦ from the states ∈ S as

Val(G, Φ)(s) = sup
π1∈Π1

inf
π2∈Π2

E
π1,π2

s (Φ);

i.e., the value is the maximal expectation with which player1 can guarantee the satisfaction ofΦ against all
player 2 strategies. Given a player-1 strategyπ1, we use the notation

Val
π1(G, Φ)(s) = inf

π2∈Π2

E
π1,π2

s (Φ).

A strategyπ1 for player 1 isoptimalfor an objectiveΦ if for all statess ∈ S, we have

Val
π1(G, Φ)(s) = Val(G, Φ)(s).

Forε > 0, a strategyπ1 for player 1 isε-optimalif for all statess ∈ S, we have

Val
π1(G, Φ)(s) ≥ Val(G, Φ)(s) − ε.

The notion of values, optimal andε-optimal strategies for player 2 are defined analogously. The following
theorem summarizes the results in literature related to determinacy and memory complexity of concurrent
games and its sub-classes for parity and multi-discounted objectives.

Theorem 1. The following assertions hold:

1. (Determinacy [19]). For all concurrent game structures and for all parity and multi-discounted objec-
tivesΦ we have

sup
π1∈Π1

inf
π2∈Π2

E
π1,π2

s (Φ) = inf
π2∈Π2

sup
π1∈Π1

E
π1,π2

s (Φ).

2. (Memory complexity).For all concurrent game structures and for all multi-discounted objectivesΦ,
randomized memoryless optimal strategies exist [24]. For all turn-based stochastic game structures
and for all multi-discounted objectivesΦ, pure memoryless optimal strategies exist [15]. For all turn-
based stochastic game strucutures and for all parity objectivesΦ, pure memoryless optimal strategies
exist [5, 28]. In general optimal strategies need not exist in concurrent games with parity objectives,
andε-optimal strategies, forε > 0, need both randomization and infinite memory in general [10].



The results of [11] established that the value of concurrentgames with certain special multi-discounted
objectives can be characterized as valuations of quantitaive discountedµ-calculus formula. In the limit, the
value function of the discountedµ-calculus formula characterizes the value function of concurrent games
with parity objectives. An elegant interpretation of the result was given in [17], and from the interpretation
we obtain the following theorem.

Theorem 2 ([11]).Let G be a concurrent game structure with a parity objectiveΦ defined by a priority
functionp. Let r be a reward function that assigns reward 1 to even priority states and reward 0 to odd
priority states. Then there exists an orders1s2 . . . sn on the states (whereS = {s1, s2, . . . , sn}) dependent
only on the priority functionp such that

Val(G, Φ) = lim
λ(s1)→1

lim
λ(s2)→1

. . . lim
λ(sn)→1

Val(G, MDT(λ, r));

in other words, if we consider the value functionVal(G, MT(λ, r)) with the multi-discounted objective and
take the limit of the discount factors to 1 in the order of the states we obtain the value function for the parity
objective.

2.4 Structure equivalent game structures and distance of game structures

In this sub-section we present notions related tostructure equivalentgame structures.

Structure equivalent game structures.Given two game structuresG1 = 〈S, A, Γ1, Γ2, δ1〉 andG2 =
〈S, A, Γ1, Γ2, δ2〉 on the same state and action space, with different transition function, we say thatG1 and
G2 arestructure equivalent(denotedG1 ≡ G2) if for all s ∈ S and alla1 ∈ Γ1(s) anda2 ∈ Γ2(s) we have
Supp(δ1(s, a1, a2)) = Supp(δ2(s, a1, a2)). Similarly, two Markov chainsG1 = (S, δ1) andG2 = (S, δ2)
are structurally equivalent (denotedG1 ≡ G2) if for all s ∈ S we haveSupp(δ1(s)) = Supp(δ2(s)). For a
game structureG (resp. Markov chainG) we denote by[[G]]≡ the set of all game structures (resp. Markov
chains) that are structurally equivalent toG.

Ratio and absolute distances.Given two game structuresG1 = 〈S, A, Γ1, Γ2, δ1〉 and G2 =
〈S, A, Γ1, Γ2, δ2〉, theabsolute distanceof the game structures is maximum absolute difference in thetran-
sition probabilities. Formally,

distA(G1, G2) = max
s,t∈S,a∈Γ1(s),b∈Γ2(s)

|δ1(s, a, b)(t) − δ2(s, a, b)(t)|.

The absolute distance for two Markov chainsG1 = (S, δ1) and G2 = (S, δ2) is distA(G1, G2) =
maxs,t∈S |δ1(s)(t)− δ2(s)(t)|. We now define the ratio distance between two structurally equivalent game
structures and Markov chains. LetG1 andG2 be two structurally equivalent game structures. Theratio
distance is defined on the ratio of the transition probabilities. Formally,

distR(G1, G2) = max

{

δ1(s, a, b)(t)

δ2(s, a, b)(t)
,
δ2(s, a, b)(t)

δ1(s, a, b)(t)
| s ∈ S, a ∈ Γ1(s), b ∈ Γ2(s),

t ∈ Supp(δ1(s, a, b)) = Supp(δ2(s, a, b))

}

− 1

The ratio distance between two structurally equivalent Markov chainsG1 andG2 is max
{

δ1(s)(t)
δ2(s)(t) ,

δ2(s)(t)
δ1(s)(t)

|

s ∈ S, t ∈ Supp(δ1(s)) = Supp(δ2(s))
}

− 1.

Proposition 1. LetG1 be a game structure (resp. Markov chain) such that the minimum positive transition
probability isη > 0. For all game structures (resp. Markov chains)G2 ∈ [[G1]]≡ we have

distR(G1, G2) ≤
distA(G1, G2)

η − distA(G1, G2)



Proof. Considers ∈ S, a ∈ Γ1(s), b ∈ Γ2(s), andt ∈ Supp(δ1(s, a, b)) = Supp(δ2(s, a, b)). Then we
have the following two inequalities: the first inequality is

δ2(s, a, b)(t)

δ1(s, a, b)(t)
≤

δ1(s, a, b)(t) + distA(G1, G2)

δ1(s, a, b)(t)
≤ 1 +

distA(G1, G2)

δ1(s, a, b)(t)
≤ 1 +

distA(G1, G2)

η

and the second inequality is

δ1(s, a, b)(t)

δ2(s, a, b)(t)
≤

δ1(s, a, b)(t)

δ1(s, a, b)(t) − distA(G1, G2)
≤ 1 +

distA(G1, G2)

δ1(s, a, b)(t) − distA(G1, G2)

≤ 1 +
distA(G1, G2)

η − distA(G1, G2)

The desired result follows from the above inequalities.

Notation for fixing strategies.Given a concurrent game structureG = 〈S, A, Γ1, Γ2, δ〉, let π1 be a ran-
domized memoryless strategy. Fixing the strategyπ1 in G we obtain a player-2 MDP, denoted asG ↾ π1,
defined as follows: (1) the state space isS; (2) for all s ∈ S we haveΓ1(s) = {⊥} (hence it is a player-2
MDP); (3) the new transition functionδπ1

is defined as follows: for alls ∈ S and allb ∈ Γ2(s) we have
δπ1

(s,⊥, b)(t) =
∑

a∈Γ1(s)
π1(s)(a) · δ(s, a, b)(t). Similarly if we fix a randomized memoryless strategy

π1 in an MDPG we obtain a Markov chain, denoted asG ↾ π1. The following proposition is straight
forward to verify from the definitions.

Proposition 2. LetG1 andG2 be two concurrent game structures (resp. MDPs) that are structurally equiv-
alent. Letπ1 be a randomized memoryless strategy. ThendistA(G1 ↾ π1, G2 ↾ π1) = distA(G1, G2) and
distR(G1 ↾ π1, G2 ↾ π1) = distR(G1, G2).

3 Markov Chains with Multi-discounted and Parity Objective s

In this section we consider Markov chains with multi-discounted and parity objectives. We present a bound
on the difference of value functions of two structurally equivalent Markov chains that is dependent on
the distance between the Markov chains and isindependentof the discount factors. The result for parity
objectives is then a consequence of our result for multi-discounted objectives and Theorem 2. Our result
crucially depends on a result of Friedlin and Wentzell for Markov chains and we present the result below,
and then use the result to present the main result of the section.

3.1 Result of Friedlin and Wentzell

Let (S, δ) be a Markov chain and lets0 be the initial state. LetC ⊂ S be a proper subset ofS and
let us denote byexC = inf{n ∈ N | θn 6∈ C} the first hitting time to the setS \ C of states (or the
first exit time from setC) (recall thatθn is the random variable to denote then-th state of a path). Let
F(C, S) = {f : C → S} denote the set of all functions fromC to S. For everyf ∈ F(C, S) we define
a directed graphGf = (S, Ef ) where(s, t) ∈ Ef iff f(s) = t. Let αf = 1 if the directed graphGf has
no directed cycles (i.e.,Gf is a directed acyclic graph); andαf = 0 otherwise. Observe that sincef is a
function, for everys ∈ C there is exactly one path that leavesC. For everys ∈ C and everyt ∈ S, let
βf (s, t) = 1 if the directed path that leavess in Gf reachest, otherwiseβf (s, t) = 0. We now state a result
that can be obtained as a special case of the result from Friedlin and Wentzell [16].

Theorem 3 (see Lemma 6.3.3 of [20]).Let (S, δ) be a Markov chain, and letC ⊂ S be a proper subset
of S such thatPrs(exC < ∞) > 0 for everys ∈ C (i.e., from alls ∈ C with positive probability the first
hitting time to the complement set is finite). Then for every initial states1 ∈ C and for everyt 6∈ C we have

Prs1
(θexC

= t) =

∑

f∈F(C,S)(βf (s1, t) ·
∏

s∈C δ(s)(f(s)))
∑

f∈F(C,S)(αf ·
∏

s∈C δ(s)(f(s)))
, (1)



in other words, the probability that the exit state ist when the starting state iss1 is given by the expression
on the right hand side.

We present an argument that the assumption that for alls ∈ C we havePrs(exC < ∞) > 0 implies
that the denominator of Equation (1) is positive (also see [20, 16, 25]). Since all terms in the summation
of the denominator is non-negative, we show a witness function f ∈ F(C, S) such thatαf = 1 and
∏

s∈C δ(s)(f(s)) > 0. Let s ∈ C, and sincePrs(exC < ∞) > 0, it follows that there existsℓ > 1
and a sequence of statess1s2 . . . sℓ with s1 = s such thats2, . . . , sℓ−1 ∈ C, sℓ ∈ (S \ C) and for all
i = 1, 2, . . . , ℓ − 1 we haveδ(si)(si+1) > 0. Let us denote byℓs the length of the shortest such sequence.
We have the following two cases: (1)ℓs = 2, i.e., there existst ∈ (S \ C) andδ(s)(t) > 0; or (2) ℓs > 2,
and then there existst ∈ C with δ(s)(t) > 0 andℓs = ℓt + 1. We define the witnessf as follows: (1) if
ℓs = 2, thenf(s) = t, wheret is any state inS \ C with δ(s)(t) > 0; (2) if ℓs > 2, thenf(s) = t, where
t ∈ C is a state inC such thatδ(s)(t) > 0 andℓs = ℓt +1. Sinces ∈ S is chosen arbitrarily,f is a function
from C to S, and by construction we have

∏

s∈C δ(s)(f(s)) > 0. Since for everys ∈ C, if f(s) ∈ C, then
ℓf(s) + 1 = ℓs, it follows that the directed graph induced byf has no cycles and henceαf = 1.

3.2 Value function difference for Markov chains

In this sub-section we will use the result of previous sub-section to obtain bounds on the value functions of
Markov chains. We start with the notion of mean-discounted time.

Mean-discounted time.Given a Markov chain(S, δ) and a discount vectorλ, we define for every state
s ∈ S, themean-discounted timethe process is in the states. We first define the mean-discounted time
functionMDT(λ, s) : Ω → R that maps every path to the mean-discounted time that the state s is visited,
and the function is formally defined as follows: for a pathω = s0s1s2 . . . we have

MDT(λ, s)(ω) =

∑∞
j=0(

∏j
i=0 λ(si)) · 1sj=s

∑∞
j=0(

∏j
i=0 λ(si))

;

where1sj=s is the indicator function. The expected mean-discounted time function for a Markov chainG
with transition functionδ is defined as follows:MT(s1, s, G, λ) = Es1

[MDT(λ, s)], i.e., it is the expected
mean-discounted time fors when the starting state iss1, where the expectation measure is defined by
the Markov chain with transition functionδ. We now present a lemma that shows the value function for
multi-discounted Markov chains can be expressed as ratio oftwo polynomials.

Lemma 1. For Markov chains defined on state spaceS, for all initial statess0, for all statess, for all
discount vectorsλ, there exists two polynomialsg1(·) andg2(·) in |S|2 variablesxt,t′ , wheret, t′ ∈ S such
that the following conditions hold:

1. the polynomials have degree at most|S| with non-negative coefficients; and
2. for all transition functionsδ overS we haveMT(s0, s, G, λ) = g1(δ)

g2(δ) , whereG = (S, δ), g1(δ) and
g2(δ) denote the values of the functiong1 andg2 such that the variablesxt,t′ is instantiated with values
δ(t)(t′) as given by the transition functionδ.

Proof. Fix a discount vectorλ. We construct a Markov chainG = (S, δ) as follows:S = S ∪ S1, where
S1 is a copy of states ofS (and for a states ∈ S we denote its corresponding copy ass1); and the transition
functionδ is defined below

1. δ(s1)(s1) for all s1 ∈ S1 (i.e., all copy states are absorbing);
2. for s ∈ S we have

δ(s)(t) =











(1 − λ(s)) t = s1;

λ(s) · δ(s)(t) t ∈ S;

0 t ∈ S1 \ s1;

i.e., it goes to the copy with probability(1 − λ(s)), it follows the transitionδ in the original copy with
probabilities multiplied byλ(s).



We first show that for alls0 ands we have

MT(s0, s, G, λ) = Prδ
s0

(θexS
= s1);

i.e., the expected mean-discounted time ins when the original Markov chain starts ins0 is the probability in
the Markov chain(S, δ) that the first hitting state out ofS is the copys1 of the states. The claim is easy to

verify as both(MT(s0, s, G, λ))s0∈S and(Prδ
s0

(θexS
= s1))s0∈S are the solutions of the following system

of linear equations
yt = (1 − λ(t)) · 1t=s +

∑

z∈S

λ(z) · δ(t)(z) · yz ∀t ∈ S.

Also the above system of linear equations has a unique solution (this is due to contraction mapping) and
we prove this below: let(y1

z)z∈S and (y2
z)z∈S be two solutions of the system. We chosez∗ ∈ S such

thatz∗ = arg maxz∈S |y1
z − y2

z |, i.e.,z∗ is a state that maximizes the difference of the two solutions. Let
η = |y1

z∗ − y2
z∗ |. As y1 andy2 are solutions of the above system we have by the triangle inequality

0 ≤ η = |y1
z∗ − y2

z∗ | ≤
∑

t∈S

λ(t) · |y1
t − y2

t |

≤ η ·
∑

t∈S

λ(t) · δ(s0)(t) ≤ η · max
t∈S

λ(t) ·
∑

t∈S

δ(s0)(t).

Since
∑

t∈S δ(s0)(t) = 1, it follows thatη ≤ η · maxt∈S λ(t). Sincemaxt∈S λ(t) < 1 it follows that we
must haveη = 0 and hence the two solutions must coincide.

We now claim thatPrδ
s0

(exS < ∞) > 0 for all s0 ∈ S. This follows since for alls ∈ S we have

δ(s)(s1) = (1 − λ(s)) > 0 and sinces1 6∈ S we havePrδ
s0

(exS = 2) = (1 − λ(s0)) > 0. Now we
observe that we can apply Theorem 3 on the Markov chainG = (S, δ) with S as the setC of states
of Theorem 3, and obtain the result. Indeed the termsαf andβf (s, t) are independent ofδ, and the two
prodtucs of Equation (1) each contains at most|S| terms of the formδ(s)(t) for s, t ∈ S. Thus the desired
result follows.

Lemma 2. Leth(x1, x2, . . . , xk) be a polynomial function with non-negative coefficients of degree at most
n. Let ε > 0 and y, y′ ∈ R

k be two non-negative vectors such that for alli = 1, 2, . . . , k we have
1

1+ε
≤ yi

y′
i

≤ 1 + ε. Then we have

(1 + ε)−n ≤
h(y)

h(y′)
≤ (1 + ε)n

Proof. We first writeh(x) as follows:

h(x) =

ℓ
∑

i=1

ai ·
ni
∏

j=1

xkij
,

whereℓ ∈ N, for all i = 1, 2, . . . , ℓ we haveai ≥ 0, ni ≤ n, and1 ≤ kij ≤ k for eachj = 1, 2, . . . , ni. By
the hypothesis of the lemma, for alli = 1, 2, . . . , ℓ we have

1

(1 + ε)n
·

ni
∏

j=1

y′
kij

≤
ni
∏

j=1

ykij
≤ (1 + ε)n ·

ni
∏

j=1

y′
kij

.

Since everyai ≥ 0, multiplying the above inequalities byai and summing overi = 1, 2, . . . , ℓ yields the
desired result.

Lemma 3. Let G1 = (S, δ) andG2 = (S, δ′) be two structurally equivalent Markov chains. For all non-
negative reward functionsr : S → R such that the reward function is bounded by 1, for all discount vectors
λ, for all s ∈ S we have

|Val(G1, MDT(λ, r))(s) − Val(G2, MDT(λ, r))(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1;



i.e., the absolute difference of the value functions for themulti-discounted objective is bounded by(1 +
distR(G1, G2))

2·|S| − 1.

Proof. We first observe that for a Markov chainG we haveVal(G, MDT(λ, r))(s) =
∑

t∈S r(t) ·
MT(s, t, G, λ), i.e., the value function for a states is obtained as the sum of the product of mean-
discounted time of states and the rewards withs as the starting state. Hence by Lemma 2 it follows that
Val(G, MDT(λ, r))(s) can be expressed as a ratiog1(·)

g2(·) of two polynomials of degree at most|S| over|S|2

variables. Hence we have
Val(G1, MDT(λ, r))(s)

Val(G2, MDT(λ, r))(s)
=

g1(δ)

g1(δ′)
·
g2(δ

′)

g2(δ)

Let ε = distR(G1, G2). By definition for alls1, s2 ∈ S, if s2 ∈ Supp(δ(s1)), then we have bothδ(s1)(s2)
δ′(s1)(s2)

and δ′(s1)(s2)
δ(s1)(s2) are between 1

1+ε
and1 + ε. It follows from Lemma 2, withk = |S|2 that

(1 + ε)−|S| ≤
gi(δ)

gi(δ′)
≤ (1 + ε)|S|, for i ∈ {1, 2}.

Thus we have

(1 + ε)−2·|S| ≤
g1(δ)

g1(δ′)
·
g2(δ

′)

g2(δ)
≤ (1 + ε)2·|S|.

Hence we have

(1 + ε)−2·|S| ≤
Val(G1, MDT(λ, r))(s)

Val(G2, MDT(λ, r))(s)
≤ (1 + ε)2·|S|

We consider the case whenVal(G1, MDT(λ, r))(s) ≥ Val(G2, MDT(λ, r))(s), and the other case argu-
ment is symmetric. We also assume without loss of generalitythatVal(G2, MDT(λ, r))(s) > 0. Otherwise
if Val(G2, MDT(λ, r))(s) = 0, since rewards are non-negative, it follows that no state with positive reward
is reachable froms both inG1 andG2 (because if they are reachable, then they are reachable withpositive
probability and then the value is positive), and henceVal(G1, MDT(λ, r)) = Val(G2, MDT(λ, r)) =
0 and the result of the lemma follows trivially. Since we assume that Val(G1, MDT(λ, r))(s) ≥
Val(G2, MDT(λ, r))(s) andVal(G2, MDT(λ, r))(s) > 0, we have

|Val(G1, MDT(λ, r))(s) − Val(G2, MDT(λ, r))(s)|

= Val(G2, MDT(λ, r))(s) ·

(

Val(G1, MDT(λ, r))(s)

Val(G2, MDT(λ, r))(s)
− 1

)

≤ Val(G2, MDT(λ, r))(s) ·
(

(1 + ε)2·|S| − 1
)

Since the reward function is bounded by 1, it follows thatVal(G2, MDT(λ, r))(s) ≤ 1, and hence we have

|Val(G1, MDT(λ, r))(s) − Val(G2, MDT(λ, r))(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1.

The desired result follows.

Theorem 4. LetG1 = (S, δ) andG2 = (S, δ′) be two structurally equivalent Markov chains. Letη be the
minimum positive transition probability inG1. The following assertions hold:

1. For all non-negative reward functionsr : S → R such that the reward function is bounded by 1, for all
discount vectorsλ, for all s ∈ S we have

|Val(G1, MDT(λ, r))(s) − Val(G2, MDT(λ, r))(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1

≤

(

1 +
distA(G1, G2)

η − distA(G1, G2)

)2·|S|

− 1



2. For all parity objectivesΦ and for alls ∈ S we have

|Val(G1, Φ)(s) − Val(G2, Φ)(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1

≤

(

1 +
distA(G1, G2)

η − distA(G1, G2)

)2·|S|

− 1

Proof. The first part follows from Lemma 3 and Proposition 1. The second part follows from part 1, the fact
the value function for parity objectives is obtained as the limit of multi-discounted objectives (Theorem 2),
and the fact the bound for part 1 is independent of the discount factors (hence independent of taking the
limit).

4 Value Continuity for Parity Objectives

In this section we show two results: first we show robustness of strategies and present quantitative bounds
on value function for turn-based stochastic games and then we show the continuity for concurrent parity
games.

4.1 Quantitative bounds for structurally equivalent turn-based stochastic parity games

In this section we present quantitative bounds for robustness of optimal strategies in structurally equivalent
turn-based stochastic games. For everyε > 0 we present a boundβ > 0 such that if the distance of the
structurally equivalent turn-based stochastic games differ by at mostβ then any pure memoryless optimal
strategy in one game isε-optimal in the other. We first show the result for MDPs and then extend to turn-
based stochastic games.

Theorem 5. LetG1 be a player-1 MDP such that the minimum positive transition probability isη > 0. The
following assertions hold:

1. For all player-1 MDPsG2 ∈ [[G1]]≡, for all parity objectivesΦ and for alls ∈ S we have

|Val(G1, Φ)(s)−Val(G2, Φ)(s)| ≤ (1+distR(G1, G2))
2·|S|−1 ≤

(

1+
distA(G1, G2)

η − distA(G1, G2)

)2·|S|

−1

2. For ε > 0, let β ≤ η
2 ·

(

(1 + ε
2 )

1
2·|S| − 1) such thatβ ≤ η

2 . For all G2 ∈ [[G1]]≡ such that
distA(G1, G2) ≤ β, for all parity objectivesΦ, every pure memoryless optimal strategyπ1 in G1

is anε-optimal strategy inG2. In other words, for the interval[0, β), every pure memoryless optimal
strategy inG1 is anε-optimal strategy in all structurally equivalent MDPs ofG1 such that the distance
lie in the interval[0, β).

Proof. We prove the two parts below.

1. Without loss of generality, letVal(G1, Φ)(s) ≥ Val(G2, Φ)(s). Let π1 be a pure memoryless optimal
strategy inG1 and such a strategy exists by Theorem 1. Then we have the following inequality

Val(G2, Φ)(s) ≥ Val(G2 ↾ π1, Φ)(s)

≥ Val(G1 ↾ π1, Φ)(s) −
(

(1 + distR(G1, G2))
2·|S| − 1

)

= Val(G1, Φ)(s) −
(

(1 + distR(G1, G2))
2·|S| − 1

)

The (in)equalities are obtained: the first inequality follows because the value inG2 is at least the value
in G2 obtained by fixing a particular strategy (in this caseπ1); the second inequality is obtained by
appying Theorem 4 on the structurally equivalent Markov chains G1 ↾ π1 andG2 ↾ π1; and the final
equality follows sinceπ1 is an optimal strategy inG1. The desired result follows.



2. LetG2 ∈ [[G1]]≡ such thatdistA(G1, G2) ≤ β. Letπ1 be any pure memoryless optimal strategy inG1.
Then we have the following inequality

Val(G2 ↾ π1, Φ)(s) ≥ Val(G1 ↾ π1, Φ)(s) −
(

(1 + distR(G1, G2))
2·|S| − 1

)

= Val(G1, Φ)(s) −
(

(1 + distR(G1, G2))
2·|S| − 1

)

≥ Val(G2, Φ)(s) − 2 ·
(

(1 + distR(G1, G2))
2·|S| − 1

)

.

The first inequality is a consequence of Theorem 4 applied on Markov chainsG2 ↾ π1 andG1 ↾ π1; the
equality follows from the factπ1 is an optimal strategy inG1; and the final equality follows by applying
the result of part 1. Hence to prove thatπ1 is ε-optimal inG2 we need to show that

2 ·
(

(1 + distR(G1, G2))
2·|S| − 1

)

≤ ε (2)

We have

(1 + distR(G1, G2)) ≤

(

1 +
distA(G1, G2)

η − distA(G1, G2)

)

≤

(

1 +
2 · distA(G1, G2)

η

)

;

the first inequality follows from Proposition 1 and the second inequality follows sincedistA(G1, G2) ≤
β ≤ η

2 . Hence to prove inequality (2) it suffices to show that

(

1 +
2 · β

η

)2·|S|

≤ 1 +
ε

2
.

Sinceβ ≤ η
2 ·

(

(1 + ε
2 )

1
2·|S| − 1), we obtain the desired inequality.

The desired result follows.

Theorem 6. LetG1 be a turn-based stochastic game such that the minimum positive transition probability
is η > 0. The following assertions hold:

1. For all turn-based stochastic gamesG2 ∈ [[G1]]≡, for all parity objectivesΦ and for alls ∈ S we have

|Val(G1, Φ)(s)−Val(G2, Φ)(s)| ≤ (1+distR(G1, G2))
2·|S|−1 ≤

(

1+
distA(G1, G2)

η − distA(G1, G2)

)2·|S|

−1

2. For ε > 0, let β ≤ η
2 ·

(

(1 + ε
2 )

1
2·|S| − 1), such thatβ ≤ η

2 . For all G2 ∈ [[G1]]≡ such that
distA(G1, G2) ≤ β, for all parity objectivesΦ, every pure memoryless optimal strategyπ1 in G1

is anε-optimal strategy inG2.

Proof. The proof is essentially to repeat the proof of Theorem 5: as in MDPs pure memoryless optimal
strategies exist in turn-based stochastic games with parity objectives (Theorem 1); and once a pure mem-
oryless strategy is fixed in a turn-based stochastic game we obtain an MDP. Since Theorem 5 extend the
result of Theorem 4 from Markov chains to MDPs, the proof for the desired result follows by mimicing
the proof of Theorem 5 and instead of using the result of Theorem 4 for Markov chains using the result of
Theorem 5 for MDPs.

4.2 Value continuity for concurrent parity games

In this section we show value continuity for structurally equivalent concurrent parity games, and show
with an example on Markov chains that the continuity property breaks without the structurally equivalent
assumption. Finally with an example on Markov chains we showthe our quantitative bounds are asymptot-
ically optimal for small distance values. We start with a lemma for MDPs.



Lemma 4. LetG1 andG2 be two structurally equivalent MDPs. Letη be the minimum positive transition
probability in G1. For all non-negative reward functionsr : S → R such that the reward function is
bounded by 1, for all discount vectorsλ, for all s ∈ S we have

|Val(G1, MDT(λ, r))(s) − Val(G2, MDT(λ, r))(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1

≤

(

1 +
distA(G1, G2)

η − distA(G1, G2)

)2·|S|

− 1

Proof. The proof is essentially mimicing the proof of part(1) of Theorem 5. Without loss of generality, let
Val(G1, MDT(λ, r))(s) ≥ Val(G2, MDT(λ, r))(s). Let π1 be a pure memoryless optimal strategy inG1

and such a strategy exists by Theorem 1. Then we have the following inequality

Val(G2, MDT(λ, r))(s) ≥ Val(G2 ↾ π1, MDT(λ, r))(s)

≥ Val(G1 ↾ π1, MDT(λ, r))(s) −
(

(1 + distR(G1, G2))
2·|S| − 1

)

= Val(G1, MDT(λ, r))(s) −
(

(1 + distR(G1, G2))
2·|S| − 1

)

The (in)equalities are obtained: the first inequality follows because the value inG2 is at least the value in
G2 obtained by fixing a particular strategy (in this caseπ1); the second inequality is obtained by appying
Theorem 4 on the structurally equivalent Markov chainsG1 ↾ π1 andG2 ↾ π1; and the final equality follows
sinceπ1 is an optimal strategy inG1. The desired result follows.

Lemma 5. LetG1 andG2 be two structurally equivalent concurrent game structures. Letη be the minimum
positive transition probability inG1. For all non-negative reward functionsr : S → R such that the reward
function is bounded by 1, for all discount vectorsλ, for all s ∈ S we have

|Val(G1, MDT(λ, r))(s) − Val(G2, MDT(λ, r))(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1

≤

(

1 +
distA(G1, G2)

η − distA(G1, G2)

)2·|S|

− 1

Proof. The proof is essentially mimicing the proof of Lemma 4. Without loss of generality, let
Val(G1, MDT(λ, r))(s) ≥ Val(G2, MDT(λ, r))(s). Let π1 be a randomized memoryless optimal strat-
egy inG1 and such a strategy exists by Theorem 1. Then we have the following inequality

Val(G2, MDT(λ, r))(s) ≥ Val(G2 ↾ π1, MDT(λ, r))(s)

≥ Val(G1 ↾ π1, MDT(λ, r))(s) −
(

(1 + distR(G1, G2))
2·|S| − 1

)

= Val(G1, MDT(λ, r))(s) −
(

(1 + distR(G1, G2))
2·|S| − 1

)

The argument for the inequalities are exactly the same as in Lemma 4. The desired result follows.

Theorem 7. LetG1 andG2 be two structurally equivalent concurrent game structures. Letη be the mini-
mum positive transition probability inG1. For all parity objectivesΦ and for alls ∈ S we have

|Val(G1, Φ)(s) − Val(G2, Φ)(s)| ≤ (1 + distR(G1, G2))
2·|S| − 1

≤

(

1 +
distA(G1, G2)

η − distA(G1, G2)

)2·|S|

− 1

Proof. The result follows from Theorem 2, Lemma 5 and the fact that the bound of Lemma 5 are indepen-
dent of the discount factors and hence independent of takingthe limits.

Theorem 8. For all concurrent game structuresG1, for all parity objectivesΦ

lim
ε→0

sup
G2∈[[G1]]≡,distA(G1,G2)≤ε

sup
s∈S

|Val(G1, Φ)(s) − Val(G2, Φ)(s)| = 0.
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Fig. 1. Markov chainsG1 andG
ε

2.

Proof. Let η > 0 be the minimum positive transition probability inG1. Then by Theorem 7 we have

lim
ε→0

sup
G2∈[[G1]]≡,distA(G1,G2)≤ε

sup
s∈S

|Val(G1, Φ)(s) − Val(G2, Φ)(s)| ≤ lim
ε→0

(

1 +
ε

η − ε

)2·|S|

− 1 = 0.

The desired result follows.

Example 1 (Structurally equivalence assumption necessary). In this example we show that in Theorem 8
the structural equivalence assumption is necessary, and there by showing that the result is tight. We show
an Markov chainG1 and a family of Markov chainsGε

2, for ε > 0, such thatdistA(G1, G
ε
2) ≤ ε (butG1 is

not structurally equivalent toGε
2) with a parity objectiveΦ and we have

lim
ε→0

sup
s∈S

|Val(G1, Φ)(s) − Val(Gε
2, Φ)(s)| = 1.

The Markov chainsG1 andGε
2 are defined over the state space{s0, s1}, and inG1 both states have

self-loops with probability 1, and inGε
2 the self-loop ats0 has probability1 − ε and the transition prob-

ability from s0 to s1 is ε (see Fig 1). Clearly,distA(G1, G
ε
2) = ε. The parity objectiveΦ requires

to visit the states1 infinitely often (i.e., assign priority 2 tos1 and priority 1 tos0). Then we have
Val(G1, Φ)(s0) = 0 as the states0 is never left, whereas inGε

2 the states1 is the only closed recurrent
set of the Markov chain and hence reached with probability 1 from s0. HenceVal(Gε

2, Φ)(s0) = 1. It
follows thatlimε→0 sups∈S |Val(G1, Φ)(s) − Val(Gε

2, Φ)(s)| = 1.

Example 2 (Asymptotically tight bound for small distances). We now show that the our quantitative bound
for the value function difference is asymptotically optimal for small distances. Let us denote the absolute
distance asε, and quantitative bound we obtain in Theorem 7 is(1+ ε

η−ε
)2·|S|−1, and ifε is small (ε << η

andε close to zero), we obtain the following approximate bound

(1 +
ε

η − ε
)2·|S| − 1 ≈ (1 +

ε

η
)2·|S| − 1 ≈ 1 + 2 · |S| ·

ε

η
− 1 = 2 · |S| ·

ε

η
.

We now illustrate with an example (on structurally equivalent Markov chains) where the difference in
the value function isO(|S| · ε), for small ε. Consider the Markov chain defined on state spaceS =
{s0, s1, . . . , s2n−1, s2n} as follows: statess0 ands2n are absorbing (states with self-loops of probability 1)
and for a state1 ≤ i ≤ 2n − 1 we have

δ(si)(si−1) =
1

2
+ ε; δ(si)(si+1) =

1

2
− ε;

i.e., we have a Markov chain defined on a line from0 to 2n (with 0 and2n absorbing states) and the chain
moves towards0 with probability 1

2 + ε and towards2n with probability 1
2 − ε (see Fig 2). Our goal is to

estimate the probability to reach the states0, and letvi denote the probability to reachs0 from the starting
statesi. Then we have the following simple recurrence for1 ≤ i ≤ 2n− 1

vi = (
1

2
+ ε) · vi−1 + (

1

2
− ε) · vi+1;



s0 s1 s2 s2n−2 s2n−1 s2n
· · · · · ·1 1

1

2
+ ε

1

2
− ε

1

2
+ ε

1

2
− ε

1

2
+ ε

1

2
− ε

Fig. 2.Markov chains for Example 2.

and v0 = 1 and v2n = 0. We will considerε ≥ 0 such thatε is very small and hence higher order
terms (likeε2) can be ignored. We claim that the valuesvi can be expressed as the following recurrence:
vi+1 = (1

2 + ε) · ci · vi, whereci = 4
4−ci+1

. The proof is by induction and is shown below:

vi = (1
2 + ε) · vi−1 + (1

2 − ε) · vi+1

= (1
2 + ε) · vi−1 + (1

2 − ε) · (1
2 + ε) · ci · vi (by inductive hypothesis)

= (1
2 + ε) · vi−1 + 1

4 · ci · vi (ignoringε2)

It follows thatvi = (1
2 + ε) · 4

4−ci
· vi−1 = (1

2 + ε) · ci−1 · vi−1. Hence we have

v1 = (
1

2
+ ε) · 1 + (

1

2
− ε) · (

1

2
− ε) · c1 · v1 ⇒ v1 =

4

4 − c1
· (

1

2
+ ε).

Then we havev2 = (1
2 + ε) · c1 · v1 = 4

4−c1
· c1 · (1

2 + ε)2 and thenv3 = 4
4−c1

· c1 · c2 · (1
2 + ε)3 and

so on. Finally we have obtainvn as follows:vn = 4
4−c1

· c1 · c2 · · · cn−1 · (1
2 + ε)n. Observe that for the

Markov chain withε = 0, the statess0 ands2n are the recurrent states, and since the chain is symmetric
from sn (with ε = 0) the probability to reachs2n ands0 must be equal and hence is1

2 . It follows that we
must have 4

4−c1
· c1 · c2 · · · cn−1 = 2n−1. Hence we have that forε > 0, but very small,vn ≈ 1

2 + n · ε.
Thus the difference with the value function whenε = 0 as compared to whenε > 0 but very small is
n · ε = O(|S| · ε). Also observe that the Markov chain obtained forε = 0 and 1

2 > ε > 0 are structurally
equivalent. Thus the desired result follows.

5 Conclusion

In this work we studied the robustness and continuity property of concurrent and turn-based stochastic parity
games with respect to small imprecision in the transition probabilities. We presented quantitative bounds of
difference of value function and proved value continuity for concurrent parity games under the structural
equivalence assumption, and showed robustness of all pure memoryless optimal strategies for structurally
equivalent turn-based stochastic parity games. We also showed that the structural equivalence assumption
is necessary and that our quantitative bounds are asymptotically optimal for small imprecision. We believe
our results will find applications in robustness analysis ofvarious other classes of stochastic games.
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