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Robustness of Structurally Equivalent Concurrent Parity Games

Krishnendu Chatterjee

IST Austria (Institute of Science and Technology Austria)

Abstract. We consider two-player stochastic games played on a firdte space for an infinite num-
ber of rounds. The games arencurrent in each round, the two players (player 1 and player 2) choose
their moves independently and simultaneously; the custté and the two moves determine a prob-
ability distribution over the successor states. We alsaiciem the important special case of turn-based
stochastic games where players make moves in turns, rdtherconcurrently. We study concurrent
games withw-regular winning conditions specified parity objectives. The value for player 1 for a
parity objective is the maximal probability with which th&aper can guarantee the satisfaction of the
objective against all strategies of the opponent. We sthdyptoblem of continuity and robustness of
the value function in concurrent and turn-based stochastiity games with respect to imprecision in
the transition probabilities. We present quantitativerimsuon the difference of the value function (in
terms of the imprecision of the transition probabilitieadashow the value continuity for structurally
equivalent concurrent games (two games are structuraliiyaent if the support of the transition func-
tion is same and the probabilities differ). We also show sbbess of optimal strategies for structurally
equivalent turn-based stochastic parity games. Finallgtvegv that the value continuity property breaks
without the structurally equivalent assumption (even farkbv chains) and show that our quantitative
bound is asymptotically optimal. Hence our results arettigfie assumption is both necessary and
sufficient) and optimal (our quantitative bound is asymiptdly optimal).

1 Introduction

Concurrent stochastic games are played by two players orita $itate space for an infinite number of
rounds. In every round, the two players simultaneously addpendently choose moves (or actions), and
the current state and the two chosen moves determine a plibdistribution over the successor states.
The outcome of the game (orpay) is an infinite sequence of states. These games were ingdduc
Shapley [24], and has been one of the most fundamental ahdtwedied game models in stochastic graph
games. We consider-regular objectives specified as parity objectives; thagiigen anw-regular setd of
infinite state sequences, player 1 wins if the outcome of #reglies ind. Otherwise, player 2 wins, i.e.,
the game is zero-sum. The class of concurrent stochastiegaaobsumes many other important classes
of games as sub-classes: {lijn-based stochastigames where at every round only one-player chooses
moves (i.e., the players make moves in turns); andMajkov decision process€ene-player stochastic
games). Concurrentgames and its sub-classes providefeamcawork to model various classes of dynamic
reactive systems, angregular objectives provide a robust specification languagexpress all commonly
used properties in verification. Thus concurrent games péttity objectives provide the mathematical
framework to study many important problems in the synthasis verification of reactive systems [6, 23,
21] (see also [1,13, 2]).

The player-valuew, (s) of the game at a stateis the limit probability with which player 1 can ensure
that the outcome of the game lies dn that is, the values (s) is the maximal probability with which
player 1 can guarante® against all strategies of player 2. Symmetrically, the pie3valuevy(s) is the
limit probability with which player 2 can ensure that the@une of the game lies outside The problem of
studying the computational complexity of MDPs, turn-baseathastic games, and concurrent games with
parity objectives has received a lot of attention in litarat The problem of Markov decision processes
with w-regular objectives has been studied in [8, 9, 4] and thdtsesliow existence of pure (deterministic)
memoryless (stationary) optimal strategies for parityeobyes and the problem of value computation is
achievable in polynomial time. Turn-based stochastic gamith the special case of reachability objectives
has been studied in [7] and existence of pure memorylessapstrategies has been established and the



decision problem of whether the value at a state is at leastem gational value lie in NP coNP. The
existence of pure memoryless optimal strategies for taset stochastic games with parity objectives was
established in [5, 28], and again the decision problem IR coNP. Concurrent parity games has been
studied in [10, 12, 3, 14] and for concurrent parity gamesnaglt strategies need not exist, apaptimal
strategies (foe > 0) require both infinite memory and randomization, and thdsiee problem can be
solved in PSPACE.

Almost all results in the literature consider the problenmcomputing values and optimal strategies
when the game model is given precisely along with the objectiowever it is often unrealistic to know
the precise probabilities of transition which are only resied through observation. Since the transition
probabilities are not known precisely, an extremely imgortquestion is how robust is the analysis of
concurrent games and its sub-classes with parity objexctivd respect to small changes in the transition
probabilities. This question has been largely ignored endtudy of concurrent and turn-based stochastic
parity games. In this paper we study the following probleeiated to continuity and robustness of values:
(1) (continuity of values)under what conditions can continuity of the value functi@engooved for con-
current parity games; (yobustness of values}an quantitative bounds be obtained on the difference of
the value function in terms of the difference of the traositprobabilities; and (3jrobustness of optimal
strategies)does optimal strategies of a game remawptimal, fore > 0, if the transition probabilities are
slightly changed.

Our contributionsOur contributions are as follows:

1. We considestructurally equivalengame structures, where the support of the transition prititied
are the same, but the precise transition probabilities nifigrdwWe show the following results for
structurally equivalent concurrent parity games:

(a) Quantitative boundWe present a quantitative bound on the difference of theevalaction of
two structurally equivalent game structures in terms ofdifference of the transition probabilities.
We show when the difference in the transition probabilitiess small, our bound is asymptotically
optimal. Our example to show the matching lower bound is oreakdglv chain, and thus our result
shows that the bound for a Markov chain can be generalizedriiowrent games.

(b) Value continuityWWe showvalue continuityfor structurally equivalent concurrent parity games, i.e.
as the difference in transition probabilities goes to 0,dHference in value functions also goes
to 0. We then show that the structurally equivalent asswmps necessary: we show a family of
Markov chains (that are not structurally equivalent) whaeedifference of the transition probabil-
ities goes to 0, but the difference in the value function i fbllows that the structural equivalence
assumption is both necessary (even for Markov chains) dffidisat (even for concurrent games).

It follows from above that our results are both optimal (ctitative bounds) as well as tight (assumption

both necessary and sufficient). Our result for concurreritypgames is also a significant quantitative

generalization of a result for concurrent parity games 6f [&hich shows that the set of states with

value 1 remains same if the games are structurally equivaMsalso argue that the structurally equiv-

alent assumption is not unrealistic in many cases: a reastigtem consists of many state variables,
and given a state (valuation of variables) it is typicallyokm which variables are possibly updated,

and what is unknown is the precise transition probabiliigsich are estimated by observation). Thus
the system that is obtained for analysis is structurallyivedent to the underlying original system and

it only differs in precise transition probabilities.

2. For turn-based stochastic parity games the value catytiand the quantitative bounds are same as
for concurrent games. We also prove a stronger result foctsirally equivalent turn-based stochastic
games that shows that along with continuity of value funtttbere is also robustness property for pure
memoryless optimal strategies. More precisely, foratt 0, we present a bound > 0, such that
any pure memoryless optimal strategy in a turn-based sstichzarity game is an-optimal strategy
in a structurally equivalent turn-based stochastic ganh that the transition probabilities differ by at
mosts. Our result has deep significance as it allows the rich lkiteesof work on turn-based stochastic
games to carry over robustly for structurally equivalemhtbased stochastic games. As argued before
the model of turn-based stochastic game obtained to anaigzediffer slightly in precise transition



probabilities, and our results shows that the analysis eslightly imprecise model using the classical
results carry over to the underlying original system withafirarror bounds.

Our results are obtained as follows. The result of [11] shthas the value function for concurrent parity
games can be characterized as the limit of the value funoficoncurrent multi-discounted games. There
exists bound on difference on value function of discountues [15], however, the bound depends on the
discount factor, and in the limit gives trivial bounds (andgeneral this approach does not work as value
continuity cannot be proven in general and the structuraivaéence assumption is necessary). We use a
classical result on Markov chains by Friedlin and Wentzifl][and generalize a result of Solan [25] from
Markov chains with single discount to Markov chains with tirdiscounted objective to obtain a bound
that is independent of the discount factor for structuratiyivalent games. Then the bound also applies
when we take the limit of the discount factors, and gives eglésired bound.

Our paper is organized as follows: in Section 2 we preseriak& definitions, in Section 3 we consider
Markov chains with multi-discounted and parity objectives Section 4 (Subsection 4.1) we prove the
results related to turn-based stochastic games (item (@uofontributions) and finally in Subsection 4.2
we present the quantitative bound and value continuity émcarrent games along with the two examples
to illustrate the asymptotic optimality of the bound and streictural equivalence assumption is necessary.

2 Definitions

In this section we define game structures, strategies, ilgscvalues and present other preliminary defi-
nitions.

2.1 Game structures

Probability distributions. For a finite setd, a probability distributionon A is a functioné: A — [0, 1]
suchthad_ _, d(a) = 1. We denote the set of probability distributions.dy D(A). Given a distribution
d € D(A), we denote bysupp(d) = {z € A | d(x) > 0} thesupportof the distributiorn.

Concurrent game structures.A (two-player)concurrent stochastic game structute= (S, A, I'1, I, )
consists of the following components.

— Afinite state spac§.

— Afinite setA of moves (or actions).

— Two move assignments;, I : S +— 24\ (. Fori € {1,2}, assignmenf’; associates with each state
s € S the nonempty seff;(s) C A of moves available to playérat states.

— A probabilistic transition function : S x A x A — D(S), which associates with every statec S
and moves:; € I'1(s) andaz € I'z(s) a probability distributioni(s, ai, az) € D(S) for the successor
state.

Plays.At every states € S, player 1 chooses a mowg € I7(s), and simultaneously and independently
player 2 chooses a move € I(s). The game then proceeds to the successor staith probability
d(s,a1,a2)(t), forallt € S. For all statess € S and movesi; € I'1(s) andas € Ix(s), we indicate by
Dest (s, a1, a2) = Supp(d(s, a1, asz)) the set of possible successorssofhen moves:, a; are selected.
A pathor aplay of G is an infinite sequence = (s, s1, s2, . ..) of states inS such that for allk > 0,
there are moves® € I'(sx) andal € Iu(sk) such thatsi,; € Dest(sy,a¥,ak). We denote by2
the set of all paths. We denote Bythe random variable that denotes thth state of a path. For a play
w = (Sp, S1, S2,...) € 2, we definelnf(w) = {s € S| sx = s forinfinitely manyk > 0} to be the set of
states that occur infinitely often in.
Special classes of concurrent game®/e will consider the following special classes of concutigames.
1. Turn-based stochastic games.game structures is turn-based stochastii at every state at most

one player can choose among multiple moves; that is, folyestates € S there exists at most one
i € {1,2} with |I;(s)| > 1.



2. Markov decision processeA.game structure is player-1 Markov decision process (MDF)Yor all
s € S we have|Ix(s)| = 1, i.e., only player-1 has choice of actions in the game. Sirlyil a game
structure is alayer-2 MDPIf for all s € S we havell(s) = 1.

3. Markov chainsA game structure is a Markov chain if for alle .S we havelI (s)| = 1 and|I:(s)| =
1. Hence in a Markov chain the players do not matter, and fordise of the paper a Markov chain
consists of a tuplés, §) whered : S — D(S) is the probabilistic transition function.

2.2 Strategies

A strategyfor a player is a recipe that describes how to extend a playn&ly, a strategy for player
i € {1,2} is a mappingr; : ST — D(A) that associates with every nonempty finite sequenee S+
of states, representing the past history of the game, a pildbalistribution 7; () used to select the next
move. The strategy; can prescribe only moves that are available to playéhnat is, for all sequences
x € S* and states € S, we require thabupp(m; (x - s)) C I;(s). We denote by, the set of all strategies
for playeri € {1, 2}.

Given a states € S and two strategies; € II; andm, € I, we defineOutcome(s, 1, m2) C {2 to
be the set of paths that can be followed by the game, when tne gtarts froms and the players use the
strategiesr; andm,. Formally, (sg, s1, s2, .. .) € Outcome(s, 71, m2) if so = s and if for allk > 0 there
exist moves:¥ € I'i(s;) andal € I'y(s;.) such that

71(80,- -+, 8k)(ak) >0, ma(s0,...,s6)(ak) >0, spi1 € Dest(sy,al,ak).

Once the starting stateand the strategies, andn, for the two players have been chosen, the probabilities
of events are uniquely defined [27], where@arentA C (2 is a measurable set of path&or an event

A C 2, we denote byr:*™2(.A) the probability that a path belongs.tbwhen the game starts frosmand

the players use the strategiesandms,.

Classification of strategieswWe consider the following special classes of strategies.

1. (Pure).A strategyr is pure (deterministicjf for all x € ST there exista € A such thatr(z)(a) = 1.
Thus, deterministic strategies are equivalent to funstivh — A.

2. (Finite-memory)Strategies in general ahéstory-dependergind can be represented as followsMéie
a set callednemoryto remember the history of plays (the sietan be infinite in general). A strategy
with memory can be described as a pair of functions: agenory updattunctionr,, : S xM — M, that
given the memory! with the information about the history and the current stggdates the memory;
and (b) anext movédunction,, : S x M +— D(A) that given the memory and the current state specifies
the next move of the player. A strategyfisite-memoryf the memoryM is finite.

3. (Memoryless)A memorylesstrategy is independent of the history of play and only ddpemn the
current state. Formally, for a memoryless strategye haver(x - s) = =«(s) for all s € S and all
x € §*. Thus memoryless strategies are equivalent to functfors D(A).

4. (Pure memorylessA strategy ispure memorylest it is both pure and memoryless. The pure memo-
ryless strategy neither use memory, nor use randomizatioaee equivalent to functiorts — A.

2.3 Objectives

Qualitative objectivesWe specifyqualitative objectives for the players by providing the setwaifhning
plays® C (2 for each player. In this paper we study only zero-sum gam2slfy], where the objectives
of the two players are complementary. A general class ofotibs are the Borel objectives [18]. Borel
objectived C S“ is a Borel set in the Cantor topology 6f1. In this paper we consider-regular objectives
specified as parity objectives, which lie in the fi2gf- levels of the Borel hierarchy (i.e., in the intersection
of X3 andIl3) [26].

! To be precise, we should define events as measurable setthefsharing the same initial statend we should
replace our events with families of events, indexed by timdiial state. However, our (slightly) improper definition
leads to more concise notation.



— Parity objectivesFor¢,d € N, we let[c..d] = {¢,c+ 1,...,d}. Letp : S — [0..d] be a function
that assigns ariority p(s) to every state € S, whered € N. TheEven parity objectiveequires that
the minimum priority visited infinitely often is even. Forihyathe set of winning plays is defined as
Parity(p) = {w € 2 | min (p(Inf(w))) is even}.

Quantitative objectives. Quantitativabjectives are measurable functiohs 2 — R. We will consider
multi-discountedbjective function, as there is a close connection estadalidetween concurrent games
with multi-discounted objectives and concurrent games \parity objectives. Given a concurrent game
structure with state spacg, let A be adiscount vectotthat assigns for alk € S a discount factof <
A(s) < 1 (unless otherwise mentioned we will always consider diat@actorsx such that for all € S
we haved < A(s) < 1). Letr : S — R be a reward function that assigns a real-valued rewéstl to
every states € S. The multi-discounted objective functicddDT (A, r) : {2 — R maps every path to the
mean-discounted reward of the path. Formally, the fundfatefined as follows: for a path = sgsis2 . ..

we have .
Z;io( g:o /\(51)) -7(s5)
Yoo M)

Values, optimality, e-optimality. Given an objectivep which is a measurable functiah : 2 — R, we
define thevaluefor player 1 of gamé&= with objective® from the states € S as

MDT(w, A, ) =

Val(G,®)(s) = sup inf EIV™2(P);
T €Il o €lls

i.e., the value is the maximal expectation with which playean guarantee the satisfactionfoagainst all
player 2 strategies. Given a player-1 strategywe use the notation

Val (G,@)(s):ﬂ;rel}szEs’ (D).

A strategyr; for player 1 isoptimalfor an objectived if for all statess € S, we have
Val™ (G, ®)(s) = Val(G, P)(s).
Fore > 0, a strategyr; for player 1 is=-optimalif for all statess € S, we have
Val™ (G, ®)(s) > Val(G, P)(s) —e.

The notion of values, optimal ardoptimal strategies for player 2 are defined analogouslg. folowing
theorem summarizes the results in literature related terdetacy and memory complexity of concurrent
games and its sub-classes for parity and multi-discourtiggttives.

Theorem 1. The following assertions hold:

1. (Determinacy [19]) For all concurrent game structures and for all parity and ltirdiscounted objec-
tives® we have

3 1,702 — 3 1,702
SO, 12, B =, e BT

2. (Memory complexity) For all concurrent game structures and for all multi-discded objective®,
randomized memoryless optimal strategies exist [24]. Hbtuan-based stochastic game structures
and for all multi-discounted objectiva®s pure memoryless optimal strategies exist [15]. For alirtur
based stochastic game strucutures and for all parity objest?, pure memoryless optimal strategies
exist [5, 28]. In general optimal strategies need not existdoncurrent games with parity objectives,
ande-optimal strategies, for > 0, need both randomization and infinite memory in general [10]



The results of [11] established that the value of concumganties with certain special multi-discounted
objectives can be characterized as valuations of quamithscounted:-calculus formula. In the limit, the
value function of the discounted-calculus formula characterizes the value function of corent games
with parity objectives. An elegant interpretation of theut was given in [17], and from the interpretation
we obtain the following theorem.

Theorem 2 ([11]).Let G be a concurrent game structure with a parity object#&elefined by a priority
functionp. Letr be a reward function that assigns reward 1 to even priorigtets and reward 0 to odd
priority states. Then there exists an ordgs . . . s,, on the states (wherg = {s1, so, ..., s, }) dependent
only on the priority functiom such that

Val(G,?) = lim lim ... lim Val(G,MDT(X\,r));
A(s1)=1A(s2)—=1  A(sn)—1

in other words, if we consider the value functiéal(G, MT (X, r)) with the multi-discounted objective and
take the limit of the discount factors to 1 in the order of ttetess we obtain the value function for the parity
objective.

2.4 Structure equivalent game structures and distance of gae structures

In this sub-section we present notions relatedttacture equivalengame structures.

Structure equivalent game structures.Given two game structureS; = (S, A, I1,»,461) andGsy =

(S, A, I, I'», 52) on the same state and action space, with different tranditioction, we say thaf; and

G arestructure equivalenfdenoted; = G,) ifforall s € S and alla; € I'1(s) andas € I'x(s) we have
Supp(d1(s,a1,az)) = Supp(da(s, a1, az)). Similarly, two Markov chaing?; = (.9, 461) andGs = (5, d2)
are structurally equivalent (denoté = G) if for all s € .S we haveSupp(d1(s)) = Supp(dz(s)). For a
game structuré&’ (resp. Markov chairt¥) we denote byG]= the set of all game structures (resp. Markov
chains) that are structurally equivalentdo

Ratio and absolute distances.Given two game structure§’y = (S, A,I1,1%,01) and G2 =
(S, A, I, I'», §2), theabsolute distancef the game structures is maximum absolute difference itrétre
sition probabilities. Formally,

dist 4(G1,G2) = 1) b)(t) — o b)(t)].

15 A( 1, 2) s,tGS,aerII‘llg(iz(),bng(s)l 1(8,(1, )( ) Q(Sva’ )( )|
The absolute distance for two Markov chai6s = (5,61) and Go = (S,d2) is distA(G1,G2) =
max, tes |01(s)(t) — d2(s)(¢)|. We now define the ratio distance between two structuraliyvedent game

structures and Markov chains. L&t and G2 be two structurally equivalent game structures. T
distance is defined on the ratio of the transition probaédit~Formally,

01(s,a,b)(t) da(s,a,b)(t)
5a2(s,a,b)(t)” 81(s,a,b)(t)

t € Supp(d1(s,a,b)) = Supp(da(s, a, b))} -1

distR(Gl,Gg):max{ | s €S,a€Tli(s),be I(s),

The ratio distance between two structurally equivalentkdearchains; andGs is max { g;gz;gg , gfg:ggg |
s € S,t € Supp(d1(s)) = Supp(d2(s))} — 1.

Proposition 1. LetG be a game structure (resp. Markov chain) such that the minimpasitive transition
probability isn > 0. For all game structures (resp. Markov chairs) € [G1]= we have

diStA(Gl, Gg)
n— diStA(Gl, Gg)

diStR(Gl, GQ) S



Proof. Considers € S, a € I'(s),b € Is(s), andt € Supp(di(s,a,b)) = Supp(da(s,a,b)). Then we
have the following two inequalities: the first inequality is

52(8,@,1))(15) < 51(8,@,1))(15) + diStA(Gl,Gg) <1 diStA(Gl,Gg) diStA(Gl,GQ)

<1+

d1(s,a,b)(t) ~ d1(s, a,b)(t) B o1(s,a,0)(t) — U
and the second inequality is
51(s,a,b)(t) < 51(s,a,b)(t) <14 dist A(G1, G2)
52 (Sv a, b) (t) - 51 (Sv a, b) (t) - diStA(le GQ) - 61(87 a, b) (t) - diStA(Gla GQ)
<14 distA(Gl,GQ)

- n— diStA(Gl,Gg)

The desired result follows from the above inequalities.

Notation for fixing strategies. Given a concurrent game structute= (S, A, I'1, I»,0), let7; be a ran-
domized memoryless strategy. Fixing the strategyn G we obtain a player-2 MDP, denoted @s| 1,
defined as follows: (1) the state spaceSiq2) for all s € S we havel’ (s) = {L} (hence it is a player-2
MDP); (3) the new transition functiodi,, is defined as follows: for al§ € S and allb € I'»(s) we have
O, (5, L, D) () = Do (5 T1(8)(a) - 6(s, a, b)(t). Similarly if we fix a randomized memoryless strategy
m in an MDP G we obtain a Markov chain, denoted & | ;. The following proposition is straight
forward to verify from the definitions.

Proposition 2. LetG; andG4 be two concurrent game structures (resp. MDPs) that arecstinally equiv-
alent. Letr; be a randomized memoryless strategy. Than, (G, | 1, G2 [ m1) = dista(G1,G2) and
diStR(Gl [ T, G2 [ 7T1) = diStR(Gl, GQ)

3 Markov Chains with Multi-discounted and Parity Objective s

In this section we consider Markov chains with multi-disntad and parity objectives. We present a bound
on the difference of value functions of two structurally eglent Markov chains that is dependent on

the distance between the Markov chains anthi®ependenof the discount factors. The result for parity

objectives is then a consequence of our result for multalisted objectives and Theorem 2. Our result
crucially depends on a result of Friedlin and Wentzell forrkéa chains and we present the result below,
and then use the result to present the main result of theosecti

3.1 Result of Friedlin and Wentzell

Let (S,6) be a Markov chain and let, be the initial state. LeC" C S be a proper subset &f and
let us denote byxc = inf{n € N | 6, ¢ C} the first hitting time to the se¥ \ C of states (or the
first exit time from setC) (recall thatd,, is the random variable to denote theth state of a path). Let
F(C,S) = {f: C — S} denote the set of all functions frofi to S. For everyf € F(C,S) we define
a directed grapli:; = (S, Ey) where(s,t) € Ey iff f(s) = t. Letay = 1 if the directed graplt7; has
no directed cycles (i.eG is a directed acyclic graph); and; = 0 otherwise. Observe that singeis a
function, for everys € C there is exactly one path that leav@sFor everys € C and everyt € S, let
Bs(s,t) = 1if the directed path that leavesn G ; reaches, otherwise3; (s, t) = 0. We now state a result
that can be obtained as a special case of the result fromliragdd Wentzell [16].

Theorem 3 (see Lemma 6.3.3 of [20]Let (S, 0) be a Markov chain, and lef' C S be a proper subset
of S such thatPr,(exc < co) > 0 for everys € C (i.e., from alls € C with positive probability the first
hitting time to the complement set is finite). Then for eueitial states; € C and for every ¢ C we have

 Yerc,s)Br(s1,t) Tl 6(s)(f(5)))

Prg, (fexe =t) = > rercs)@f 1Lec 0 () (1)




in other words, the probability that the exit statet iwhen the starting state is is given by the expression
on the right hand side.

We present an argument that the assumption that for &l C we havePr,(exc < oo) > 0 implies
that the denominator of Equation (1) is positive (also sé€g 18, 25]). Since all terms in the summation
of the denominator is non-negative, we show a witness fancfi € F(C, S) such thatay = 1 and
[I.ccd(s)(f(s)) > 0. Lets € C, and sincePr (exc < oo) > 0, it follows that there existg > 1
and a sequence of statesss . .. s, with s; = s such thatss,...,s,—1 € C, s, € (S\ C) and for all
1=1,2,...,0 —1wehavei(s;)(si+1) > 0. Let us denote by, the length of the shortest such sequence.
We have the following two cases: (1) = 2, i.e., there exists € (S \ C) andd(s)(t) > 0; or (2) £5 > 2,
and then there existse C with §(s)(t) > 0 and{; = ¢; + 1. We define the witnesg as follows: (1) if

ls =2, thenf(s) = ¢, wheret is any state ir6' \ C with §(s)(t) > 0; (2) if £5 > 2, thenf(s) = t, where

t € Cis a state irC such thab(s)(t) > 0 and/, = ¢, + 1. Sinces € S is chosen arbitrarilyf is a function
from C'to S, and by construction we ha\d, . d(s)(f(s)) > 0. Since for every € C, if f(s) € C, then
lys) + 1 = s, it follows that the directed graph induced fiynas no cycles and henog = 1.

3.2 Value function difference for Markov chains

In this sub-section we will use the result of previous suttieae to obtain bounds on the value functions of
Markov chains. We start with the notion of mean-discounitae t

Mean-discounted time.Given a Markov chair(S, ) and a discount vectoX, we define for every state
s € S, themean-discounted timihe process is in the state We first define the mean-discounted time
functionMDT(, s) : 2 — R that maps every path to the mean-discounted time that tteesstavisited,
and the function is formally defined as follows: for a pathk= sgs;s2 . .. we have

S imo (Tl A(s0)) - Loy=s
YoMz M)

wherel,;_ is the indicator function. The expected mean-discountee function for a Markov chait/

with transition functiony is defined as followsMT (s1, s, G, A) = E;, [MDT(A, s)], i.e., itis the expected
mean-discounted time for when the starting state is;, where the expectation measure is defined by
the Markov chain with transition functioh. We now present a lemma that shows the value function for
multi-discounted Markov chains can be expressed as ratwmpolynomials.

MDT (A, s)(w) =

Lemma 1. For Markov chains defined on state spaggefor all initial states s, for all statess, for all
discount vectors\, there exists two polynomiads(-) andgs(-) in |S|? variablesz; .-, wheret, ¢’ € S such
that the following conditions hold:

1. the polynomials have degree at mg#twith non-negative coefficients; and
2. for all transition functions) over S we haveMT(sg, s, G, A) = g;gg; whereG = (S, 9), g1(9) and
g2(0) denote the values of the functignandg, such that the variables, , is instantiated with values

4(¢t)(t") as given by the transition functioh

Proof. Fix a discount vectoA. We construct a Markov chai@ = (S, §) as follows:S = S U S;, where
S is a copy of states df (and for a state € S we denote its corresponding copys$; and the transition
functiond is defined below

1. §(s1)(s1) forall s; € Sy (i.e., all copy states are absorbing);
2. fors € S we have
(L=X(s))  t=s1;
3(s)(t) = { A(s) - 8(s)(t) te s
0 te S\ s
i.e., it goes to the copy with probability — A(s)), it follows the transitiory in the original copy with
probabilities multiplied by\(s).



We first show that for alky ands we have
MT(sg,s,G,A) = Pr§0 (Oexs = 51);

i.e., the expected mean-discounted time when the original Markov chain startssg is the probability in
the Markov chain(S, §) that the first hitting state out df is the copys; of the states. The claim is easy to
verify as both(MT (sg, s, G, A))soecs and(Prg0 (exs = $1))soes are the solutions of the following system
of linear equations

ye= (1= A1) Li=s + > _Az)-0(t)(2) y- VEES.

z€S

Also the above system of linear equations has a unique sol{this is due to contraction mapping) and
we prove this below: letyl).cs and (y?).cs be two solutions of the system. We chose € S such
thatz* = argmax,.cs |yl — y?|, i.e., z* is a state that maximizes the difference of the two solutices

n = |yl. —y2.|. Asy! andy? are solutions of the above system we have by the trianglesadity
0<n=yl -y t) -1y —vil
tes
<. Z/\ t)<n- max)\ 2630
tes tes

Since) ;.4 0(s0)(t) = 1, it follows thatn < 7 - max;cs A(t). Sincemax;cs A(t) < 1 it follows that we
must have; = 0 and hence the two solutions must coincide.

We now claim thatPrg0 (exs < o0) > 0 forall sp € S. This follows since for alls € S we have
0(s)(s1) = (1 — A(s)) > 0 and sinces; ¢ S we havePrgo(exS =2) = (1 - A(so)) > 0. Now we
observe that we can apply Theorem 3 on the Markov cldais= (S,0) with S as the seC of states
of Theorem 3, and obtain the result. Indeed the tempsnd 3, (s, t) are independent of, and the two

prodtucs of Equation (1) each contains at m&sterms of the formd(s)(t) for s,¢ € S. Thus the desired
result follows.®

Lemma 2. Leth(zq, SCQ, ..., k) be a polynomial function with non-negative coefficientsagfrde at most
n Lete > 0 andy,y’ € RF be two non-negative vectors such that for al= 1,2,...,k we have
1+5 < yl < 1+ e. Then we have
—n_ Ny)
(I+e)™< <(l+e&)"
h(y')
Proof. We first writeh(z) as follows:
l Kz
I’L(CC) = Z Q; H 'rkwv
i=1 j=1

where/ € N, forall¢ =1,2,...,¢ we havea; > 0,n; <n,andl < k;; < kforeachj =1,2,...,n;. By

the hypothesis of the lemma, for al= 1,2, ..., ¢ we have
Hykl H?Jk”_ 1+e)" Hyk
(L) L7k d
Since everys; > 0, multiplying the above inequalities by, and summing oveir = 1,2, ..., ¢ yields the

desired resul@

Lemma 3. LetG; = (5,d) andGy = (5,4’) be two structurally equivalent Markov chains. For all non-
negative reward functions: S — R such that the reward function is bounded by 1, for all disdco@ttors
A, forall s € S we have

IVal(G1, MDT(X,7))(s) — Val(Ga, MDT(X, 7))(s)| < (1 + distr(G1,Go))*15 — 1;



i.e., the absolute difference of the value functions forrthati-discounted objective is bounded fy+
diStR(Gl,Gg))z‘S‘ —1.

Proof. We first observe that for a Markov chaii we haveVal(G,MDT(X,7))(s) = >, q7(t) -
MT(s,t,G, ), i.e., the value function for a stateis obtained as the sum of the product of mean-
discounted time of states and the rewards witls the starting state. Hence by Lemma 2 it follows that
Val(G,MDT (A, r))(s) can be expressed as a r% of two polynomials of degree at mgsf| over|S|?

variables. Hence we have
Val(G1,MDT(X,r))(s) 91(9) '92(6’)

Val(Ga, MDT(A,7))(s) ~ g1(8")  ga2(9)

Lete = distr(Gh,Go). By definition for allsy, s, € S, if 55 € Supp(d(s1)), then we have both )]

and 202 gre betweer-— and1 + ¢. It follows from Lemma 2, withk: = |S|? that

0(s1)(s2)
gi(0)
gi(&")

(1+e)7 181 < <(14¢)", fori € {1,2}.

Thus we have
91(0) g2(8)

2|8
0 (®) g ST

(1+¢)" 29 <

Hence we have

sl Val(Gy, MDT(A, 7)(s)
1+~ < Val(Ga, MDT (A, 7)) (s)

We consider the case whé&fl(G1, MDT(A,r))(s) > Val(G2, MDT(A,r))(s), and the other case argu-
ment is symmetric. We also assume without loss of genetalit/al (G, MDT (A, 7))(s) > 0. Otherwise

if Val(G2, MDT (A, 7))(s) = 0, since rewards are non-negative, it follows that no statke pasitive reward
is reachable froms both inG; andG, (because if they are reachable, then they are reachabl@ositive
probability and then the value is positive), and heled G, MDT(X,r)) = Val(G2, MDT(\,r)) =

0 and the result of the lemma follows trivially. Since we assuthat Val(G1, MDT(X,r))(s) >
Val(G2, MDT (A, r))(s) andVal(Gz, MDT (A, r))(s) > 0, we have

< (1+¢)%S

IVal(G1, MDT(X, 7))(s) — Val(Ga, MDT(A, 7)) (s)|
= Val(G2, MDT(X, 7)) (s) - <

Val(G1,MDT(X,7))(s) 1>
Val(Ga, MDT(X, 7)) (s)
< Val(Ga, MDT(A, 7))(s) - (1 + )15 = 1)

Since the reward function is bounded by 1, it follows thak(G, MDT (A, 7))(s) < 1, and hence we have
IVal(G1, MDT(X, 7))(s) — Val(G2, MDT(X, 1)) (s)| < (1 + distg(G1,G2))* 15 — 1.
The desired result followd.

Theorem 4. LetG; = (5,0) andG2 = (S,0") be two structurally equivalent Markov chains. Lgbe the
minimum positive transition probability i&;. The following assertions hold:

1. For all non-negative reward functions: S — R such that the reward function is bounded by 1, for all
discount vectors\, for all s € S we have

IVal(Gy1, MDT (X, 7))(s) — Val(Ga, MDT(A, 7))(s)| < (1 + dist z(G1,G2))>1SI — 1

<(1+ diSt‘A(Gl,Gz) Z1S] 1
n — dist 4(G1,G2)




2. For all parity objectivesb and for all s € .S we have

Val(Gy, @) (s) — Val(Ga, &)(s)| < (1 + distp(Gy, Go))215! — 1

. 2./5]
< (14 dZSt'A(GlaGQ) 1
1 — dist o(G1, G2)

Proof. The first part follows from Lemma 3 and Proposition 1. The selqoart follows from part 1, the fact
the value function for parity objectives is obtained as thetlof multi-discounted objectives (Theorem 2),
and the fact the bound for part 1 is independent of the didcfaators (hence independent of taking the
limit). B

4 Value Continuity for Parity Objectives

In this section we show two results: first we show robustnéssrategies and present quantitative bounds
on value function for turn-based stochastic games and tleeshew the continuity for concurrent parity
games.

4.1 Quantitative bounds for structurally equivalent turn-based stochastic parity games

In this section we present quantitative bounds for robisstioé optimal strategies in structurally equivalent
turn-based stochastic games. For every 0 we present a bound > 0 such that if the distance of the
structurally equivalent turn-based stochastic gamesrdif§ at most3 then any pure memoryless optimal
strategy in one game isoptimal in the other. We first show the result for MDPs andhthgtend to turn-
based stochastic games.

Theorem 5. Let(G; be a player-1 MDP such that the minimum positive transitimbpbility isn > 0. The
following assertions hold:

1. For all player-1 MDPs7; € [G1]=, for all parity objectivesp and for all s € S we have

NaI(Gr. ) (8)—Val(Go, ()] < (1 +dist (G, G151 —1 < (14 —2o0a(01.G) VT
1 S 2, S)| < 1SUR 1,G2 =~ - diStA(G17G2)

2. Fore > 0,letg < - ((1 + %)ﬁ — 1) such thatg < . For all G2 € [G:]= such that
dist A(G1,G2) < B, for all parity objectivesd, every pure memoryless optimal strategyin G,
is ane-optimal strategy inG». In other words, for the intervdD, 3), every pure memoryless optimal
strategy inGG; is ane-optimal strategy in all structurally equivalent MDPs @1, such that the distance

lie in the intervall0, 3).
Proof. We prove the two parts below.

1. Without loss of generality, le¥al(G1, @)(s) > Val(Gz,®)(s). Letm; be a pure memoryless optimal
strategy inG; and such a strategy exists by Theorem 1. Then we have tha/fotjonequality
Val(Ga,®)(s) > Val(Ga | m1,P)(s)
> Val(Gy | m1,9)(s) — (1 + distr(G1,G2))*151 — 1)
= Val(G1,9)(s) — (1 + dist p(G1, G2))* !5 — 1)
The (in)equalities are obtained: the first inequality falobecause the value @, is at least the value
in G, obtained by fixing a particular strategy (in this case; the second inequality is obtained by

appying Theorem 4 on the structurally equivalent Markovieh&', [ 7 andG, | m1; and the final
equality follows sincer; is an optimal strategy i6;. The desired result follows.



2. LetGs € [G4]= suchthatlist 4 (G1, G2) < (. Letm; be any pure memoryless optimal strategyin
Then we have the following inequality
VaI(Gg [ 7T1,§25)(S) > VaI(G1 [ 7T1,§25)(S) — ((1 + diStR(Gl,Gg))Z‘S‘ — 1)
= Val(G1,®)(s) — ((1 + distr(G1,G2))*151 — 1)
> VaI(Gg,Q'))(s) -2 ((1 + diStR(Gl, Gg))Q"S‘ - 1)
The first inequality is a consequence of Theorem 4 applied arkbV chaingz, | m; andGy | 7; the

equality follows from the fact; is an optimal strategy i6/;; and the final equality follows by applying
the result of part 1. Hence to prove thatis e-optimal in G5 we need to show that

2 (14 distr(G1,G2))*!51 1) <e 2)

We have

. diStA(Gl,Gg) ) ( 2- diStA(Gl,Gg))
14 distr(G1,G2)) < |1+ : <1+ :
( r(G1, G2)) ( 1 — dist o(G1,G2) n

the firstinequality follows from Proposition 1 and the se¢arequality follows sincelist 4 (G1, G2) <
$ < 4. Hence to prove inequality (2) it suffices to show that

25|
2.

(1+—5) <1+
n

Since < - ((1+ %)2-\15\ — 1), we obtain the desired inequality.

N ™

The desired result follow4.

Theorem 6. LetG'; be a turn-based stochastic game such that the minimum ype#siéinsition probability
isn > 0. The following assertions hold:

1. For all turn-based stochastic gamés < [G1]=, for all parity objectivesp and for all s € S we have

, 2.5
IVal(Gy, ®)(s)—Val(Ga, @)(s)| < (14 distr(G1,Go))*151 -1 < <1+ dista(G1, Go) )) ~1

n— diStA(Gl, Go

2. Fore > 0,letpg < 3 - ((1 + %)ﬁ — 1), such thatg < 3. For all G € [G4]= such that
dist A(G1,G2) < p, for all parity objectivesd, every pure memoryless optimal strategyin G

is ane-optimal strategy inGs.

Proof. The proof is essentially to repeat the proof of Theorem 5ndglDPs pure memoryless optimal
strategies exist in turn-based stochastic games withypaljectives (Theorem 1); and once a pure mem-
oryless strategy is fixed in a turn-based stochastic gamebig@noan MDP. Since Theorem 5 extend the
result of Theorem 4 from Markov chains to MDPs, the proof fug tlesired result follows by mimicing
the proof of Theorem 5 and instead of using the result of Témot for Markov chains using the result of
Theorem 5 for MDPH

4.2 Value continuity for concurrent parity games

In this section we show value continuity for structurallyu@glent concurrent parity games, and show
with an example on Markov chains that the continuity propereaks without the structurally equivalent
assumption. Finally with an example on Markov chains we sti@mwour quantitative bounds are asymptot-
ically optimal for small distance values. We start with a teenfor MDPs.



Lemma 4. LetG; and G be two structurally equivalent MDPs. Letbe the minimum positive transition
probability in G;. For all non-negative reward functions : S — R such that the reward function is
bounded by 1, for all discount vectaoks for all s € S we have

[Val(G1,MDT(X,7))(s) — Val(Ga, MDT(X,7))(s)| < (1 + distr(Gy,G2))*15I -1

. 25|
<(14+ dlst'A(Gl, G2) 1
1 — dist o(G1, G2)

Proof. The proof is essentially mimicing the proof of part(1) of Bihem 5. Without loss of generality, let
Val(G1,MDT(\,7))(s) > Val(Ga, MDT(X,7))(s). Letm; be a pure memoryless optimal strategydn
and such a strategy exists by Theorem 1. Then we have thafofanequality

Val(Gz, MDT(A,7))(s) > Val(Gs | w1, MDT(X, 1))(s)
> Val(G1 | 71, MDT(X,7))(s) — ((1 + distr(G1,G2))*151 — 1)
= Val(G1, MDT(A,7))(s) — ((1 + dist p(G1, GQ))Q'\S\ _ 1)

The (in)equalities are obtained: the first inequality falobecause the value @, is at least the value in
G, obtained by fixing a particular strategy (in this casg; the second inequality is obtained by appying
Theorem 4 on the structurally equivalent Markov chaifis] w1 andGs | 71; and the final equality follows
sincer; is an optimal strategy if;. The desired result followd.

Lemma 5. LetG; andG» be two structurally equivalent concurrent game structukety be the minimum
positive transition probability irG; . For all non-negative reward functions: S — R such that the reward
function is bounded by 1, for all discount vectarsfor all s € S we have

|Val(G1, MDT(X,7))(s) — Val(Ga, MDT(X, 7))(s)| < (1 + distr(G1,G2))*15 — 1

. 2.1
< (14 dlst‘A(Gl, GQ) 1
n — dist 4(G1, G2)

Proof. The proof is essentially mimicing the proof of Lemma 4. Withdoss of generality, let
Val(G1,MDT(A,7))(s) > Val(G2, MDT(A,r))(s). Let m; be a randomized memoryless optimal strat-
egy in(G; and such a strategy exists by Theorem 1. Then we have theviotianequality

Val(Ga, MDT (X, 7))(s) > Val(Go | 71, MDT(X,7))(s)
> Val(Gy [ m1, MDT(X,7))(s) — ((1 + dist g(Gh, Go))*151 — 1)
= Val(G1,MDT(A,7))(s) — ((1 + distr(G, Gy))*18! — 1)
The argument for the inequalities are exactly the same asnmha 4. The desired result follovis.

Theorem 7. LetG; and G5 be two structurally equivalent concurrent game structutextn be the mini-
mum positive transition probability i¥;. For all parity objectivesp and for all s € .S we have

Val(Gy, B)(s) — Val(Ga, &)(s)| < (1 + distp(G1, Go))?15! — 1

. 2.5
< (14 dlst‘A(Gl, GQ) 1
n — dist a(G1, G2)

Proof. The result follows from Theorem 2, Lemma 5 and the fact thatibund of Lemma 5 are indepen-
dent of the discount factors and hence independent of takmgmits.l

Theorem 8. For all concurrent game structures, for all parity objectivesp

lim sup sup |Val(G1, ®)(s) — Val(G2,P)(s)| = 0.
=0 Gy e[G1]=,dist A(G1,G2)<e s€S



Fig. 1. Markov chaing7; andGs.

Proof. Letn > 0 be the minimum positive transition probability @ . Then by Theorem 7 we have

25
lim sup sup |Val(G1,®)(s) — Val(Ga,®)(s)| < lim (1 - ) —-1=0.
=0 G,e[G1]=,dist A(G1,G2)<e sES e—0 n—e

The desired result follow4.

Example 1 (Structurally equivalence assumption necessiaryhis example we show that in Theorem 8
the structural equivalence assumption is necessary, a&ne by showing that the result is tight. We show
an Markov chainG; and a family of Markov chain&'s, for e > 0, such thatlist 4 (G1, G5) < € (butGy is
not structurally equivalent t&'5) with a parity objectived and we have

lim sup |Val(G1,®)(s) — Val(G5,P)(s)| = 1.

e=04es

The Markov chains7; and G5 are defined over the state spgeg, s1}, and inG; both states have
self-loops with probability 1, and i/ the self-loop atsy has probabilityl — ¢ and the transition prob-
ability from sy to s; is ¢ (see Fig 1). Clearlydist 4(G1,G5) = e. The parity objective? requires
to visit the states; infinitely often (i.e., assign priority 2 ta; and priority 1 tosg). Then we have
Val(G1,®)(so) = 0 as the state, is never left, whereas itv§ the states; is the only closed recurrent
set of the Markov chain and hence reached with probabilityoinfs,. HenceVal(G§, ®)(so) = 1. It
follows thatlim. .o sup,cg |Val(G1,@)(s) — Val(G5,P)(s)| = 1.1

Example 2 (Asymptotically tight bound for small distancéé now show that the our quantitative bound
for the value function difference is asymptotically optinfiar small distances. Let us denote the absolute
distance as, and quantitative bound we obtain in Theorem {lis- %6)2'|5| —1,andifeissmall € << n
ande close to zero), we obtain the following approximate boun

(14— )28 1+ 528 1 a142.08- S —1=2-19]- .

n—e n n n

We now illustrate with an example (on structurally equivél&arkov chains) where the difference in
the value function isO(|S| - €), for smalle. Consider the Markov chain defined on state spSice-
{50, 81, .-, S2n—1, S2n } s follows: states, ands.,, are absorhing (states with self-loops of probability 1)
and for a staté < 7 < 2n — 1 we have

1 1
0(si)(si-1) = 5 +& d(si)(sin) = 5 — &
i.e., we have a Markov chain defined on a line frono 2n (with 0 and2n absorbing states) and the chain
moves toward$ with probability% + ¢ and toward2n with probability% — ¢ (see Fig 2). Our goal is to
estimate the probability to reach the stageand letv; denote the probability to reacly from the starting
states;. Then we have the following simple recurrencefo£ i < 2n — 1

1 1
Vi = (54—6)'%‘714—(5 —€) - Vi1;



Fig. 2. Markov chains for Example 2.

andvy = 1 andwvy, = 0. We will considere > 0 such thats is very small and hence higher order
terms (likee?) can be ignored. We claim that the valugscan be expressed as the following recurrence:

Viy1 = (% +é) ¢ v, wheree; = ﬁ““. The proof is by induction and is shown below:

IS
Il

(3+€) - vic1+ (3 —¢)-vip
(A+e) v+ (E—¢)-(3+¢)-ci-v;  (byinductive hypothesis)

(3+¢) vi1+3-¢-v; (ignoringe?)

It follows thatv; = (3 +¢) - 12

-vi—1 = (5 +¢€) - ¢i—1 - vi—1. Hence we have

Ci

1 1 1 1
111:(5—1—6)-1—1—(5—5)-(5—5)-01-v1:>111=4_61 -(54—5).
Then we have, = (1 +¢) ¢ v = ﬁ~c1~(%+a)2andthem3 = ﬁ-cl-@-(%+s)3 and

so on. Finally we have obtain, as follows:v,, = 4fc1 “C1CoCp (% + ¢)™. Observe that for the
Markov chain withe = 0, the states, andss,, are the recurrent states, and since the chain is symmetric
from s, (W|th ¢ = 0) the probability to reachs,, andsy must be equal and hence%ns It foIIows that we
must have— c1 -y -cp1 = 2" 1. Hence we have that far > 0, but very smally,, ~ 2 +n-e.

Thus the dlﬁerence Wlth the value function when= 0 as compared to when > 0 but very small is

n-e = 0O(|S| - ). Also observe that the Markov chain obtainedfor 0 andi > & > 0 are structurally
equivalent. Thus the desired result follows.

5 Conclusion

In this work we studied the robustness and continuity prigpEiconcurrent and turn-based stochastic parity
games with respect to small imprecision in the transitiababilities. We presented quantitative bounds of
difference of value function and proved value continuity éoncurrent parity games under the structural
equivalence assumption, and showed robustness of all pemgonyless optimal strategies for structurally
equivalent turn-based stochastic parity games. We alsgeshthat the structural equivalence assumption
is necessary and that our quantitative bounds are asymgitgtoptimal for small imprecision. We believe
our results will find applications in robustness analysigsafous other classes of stochastic games.
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