687 research outputs found

    Asymptotic Performance Bound on Estimation and Prediction of Mobile MIMO-OFDM Wireless Channels

    Get PDF

    Enhancing massive MIMO: A new approach for Uplink training based on heterogeneous coherence time

    Full text link
    Massive multiple-input multiple-output (MIMO) is one of the key technologies in future generation networks. Owing to their considerable spectral and energy efficiency gains, massive MIMO systems provide the needed performance to cope with the ever increasing wireless capacity demand. Nevertheless, the number of scheduled users stays limited in massive MIMO both in time division duplexing (TDD) and frequency division duplexing (FDD) systems. This is due to the limited coherence time, in TDD systems, and to limited feedback capacity, in FDD mode. In current systems, the time slot duration in TDD mode is the same for all users. This is a suboptimal approach since users are subject to heterogeneous Doppler spreads and, consequently, different coherence times. In this paper, we investigate a massive MIMO system operating in TDD mode in which, the frequency of uplink training differs among users based on their actual channel coherence times. We argue that optimizing uplink training by exploiting this diversity can lead to considerable spectral efficiency gain. We then provide a user scheduling algorithm that exploits a coherence interval based grouping in order to maximize the achievable weighted sum rate

    Channel Estimation for LEO Satellite Massive MIMO OFDM Communications

    Full text link
    In this paper, we investigate the massive multiple-input multiple-output orthogonal frequency division multiplexing channel estimation for low-earth-orbit satellite communication systems. First, we use the angle-delay domain channel to characterize the space-frequency domain channel. Then, we show that the asymptotic minimum mean square error (MMSE) of the channel estimation can be minimized if the array response vectors of the user terminals (UTs) that use the same pilot are orthogonal. Inspired by this, we design an efficient graph-based pilot allocation strategy to enhance the channel estimation performance. In addition, we devise a novel two-stage channel estimation (TSCE) approach, in which the received signals at the satellite are manipulated with per-subcarrier space domain processing followed by per-user frequency domain processing. Moreover, the space domain processing of each UT is shown to be identical for all the subcarriers, and an asymptotically optimal vector for the per-subcarrier space domain linear processing is derived. The frequency domain processing can be efficiently implemented by means of the fast Toeplitz system solver. Simulation results show that the proposed TSCE approach can achieve a near performance to the MMSE estimation with much lower complexity.Comment: accepted by IEEE Transactions on Wireless Communication

    Using Delayed Feedback for Antenna Selection in MIMO Systems

    Full text link
    corecore