10,624 research outputs found

    Baxter's Q-operator for the homogeneous XXX spin chain

    Full text link
    Applying the Pasquier-Gaudin procedure we construct the Baxter's Q-operator for the homogeneous XXX model as integral operator in standard representation of SL(2). The connection between Q-operator and local Hamiltonians is discussed. It is shown that operator of Lipatov's duality symmetry arises naturally as leading term of the asymptotic expansion of Q-operator for large values of spectral parameter.Comment: 23 pages, Late

    Spectral properties of fractional Fokker-Plank operator for the L\'evy flight in a harmonic potential

    Full text link
    We present a detailed analysis of the eigenfunctions of the Fokker-Planck operator for the L\'evy-Ornstein-Uhlenbeck process, their asymptotic behavior and recurrence relations, explicit expressions in coordinate space for the special cases of the Ornstein-Uhlenbeck process with Gaussian and with Cauchy white noise and for the transformation kernel, which maps the fractional Fokker-Planck operator of the Cauchy-Ornstein-Uhlenbeck process to the non-fractional Fokker-Planck operator of the usual Gaussian Ornstein-Uhlenbeck process. We also describe how non-spectral relaxation can be observed in bounded random variables of the L\'evy-Ornstein-Uhlenbeck process and their correlation functions.Comment: 10 pages, 5 figures, submitted to Euro. Phys. J.

    Spectral decomposition for the Dirac system associated to the DSII equation

    Full text link
    A new (scalar) spectral decomposition is found for the Dirac system in two dimensions associated to the focusing Davey--Stewartson II (DSII) equation. Discrete spectrum in the spectral problem corresponds to eigenvalues embedded into a two-dimensional essential spectrum. We show that these embedded eigenvalues are structurally unstable under small variations of the initial data. This instability leads to the decay of localized initial data into continuous wave packets prescribed by the nonlinear dynamics of the DSII equation

    Lifshitz holography: The whole shebang

    Full text link
    We provide a general algorithm for constructing the holographic dictionary for any asymptotically locally Lifshitz background, with or without hyperscaling violation, and for any values of the dynamical exponents zz and θ\theta, as well as the vector hyperscaling violating exponent, that are compatible with the null energy condition. The analysis is carried out for a very general bottom up model of gravity coupled to a massive vector field and a dilaton with arbitrary scalar couplings. The solution of the radial Hamilton-Jacobi equation is obtained recursively in the form of a graded expansion in eigenfunctions of two commuting operators, which are the appropriate generalization of the dilatation operator for non scale invariant and Lorentz violating boundary conditions. The Fefferman-Graham expansions, the sources and 1-point functions of the dual operators, the Ward identities, as well as the local counterterms required for holographic renormalization all follow from this asymptotic solution of the radial Hamilton-Jacobi equation. We also find a family of exact backgrounds with z>1z>1 and θ>0\theta>0 corresponding to a marginal deformation shifting the vector hyperscaling violating parameter and we present an example where the conformal anomaly contains the only z=2z=2 conformal invariant in d=2d=2 with four spatial derivatives.Comment: 83 pages, 1 figur
    corecore